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The Practicality of Stochastic Optimization in
Imaging Inverse Problems

Junqi Tang, Member, IEEE, Karen Egiazarian, Fellow, IEEE, Mohammad Golbabaee, Member, IEEE
and Mike Davies, Fellow, IEEE

Abstract—In this work we investigate the practicality of
stochastic gradient descent and its variants with variance-
reduction techniques in imaging inverse problems. Such algo-
rithms have been shown in the large-scale optimization and
machine learning literature to have optimal complexity in the-
ory, and to provide great improvement empirically over the
deterministic gradient methods. However, in some tasks such as
image deblurring, many of such methods fail to converge faster
than the deterministic gradient methods, even in terms of epoch
counts. We investigate this phenomenon and propose a theory-
inspired mechanism for the practitioners to efficiently character-
ize whether it is beneficial for an inverse problem to be solved by
stochastic optimization techniques or not. Using standard tools
in numerical linear algebra, we derive conditions on the spectral
structure of the inverse problem for being a suitable application
of stochastic gradient methods. Particularly, if the Hessian matrix
of an imaging inverse problem has a fast-decaying eigenspectrum,
then our theory suggests that the stochastic gradient methods can
be more advantageous than deterministic methods for solving
such a problem. Our results also provide guidance on choosing
appropriately the partition minibatch schemes, showing that a
good minibatch scheme typically has relatively low correlation
within each of the minibatches. Finally, we present numerical
studies which validate our results.

Index Terms—Imaging Inverse Problems, Stochastic Optimiza-
tion, Large-scale Optimization.

I. INTRODUCTION

STOCHASTIC gradient-based optimization algorithms
have been ubiquitous in real-world applications which

involve solving large-scale and high-dimensional optimization
tasks, particularly in the field of machine learning [2]–[4], due
to their scalability to the size of the optimization problems.
In this work we study the practicality of stochastic gradient-
based optimization algorithms in imaging inverse problems,
which are also large-scale and high-dimensional by nature. The
class of problems we consider, with typical examples includ-
ing image deblurring, denoising, inpainting, superresolution,
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demosaicing, tomographic image reconstruction, etc, can be
generally formulated as the following:

x∗ ∈ arg min
x∈X

{
F (x) :=

1

n

n∑
i=1

fi(x) + g(x)

}
, (1)

where X ⊆ Rd is a convex set and we denote by f(x) =
1
n

∑n
i=1 fi(x) := 1

n

∑n
i=1 f̄(ai, bi, x) the data fidelity term,

with a regularization term g(x). We assume each fi(x) :=
f̄(ai, bi, x) to be proper, convex and smooth. In the clas-
sical setting of supervised machine learning, the variable
x contains the parameters of a classifier, while the vectors
{a1; a2; ...; an} represent the features of training data samples,
and {b1; b2; ...; bn} denote the corresponding labels. In the
imaging inverse problems we are interested in this work, they
represent the vectorized image, the forward measurements and
the observations, respectively.

To be more specific, we denote here a noisy linear measure-
ment1 model with a ground-truth vectorized image x† which is
to be estimated, an n by d matrix A := [a1; a2; ...; an] ∈ Rn×d
which denotes the measurement operator, additive noise de-
noted by vector w ∈ Rn, and the noisy measurement data
denoted by vector b := [b1; b2; ...; bn] ∈ Rn:

b = Ax† + w, A ∈ Rn×d. (2)

A commonly-used data fidelity term in imaging inverse prob-
lems is the least-squares loss:

f(x) =
1

n

n∑
i=1

1

2
(aTi x− bi)2 =

1

2n
‖Ax− b‖22, (3)

while we typically obtain a robust estimator of x† via
jointly minimizing the least-squares data-fidelity term with
a structure-inducing regularization g(·) which encodes prior
information we have regarding x†. Here we will assume g(x)
to be a proper convex and lower semi-continuous function
and is possibly non-smooth. In imaging inverse problems, a
commonly-used regularization is the sparsity-inducing norm
penalty on either synthesis domain or analysis domain, with
representative examples being the `1 regularization on wavelet
coefficients, and the total-variation (TV) regularization [5].

Traditionally, imaging inverse problems are solved often by
minimizing the regularized least-squares via deterministic first-
order solvers, such as the proximal gradient descent [6], [7], its
accelerated [8]–[11] and primal-dual variants [12], [13]. The

1For the non-linear inverse problems, the measurement model is usually
written as b = A(x†) +w in the literature, with a non-linear mapping A(·) :
Rd → Rn.
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iterates of the proximal gradient descent with least-squares
data-fidelity loss (3) can be written as:

Proximal gradient descent− Initialize x0 ∈ X
For j = 0, 1, 2, ..., t⌊
xj+1 = proxηg[x

j − η · Of(xj)]

where we denote η as the step-size and for least-squares
data-fidelity term Of(xj) = 1

nA
T (Axj − b). We denote the

proximal operator as:

proxηg(·) = arg min
x∈X

1

2
‖x− ·‖22 + ηg(x). (4)

Unlike the deterministic gradient methods which need to
compute a full gradient in each iteration, the stochastic gra-
dient descent methods [2], [14] randomly select one or a
few functions fi(x) in each iteration, compute an efficient
unbiased estimate of the full gradient Of(x) and perform the
descent step. When the composite optimization task (1) is
large-scale and high-dimensional, stochastic gradient methods
are able to achieve scalability and usually much more preferred
than the deterministic gradient methods in machine learning
applications.

In recent years, researchers have developed several ad-
vanced variants of stochastic gradient methods, namely, the
variance-reduced stochastic gradient methods [15]–[18]. In
each iteration of these stochastic algorithms, a more delicate
stochastic gradient estimator is computed, which can reduce
the variance of the stochastic gradient estimator progressively,
with small computational overheads, and hence significantly
improve the convergence rate of stochastic gradient methods.
Most recently, by further combining the variance-reduction
methods with the Nesterov’s momentum acceleration tech-
nique which was originally designed to accelerate the de-
terministic gradient methods [19], researchers [20]–[22] have
developed several accelerated stochastic gradient algorithms
which can provably achieve the worse-case optimal conver-
gence rate of gradient-based methods for (1).

While having been a proven success both in theory and in
machine learning applications, there are few papers so far in
the literature which demonstrate the performance benefit of the
stochastic gradient methods in imaging applications. The most
noticeable application of stochastic-gradient-type methods so
far is the tomographic image reconstruction such as PET
and CT [23]–[26]. The ordered-subsets algorithms [27]–[29],
which are similar to SGD (the only difference is that they
access the minibatches in a deterministic order which is pre-
chosen judiciously tailored to the applications), are routinely
used in clinical PET and CT systems for efficient reconstruc-
tions. The ordered-subsets methods have also been shown to
have fast initial convergence rates in other applications such as
multi-coil MRI reconstruction [30] and image restoration tasks
[31]. It is worth noting that these ordered subsets/incremental
gradient methods are not variance-reduced and require dimin-
ishing step-sizes to ensure convergence, which make them
only to be able to converge fast initially at a low optimization
accuracy regime, but significantly slowed down in later stage
of optimization since the step-sizes shrink towards zero. Here

we are focusing on the growing interest in importing stochas-
tic gradient algorithms from machine learning [2]–[4]. Can
stochastic gradient methods, especially the ones with variance-
reduction techniques, significantly accelerate the solution of
inverse problems as they did for machine learning? If not, why
might stochastic optimization be inefficient for some inverse
problems? How could we help practitioners to characterize
whether a given inverse problem is suitable for stochastic
gradient methods or not? This work is aimed at answering
these questions in a systematic way.

A. Highlights of this work

We make the following contributions:
1) A metric for predicting stochastic acceleration: We start

by a motivational analysis and propose to evaluate the limit
of possible acceleration of a stochastic gradient method over
its full gradient counterpart by measuring a metric which we
call the Stochastic Acceleration (SA) factor, based on the ratio
of the Lipschitz constants of the minibatch stochastic gradient
and the full gradient. We also discover numerically that the SA
factor is able to characterize the benefits of using randomized
optimization techniques, and that not all imaging problems
have a large SA factor.

