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Abstract 33 

 34 

The brain’s high bioenergetic state is paralleled by high metabolic waste production. Authentic 35 

lymphatic vasculature is lacking in brain parenchyma. Cerebrospinal fluid (CSF) flow has long 36 

been thought to facilitate central nervous system detoxification in place of lymphatics, but the 37 

exact processes involved in toxic waste clearance from the brain remain incompletely 38 

understood. Over the past 8-years, novel data in animals and humans have begun to shed new 39 

light on these processes in the form of the “glymphatic system”, a brain-wide perivascular transit 40 

passageway dedicated to CSF transport and interstitial fluid exchange that facilitates metabolic 41 

waste drainage from the brain. Here we will discuss glymphatic system anatomy, methods to 42 

visualize and quantify GS transport in the brain and also discuss physiological drivers of its 43 

function in normal brain and in neurodegeneration. 44 

  45 
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Introduction 46 

The brain’s high energy demand is paralleled by high metabolic waste production. In most body 47 

organs the lymphatic vasculature is responsible for metabolic waste drainage and fluid 48 

homeostasis. While the meninges covering the brain and spinal cord are equipped with 49 

lymphatics (3, 4, 69), the brain parenchyma itself is devoid of lymphatic vessels. The tight blood 50 

brain barrier (BBB) restricts solute and large fluid shifts and alternate waste elimination systems 51 

are operational in brain tissue. Cerebrospinal fluid (CSF) produced in the choroid plexuses of the 52 

cerebral ventricles, in addition to other roles, is thought to play an important role for 53 

detoxification of brain tissue in place of lymphatics (19, 20, 58, 89). The “glymphatic system” 54 

concept was brought to prominence 2012 (47) shedding new light on CSF transport and brain 55 

waste drainage processes. The glymphatic system (GS) is described as a perivascular transit 56 

passageway for CSF and interstitial fluid (ISF) exchange that facilitates metabolic waste 57 

drainage from the brain parenchyma in a manner dependent on aquaporin 4 (AQP4) water 58 

channels on glial cell (47). Several excellent reviews of the GS are available, and we refer 59 

readers to these for more details (1, 9, 46, 77, 99, 103). Here we will focus on 1) GS anatomy, 2) 60 

methods to visualize and quantify GS transport in the brain and 3) discuss physiological drivers 61 

of GS function in normal brain and in the setting of neurodegeneration.  62 

Composition of the glymphatic system  63 

The GS is located beyond the BBB and comprises the entire peri-vascular space (PVS) within 64 

the brain parenchyma (47). The PVS is constructed as a coaxial system where the inner cylinder 65 

is the BBB-tight vessel (e.g. artery, arteriole, capillary, venule, or vein) and the outer cylinder is 66 

made of astrocytic end-feet processes which envelop the entire cerebral vasculature. The outer 67 

perimeter of the PVS is not ‘tight’ due to gaps (20-30 nm) between the astrocytic end-feet 68 
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processes (74). The cortical penetrating arterioles are surrounded in part by a layer of pia mater, 69 

and at this level the PVS is a fluid filled space referred to as the Virchow-Robbin space, from 70 

where it eventually merges into the basal lamina at the level of the capillary. The basal lamina is 71 

located in between the vessel wall and the astrocytic end-feet. Under normal conditions, the 72 

capillary cell types do not make direct contact with the PVS and are always separated by the 73 

basal lamina (82, 89). In humans, the PVS can be detected in the brain parenchyma by magnetic 74 

resonance imaging (MRI) as tube-like structures which run perpendicular to the brain’s surface 75 

in directions that are spatially correlated with perforating vessels thought to be primarily arterial 76 

(51, 106). Cortical PVS can be observed in young, healthy brain (Fig. 1) but are more common 77 

in the aging brain and abnormally dilated PVS are associated with cerebral small vessel disease 78 

(cSVD) and other neurological disease states (26, 106, 107). In the human and rodent brain, the 79 

PVS communicates with the subarachnoid space as evidenced by multiple studies showing that 80 

tracer uptake is visible in PVS following in vivo administration of tracers into CSF (vide infra). 81 

