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A hierarchical, spherical harmonic-based approach to

simulate abradable, irregularly shaped particles in DEM

R. Capozza∗, K. J. Hanley
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Edinburgh, Edinburgh EH9 3JL, United Kingdom

Abstract

A novel approach is presented for simulating non-spherical particles in the

discrete element method (DEM). A particle’s shape is described through a

hierarchy of representations using spherical harmonic expansions. The ex-

pansion is computed at nodes, obtained by discretising the particle’s surface.

A low-degree expansion, i.e., one containing few terms, is sufficient to ap-

proximate a particle’s overall shape without any surface texture. Expansions

are computed to high degrees only at interparticle contacts, rather than for

the entire particle, which reduces the computational cost. The advantages of

this approach include the ability to simulate a wide range of particle shapes

and adaptive resolution depending on spatial and temporal considerations.

An additional unique benefit is that changes of particle shape due to chip-

ping can be captured in DEM for the first time. This is accomplished by

progressively omitting more of the highest-degree terms from the expansion

to give an increasingly smooth surface.
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detection, Abrasion, Attrition

1. Introduction1

Particle shape plays a fundamental role in the statics, dynamics and re-2

sistance to attrition of granular materials. It affects the height and porosity3

of a static bed of particles [1]. Particle shape affects the angle of repose in4

both a quasi-static sandpile [2, 3] and a rotating drum [4, 5]. In dynamic sys-5

tems, variability in particle shape can induce segregation [6, 7] or affect flow6

rates [8, 9], mechanical behaviour [10, 11] or the particles’ wearing propensity7

[12–14].8

Despite the recognised importance of particle shape, spheres have often9

been used to represent particles in discrete element method (DEM) simu-10

lations, irrespective of their real shapes. Spheres have the great advantage11

of computational simplicity: straightforward contact detection, orientation12

independence and low memory requirements. However, spheres are often in-13

adequate if quantitative agreement with a real, physical system is sought. In-14

creasing computational resources have encouraged a commensurate increase15

in research activity in the modelling of granular systems composed of non-16

spherical particles in recent years [15–17].17

The simplest option, though often inadequate [18, 19], is to combine18

spheres with a rotational resistance model which imposes torque terms at19

each interparticle contact to inhibit rolling and twisting motions. Replacing20

spheres with ellipsoids [20] or superquadrics [21] – a generalisation of ellip-21

soids – introduces non-sphericity but is limited to a subset of symmetrical22

shapes. Representing particles using polyhedra allows sharp edges and flat23
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surfaces to be simulated [22–24], but not in combination with curved surfaces.24

The aforementioned are ‘single-particle’ methods. However, the most com-25

mon approach to simulate non-spherical particles is the multi-sphere method:26

spheres are simply clumped together to create irregular clusters. This method27

is adopted in the commercial codes EDEM [25] and PFC [26]. Since spheres28

remain the fundamental particles, contact detection is simple [27]. However,29

many spheres may be required to obtain a reasonable approximation of a real30

particle’s shape [16, 28, 29]. Many less commonplace methods have also been31

proposed to capture non-spherical particle shapes in DEM, e.g., non-uniform32

rational B-splines [30], potential particles [31, 32] and spheropolyhedrons,33

generated from the Minkowski sum of a polyhedron with a sphere [33].34

Some of these methods are restricted to a subset of particle shapes; others35

such as multi-spheres or polyhedra can, in principle, be used to simulate a36

particle of any arbitrary shape. Advances in X-ray computed tomographic37

imaging have enabled the measurement of particle morphology at a very38

high level of detail, equivalent to 153–253 voxels per sand grain [34]. It39

is unlikely that such a detailed representation, captured using a very large40

number of polyhedron faces or spheres in a multi-sphere cluster, is needed to41

simulate the behaviour of most granular systems adequately. Some studies42

have been done for specific situations, e.g., [35], but in general the fidelity43

of particle shape required to obtain an acceptable bulk response remains an44

open question.45

One of the biggest challenges in modelling non-spherical particle shapes is46

contact detection. Two approaches are commonly used: continuous function47

representation (CFR) and discrete function representation (DFR). CFR uses48
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non-linear and iterative methods to detect and evaluate interparticle con-49

tacts, solving the equations which describe a particle’s shape [36]. In DFR50

[36–38], the surface of a particle is discretised into a set of surface nodes;51

contact detection involves evaluating whether any of these nodes lie inside52

a potentially contacting particle [27]. CFR and DFR can have comparable53

efficiency and accuracy on modern computing hardware [39]. Both are much54

more computationally expensive than contact detection for spheres. There-55

fore, a hierarchical representation of the geometry is often used to reduce56

the computational cost by cheaply eliminating a large proportion of non-57

contacts. Williams and O’Connor [38], for example, used four levels in their58

hierarchy: a bounding sphere, a bounding box, cellular regions and surface59

facets.60

Another major challenge, one often ignored in DEM simulations, is changes61

of particle shape over time due to attrition, i.e., fragmentation or surface62

abrasion. Attrition is a particularly significant consideration for angular63

particles which are more susceptible to damage than rounded ones. The mo-64

tivation for considering attrition in simulations is its industrial importance.65