2) Understanding the relationship between the structure
of inverse problems and stochastic acceleration: We provide
lower and upper bounds for the stochastic acceleration factors,
for the linear imaging inverse problems where least-squares
loss is applied as the data fidelity term. Our results suggest
that:

If a linear inverse problem’s Hessian matrix has an eigen-
spectrum which is fast-decaying, then it typically will have a
large SA factor, which suggests that it can be characterized
as a suitable application for stochastic gradient methods.

And vice-versa: if such an inverse problem’s Hessian matrix
has a slowly-decaying eigenspectrum, then it will have a small
SA factor and can be deemed as unsuitable for stochastic
gradient methods.

3) A measure of the comparative performance of different
minibatch partitions: While the spectral properties of the
forward operator fundamentally determine the suitability of
stochastic gradient methods for an inverse problem, we show
that in practice for some inverse problems, different choices of
partition can lead to different convergence rates for stochastic
gradient algorithms [24]. One of our lower bounds for SA
factors suggests that:

If a partition scheme generates minibatches which have
low local coherence structure, i.e. the measurements within
minibatches have small correlation to each other, then it
can be superior to other partition schemes which have high
local coherence structure.

The SA factors and the lower bounds we propose are
aimed to provide the practitioners with efficient ways to
check whether they should use stochastic gradient techniques
or classical deterministic gradient methods to solve a given
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inverse problem, and also compare between different partition
minibatch schemes and choose the best one among them in
practice.

B. Related works

1) Proximal splitting schemes: The literature of proximal
splitting algorithms in imaging is vast. In this work we mainly
focus on the stochastic versus deterministic versions of the
forward-backward splitting which is the most representative
and widely-applied. Our analysis and numerical studies do not
directly cover other splitting methods which are also popular
in imaging inverse problems, such as the Douglas-Rachford
splitting/ADMM [32], [33], block-coordinate descent methods
[34], [35], and the variable-metric methods [36]–[38]. Nev-
ertheless we believe that these classes of proximal splitting
algorithms would also have similar stochastic acceleration
limits.

2) Ordered-subsets methods in imaging: As mentioned
before, in some medical imaging tasks such as CT and
PET image reconstruction, a family of “SGD-like” minibatch
gradient methods – namely the ordered-subset methods [27]–
[29], are widely used in clinical practice due to its fast
initial convergence compared to deterministic full gradient
methods. The ordered-subsets methods take almost the same
form of SGD with partition minibatches, except that they use
a deterministic ordering of accessing the minibatches. Such an
ordering is judiciously chosen for good empirical performance
in tomography reconstruction [28], but the benefit of using
deterministic ordering over random ordering has not yet been
well-understood theoretically. Our current results do not cover
such potential acceleration on certain inverse problems by
designing deterministic minibatch orderings tailored to the
specific tasks – this is an interesting future direction. On the
other hand, current ordered-subset methods are not variance-
reduced and hence can only provide fast initial convergence.
It would be important to study whether these methods can be
further improved by using variance-reduction techniques [16],
[21], [39], to ensure fast global convergence.

3) Minibatch schemes in machine learning and imaging:
In our work we focus on the partition minibatch schemes
which best-suit the imaging practice [23]–[25], due to its
implementation benefits. It is worth noting that, in stochastic
optimization literature, this is not the only standard way of
selecting minibatches [40], while different minibatch schemes
suit different application scenarios. For instance, in machine
learning we often do not use a fixed partition but reshuffle the
data and generate new partitions in each epoch of SGD meth-
ods [41], [42], since the statistics of the datasets can be very
different, and we generally do not know whether a partition is
good or not. There is an important difference in the practical
aspect of applying minibatch stochastic gradient methods in
machine learning and imaging inverse problems. For most
of the real-world imaging systems, for example the CT and
PET, the measurements are fixed for the imaging devices, and
we can pre-determine a good mini-batch partition beforehand
[29], [43], and use the same partition each time we reconstruct
an image. However for machine learning applications, if one

wish to compute good minibatch partitions, it has to be done
for different training datasets and different models [44], [45],
which requires significant extra computations in practice.

Moreover, in some machine learning scenarios we may have
imbalanced number of samples for different classes in training
data, or there may exist a few out-of-distribution samples,
that in such cases, a biased importance sampling would be
beneficial for stochastic gradient methods since some data
points are more important than others [46]–[48]. However, in
imaging inverse problems, usually measurements are nearly
equivalently important and the benefits of biasing the sampling
distribution could be only incremental.

4) Plug-and-Play / Regularization-by-Denoising schemes:
We also believe that our results can be extended for com-
paring the stochastic and deterministic versions of Plug-and-
Play (PnP) [49]–[52] and Regularization-by-Denoising (RED)
schemes [53]–[55] with advanced image priors based on
applying image denoisers such as BM3D [56] and DnCNN
[57] in a plug-in manner, since they have a similar algorithmic
structure as the classical proximal splitting and gradient-based
methods. We leave these as promising directions for future
work.

C. Outline

Now we set out the rest of the paper. In section II we
describe our notations and definitions which will be frequently
used throughout the paper. We then present in section III a
motivating example with a negative result of state-of-the-art
stochastic gradient methods in a space-varying image deblur-
ring task. Then in section IV, we provide a theoretical analysis
regarding the limitation of stochastic optimization algorithms,
and propose the theory-inspired SA factors. In section V, we
focus on linear imaging inverse problems and present bounds
for the SA factors with respect to the spectral properties of
the forward operator, and hence derive a condition for an
inverse problem to be a suitable application of stochastic
gradient methods. Meanwhile, we also present results which
link the SA factors with a local coherence property of partition
minibatch schemes. In section VI, we present numerical exper-
iments for the evaluation of our findings. Final remarks appear
in section VII, while we include the proofs of our theoretical
results in the appendix.

II. NOTATIONS AND DEFINITIONS

We now make clear some notations which will occur
frequently throughout this paper. We denote an image X ∈
Rd1×d2 in its vectorized (raster) form x ∈ Rd where d =
d1 × d2. Denote X’s columns as x1, x2, ..., xd2 ∈ Rd1 , and
X = [x1, x2, ..., xd2 ], then x = [x1;x2; ...;xd2 ]. Without spec-
ification, the scalar n denotes the number of measurements,
while d denotes the number of pixels, and m denotes the size
of the minibatches, while K is the number of minibatches. For
a positive integer q, the notation [q] represents the collection
of all positive integers up to q : [1, ..., q]. When we write
m = n

K , we implicitly assume that n mod K = 0 – this
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is just for simplification of presentation, without the loss of
generality.

For a given vector v and a scalar p ≥ 1, we write its
`p norm as ‖v‖p. We write the j-th row of A as aj , and
A = [a1; a2; ...; an]. We denote the transpose of A as AT . We
describe Ī = {I1, I2, ..., IK} as the partition of indices for
a subsampling scheme, where I1 ∪ I2 ∪ ... ∪ IK = [n] and
Ii ∩ Ij = ∅,∀i 6= j ∈ [K]. Meanwhile, we use superscript
indexing S1, S2, ..., SK to denote the corresponding row sub-
sampling operators supported on the index set I1, I2, ..., IK .
For a given forward operator A ∈ Rn×d, we denote its spectral
norm as ‖A‖, and its Frobenius norm as ‖A‖F . We denote the
k-th largest eigenvalue of a symmetric matrix H ∈ Rd×d as
σk(H). We denote the `1→2 inducing norm of A as:

‖AT ‖21→2 := max
i∈[n]
‖ai‖22. (5)

For a convex function f(·), we denote its convex conjugate
as f∗(·). In this paper we consider the partition minibatch
sampling which is the most widely-applied in practice:

Definition II.1 (Partition minibatch sampling): For a given
minibatch index partition {I1, I2, ..., IK} where I1∪I2∪ ...∪
IK = [n] and Ii ∩ Ij = ∅,∀i 6= j ∈ [n], the minibatches and
the gradients are defined as the following:

fIk(x) =
K

n

∑
i∈Ik

fi(x),

OfIk(x) :=
K

n

∑
i∈Ik

Ofi(x), k ∈ [K].