Rapid transport of tracers from CSF into the parenchymal perivascular network under carefully 82 

controlled physiological conditions was documented in early work by Rennels and coworkers in 83 

cat brain by administering horse radish peroxidase into CSF (89). Two decades later, CSF and 84 

solute transport along the PVS of pial arteries and cortical penetrating arterioles of live mice was 85 

visualized in real time using 2-photon microscopy by administering fluorescently tagged dyes 86 

into the cisterna magna (47). These pioneering in vivo studies revealed that small molecular 87 

weight (MW) solutes moved rapidly (5-10 min) into the peri-arterial space (but not peri-venous 88 

space) and from there into the ISF space (47). Furthermore, waste solutes including soluble A1-89 

40 injected into brain parenchyma was shown to migrate from the ISF into the PVS of the large 90 

central veins inferring that peri-venous conduits served as exit pathways connecting to lymphatic 91 
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networks outside the brain. Importantly, it was also documented that the astrocytic AQP4 water 92 

channels were important for rapid peri-arterial influx of CSF and solutes as well as for drainage 93 

of soluble A (47). The importance of the AQP4 water channels for rapid CSF-ISF exchange has 94 

been contested (1, 76, 100), and alternate physiological factors (e.g. ISF volume changes and 95 

vascular pulsatility) may be more important for time efficient GS transport and waste drainage 96 

(vide infra). It is also not known exactly how the AQP4 water channels regulate GS function. 97 

Recently, a novel study using multiple echo time arterial-spin-labeling MRI demonstrated slower 98 

than normal water exchange times in the brain (suggesting slow water transport across the PVS 99 

into parenchyma) in transgenic mice models lacking AQP4 water channels compared to mice 100 

with normal AQP4 water channels (80). Fig. 2 is an illustration of the principal anatomical 101 

components of the GS and highlights that in normal brain solutes in the ISF drain towards the 102 

peri-venous space. 103 

Whole brain GS function  104 

To visualize and quantify GS function in the whole rodent brain we administered paramagnetic 105 

gadolinium-tagged contrast molecules into CSF of the rat via the cisterna magna in combination 106 

with dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) (45). The 107 

paramagnetic contrast agents shorten the T1 relaxation time thereby eliciting signal changes on 108 

the T1-weighted MRIs enabling tracking of solute transport in CSF and brain parenchyma (45). 109 

Using this approach, we demonstrated that small MW paramagnetic contrast molecules moved 110 

rapidly in the subarachnoid space, along pial arteries and more slowly transited into brain 111 

parenchyma in a specific anatomical pattern (45). We noted that brain regions with the most 112 

rapid CSF and solute transport included the brainstem, hypothalamus, olfactory bulb, frontal 113 

cortex, cerebellum and the ventral hippocampus (45). We have since refined the MRI based GS 114 
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transport technique and determined than only a relatively small (19-20%) fraction of the contrast 115 

agent administered into the CSF enters into the rat brain parenchyma over 2.5 hr (66). In 116 

addition, we showed that MR contrast influx and clearance from brain parenchyma is dependent 117 

on body position (67) and the anesthetic used (8). 118 

The GS transport pattern in the rat brain using DCE MRI is very similar to that observed using 119 

the same method in non-human primate brain (37) and humans (28, 29, 92). In humans, 120 

intrathecal lumbar administration of MR contrast (Gadobutrol, MW 605 Da) has been performed 121 

to diagnose dural tears in otherwise normal subjects (91). In these clinical DCE MRI studies MR 122 

contrast enhancement in brain parenchyma was observed in a pattern similar to the rodent brain 123 

with largest uptake in areas adjacent to large arteries including the anterior, middle and posterior 124 

cerebral arteries (91). In the human brain, regions with most significant uptake after 125 

administration of contrast into the lumbar intrathecal space (6-9 hrs) included the brainstem, 126 

cerebellum, frontal cortex and limbic regions (hippocampus, amygdala, accumbens, and 127 

entorhinal cortex) (91). 128 

Quantification of GS function 129 

As described above, GS transport can be observed in the entire brain using the DCE-MRI 130 

approach (8, 45, 66, 67). However, supplementary analysis is required to quantify transport and 131 

to extract differences in GS transport flow across brain regions and across experimental groups. 132 