Fines reduce flowability which can impair processing operations such as con-66

veying, blending or tableting [40]. In the pharmaceutical sector, needle- and67

plate-type crystals are often produced [41]. Attrition of these crystals has68

major implications for product quality, affecting bulk density, specific sur-69

face area, segregation behaviour, dissolution rate and even surface chemistry70

[42, 43]. Attrition of infant formula disimproves the product’s rehydration71

characteristics and affects bulk density [44]. The mechanical degradation72

of catalysts, which necessitates their periodic replacement, is a significant73
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cost factor in fluidised bed processes [45]. Particle fragmentation can be74

simulated in two broad ways in DEM [46–48]: (i) agglomerates, created75

by joining the fundamental particles (usually spheres) with bonds of finite76

strengths, can disintegrate upon bond failure; (ii) particles are deemed to fail77

when a predefined force or stress is reached, after which they are replaced78

with smaller ‘daughter’ particles. However, there is no existing method to79

simulate abrading particles during a DEM simulation which takes into con-80

sideration the evolving particle shape. As an alternative, DEM simulations81

of non-abrading particles are sometimes performed to obtain data on the82

relevant particle dynamics, e.g., impact velocities, forces and collision fre-83

quencies, or estimated distributions of stresses and strains. These data are84

subsequently used as input to attrition models [42, 49].85

In this paper, a novel approach is presented for modelling abradable,86

non-spherical particles in DEM which has several unique advantages:87

• This approach is based on spherical harmonics, so inherently contains88

a hierarchical description of shape from a sphere to a highly refined89

representation with surface texture.90

• Particles can be simulated with adaptive fidelity, e.g., depending on91

their location within the simulation domain or the time elapsed during92

the simulation.93

• Abrasion can be captured by progressively omitting terms from the94

spherical harmonic expansion.95

In addition, the approach is relatively straightforward to integrate into a96

sphere-based code. Section 2 describes how spherical harmonics can be used97
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to represent particle shapes. This is used and adapted in the novel DEM98

simulation approach described in Sections 3 and 4, which includes a demon-99

stration of the method with two contacting particles. Section 5 demonstrates100

that the approach naturally includes the evolution of particle shape due to101

abrasion. Finally, some discussion of efficiency and the future implementa-102

tion of the approach in a suitable code (such as LAMMPS [50]) is provided103

in Section 6.104

2. Spherical harmonics for particle shape representation105

We assume that the particle does not contain any voids and is ‘star-106

shaped’, i.e., any half-line drawn from a suitable origin, O, inside the particle107

crosses the particle’s contour exactly once. Therefore the particle can be108

analytically described by a function r(θ, ϕ) which is the distance from O.109

θ and ϕ are the polar angles, with 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π. The110

requirement for particles to be ‘star-shaped’ is rarely a limitation since a111

majority of natural particles fulfil this condition [51].112

The function r(θ, ϕ) can be approximated as a truncated spherical har-113

monic series [51, 52] which is a generalisation to 3D of the Fourier series:114

115

r(θ, ϕ) ≈ rSH(N, θ, ϕ) =
N∑
n=0

n∑
m=−n

cmn Y
m
n (θ, ϕ) (1)

where Y m
n (θ, ϕ) is the spherical harmonic function, n is the degree, m the116

order and N indicates the maximum degree at which the expansion is trun-117

cated. The function Y m
n (θ, ϕ) is given by:118

Y m
n (θ, ϕ) =

√
(2n+ 1)(n−m)!

4π(n+m)!
Pm
n (cos θ)eimϕ (2)
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The functions Pm
n (x) are called associated Legendre functions, and are a119

set of orthogonal polynomials widely used in quantum mechanics [53] and120

many other fields. If the function r(θ, ϕ) is known, the coefficients cmn can be121

calculated as122

cmn =

∫ 2π

0

∫ π

0

sin(θ)r(θ, ϕ)Y m∗
n dθdϕ (3)

where the asterisk denotes the complex conjugate. Simple geometrical shapes123

such as ellipsoids, cubes, etc. can be obtained by choosing a suitable set of124

coefficients [54], with a level of accuracy increasing with N .125

Using well-known properties of spherical harmonic functions [53], it is126

possible to write the representation in Eq. (1) in a different form which uses127

real rather than complex-valued functions and coefficients:128

rSH(N, θ, ϕ) = a0
0Y

0
0 +

N∑
n=1

[
a0
nY

0
n +

n∑
m=1

Pm
n (cos θ) (amn cos(mϕ) + bmn sin(mϕ))