(6)

We will then consider problems with the following standard
smoothness (gradient-Lipschitz) conditions on the full batch
f(x) and minibatches fIk(x):

Definition II.2: (Smoothness of the Full-Batch and the Mini-
Batches.) f(·) is LOf -smooth and each fIk(·) is Lb-smooth,
that is:

f(x)− f(y)−Of(y)T (x− y) ≤ LOf

2
‖x− y‖22, ∀x, y ∈ X ,

(7)
and Lb being the smallest constant such that for all Ik ∈ Ī,

fIk(x)−fIk(y)−OfIk(y)T (x−y) ≤ Lb
2
‖x−y‖22,∀x, y ∈ X .

(8)
The smoothness of a function f(·) essentially means that
any function value f(x) is upper-bounded by a quadratic
approximation f(y)+Of(y)T (x−y)+

LOf

2 ‖x−y‖
2
2. For least-

square loss f(x) = 1
2n‖Ax − y‖, we have LOf =

‖A‖22
n . The

smoothness of f(·) and fIk(·) also means that their gradients
are Lipschitz-continuous [58], that is:

‖Of(x)− Of(y)‖2 ≤ LOf‖x− y‖2 ∀x, y ∈ X , (9)

and also:

‖OfIk(x)− OfIk(y)‖2 ≤ Lb‖x− y‖2 ∀x, y ∈ X . (10)

III. A MOTIVATING EXAMPLE

Image deblurring is an important type of imaging inverse
problems and has been studied intensely during the recent
decades. For uniform deblurring, due to the cyclic structure
of the deconvolution, FFT-based ADMM2 variants have been
shown to be remarkably efficient [59] when compared to
classic gradient-based solvers such as FISTA [8]. Such tech-
niques, although being computationally efficient, are specif-
ically tailored to a restricted range of problems where the
observation models are diagonalizable by a DFT. For image
deblurring, it is often not realistic to assume that imaging
devices induce a uniform blur [60]. If the blurring is different
across the image, then the efficient implementation of ADMM
is not effective in general. In such cases, the standard ADMM
and deterministic gradient methods such as FISTA can be
computationally expensive since the deblurring problems we
have in practice are usually large-scale and high-dimensional.
It is therefore natural to ask: can stochastic gradient methods
offer us a more efficient solution?

We start by a simple space-varying deblurring [60] example
where a part (sized 256 by 256) of the “Kodim04” image from
Kodak Lossless True Color Image Suite [61] is blurred with a
space-varying blur kernel which imposes less blurring at the
center but increasingly severe blurring towards the edge. For
the shape of the blur kernel, we choose the out-of-focus kernel
provided in [62]. We also add a small amount of noise to the
blurred image.

We test the effectiveness of several algorithms by solving
the same TV-regularized least-squares problem, with the reg-
ularizer g(x) = λ‖Dx‖1 (where D is the 2D differential
operator and λ is the regularization parameter), to get an
estimation of the ground truth image. The proximal operator
of TV semi-norm is defined as:

proxTV (z) := arg min
x

1

2
‖x− z‖22 + λ‖Dx‖1, (11)

which does not have a closed-form solution. The most com-
mon approach to approximate this is to run accelerated gra-
dient descent (AGD) on the dual of (11), as proposed in
[9]. Here we run 10-iterations of AGD which initialize with
z for warm-start, following the standard implementation of
UnLocbox package [63].

The algorithms we test in the experiments include the
accelerated full gradient method FISTA [9], proximal SGD
[64], the proximal SVRG [17], [65] and its accelerated variant,
Katyusha algorithm [21] which has achieved optimal con-
vergence rate in theory for (1). These methods we choose
for comparison here are representative examples for different
classes of algorithms. FISTA is one of the most widely-applied
deterministic proximal gradient methods for imaging inverse
problems. The proximal SGD is the basic form of stochastic
gradient method for (1), while the proximal SVRG equip the
vanilla SGD with variance-reduction techniques and achieve

2The computationally demanding sub-problems of alternating direction
method of multipliers (ADMM) in this case can be solved with an efficient
matrix inversion by FFT due to the cyclic structure of the uniform deconvo-
lution.
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Fig. 1: The estimation error plot for the deblurring experiment. The plots
correspond to the estimation error of the central part (226 by 226) of the
image.
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Fig. 2: Up-left: the orignal image; up-right: the blurred image which is
also corrupted with Gaussian noise; Down-left: deblurred image by FISTA;
Down-right: deblurred image by Katyusha algorithm.

algorithmic improvements both in theory and in machine learn-
ing applications. The Katyusha algorithm is an accelerated
proximal SVRG method using the momentum technique and
represents the state-of-the-art stochastic gradient methods for
solving (1). We use the checkerboard partitioning [31] to
generate 16 minibatches (which is a 4 × 4 2D-interleaving)
for the stochastic gradient methods hence the minibatch size
is 4096. On this experiment we report a negative result in
Fig.1 for all these randomized algorithms. The most efficient
solver in this task is the full gradient method FISTA in terms
of wall-clock time and number of epochs (datapasses). Note
that the epoch count provides a measure of the computation of
the gradients without the cost of the proximal operators. We
will subsequently use this when we wish to focus solely on
the gradient costs in different algorithms. The minibatch size
was chosen to maximize the performance of the stochastic
methods.

Note that while the stochastic gradient methods do not
offer in this example any benefit in terms of epoch counts
as suggested by their theories, the actual wall-clock time
performance-gap between them and FISTA is even larger.
This is because of the computational overhead of proximal
operators – the stochastic proximal gradient methods need to
compute multiple times the total-variation proximal operators

within each epoch. Hence when evaluating the benefits of
stochastic gradient methods in imaging problems we should
note that any benefits observed in terms of epoch count may
be over optimistic given the non-negligible computational
overhead of the proximal operators.

IV. LIMITATIONS OF STOCHASTIC OPTIMIZATION

The previous deblurring example appears to be contrary
to the popular belief among the stochastic optimization com-
munity and the experience of machine learning practitioners,
that stochastic gradient methods are much faster in terms
of gradient complexity measured by the epoch counts than
deterministic gradient methods in solving large scale problems.
To be specific – to achieve an objective gap suboptimality of
F (x)−F (x?) ≤ ε, optimal stochastic gradient methods needs
only Θ

(
n+

√
nL/ε

)
evaluations of Ofi where L = maxi Li

and Li denotes the smallest Lipschitz constant of Ofi, see
e.g. [20], [21], while Θ

(
n
√
L/ε

)
are needed for optimal full

gradient methods [66]. Where is the loophole?
It is often easily ignored that the complexity results above

are derived under different smoothness assumptions. For con-
vergence bounds of the full gradient, the full smooth part of the
cost function’s gradient Of(.) is assumed to be L-Lipschitz
continuous, while for the case of stochastic gradient, every
individual function’s gradient Ofi(.) is assumed to have a
Lipschitz constant L. Now we can clearly see the subtlety:
to compare these complexity results and make meaningful
conclusions, one has to assume that these two Lipschitz
constants are roughly the same. While this can be true, and
is true for many problems, there are exceptions – image
deblurring is one of them.

We illustrate here some extreme examples for the two
smoothness constants to demonstrate this possible dramatic
difference:

Let f(x) = 1
2n‖Ax − b‖22 = 1

n

∑n
i=1

1
2 (aTi x − bi)

2 :=
1
n

∑n
i=1 fi(x).

(1) If a1 = a2 = a3...,= an−1 = an, then LOf = Lb.
(2) If A = I , then LOf = 1

KLb.

A. A motivational analysis

In order to identify the potential of a certain imaging
inverse problem to be more efficiently solved using stochastic
gradient methods, we start by deriving a motivating theorem
comparing the convergence rates in terms of epoch counts
for the optimal full gradient methods as well as the optimal
stochastic gradient methods. Recall that in our motivational
example, the performance gap in terms of actual running time
between deterministic and stochastic gradient methods is larger
than their performance gap measured purely by epoch counts
due to the computational overhead of proximal operators. In
our motivational analysis, we consider the unregularized case
where g(·) = 0 to focus on the fundamental comparison of
the iteration complexity of these algorithms measured by the
epoch counts. We also have additional results for the case
where convex constraints (such as the total-variation constraint
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[67]) are used as regularization, and we include them in the
supplemental material.