Current techniques for quantifying GS transport include assessment of time-signal-curves of 133 

brain parenchymal solute uptake or clearance (8, 28, 45), kinetic analysis (67) or k-means cluster 134 

analysis (45, 50). These analytical strategies have provided valuable information but are limited 135 

because solute transport across brain regions is heterogeneous causing generalized kinetic 136 

models to fail.  137 
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 138 

Visualization of CSF transport into brain using optimal mass transport  139 

We were the first to model GS transport based on DCE MRI images using the traditional optimal 140 

mass transport (OMT) formulation (86, 87). The theory of OMT seeks the most feasible way to 141 

redistribute mass from one given distribution to another while minimizing the associated cost of 142 

transportation (85). In the first approach, we made several assumptions including the notion that 143 

glymphatic CSF-solute transport was governed principally by advection (86) as originally 144 

proposed (47). These initial results revealed aberrant CSF “streaming” patterns of contrast 145 

solutes into brain parenchyma (86). Transport by pure advection has been a subject of 146 

controversy surrounding GS transport and several studies have suggested diffusion dominant 147 

solute transport in neuropil (82, 100). We further improved the OMT based computational 148 

analysis with the ultimate goal of visualizing how PVS pathology might alter GS transport and 149 

waste drainage. We introduced a novel visualization framework, “GlymphVIS” (30) using a 150 

more physiologically relevant model inspired by the work of Benamou and Brenier (7). 151 

Specifically, in the GlymphVIS model we added a diffusion term in the standard continuity 152 

equation to better model both advection and diffusion thereby more accurately modelling the 153 

CSF-solute transport in the brain parenchyma (for more detail see Elkin et al., (30)). Fig. 3 154 

shows the effect of increasing the diffusion term in the optimal transport algorithm. With 155 

minimal or no diffusion term the OMT presentation of CSF parenchymal streamlines are not 156 

aligning with physiological evidence of MR contrast uptake in live rodent brain (Fig. 3A, 157 

arrows); however  with more diffusion weighting (Fig. 3B) the aberrant parenchymal CSF 158 

pathways have disappeared and the uptake pattern better match what is observed on the MRI 159 

data strongly suggesting that parenchymal GS transport is governed by both advection and 160 
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diffusion. We have further validated these data using phantoms (61). Fig. 4A shows the 161 

conventional visualization of glymphatic transport in whole rat brain based on DCE MRIs and 162 

‘% signal increase from baseline’ 1.5 hrs. after administration of MR contrast into the CSF via 163 

cisterna magna. The color-coded map shows the spatial distribution of CSF tagged with MR 164 

contrast demonstrating that CSF and the contrast solute have penetrated into the cerebellum, 165 

midbrain, olfactory bulb and along the PVS of the middle cerebral artery as  highlighted in Fig. 166 

4C. Fig. 4B shows the same data set processed by the GlymphVis algorithm with advection and 167 

diffusion terms deriving CSF streamlines created by proximity and similar curvature using the 168 

QuickBundles algorithm (35). These streamlines show brain parenchymal CSF flow patterns at a 169 

fixed point in time. Please note that the CSF streamlines along the MCA (Fig. 4D) are matching 170 

contrast uptake in the original data (Fig. 4C).  We are currently extending the GlymphVIS 171 

analysis to include visualization of CSF pathlines. These pathlines represent the time-varying 172 

CSF trajectories and can be used to determine particle attributes including solute speed and flux 173 

in one comprehensive figure.  Moreover, we are exploring and comparing the advantages (and 174 

disadvantages) of both Eulerian and Lagrangian coordinates in visualizing the flow (61). 175 

The GS operates more efficiently in the sleeping brain when compared to wakefulness 176 

All the initial experiments on the GS were carried out on mice anesthetized with 177 

ketamine/xylazine (47). Nedergaard’s team proceeded to test the GS system’s functionality in 178 

different arousal states and discovered that the GS function differed between sleep and 179 

wakefulness (109). Specifically, they discovered that GS influx of solutes into brain parenchyma 180 

was increased ~80%  by in sleep states compared to wakefulness inferring that the GS system is 181 

largely non-functioning in wakefulness (109). Further, drainage of A from brain parenchyma 182 

was ~40% more efficient during sleep or anesthesia with ketamine/xylazine (KX) when 183 



9 
 

compared to wakefulness (109). A dramatic increase in the ISF volume fraction (>40-60%) 184 

between sleep and wakefulness controlled by norepinephrine (NE) was discovered and attributed 185 

to the enhanced GS function. Specifically, it was suggested that solute transport in the ISF was 186 

less restrictive in sleep when compared to wakefulness (109). Collectively these experiments 187 

also implied that GS function and waste clearance was inefficient in wakefulness regardless of 188 

the presence of AQP4 water channels.  Of note, the observed increase in GS transport with KX 189 

anesthesia compared to wakefulness was attributed to an associated increase in slow wave delta 190 

power and decreased central norepinephrine (NE) tone (109). From these data, one can infer that 191 

the enhanced GS transport observed with KX anesthesia was mediated by xylazine and not by 192 

ketamine, which is known to increase central NE (57, 63). Xylazine is an alpha-2 receptor 193 

agonist and blocks central NE release (75) similar to the hypnotic dexmedetomidine (13, 54) 194 

used clinically for sedation and as an adjuvant for general anesthesia. In support of this 195 

statement, it was also demonstrated that anesthesia with dexmedetomidine and low dose 196 

isoflurane increased GS transport 2-fold when compared to isoflurane alone (8). 197 