]
(4)

where Y 0
0 =
√

1
4π

. The set of coefficients {amn } and {bmn } carry all the infor-129

mation on the particle shape.130

Laser scanning and computed tomography are increasingly widely used131

to obtain the point cloud of a particle’s surface and study the morphology132

characteristics of different particles in nature [55]. After converting the 3D133

point cloud data into polar coordinates, established techniques can be used134

to extract the set of coefficients of a spherical harmonic expansion [54, 56].135

If the surfaces of a large number of particles are extracted from a par-136

ticular sample, the statistics (or population) of coefficients {amn } and {bmn }137

represent the ‘fingerprint’ of that particular sample or set of particles [56].138

Once the distribution of coefficients is known, sets of coefficients can be139
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Figure 1: Particle representations with maximum degrees N=0, 8, 20 and 100. The

coefficients {amn } and {bmn } have been generated from uniform distributions

generated easily, allowing the simulation of a sample which is statistically140

identical to the experimental one.141

Fig. 1 shows four representations obtained by truncating the expansion at142

N=0, 8, 20 and 100. Here the coefficients {amn } and {bmn } have been obtained143

from a uniform distribution in the interval [-0.2, 0.8]. As N increases, the144

particle shape becomes more and more refined. The high-degree terms of the145

expansion are mainly responsible for microscopic details of the shape, e.g.,146

the surface roughness.147
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Figure 2: a) Contact detection between one single point and a sphere; b) Contact detection

between a point and a particle of any ‘star-like’ shape. In this case a mathematical

description of the shape is needed, i.e., r = r(θ, ϕ)

3. Incorporation of spherical harmonics into DEM148

3.1. Contact detection between arbitrary shapes149

Contact detection between one single point and a sphere involves calcu-150

lating the distance d between the point and the sphere’s centre. Contact151

implies the function d− r ≤ 0, where r is the sphere radius. A touching con-152

tact corresponds to d = r. The same idea can be generalised to particles of153

any shape as d− r(θ, ϕ) ≤ 0, where θ and ϕ are the polar angles as shown in154

Fig. 2. In this case we need a mathematical description of the shape where155

the radius r(θ, ϕ) changes as a function of θ and ϕ, namely the spherical156

harmonic representation of particle shape introduced in Section 2.157
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Spherical harmonics have the major benefit of providing not only one but158

a set of mathematical approximations of a particle’s shape, which become159

increasingly refined as the degree of the expansion increases. This inherent160

property of spherical harmonics is well-suited to a multi-level representation,161

raising the question of why spherical harmonics have not previously been162

used for contact detection in DEM. The reason is illustrated in Fig. 3. The163

standard spherical harmonic representation of a particle does not require the164

shape obtained from an expansion to degree N to bound the shape obtained165

from a higher expansion to degree N + j. Thus, even though the spherical166

representation (N=0) of an irregularly shaped particle may have no inter-167

particle contacts, there is no assurance that a contact would not appear at168

N=5, for example. The resolution of this problem, so that low-degree expan-169

sions bound higher-degree expansions as required for a hierarchical contact170

detection scheme, is described in Section 3.2.171

Instead of a single point, contact detection for two potentially contact-172

ing, non-spherical particles requires discretisation of one of the particles into173

many nodes, i.e., discrete function representation (DFR) [36–38]. Few nodes174

are needed when N is low and the surface is smooth; a higher density of175

nodes is needed when N is large and the surface texture needs to be de-176

scribed. Discretisation of a particle’s surface is required only in the vicinity177

of potential contacts rather than for the entire particle which reduces the178

computational cost. A remaining issue, however, is the identification of a179

suitable discretisation method: if standard polar coordinates were used, the180

density of nodes would be highly non-uniform and divergent at the poles.181

The method adopted for this study to avoid this problem is described in182
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Figure 3: Comparison between the spherical harmonic expansions to a) N=1 and N=20;

b) N=8 and N=20. The low-degree expansions N=1 and N=8 do not bound the higher-

degree expansion to N=20

Section 3.3.183

3.2. Adaptation for hierarchical contact detection184

If N is the maximum degree of the expansion, we assume that the rep-185

resentation at degree N is the one which has the correct particle volume186

and shape. Evidently L ≤ N + 1 particle representations can be gener-187

ated, meaning that {q1, q2, . . . , qL} intermediate values are selected from N188

with qL = N . For example, if N=20 and L=3, we can choose q1=0, q2=8,189

q3=20, the first representation being the sphere. To ensure that low-degree190

expansions bound higher-degree expansions, we multiply the expansion to191

degree K = qi by an extra coefficient, SK , to obtain the adapted hierarchical192