We compare two classes of algorithms: the optimal de-
terministic gradient methods which meet the deterministic
gradient-complexity lower bound [68, Theorem 3] and the
optimal stochastic gradient methods which are able to match
the stochastic gradient-complexity lower bound [68, Theorem
7]. The FISTA algorithm and the Katyusha algorithm are
typical instances from these two classes of algorithms.

Definition IV.1: (The class of optimal deterministic gradient
algorithms.) A deterministic gradient method Afull is called
optimal if for any t ≥ 1, the update of the t-th iteration xtAfull

satisfies:

F (xtAfull
)− F (x?) ≤ C1LOf‖x0 − x?‖22

t2
, (12)

for some positive constant C1.
It is known that the original FISTA algorithm satisfies this
definition with C1 = 2 [9], while recent works [69], [70]
show that the constant can be further improved to C1 = 1 via
optimizing the momentum parameter. We also define the class
for optimal stochastic gradient methods:

Definition IV.2: (The class of optimal stochastic gradient
algorithms.) A stochastic gradient method Astoc is called
optimal if for any t ≥ 1 and K ≥ 1, after a number of
t·K stochastic gradient evaluations, the output of the algorithm
xtAstoc

satisfies:

EF (xtAstoc
)− F (x?)

≤ C2[F (x0)− F (x?)]

t2
+
C3Lb‖x0 − x?‖22

Kt2
,

(13)

for some positive constants C2 and C3.
Note that the accelerated stochastic variance-reduced gradient
methods [20]–[22] satisfy this definition with different con-
stants of C2 and C3.

Now we are ready to present the motivational theorem,
which follows from combining the existing convergence re-
sults of the lower bounds for the stochastic and deterministic
first-order optimization [58], [68].

Theorem IV.3: Let g(·) = 0 and X =
{
x ∈ Rd : ‖x‖22 ≤ 1

}
.

Denote an optimal deterministic algorithm Afull which satis-
fies Def. IV.1, and an optimal stochastic gradient algorithm
Astoc which satisifes Def. IV.2. For a sufficiently large dimen-
sion d, there exist two different sets of convex and Lb-smooth
functions fi, such that F = 1

K

∑K
i=1 fi satisfies the following

bounds respectively:

EF (xtAstoc
)− F (x?)

F (xtAfull
)− F (x?)

≥ c0Lb
KLOf

, (14)

and,
EF (xtAstoc

)− F (x?)

F (xtAfull
)− F (x?)

≤ c1Lb
KLOf

+ c2, (15)

with universal positive constants c0, c1 and c2 which do not
depend on Lb, LOf , t and K.

We provide the proof in Appendix A. From this theorem
we can see that with the same epoch count, the ratio of
the objective-gap sub-optimality achieved by Afull and Astoc

can be upper and lower bounded by Θ( Lb
KLOf

) in the worst

case. In other words, for a fixed number of epochs, there
exists a smooth finite-sum objective function, such that no
optimal stochastic gradient method can achieve a speed-up
more than c0 · Lb

KLOf
times over any optimal deterministic

gradient algorithm on minimizing this objective. Meanwhile,
there also exist a smooth finite-sum objective function, such
that no optimal deterministic gradient method can achieve a
speed-up more than c1 · Lb

KLOf
+ c2 times over any optimal

stochastic gradient methods. Motivated by the theory, we
now further investigate and propose to evaluate the potential
of stochastic acceleration simply by the ratio KLOf

Lb
which

dominates our upper and lower bound in Theorem IV.3.

B. Evaluating the limitation of SGD-type algorithms

We propose a metric called the Stochastic Acceleration (SA)
factor based on our theoretical analysis in the previous section,
in order to provide a way of characterizing whether for a given
inverse problem and a certain partition minibatch sampling
scheme, stochastic gradient methods should be preferred over
the deterministic full gradient methods or not.

Definition IV.4: For a given disjoint partition minibatch
index [n] = I1 ∪ I2 ∪ ... ∪ IK := Ī, where Ii ∩ Ij =
∅,∀i 6= j ∈ [K], with corresponding subsampling operators
[S1, ...SK ], the Stochastic Acceleration (SA) factor is defined
as:

Υ(A, Ī,K) =
KLOf

Lb
. (16)

Note that while the SA factor is always greater than or
equal to 1, we remind the reader that this is only a qualitative
measure as we have discounted the constants in Theorem IV.3
and the computational cost of the proximal operator.

We next evaluate the SA factors for the least squares loss
function f(x) = 1

2n‖Ax− b‖
2
2 with different types of forward

operators. We partition the data into minibatches and have:

f(x) =
1

2n
‖Ax− b‖22 =

1

K

K∑
k=1

fIk(x), (17)

where,

fIk(x) :=
K

2n
‖SkAx− Skb‖22, (18)

The examples of forward operator A we consider here include
the space-varying deblurring (Ablur ∈ R262144×262144), a
random compressed sensing matrix with i.i.d Guassian random
entries (with a size Arand ∈ R500×2000), and a fan beam
X-ray CT operator (ACT ∈ R91200×65536). Meanwhile, in
order to contrast with the application of stochastic gradient
algorithms in machine learning, we also consider linear re-
gression problems on two machine learning datasets: RCV1
dataset (Arcv1 ∈ R20242×47236), and Magic04 (Amagic04 ∈
R19000×50).

For the X-ray CT image reconstruction example and de-
blurring example we use TV regularization for g(x) in (1),
while for the rest of the examples we use `1 regularization.
We vectorize the image precisely as described in section II.
The data-partition we select for the deblurring example is the
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Fig. 3: Left: Stochastic Acceleration (SA) function of inverse problems with different forward operators. Right: Empirical observation comparing the
convergence of Katyusha and FISTA algorithm in 15 epochs.

checkerboard partition proposed by [31], which was observed
to be the most appropriate for image-restoration tasks:

fIk(x) =
K

n

bd1/k1c∑
i=1

bd2/k2c∑
j=1

f(i−1)k1d2+(j−1)k2+v(k)(x), (19)

where K = k1k2 and v(k) = mod (k, k2) + d2bk/k2c.
For CT we use the standard view-based subsets where we
interleave the projections from equally-spaced angles:

fIk(x) :=
K

n′

bn′/Kc∑
i=1

fk+iK(x) (20)

=
K

2n′

bn′/Kc∑
i=1

m(k+iK+1)∑
j=m(k+iK)+1

(aTj x− bj) (21)

where we denote n′ as number of views and m as the number
of X-ray sensors in the CT system. The data-partition we
choose for the rest of examples is the interleaved sampling,
where the k-th minibatch is formed as the following:

fIk(x) :=
K

n

bn/Kc∑
i=1

fk+iK(x) (22)

=
K

2n

bn/Kc∑
i=1

(aTk+iKx− bk+iK) (23)

In Figure 3(a), we plot the SA factors for these 5 problem
instances as a function of the number of minibatches along
with the empirical acceleration observed when solving these
problems. From the result demonstrated in the Figure 3 we
find that indeed the stochastic methods have a limitation on
some problems like deblurring and compressed sensing inverse
problems with Gaussian random design matrices, where we see
that the curve for the SA factor of such problems stays low
and flat even when we increase the number of minibatches.
For the machine learning datasets and X-ray CT imaging, the
SA factor increases rapidly and almost linearly as we increase
the number of minibatches, which is in line with observations
in machine learning on the superiority of SGD and also the
observation in CT image reconstruction of the benefits of using
the ordered-subset methods [27], [29] which are similar to
stochastic gradient methods.

The curves for the SA factor in Figure 3(a) qualitatively
predict the empirical comparison result3 of the Katyusha and
FISTA algorithms shown on the Figure 3(b), where we observe
that Katyusha offers no acceleration over the FISTA on either
the deblurring or the compressed sensing inverse problem we
have considered, but significantly outperforms FISTA on the
other cases. Indeed, positive results for applying SGD-type
algorithms on these problems are well-known already [2], [17],
[27]. These results suggest that the SA factor we propose
could be useful in characterizing whether an inverse problem is
inherently a suitable candidate for stochastic gradient methods.