GS function and physiological drivers 198 

Rennels and coworkers showed that unilateral carotid artery ligation impeded perivascular influx 199 

of CSF and tracer molecules leading them to conclude that normal arterial pulsatility was a major 200 

driver (89). Iliff and colleagues validated these data and further showed that an increase in 201 

pulsatility with dobutamine enhanced GS transport (48). More recent studies conducted using 202 

large 1.0 μm microspheres and direct visualization of the large PVS around pial surface arteries 203 

showed that CSF transport was indeed pulsatile and bulk flow driven at the surface of the brain 204 

(78). In addition, high pulsatility as observed in acute hypertension was shown to be ineffective 205 

in driving solute transport in the PVS (78). Paradoxically, while it appears that the rate of CSF–206 
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ISF exchange and A clearance is highest during non-REM sleep (109), this physiological state 207 

is actually associated with periods of significantly reduced blood pressure, cerebral blood flow, 208 

and cerebral pulsatility (59, 60, 72, 96). However, the question of whether or not lower 209 

magnitude pulsatility might be overall more efficient for GS transport during sleep needs further 210 

investigation.  211 

The importance of the spontaneous oscillations in arterial tone and diameter that occur in 212 

multiple vascular beds including in the brain for GS function is unknown. Termed “vasomotion” 213 

these rhythmic but very low frequency (ranging from ~ 3-25/minute depending upon vessel size) 214 

variations in arterial/arteriolar smooth muscle tone can produce fluctuations in vessel diameter 215 

comparable to those resulting from cardiac contraction and are influenced by a range of factors 216 

including general anesthesia and sedation (18, 43, 49, 64).  While not generally considered to 217 

play a major role in bulk CSF flow, given the proposed role of the GS and clearance of A, there 218 

has been particular interest in the potential relationship between impaired vasomotion and 219 

cerebral amyloid angiopathy (25). Notably, a recent study documented that spontaneous 220 

vasomotion correlated with perivascular clearance of solutes in live, awake mice and this driving 221 

force was impaired in mice with cerebral amyloid angiopathy (104).  As with cardiac pulsatility, 222 

vasomotion is decreased during non-REM sleep (110). Implications of these findings in terms of 223 

GS function remain unclear, but when considered in conjunction with decreased cardiogenic 224 

arterial pulsatility during sleep, the data suggest that two physical factors thought to be the main 225 

drivers of GS function may actually be diminished when CSF-ISF exchange is highest.  226 

Lymphatic vessels in the meninges 227 

Lymphatic vessels were documented in the cerebral dura mater covering the human brain several 228 

decades ago (12). Using newer, state-of-the art imaging techniques and molecular markers of the 229 
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lymphatic endothelial cells the meningeal lymphatics were rediscovered in 2015 and thoroughly 230 

described in mice both structurally and functionally (4, 69). Meningeal lymphatics were 231 

observed using Prox1-GFP and Vegfr3+/LacZ reporter mice and immune-fluorescence in the dura 232 

mater surrounding the brain in a particular pattern (4, 69). Specifically, the majority of lymphatic 233 

vessels were observed to run toward the base of the skull along the transverse sinus, the sigmoid 234 

sinus, the retroglenoid and rostral rhinal vein (4, 21, 69, 71). In areas of the skull foramina, 235 

lymphatic vessels could be observed to exit along meningeal portions of internal carotid artery 236 

and along cranial nerves (3).  In other rodent studies, it was shown that meningeal lymphatics 237 

develop and mature after birth and their growth and development is dependent on vascular 238 

endothelial growth factor C (VEGF-C) (3). The functionality of the meningeal lymphatics was 239 

demonstrated by injecting inert tracers into the brain parenchyma of the Prox1-GFP mice and 240 

drainage of the tracer could be located on the meningeal lymphatics and at the level of the deep 241 

cervical lymph nodes (4, 69). Further a transgenic mouse with loss of dural lymphatics had 242 

reduced macromolecule drainage from the brain, but paradoxically, no increase in intracranial 243 

pressure suggesting alternative pathways for fluid and solute drainage (4). A recent post-mortem 244 

study in humans confirmed the presence of lymphatic vessels in the dura, however, Aβ 245 

deposition in the wall of dural lymphatic vessels was absent (36) suggesting that these drainage 246 

pathways (at least in humans) might not be implicated in severe AD pathology. 247 