11



representation of the particle193

rSSH(K, θ, ϕ) = SK

K∑
n=0

n∑
m=−n

cmn Y
m
n (θ, ϕ) = SK rSH(K, θ, ϕ) (5)

where SqL = 1, SK =
∏L−i

j=1 vqL−j
, vqj = max

{
rSH(qj+1,θ,ϕ)

rSH(qj ,θ,ϕ)

}
is the maxi-

mum of the ratio between the two particle representations qj+1 and qj. The

coefficient SK is a scaling factor that changes only the size of the particle

representation, leaving all the other properties of the spherical harmonic ex-

pansion unchanged. Calculating the vqj terms is a straightforward procedure

as the shape expanded to degree N is usually defined on a grid of points;

therefore the expansion to N entails the calculation of L− 1 additional coef-

ficients {vq1 , vq2 , ..., vqL−1
}. Eq. (5) is easily demonstrated from the recursive

relation

rSH(qL, θ, ϕ) ≤ vqL−1
rSH(qL−1, θ, ϕ) ≤ vqL−1

vqL−2
rSH(qL−2, θ, ϕ) ≤ . . .

≤ vqL−1
vqL−2

. . . vq1 rSH(q1, θ, ϕ) (6)

The multiplication of the representation to degree K by SK has a ‘shrink-194

ing ’ effect, when representation are compared from the lowest to the highest195

degree, as shown in Fig. 4. The rate of change of represented volumes slows196

as N becomes large (compare Fig. 4c with Fig. 4d). The change of volume197

depends on the number of representation levels L: the larger L is, the larger198

the cumulative change. Hence the ‘all-level’ representation with L = N + 1199

shown in Fig. 4 is a worst-case scenario, while, in any practical implemen-200

tation, L < N will be used. Using fewer representation levels would have a201

less pronounced effect.202
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Figure 4: The effect of multiplying the representation to degree K by the scaling factor

SK when all degrees 0 to N are separately considered in the hierarchical representation.

It ensures that the representation at degree K bounds the representation at K + j

3.3. Uniform density of nodes in discretisation203

Consider initially the problem of uniformly distributing points on the204

surface of a sphere with radius r. One way to achieve this is to fix the distance205

between neighbouring points as dp = 2πr
Np

, with Np being the number of points206

on the equator of the sphere. This also fixes the minimum angular distance207

between points ∆θ = 2π/Np. Since l(θ) = 2πr sin θ is the θ-dependent length208

of each parallel, a number of points209

np(θ) =
l(θ)

dp
= Np sin θ (7)
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a) b)

Figure 5: a) Uniform distribution of points on the surface of a sphere. The distance

between neighbouring points is fixed as dp = 2πr
Np

, with Np the number of points on the

equator of the sphere. np(θ) points are assigned to each parallel, corresponding to the

possible values ϕi(θ) of ϕ with i = 1, . . . , np(θ). b) Uniform distribution of points on the

surface of a non-spherical particle. Additional points (red ‘+’ ) are added at high surface

gradients, where |r(θ + ∆θ, ϕ+ ∆ϕ)− r(θ, ϕ)| > dp

are assigned to each parallel, separated by angular distances ∆ϕ(θ) = 2π/np(θ).210

Once θ has been fixed, the possible values of ϕ are ϕi(θ) = 2π
np(θ)

i with211

i = 1, . . . , np(θ) (see Fig. 5a). This representation solves the problem of di-212

vergence at the poles. In fact, the smallest value of θ is ∆θ = 2π/Np so from213

Eq. (7) np(∆θ) = Np sin(∆θ) ∼ Np∆θ = 2π.214

This uniform discretisation procedure allows nodes to be uniformly dis-215

tributed on the surface of a sphere [39]. However, in the case of non-216

spherical particles, regions with high surface gradients, where |r(θ+ ∆θ, ϕ+217

∆ϕ) − r(θ, ϕ)| > dp, must be taken into account. This is done by firstly218
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checking the distance between neighbouring points on the same parallel219

(θ fixed) of the uniform discretisation and then dividing by dp, namely220

NINT(|r(θ, ϕi(θ) + ∆ϕ(θ)) − r(θ, ϕi(θ))|/dp) = p, where NINT stands for221

‘nearest integer’. p points are then added to the uniform representation, cal-222

culating {r(θ, ϕi(θ) + dϕp), r(θ, ϕi(θ) + 2dϕp), . . . , r(θ, ϕi(θ) + pdϕp)} where223

dϕp = ∆ϕ(θ)/p (see the ‘+’ symbols indicated in Fig. 5b). The same proce-224

dure is followed for neighbouring points on different parallels by changing θ.225

However, discretised values of ϕ on different parallels can be different, i.e.,226