V. LOCAL COHERENCE STRUCTURE, EIGENSPECTRUM,
AND STOCHASTIC ACCELERATION

We now go deeper to investigate the relationship of the SA
factor and the structure of the forward operator of the inverse
problem. We restrict our analysis in this section to the cases
where least-squares loss is used as the data-fidelity term.

Subsequently we will assume that each partition has an
equal size m for the simplicity of presentation. We will find
the following definition of the local-accumulated-coherence to
be useful.

Definition V.1 (Local-Accumulated-Coherence): Give a par-
tition [n] = I1 ∪ I2 ∪ ... ∪ IK := Ī for A = [a1; a2; ...; an],
the local-accumulated-coherence is defined as:

µ`(A, Ī,K) = max
q∈[K]

max
j∈Iq

∑
k∈Iq

|〈aj , ak〉|. (24)

The local-accumulated-coherence captures the correlation
characteristic between the linear measurements within each
partitioned minibatches4. As we will see, if a partition has
a smaller local accumulated coherence than another partition,
then it typically can have a better SA factor. This suggests that
a good partition scheme should ensure that within each of the
minibatches, the measurements are spread across the image
space as uniformly as possible. Our theoretical result confirms
the numerical observations in empirical works regarding the

3We compare the objective-gap convergence (F (xt) − F (x?)) of FISTA
and Katyusha for a fixed number of datapasses (epochs).

4Note that our definition of local accumulated coherence should not be
confused with the definition of cumulative coherence in [71] which is
regarding the column elements of a dictionary.
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ordered-subsets methods [27], [31], [72], that it is often more
desirable for a minibatch scheme to generate “balanced”
minibatches which have nearly equivalent pixel activity [72].

The Gersgorin disk theorem [73] will be useful in our anal-
ysis, which relates a square symmetric matrix’s eigenvalues
with its entries, and links to the gradient-Lipschitz constant
Lb – which in the least-squares context can be written as:

Lb =
K

n
max
k∈[K]

‖SkA(SkA)T ‖ (25)

in linear inverse problems. With this relationship we can lower-
bound the SA factors with the ratio of ‖A‖

2

µ`
.

Theorem V.2 (Lower bounds for Υ(A, Ī,K)): The SA factor
for any linear inverse problem with f(x) = 1

2n‖Ax − b‖
2
2 is

lower bounded as:

Υ(A, Ī,K) ≥ α`(A, Ī,K) :=
‖A‖2

µ`(A, Ī,K)
(26)

≥ αu(A,K) :=
K‖A‖2

n‖AT ‖21→2

(27)

≥ αs(A,K) :=
K · σ1(ATA)

ρ ·
∑d
i=1 σi(A

TA)
, (28)

where:

ρ :=
maxi∈[n] ‖ai‖22
1
n

∑n
j=1 ‖aj‖22

. (29)

We provide the proof in Appendix B. Note that most inverse
problems we encounter usually satisfy (29) with ρ = O(1).
This is due to the fact that unlike machine learning applications
where we may often have outliers in datasets, most imaging
systems are well-designed with measurements having similar
`2 norms. The second and the third inequalities are partition-
independent and reveal a strong relationship between the SA
factor and the spectral properties of the forward operator.
The third inequality in Theorem V.2 suggests that, if a linear
inverse problem which satisfies (29) with ρ = O(1) has a
Hessian with a fast-decaying eigenspectrum, it typically will
have a good SA factor. They are also tight bounds if we do
not impose additional structural assumptions on the forward
operator – if A has identical rows we have Υ(A, Ī,K) =
K‖A‖2

n‖AT ‖21→2
= K, noting that ‖AT ‖21→2 = maxi∈[n] ‖ai‖22. If

ρ = 1 which means that rows of A have the same `2 norm,
we also have αu(A,K) = αs(A,K).

We have derived partition independent lower bounds
αu(A,K) and αs(A,K) which link the SA factor Υ(A, Ī,K)
with spectral properties of the forward operator. For some
inverse problems which admit inferior partitions, these may
be crude lower bounds since they should cover the worse
case of partition choice. It is therefore insightful to derive
a lower bound for the case where we randomly partition the
data, which would enable us to have potentially better lower
bound estimate for the SA factors. We provide the following
lower bound using the Matrix Chernoff inequality and the
union bound, following a similar argument by [74, Proposition
3.3]. We present the proof in Appendix D.

Theorem V.3 (Lower bounds for Υ(A, Ī,K) for a random
partition): If Ī is a uniform random partition, then for K ∈

[
‖A‖2
‖AT ‖21→2

,min(n, d)
]
, the following lower bounds hold with

probability at least: 1− d2
(
e
δ

)δ
:

Υ(A, Ī,K) ≥ αr(A,K, δ) ≥ ασ(A,K, δ), (30)

where,

αr(A,K, δ) :=
1

1
K + δ · ‖A

T ‖21→2

‖A‖2
,

ασ(A,K, δ) :=
1

1
K + δ · ρn ·

∑d
i=1 σi(A

TA)

σ1(ATA)

.
(31)

These lower bounds for a random partition scheme again
demonstrates the strong relationship between the SA factor and
the ratio ‖A

T ‖21→2

‖A‖2 which is controlled by the eigenspectrum∑d
i=1 σi(A

TA)

σ1(ATA)
. Note that due to the Matrix Chernoff inequality

[75], this theorem holds with a probability 1−d2
(
e
δ

)δ
, which

is dimension-dependent, hence in theory the parameter δ needs
to be sufficiently large for this bound to hold with high
probability.

Meanwhile, we can also have an upper bound for the
SA factor, independent of the partition Ī, in terms of the
eigenspectrum of the Hessian matrix ATA. This upper bound
can be derived from a standard result [73, Theorem 4.3.15]
using the fact that the matrix (SkA)TSkA and SkA(SkA)T

share the same non-zero eigenvalues.
Theorem V.4 (Upper bound for Υ(A, Ī,K)): The SA factor

for any linear inverse problem with f(x) = 1
2n‖Ax − b‖

2
2 is

upper bounded as:

Υ(A, Ī,K) ≤ β(A,K) :=
σ1
(
ATA

)
σbn− n

K+1c (ATA)
, (32)

for any possible partition Ī.
We include the proof in Appendix C for completeness. The
upper bound (32) suggests that, if the Hessian matrix ATA
has slowly-decaying eigenvalues at the tail, it indeed typically
cannot have a large SA factor, no-matter how delicately
we partition the forward operator A. The upper bound and
the lower-bounds jointly suggest that, having a fast-decaying
eigenspectrum of the Hessian is crucial for an inverse problem
to have good SA factors.

VI. NUMERICAL EVALUATION

In this section, we design numerical experiments to validate
our theoretical findings in the previous section, regarding how
the SA factor depends on the inherent spectral structure of the
forward operator, as well as the minibatch partition schemes
we choose. We validate these theoretical results on various
examples of linear inverse problems with different properties.
We use a machine with 1.6 GB RAM, 1.80 GHz Intel Core
i7-8550 CPU and MATLAB R2020a.

We start by the lower bound α`(A, Ī,K) we have pre-
sented in Theorem V.2 which suggests that, for some inverse
problems, judiciously choosing the partition for minibatches is
important – good choices of partitioning can have small local
coherence and hence lead to larger SA factors in practice. In
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Fig. 5: Stochastic Acceleration (SA) factors, eigenspectrum, and lower/upper bound estimates for forward operators (random matrices sized 200 by 1000)
with different distributions, using random partitioning.