ϕi(θ) 6= ϕj(θ+∆θ), ∀j ∈ {1, . . . , np(θ+∆θ)} (see Fig. 5a). Therefore, we need227

to find the value ϕj(θ+∆θ) closest to ϕi(θ), namely min(|ϕi(θ)−ϕj(θ+∆θ)|).228

Considering that ϕi(θ) = i 2π
np(θ)

and ϕj(θ+∆θ) = j 2π
np(θ+∆θ)

, we get the simple229

relation230

j = NINT

(
i
np(θ + ∆θ)

np(θ)

)
(8)

We therefore calculate NINT(|r(θ + ∆θ, ϕj(θ + ∆θ)) − r(θ, ϕi(θ))|/dp) = p,231

and add the points {r(θ+dθp, ϕi(θ)+dϕp), r(θ+2dθp, ϕi(θ)+2dϕp), . . . , r(θ+232

pdθp, ϕi(θ) + pdϕp)}, where dθp = ∆θ/p and dϕp = (ϕj(θ + ∆θ) − ϕi(θ))/p.233

In this way the representation shown in Fig. 6 is obtained.234

4. Case study: two-level representation of two interacting particles235

A proof-of-concept code was developed for two interacting particles, rep-236

resented at two hierarchical levels of detail, i.e. L = 2 with q2 = N = 20237

and q1 = 8. These two representations have been arbitrarily chosen for the238

purpose of this demonstration whose scope was not to test the dynamics but239

to check that this new method is viable and can be easily implemented in a240

standard rigid-body dynamics scheme.241
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Figure 6: Uniform distribution of points on the surface of a non-spherical particle, obtained

through the described algorithm

To initialise the system, two sets of coefficients were generated from a242

uniform distribution: {amn,1, bmn,1} for particle 1 and {amn,2, bmn,2} for particle243

2. From Eq. (4), four representations rSH,i(qj, θ, ϕ) were obtained with par-244

ticle indices i=1, 2 and representation indices j=1, 2 (q2=20 and q1=8).245

The representations were discretised uniformly as explained in Section 3.3,246

and coefficients S8,i were calculated (Eq. (5)), ensuring that rSH,i(20, θ, ϕ) ≤247

S8,i rSH,i(8, θ, ϕ) = rSSH,i(8, θ, ϕ). Here we reserve the word ‘nodes’ to refer248

to those points which discretise rSSH,i(8, θ, ϕ), and ‘asperities’ for the points249
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discretising rSH,i(20, θ, ϕ). On Fig. 7, the former are shown as large blue cir-250

cular markers of which there are mn
1 =164 nodes for particle 1 and mn

2 =155251

nodes for particle 2; the latter as small red circular markers with ma
1=1800252

and ma
2=1900 asperities for particles 1 and 2, respectively. Fig. 7 shows that253

rSSH,i(8, θ, ϕ) does not describe the fine features of the particle: it is a bound-254

ing shape to be used for contact detection. Hence the numbers of nodes mn
i255

are more than one order of magnitude smaller than the numbers of asperities256

ma
i needed to accurately describe the particles’ morphology [57]. The mo-257

ments of inertia Ii were calculated in advance for the N=20 representations of258

these two particles, assuming a uniform mass density of the objects. For this259

proof-of-concept, the mn
i node positions, coefficients {amn,1, bmn,1}, {amn,2, bmn,2}260

and S8,i were stored at the start of the simulation.261

Several important differences between this two-particle demonstration262

and a future implementation in a large-scale code, e.g. LAMMPS (see Sec-263

tion 6) should be emphasised:264

• In practice, one would always choose to begin with the representation to265

degree q1=0, rather than q1=8 in this instance, to take advantage of the266

computational efficiency afforded by bounding spheres. In that case,267

the first stage of contact detection (sphere–sphere) would proceed as in268

a conventional sphere-based DEM code, i.e., neither bounding sphere269

would be discretised. This would substantially reduce the number of270

potential interparticle contacts before progressing to qj > 0 which is271

more computationally costly.272

• In this test case, both particles were discretised in order to calculate273

the interparticle force using a Lennard-Jones molecular interaction. In274
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Figure 7: Two-level representation of two approaching particles rSSH,i(8, θ, ϕ) and

rSH,i(20, θ, ϕ), with degrees q1 = 8 and q2 = N = 20, respectively. Blue nodes are

used to discretise rSSH,i(8, θ, ϕ); red asperities discretise rSH,i(20, θ, ϕ)

DEM, it is usual to adopt a contact law based on Hookean or Hertzian275

mechanics, in which case only one of two contacting particles would276

require discretisation while the other would remain as an analytical277

expression. Furthermore, discretisation is only required in the vicinity278

of a possible contact. If starting at q1=0, nodes would only be required279

wherever bounding spheres intersect.280

Contact detection employing one discretised particle representation and one281

analytical representation has previously been discussed in the literature [36,282
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39]. In order to check whether any of the mn
2 nodes of particle 2 overlap with283

particle 1, the nodes are parsed to search for overlaps as d−rSSH,1(8,Θ1,Φ1) ≤284

0 where d is the length of the line segment joining the origin of particle 1285

and a node of particle 2 (see Fig. 7) and Θ1 and Φ1 are the polar angles of286

the line segment in particle 1’s reference frame.287

In principle, it would be equivalent to reverse the roles of particles 1288

and 2, i.e., use the mn
1 nodes of particle 1 and the analytical representation289

of particle 2. However, in practice, asperities would not be generated at290

identical positions if 1 and 2’s roles were reversed so there would be a small291

discrepancy between the computed forces. This disparity would be reduced292

by increasing the density of nodes describing the discretised surface.293

If an overlap is found, the discretised particle’s representation is refined294

around the overlapping nodes. To refine to N=20 for this demonstration, the295

representations rSH,i(20,Θi±∆Θ,Φi±∆Φ) were used to generate asperities296

‘on the fly’ solely around the Θi and Φi angles, where Θ2 and Φ2 are the polar297

angles of the line segment joining the origin of particle 2 and the overlapping298

node of particle 2. Here ∆Θ = |Θi+1−Θi

2
| and ∆Φ = |Φi+1−Φi

2
| stand for the299

angular half-distance between the overlapping node and the adjacent nodes.300

The asperities are shown on Fig. 7 for the entirety of both particles rather301

than for a small region of one particle. Ultimately, once the asperities have302

been generated where required, the net force is calculated as the sum of the303

forces from each individual asperity.304

It is noted that DEM contact laws for non-spherical particles are lacking305

at present; additional research in this area is ongoing which will complement306

the development presented in this paper. These contact laws should involve307
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the calculation of the normal to the analytical representation, and estimation308

of the contact width or overlap volume [58]. To calculate the force at the309

single-asperity level, it would be necessary to assign a portion of the total310

overlapping volume to each asperity [58].311

From forces on the asperities, the torque τi is calculated for each par-312

ticle and the angular momentum Li is updated. However, the moment of313

inertia, Ii, is time-varying in a global coordinate system. Thus, a suitable314

body particle-fixed coordinate system is usually introduced, where the inertia315

tensor IBi contains only non-zero entries on its diagonal, referred to as the316

principal moments of inertia. By using the rotation matrix, Ri, transforming317

vectors between the two reference frames, the angular velocity, ωi, can be318

calculated as319

ωi = Riω
B
i = Ri(I

B
i )−1RT

i Li (9)

whereRT
i is the transpose of theRi matrix and the relations ωBi = (IBi )−1LBi ,320

LBi = RT
i Li are applied. The rotation matrix Ri is updated at each time-321

step by using the standard quaternion approach [59]. The particle rotations322

and orientation are tracked during the simulation using standard algorithms323

for rigid-body dynamics.324

Fig. 8 shows a snapshot of the two-particle simulation once the particles325

had come into contact. The small red markers on Fig. 8 denote the asperities326

generated once the overlap had been detected using the procedure outlined327

above.328
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Figure 8: Snapshot of the simulation. The red dots indicate the asperities around over-

lapping nodes. The smaller black dots indicate the precise morphologies of both particles

5. Extension to include particle abrasion by chipping329

The loss of particle mass is due to three mechanisms: frictional abra-330

sion, chipping, and fragmentation. Frictional abrasion during contact sliding331

smooths the faces and leads to the formation of flat or cylindrical particles332

[60]. Chipping occurs at larger energies, when collisions form shallow cracks333

that lead to the production of much smaller fragments [61]. Chipping prefer-334

entially attacks the edges and corners of the grains, leading to rounding and335

the evolution of particles towards a spherical shape [14, 61]. At sufficiently336

large collision energies, fractures propagate throughout a particle and lead337
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to its breakup by fragmentation [62, 63].338

The spherical harmonic framework, which includes a hierarchy of related339

particle shapes, could potentially be applied to capture abrasion of a parti-340

cle’s surface by chipping. If the particle is assumed to be bombarded isotrop-341

ically by a field of large, rough objects, this would lead to a smoothening and342

loss of roughness. In such a case, the normal erosion rate, ds/dt, at which a343

region of the surface near a point P erodes depends on the curvature [13]:344

ds

dt
= v(1 + AH +BK) (10)

where v is a constant, and H and K are the mean and Gaussian curvatures.345

The parameters A and B depend on the size of impacting particles, repre-346

senting their average (or effective) radius and area, respectively. As expected,347

the erosion rate is highest where the curvature is greatest and angular regions348

erode much faster than flat ones [64].349

By considering the particle shape at time t, r(θ, ϕ, t) = a(t)(1 + ε(θ, ϕ, t))350