Figure 4, we test three different partition schemes for our run-
ning example of space-varying deblurring: the checkerboard
2D-interleaving partitioning which we have described before,
the random partitioning where we generate the partition index
randomly without replacement, and the consecutive block
partitioning5, where we directly partition the forward operator
A into K consecutive blocks and form the minibatches. The
interleaving partitioning in this case provides the smallest
local coherence, and hence its SA factors are the largest.
While consecutive block partitioning leads to the largest local
coherence, it offers no stochastic acceleration at all. The lower
bound estimate α`(A, Ī,K) of SA factors are actually very

5which is basically Ik := [m(k − 1) + 1,m(k − 1) + 2,m(k − 1) +
3, ...,mk − 1,mk], ∀k ∈ [K].

accurate in this case, as shown in the Figure 4(b).
In Figure 5 we present a simulation result where we generate

4 compressed sensing random design matrices of the same size
n = 200, d = 1000 with different distributions and check the
relationship of their SA factors and the eigenspectrum of their
Hessian matrices. The forward operators we generate are:

(1) random Gaussian matrix with each entry drawn from a
Gaussian distribution with zero-mean and unit-variance;

(2) subsampled Wishart matrix;
(3) random Gaussian matrix with each entry drawn from a

Gaussian distribution with 0.25-mean and unit-variance;
(4) random matrix with each entry drawn from a uniform

distribution supported on the interval [0, 1].
From the experimental result we can observe that, these

four forward operators have very different decay-rates on their
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Fig. 6: SA factors, and lower bound estimates of inverse problems with different forward operators for random partition minibatches.

Hessians’ eigenspectrum, and correspondingly, very different
SA factors. The case (4) has the fastest decay-rate, and has the
largest SA factors and it grows almost linearly as the number
of minibatches increases. The case (1) has the slowest decay-
rate on the eigenspectrum, and correspondingly, it has the
worst SA factors among the 4 cases. This numerical result
is in broad agreement with our analysis.

Next we also test our lower bound αr(A,K, δ) for all the
examples we have considered. We first compute the lower
bound estimate αr(A,K, δ) by (30) for different forward
operators, with the choice of δ = 15 which is sufficient for
the lower bound to hold with probability at least 0.9 for all
these forward operators. We present the result in Figure 6(b)
and compare it with the SA factors presented in Figure 6(a).
We find that our theoretically justified lower bound is still
able to distinguish well whether a given inverse problem is
suitable or not for stochastic optimization, but seems to be
very conservative for the choice of δ. The result in Figure 6(c)
suggests that if a smaller δ is chosen heuristically, one may
scale up the result in Figure 6(b) and obtain a better lower
bound estimate for the SA factors. We conjecture that the
probabilistic result in Theorem V.3 may be further improved
– this is an open question for future work.

For a better demonstration, we additionally provide exper-
iments on two inherently different imaging inverse problems:
the space-varying deblurring and X-ray CT image reconstruc-
tion. We will see that as suggested by the distinct SA factors
for these two inverse problems, numerically the acceleration
provided by stochastic gradient techniques indeed varies in
these two problems for a wide range of algorithms. Moreover,
for some inverse problems such as deblurring, the minibatch
partition scheme we use will play an important role in the
actual convergence rate of the stochastic gradient methods, as
suggested by our theory. We use here a classic form of smooth
edge-preserving regularization [31], [76] which is widely used
for these inverse problems:

x? ∈ arg min
x∈K

{
1

2n
‖Ax− b‖22 + λ

∑
r

φ([Dx]r)

}
, (33)

where D is the 2D differential operator, and φ(·) is an edge-
preserving potential function which penalize the differences

between neighboring pixels [31], [76]–[78], while the con-
straint set K here is the box constraint restricting the resulting
image to have pixel values between 0 and 1. We choose to
use the potential function proposed by Thibault et al [76]:

φ(z) =
|z|p

1 + | zc |p−q
, (34)

which encompasses the well-known approximate Huber prior
(p = 2, q = 1) and the generalized Gaussian markov field
(1 < q = p ≤ 2). Here we set p = 2, q = 1.5, c = 10.
We test the performance of the Katyusha algorithm [21]
which is an accelerated stochastic variance-reduced gradient
method, and the modified FISTA of Chambolle and Dossal
[10] with provable convergence on iterates. Since the Katyusha
algorithm uses variance-reduced stochastic gradients, its step-
size is non-vanishing and hence converge faster than the non-
variance-reduced stochastic methods in high-accuracy regimes
[39]. For all the compared algorithms, we use the step-sizes
suggested by their theoretical convergence analysis. We also
partition the smooth regularizer into the minibatches for the
Katyusha algorithm, such that the computational costs for 1
datapass (epoch) of Katyusha and FISTA are equivalent in our
examples.

We first test the algorithms on a space-varying deblurring
task for images sized 512 by 512, with a space-varying
out-of-focus blur kernel. As suggested by our lower bound
α`(A, Ī,K) in Theorem V.2 and the numerical result shown in
Figure 4, we choose the checkerboard subsampling minibatch
partition with K = 20 for the deblurring task which has
small local-accumulated-coherence for Katyusha and compare
it with the random partition scheme. Moreover, we are aware
of that, due to the presence of (restricted) strong-convexity,
the convergence for both of the accelerated deterministic and
stochastic methods can be further improved by restart schemes
in a local high-accuracy regime [79]. Hence we also compare
the restart variants of Katyusha [80] and FISTA [79] where we
make grid search for the best restart period for each algorithm.
All algorithms are initialized with a backprojection.

We plot the root mean square distance (RMSD) towards
the minimizer ‖x−x

?‖2√
d

in Figure 7 for each algorithm, where
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x? denotes the minimizer of the objective function (33)6.
We can clearly observe that the checkerboard interleaving
minibatch scheme leads to a superior performance over the
random minibatch for Katyusha, as predicted by the theory.
We also report that in this experiment, if we further increase
the number of minibatches of Katyusha and Restart-Katyusha,
we do not observe faster convergence. In this experiment, no
matter how we increase the number of subsets, we do not
observe improved performance of Katyusha over FISTA – such
a trend is successfully predicted by the SA factor shown in the
Figure 3, where we can see that the curve of the SA factor
for deblurring task has low values, and goes flat instead of
increasing after the number of minibatches K > 10.

We also consider a 2D fan-beam CT imaging problem
generated via the Matlab package AIRtools [81], where we aim
to reconstruct a 256×256 head image from 92532 noisy X-ray
measurements (hence the forward operator A ∈ R92532×65536),
using the smooth edge-preserving regularization. Denoting x†

to be the (vectorized) ground truth image and w ∈ Rn to be
an additional random noise vector drawn from an exponential
Poisson distribution, we have the observed measurement as
b = Ax† + w. The signal-to-noise ratio of the X-ray mea-
surement in this example is set to be: log10

‖Ax†‖22
‖w‖22

≈ 3.16.
For the stochastic methods, we use a partition scheme based
on interleaving views from equally-spaced angle (20) which
is standard and most practical for CT reconstruction [29].

We present the convergence results of the compared algo-
rithms in Figure 8. Unlike in the previous deblurring example,
in this experiment we observe that Katyusha/Restart-Katyusha
are significantly faster than the deterministic methods, espe-
cially when we use a relatively large number of minibatches
(K = 40), due to the fact that CT imaging has a large SA
factor, as our analysis suggested. The comparative results of

6Here we choose to use the RMSD to the minimizer instead of the mean-
square-error to the ground-truth – the RMSD is more appropriate because the
primary focus of this work is on optimization instead of estimation.
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Fig. 8: The root mean square distance plot for the X-ray CT image
reconstruction experiment with a smooth edge-preserving regularization.

log10
‖Ax†‖22
‖w‖22

≈ 3.16.

Restart-Katyusha and Restart-FISTA in deblurring and CT
suggest that our proposed SA factor is also useful in the case
where the (restricted) strong-convexity condition holds and is
exploited by the algorithms, and we refer the readers to the
supplemental material where we include an analysis regarding
this case.

VII. CONCLUSION

In this work we have investigated the practicability of the
state-of-the-art stochastic gradient methods in imaging inverse
problems. We first presented a negative result on existing
SGD-type methods on image deblurring, as a motivational
example. To understand the limitation of stochastic gradient
methods in inverse problems, we analyzed the worse-case
theoretical limits and proposed the SA factor to evaluate the
possible computational advantage of using stochastic tech-
niques for a given task. Then we found that the SA factor
is directly related to the inherent structure of the forward
measurement model.