as a perturbed sphere of radius a(t) and expanding ε as a sum of spherical351

harmonics,352

ε(θ, ϕ, t) =
∞∑
n=0

n∑
m=−n

εmn (t)Y m
n (θ, ϕ) (11)

it can be shown that higher harmonics decay with time much more rapidly353

than the lower ones [13] and the ellipsoidal one, n = 2, lasts the longest.354

These mathematical considerations, together with recent experimental re-355

sults [12], strongly support the idea that higher harmonics, corresponding to356

the surface texture, are the first to be eroded, while ellipsoidal shapes, found357

in abundance in nature, take much longer to become spherical, i.e., the sphere358

is the equilibrium shape [13]. Therefore, representing the abrasion process359
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through the sequential removal of the highest spherical harmonics is an at-360

tractive idea. During abrasion, mass is lost and it must be ensured that the361

high-degree spherical harmonic expansion, representing the original shape,362

bounds the expansion at any lower degree: the abraded shape. We propose363

a strategy similar to the one in Eq. (5), multiplying the expansion to degree364

K by a scaling factor, sK ,365

rsSH(K, θ, ϕ) = sK

K∑
n=0

n∑
m=−n

cmn Y
m
n (θ, ϕ) = sK rSH(K, θ, ϕ) (12)

where N is the maximum degree, sN = 1, sK =
∏N−K

j=1 1/uN−j and ui =366

max
{

rSH(i,θ,ϕ)
rSH(i+1,θ,ϕ)

}
. Fig. 9 shows a set of four expansions with N = 40 and367

K=40, 30, 10, 2 obtained by eliminating higher harmonic terms from the368

expansion and multiplying by the scaling factor sK . The removal of the369

highest harmonics leaves the overall shape unchanged (compare K=40 with370

K=30), affecting mostly the particle texture and roughness. However, when371

the expansion is limited to the lowest harmonics, the particle shape is strongly372

affected, reducing eventually to an ellipsoid.373

It has been demonstrated that the mass of particles (M) undergoing a374

wearing process decreases exponentially with time [12] or distance (x) trav-375

elled [65] according to376

M = M0e
−kx (13)

where M0 is initial mass and k is an empirically determined coefficient which377

depends on the material properties and wearing conditions. Eq. (13) is quite378

general and has been proven in many different experimental situations [66,379

67]: it states that while the rate of mass loss due to abrasion is very rapid380

initially, it slows down with the distance travelled. From Eq. (12), we can381
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Figure 9: Four expansions for K=40, 30, 10 and 2 obtained by eliminating higher harmonic

terms from the expansion and multiplying by the scaling factor sK

write the abraded shapes to degree K in spherical coordinates and therefore382

calculate their K-dependent volumes as:383

VK =

∫ π

0

∫ 2π

0

∫ r(K,θ,ϕ)

0

ρ2 sin(θ)dθdϕdρ =

∫ π

0

sin(θ)dθ

∫ 2π

0

r3(K, θ, ϕ)

3
dϕ

(14)

where dv = ρ2 sin(θ)dθdϕdρ is the volume element and r(K, θ, ϕ) is a shorter384
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notation to indicate rsSH(K, θ, ϕ) in Eq. (12). Fig. 10 shows that the particle385

volume is a decreasing function of the degree. If the ‘mass-loss’ function is386

known for a particular process and the density of the particle is constant387

throughout, the distance x travelled can be estimated from the particle mass388

M by inverting Eq. (13).389

As high harmonics only change the texture of a particle’s surface [12], we390

would expect a small volume change at a high degree, as reported in literature391

[51]. However, to ensure that the expansion at higher degrees bound those392

at lower degrees, we ‘shrink’ the shape using the coefficients sK . The relative393

volume change V r
K = (VK−VK−1)/Vave can be defined where Vave = VK+VK−1

2
394

is the average volume. V r
K is plotted as a function of the degree in Fig. 10b.395

V r
K shows minor variations at high harmonics, with a growing trend toward396

low harmonics, as expected.397

The change of volume determines the quantity of fines produced. The398

change of particle surface area is also important as this affects, for example,399

the particle’s effectiveness as a catalyst (noting that particles are taken to400

be solid rather than porous which would usually be the case). The area401

can be estimated by integrating the differential surface area element dA =402

|d~r
dθ
× d~r

dϕ
|dθdϕ, representing the area of each small ‘tile’ in Fig. 9, over θ and403

ϕ. ~r is the vector with norm r(K, θ, ϕ) and direction given by (θ, ϕ). It404

can be shown that dA = r
(
r2
ϕ + r2

θ sin2 θ + r2 sin2 θ
)1/2

dθdϕ with rϕ = d~r
dϕ

,405

rθ = d~r
dθ

, so that the surface area, AK , to degree K is406

AK =

∫ π

0

∫ 2π

0

r2(N, θ, ϕ)
(
r2
ϕ + r2

θ sin2 θ + r2(N, θ, ϕ) sin2 θ
)1/2

dθdϕ (15)

The behaviour of AK as a function of degree is reported in Fig. 11a. As for407

the volume VK , the decrease of area is due to the shrinking of the shape, so408
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Figure 10: Particle volume VK and relative volume change V rK as a function of the degree.