We derived lower and upper bounds of the SA factor. From
the theoretical results, we found out that, if a linear inverse
problem has a small ratio of ‖A

T ‖21→2

‖A‖2 , which means the
Hessian matrix ATA has fast-decaying eigenspectrum, then it
typically admits good SA factors, hence can be rapidly solved
by stochastic gradient methods. Our analysis also suggests
that, excellent partition schemes typically have low local-
accumulated-coherence, which essentially means the measure-
ments within one minibatch have low mutual correlation.
Using the SA factor, jointly with the derived lower bounds,
practitioners can identify whether they should use stochastic
gradient or deterministic gradient algorithms for given in-
verse problems, and evaluate the potential of given partition
schemes. Our result also provides intuition that minibatch
partitions with low coherence are superior than the ones with
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higher coherence, suggesting that practitioners may use this
as a criterion to design heuristic schemes for generating near-
optimal partitions (for example the checkerboard partitioning
for deblurring and the view-based interleaving for CT). How-
ever, exactly finding the best partitioning for a given inverse
problem is a combinatorial problem, and we do not currently
have any efficient generic scheme which is guaranteed to
exactly solve this for arbitrary inverse problems – we leave
this as an open problem for future work.

It is worth noting a limitation of our work. Our bounds
do not take into account the fact that, for some inverse
problems such as PET and CT, it is possible to judiciously
design an ordering for accessing the minibatches, which can
be empirically superior to the random access ordering [28],
[29]. The empirical benefits of ordered-subsets methods over
stochastic gradient methods in these applications have not yet
been theoretically understood – this suggests an important
and interesting line of future work might be to study SGD
techniques where tight theoretical convergence rate analysis
is possible, along with non-iid sampling strategies (e.g. using
Markov chain sampling of the mini-batches [82]), in imaging
inverse problems.

While our results are mainly for linear inverse problems
with least-squares data-fidelity terms, we believe that they
also can be extended and give insights to inverse prob-
lems with non-linear measurements since one can construct
majorizing linearized subproblems (proximal Newton-steps)
and solve these subproblems with deterministic or stochastic
proximal gradient methods. Our results may also be extended
for understanding and analyzing the limitations of stochastic
gradient-based methods [52] with the plug-and-play priors
[50], [51] and the regularization-by-denoising schemes [53]–
[55] in imaging inverse problems, which we leave as a future
direction.

Although we have concentrated on stochastic gradient
methods vs deterministic gradient methods, there are other
considerations that might affect the choice of whether to
go stochastic. For example, if an inverse problem can be
effectively preconditioned by simple preconditioners (such
as diagonal preconditioners) or implicitly by variable-metric
optimization techniques, then the potential benefit of stochastic
methods over deterministic methods may possibly be reduced,
since the preconditioned forward operator may not have as
fast-decaying spectrum as the original one. Moreover, if the
forward operator can be implemented with a fast transform
such as the FFT, for example in MRI image reconstruction
tasks, the deterministic gradient methods are usually much
more favored since they can benefit from the fast operation
while current stochastic gradient methods cannot. We consider
these as topics for future research.

APPENDIX A
THE PROOF OF THEOREM IV.3

We set x0 ∈ X as initialization for both Afull and Astoc,
where X =

{
x ∈ Rd : ‖x‖22 ≤ 1

}
. According to the lower

bound for the stochastic gradient by [68, Theorem 7], there

exists an objective function F (x) = 1
K

∑K
k=1 fk(x) with a set

of convex and Lb-smooth function fi, for a positive constant
Cstoc, which is independent of Lb, LOf and K, such that in
order to achieve an output EF (xtA)−F (x?) ≤ ε, any stochas-

tic gradient algorithm must take at least Cstoc

(
K +

√
KLb
ε

)
calls of the stochastic gradient oracle Ofi(). In other words,
for this worst case function, if we run any stochastic gradient
method with only Kt calls on the stochastic gradient oracle
such that Kt = Cstoc

√
KLb
ε , then EF (xtAstoc

) − F (x?) ≥ ε

can be guaranteed. Hence, we have:

EF (xtAstoc
)− F (x?) ≥ C2

stocLb
Kt2

(35)

Meanwhile, starting from x0 ∈ X , by Def. IV.1, for any
optimal full gradient method Afull we can have:

F (xtAfull
)− F (x?) ≤ C1LOf‖x0 − x?‖22

t2
≤ 4C1LOf

t2
, (36)

where the constant C1 is independent of Lb, LOf and K.
Combining these two bounds we can have:

EF (xtAstoc
)− F (x?)

F (xtAfull
)− F (x?)

≥ C2
stocLb

4C1KLOf
. (37)

Finally, by setting c0 =
C2

stoc

4C1
we yield the lower bound.

Next, we are going to prove the upper bound. According to
the lower bound for the deterministic gradient by [68, Theorem
3], there exists an objective function F (x) = 1

K

∑K
k=1 fk(x)

with a set of convex and Lb-smooth function fi, such that
in order to achieve an output F (xtAfull

) − F (x?) ≤ ε, any

deterministic gradient algorithm must take at least Ω

(√
LOf

ε

)
calls of the deterministic gradient oracle Of(·). Hence there
exists a positive constant Cfull, which is independent of Lb,

LOf and K, such that if we take t = Cfull

√
LOf

ε number of
calls on deterministic gradient oracle, we are guaranteed to
have F (xtAfull

)− F (x?) ≥ ε. Then we have:

F (xtAfull
)−F (x?) ≥ C2

fullLOf

t2
≥ C2

fullLOf‖x0 − x?‖22
t2

(38)

Meanwhile, for optimal stochastic algorithm we have the upper
bound of convergence by Def. IV.2 with setting m = K:

EF (xtAstoc
)− F (x?)

≤
C2(F (x0)− F (x?)) + C3Lb

K ‖x0 − x?‖22
t2

(39)

Combining the two bounds we can have:

EF (xtAstoc
)− F (x?)

F (xtAfull
)− F (x?)

≤ C2

C2
full

· Lb
KLOf

+
C3(F (x0)− F (x?))

C2
fullLOf‖x0 − x?‖22

.

(40)
Recall the definition of smoothness, we can have:

f(x0)−f(x?)−〈Of(x?), x0−x?〉 ≤ LOf

2
‖x0−x?‖22. (41)

Since the solution set of worst-case objective function pro-
posed in [68, Theorem 3] lives in the relative interior of X ,
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we can have Of(x?) = 0, and hence F (x0) − F (x?) =
f(x0)−f(x?) ≤ LOf

2 ‖x
0−x?‖22. Consequently, we can have:

EF (xtAstoc
)− F (x?)

F (xtAfull
)− F (x?)

≤ C2

C2
full

· Lb
KLOf

+
C3

2C2
full

. (42)

By setting c1 = C2

C2
full

and c2 = C3

2C2
full

we yield the upper
bound.

APPENDIX B
THE PROOF OF THEOREM V.2

If we set H = SkA(SkA)T for some k ∈ [K], the
top eigenvalue of SkA(SkA)T is no larger than the largest
value within the set G(SkA(SkA)T ) which we denote here
as Gmax(SkA(SkA)T ). We have the following relationship:

‖SkA‖2 ≤ Gmax(SkA(SkA)T ) = max
i∈Ik
‖(SkA)ai‖1

= max
i∈Ik

∑
j∈Ik

|〈ai, aj〉|.
(43)

Then we have:

Lb =
K

n
max
k∈[K]

‖SkA(SkA)T ‖ ≤ K

n
max
q∈[K]

max
i∈Iq

∑
j∈Iq

|〈ai, aj〉|,

(44)
hence Lb ≤ K

n µ`(A, Ī,K). By definition of the SA factor, we
can write:

Υ(A, Ī,K) =
KLOf

Lb
≥ ‖A‖2

µ`(A, Ī,K)
. (45)

On the other hand, note that by the definition of the local
accumulated coherence, we can have an upper bound for
µ`(A, Ī,K) := maxq∈[K] maxi∈Iq

∑
j∈Iq |〈ai, aj〉|:

µ`(A, Ī,K) ≤ n

K
max
i∈[n]
‖ai‖22 =

n

K
‖AT ‖21→2, (46)

and hence we can have a relaxed lower bound for Υ(A, Ī,K):

Υ(A, Ī,K) ≥ ‖A‖2

µ`(A, Ī,K)
≥ K‖A‖2

n‖AT ‖21→2

. (47)

Suppose that for some positive constant ρ we have:

ρ :=
maxi∈[n] ‖ai‖22
1
n

∑n
j=1 ‖aj‖22

, (48)

then we can write:

max
i∈[n]
‖ai‖22 ≤

ρ

n

n∑
j=1

‖aj‖22 =
ρ‖A‖2F
n

=
ρ
∑d
i=1 σi(A

TA)

n
,

(49)
and hence we can further lower bound Υ(A, Ī,K) by the
cumulative eigenspectrum of the Hessian:

Υ(A, Ī,K) ≥ K‖A‖2

n‖AT ‖21→2

≥ K · σ1(ATA)

ρ ·
∑d
i=1 σi(A

TA)
. (50)

thus finishes the proof.

APPENDIX C
THE PROOF OF THEOREM V.4

[73, Theorem 4.3.15] indicates that, for a given Hermitian
matrix H ∈ Rn×n, and any of its m-by-m principal submatri-
ces Hm, obtained by deleting n−m rows and columns from
H , we can have:

σ1(Hm) ≥ σn−m+1(H). (51)

If we set Hm = SkA(SkA)T , then we have:

‖SkA(SkA)T ‖ = ‖Sk(AAT )Sk
T ‖ ≥ σn−m+1(AAT ). (52)

Now we use the fact that SkA(SkA)T and (SkA)TSkA share
the same non-zero eigenvalues, and meanwhile AAT and ATA
also shares the same non-zero eigenvalues, we can have the
following bound:

‖(SkA)TSkA‖ = ‖SkA(SkA)T ‖ ≥ σn−m+1(AAT )

= σn−m+1(ATA).
(53)

Then by the definition of Υ(A, Ī,K) we can obtain the upper
bound.

APPENDIX D
THE PROOF OF THEOREM V.3

Suppose we randomly permute the index [n] and generate
the partition index [I1, I2, ..., IK ]. If we pick arbitrarily a
number k ∈ [K] where Sk is the subsampling matrix, by the
Matrix Chernoff inequality [75] we have ‖ATSkTSkA‖ ≤
(1 + δ0) · ‖A‖

2

K with probability at least:

P := 1− d ·
[

eδ0

(δ0 + 1)δ0+1

] ‖A‖2

K‖AT ‖21→2

, (54)

for any δ0 > 0. Now by choosing δ0 = δ · K‖A
T ‖1→2

‖A‖2 we can
have following:

‖ATSkTSkA‖ ≤ (1+δ·K‖A
T ‖1→2

‖A‖2
)· ‖A‖

2

K
=
‖A‖2

K
+δ‖AT ‖21→2,

(55)
with probability at least P ′ where:

1− d ·

 eδ

(δ · K‖A
T ‖1→2

‖A‖2 )δ

 ≥ P ′ := 1− d ·
[
eδ

δδ

]
. (56)

(This is because we restrict here K ≥ ‖A‖2
‖AT ‖21→2

.) Now by
applying the union bound over all possible choices of k
and since we assume here K ≤ min(n, d), we have, with
probability at least 1− d2 ·

[
eδ

δδ

]
:

max
k∈[K]

‖ATSkTSkA‖ ≤ ‖A‖
2

K
+ δ‖AT ‖21→2. (57)

Then by definition Υ(A, Ī,K) =
KLOf

Lb
and hence:

Υ(A, Ī,K) ≥
K
n ‖A‖

2

K
n

(
‖A‖2
K + δ‖AT ‖21→2

) =
1

1
K + δ

‖AT ‖21→2

‖A‖2

(58)
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Now since

‖AT ‖21→2 = max
i∈[n]
‖ai‖22 ≤

ρ

n

n∑
j=1

‖aj‖22 =
ρ
∑d
i=1 σi(A

TA)

n
,

(59)
we have:

Υ(A, Ī,K) ≥ 1

1
K + δ

‖AT ‖21→2

‖A‖2
≥ 1

1
K + δρ ·

∑d
i=1

σi(A
TA)

n

σ1(ATA)

.

(60)
Thus finishes the proof.

REFERENCES

[1] J. Tang, K. Egiazarian, and M. Davies, “The limitation and practical
acceleration of stochastic gradient algorithms in inverse problems,” in
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2019, pp. 7680–7684.

[2] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–
186.

[3] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: Primal
estimated sub-gradient solver for svm,” Mathematical programming, vol.
127, no. 1, pp. 3–30, 2011.

[4] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
Proceedings of 3rd International Conference on Learning Representa-
tions, 2015.

[5] A. Chambolle and T. Pock, “An introduction to continuous optimization
for imaging,” Acta Numerica, vol. 25, pp. 161–319, 2016.

[6] P.-L. Lions and B. Mercier, “Splitting algorithms for the sum of two
nonlinear operators,” SIAM Journal on Numerical Analysis, vol. 16,
no. 6, pp. 964–979, 1979.

[7] P. L. Combettes and J. Pesquet, “Proximal splitting methods in signal
processing,” in Fixed-point algorithms for inverse problems in science
and engineering. Springer, 2011, pp. 185–212.

[8] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM Journal on Imaging Sciences,
vol. 2, no. 1, pp. 183–202, 2009.

[9] ——, “Fast gradient-based algorithms for constrained total variation
image denoising and deblurring problems,” IEEE Transactions on Image
Processing, vol. 18, no. 11, pp. 2419–2434, 2009.

[10] A. Chambolle and C. Dossal, “On the convergence of the iterates
of the “fast iterative shrinkage/thresholding algorithm”,” Journal of
Optimization theory and Applications, vol. 166, no. 3, pp. 968–982,
2015.

[11] J. Liang and C.-B. Schönlieb, “Improving FISTA: Faster, smarter and
greedier,” arXiv preprint arXiv:1811.01430, 2018.

[12] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for
convex problems with applications to imaging,” Journal of mathematical
imaging and vision, vol. 40, no. 1, pp. 120–145, 2011.

[13] ——, “On the ergodic convergence rates of a first-order primal–dual
algorithm,” Mathematical Programming, vol. 159, no. 1-2, pp. 253–287,
2016.

[14] B. Jin, Z. Zhou, and J. Zou, “On the convergence of stochastic gradient
descent for nonlinear ill-posed problems,” SIAM Journal on Optimiza-
tion, vol. 30, no. 2, pp. 1421–1450, 2020.

[15] M. Schmidt, N. Le Roux, and F. Bach, “Minimizing finite sums with
the stochastic average gradient,” Mathematical Programming, pp. 1–30,
2013.

[16] A. Defazio, F. Bach, and S. Lacoste-Julien, “Saga: A fast incremental
gradient method with support for non-strongly convex composite objec-
tives,” in Advances in Neural Information Processing Systems, 2014, pp.
1646–1654.

[17] L. Xiao and T. Zhang, “A proximal stochastic gradient method with
progressive variance reduction,” SIAM Journal on Optimization, vol. 24,
no. 4, pp. 2057–2075, 2014.

[18] S. Shalev-Shwartz and T. Zhang, “Stochastic dual coordinate ascent
methods for regularized loss minimization,” Journal of Machine Learn-
ing Research, vol. 14, no. Feb, pp. 567–599, 2013.

[19] Y. Nesterov, “A method of solving a convex programming problem with
convergence rate o (1/k2),” in Soviet Mathematics Doklady, vol. 27,
no. 2, 1983, pp. 372–376.

[20] G. Lan and Y. Zhou, “An optimal randomized incremental gradient
method,” Mathematical programming, vol. 171, no. 1-2, pp. 167–215,
2018.

[21] Z. Allen-Zhu, “Katyusha: The first direct acceleration of stochastic
gradient methods,” The Journal of Machine Learning Research, vol. 18,
no. 1, pp. 8194–8244, 2017.

[22] K. Zhou, F. Shang, and J. Cheng, “A simple stochastic variance reduced
algorithm with fast convergence rates,” in International Conference on
Machine Learning, 2018, pp. 5975–5984.

[23] A. Chambolle, M. J. Ehrhardt, P. Richtárik, and C.-B. Schönlieb,
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