Red circles refer to the expansions shown in Fig. 9

the relative area change, ArK = (AK −AK−1)/Aave, is also shown (Fig. 11b),409

where Aave = AK+AK−1

2
is the average area. ArK changes more significantly410

as the degree is reduced, particularly at lower degrees.411

6. Discussion and proposed implementation412

Sections 3–5 establish the fundamental principles of a new method for413

the simulation of abradable, irregularly shaped particles. Next this will be414

26



Figure 11: Particle area AK and relative area change ArK as a function of the degree

implemented in a suitable code, e.g. LAMMPS [50]. Through a suitable415

choice of representations, particles will be simulated at multiple levels of416

resolution, beginning with bounding spheres (N=0) before progressively re-417

fining the shapes around potential contacts to ultimately achieve the desired418

level of shape fidelity at the interparticle contacts. The fidelity can change419

temporally, e.g., particles may be simulated less accurately during sample420
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preparation than subsequently. The fidelity could also depend on the loca-421

tion of a particle within the simulation domain, i.e., more refined particles422

(higher N) could be used at locations within the domain which are deemed to423

be of particular interest. This raises the possibility of emulating the common424

practice in finite element analyses of simulating regions within the domain425

with greater refinement (smaller elements) than others, e.g., at the boundary426

of the domain. The commonly used sphere-based contact detection algorithm427

can be retained for the bounding spheres. The intention is to carry out the428

hierarchical refinement of the particles within the contact law (e.g., ‘pair429

style’ in LAMMPS).430

There is, of course, considerable potential to improve the computational431

performance of this method compared to the two-particle demonstration.432

For example, no information about computed overlaps or nodes is carried433

forward to the following time step which has the potential to reduce the434

computational effort substantially. In addition, a high density of nodes has435

been used for discretisation in this two-particle demonstration. An open436

question, which will be investigated as part of the future work on developing437

this method, is the optimal density of nodes to strike an appropriate balance438

between efficiency of contact resolution and accuracy. This density of nodes439

should change between representations: the higher the degree, the greater440

the density of nodes needed to describe shape details and surface texture.441

Reducing the number of nodes without significantly degrading the accuracy442

could greatly reduce the computational cost.443

A physical rationale, e.g., Archard’s law, will be imposed for particle444
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abrasion:445

Q = WFnlt (16)

where Q is the volume of material removed, W is a constant, Fn the normal446

load and lt the sliding distance. Since Fn and lt are known quantities for447

each pair of interparticle contacts in DEM, Q can be calculated once W448

has been calibrated appropriately using experimental data. Therefore, from449

the number of collisions, it will be possible to estimate the loss of volume450

and then the particle shrinkage to a lower degree K; this latter representation451

will become the new reference shape for the hierarchical representation. More452

precisely, each particle representation, rSSH(a, h, θ, ϕ), will be characterised by453

two parameters, a and h, representing ‘abrasion’ and ‘hierarchical’ indices,454

respectively. The values of a and h constitute a two-dimensional array, as455

each abraded shape will correspond to a number of possible representations.456

7. Conclusions457

In this paper, we have presented the essential foundation for incorporat-458

ing spherical harmonics into a DEM simulation for the purpose of simulating459

the dynamics of realistically shaped particles. We have shown that spher-460

ical harmonics can be used not only for the representation of particles via461

the calculation of the coefficients, but could be practically integrated into a462

DEM code and even benefit contact detection between non-spherical particles463

through the use of suitable scaling factors. A detailed description of particle464

shape is computed only at interparticle contacts which reduces the computa-465

tional cost, while the use of the scaling factors enables a hierarchical contact466

detection approach. This paves the way for the widespread use of spherical467

29



harmonics in DEM simulations. The feasibility of a spherical harmonic-based468

DEM simulation has been shown for only two particles, where a simple al-469

gorithm for the generation of asperities ‘on the fly’ is added to a classical470

rigid-body dynamics scheme.471

Additionally, based on mathematical considerations and experimental ev-472

idence, it has been shown that abrasion can be simulated by the sequential473

removal of high harmonics from the spherical harmonic expansion. This474

abrasion can be related to a microscopic wearing law, such as Archard’s law,475

and incorporated into the hierarchical particle simulation approach. Each476

abraded shape will be associated with a set of multi-level shape representa-477

tions, i.e., spherical harmonic coefficients.478

Potential improvements and future development will include the calcula-479

tion of an optimal density of nodes, to reduce the computational cost without480

significantly degrading the accuracy.481
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