Intriguingly, lymphatic vessels along the dural sinuses and along meningeal artery can be 248 

visualized in human brain after intravenous administration of a MR contrast agent (2). The 249 

visualization of lymphatic vessels is based on the fact that after i.v. administration of Gadobutrol, 250 

the MR contrast molecule leaks out of the dural blood vessels and travels through the ISF space 251 

into adjacent lymphatics (2).  By implementation other special MR pulse sequences, the MR 252 
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contrast signal from blood can be eliminated and after subtraction the meningeal lymphatics can 253 

be revealed.  Using this novel in vivo approach to study meningeal lymphatics in humans will 254 

allow further investigations into the functionality and role of meningeal lymphatics in normal 255 

brain and in neurodegenerative disease states.  256 

 257 

Glymphatic transport in aging, neurotrauma and neurodegeneration  258 

Brain parenchymal influx of CSF and A drainage from ISF is significantly reduced in old mice 259 

when compared to young and middle-aged mice (62). The decline in GS transport function in 260 

aging mice is multi-factorial and ascribed to loss of perivascular AQP4 polarization and 261 

neuroinflammation (62). GS function has also been shown to be decreased in a mouse model of 262 

AD (81), in traumatic brain injury (TBI) (44, 83, 88), and in stroke (34). Glymphatic clearance of 263 

tau in the ‘hit & run’ TBI mouse model, was shown to be reduced acutely after the insult and 264 

associated with later onset altered global AQP4 expression and loss of perivascular AQP4 265 

polarization secondary to inflammation (44, 88). Specifically, in the TBI mouse model the 266 

temporal trajectories of intracranial pressure changes and tissue edema (peaking 3 days after 267 

TBI) were different from those of AQP4 expression changes (peaked at 7-days) post-TBI 268 

suggesting that the water channels were not directly related to edema information acutely after 269 

TBI (88). To summarize, in conditions of aging, TBI and stroke, the peri-vascular CSF passage 270 

through brain tissue is deficient and GS transport and waste drainage is therefore less efficient. 271 

However, the underlying pathophysiology of impaired CSF influx in these various pathologies 272 

are different. For example, in stroke and TBI, CSF influx is nearly absent in the 273 

ischemic/lesioned hemisphere when compared to the contralateral side, secondary to tissue 274 

trauma (34), causing loss of vascular pulsatility and tissue edema with obliteration of the peri-275 
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arterial conduits in the parenchyma. In aging, the peri-arterial CSF influx and CSF-ISF exchange 276 

is compromised primarily secondary to perivascular inflammation and loss of AQP4 peri-277 

vascular polarization (62). 278 

Glymphatic transport has also been studied in animal models of cerebral small vessel disease 279 

(cSVD) (5). cSVD is frequently observed in the elderly human brain and a common cSVD 280 

subtype is associated with thickening of the cerebral arterioles – so-called ‘arteriolosclerosis’. 281 

Arteriolosclerosis can progress to fibrinoid necrosis, microhemorrhage or microinfarction and 282 

capillaries are also affected and sometimes venules (32, 55, 97, 107). The pathogenesis of 283 

sporadic arteriolosclerosis cSVD is largely unknown but thought to result from hypertension, 284 

vasospasm or ‘failure of the endothelial barrier function’ and ultimately impaired oxygen 285 

delivery to the tissues (70, 107). MRI based diagnosis of c SVD include the presence of small 286 

subcortical infarcts, white matter hyperintensities (WMH), enlarged PVS, lacunes, microbleeds 287 

and cerebral atrophy (22, 107). Thickening of the arterial wall and dilated PVS are thought to 288 

impair oxygen delivery to the tissue similar to what is documented in multiple sclerosis where 289 

tissue hypoxia is widespread (24, 73) although the precise mechanism is unknown. Rodent 290 

models of spontaneous hypertension have been used to investigate the effect of chronic 291 

hypertension on cSVD pathology in the brain. While some reports document increased GS bulk-292 

flow driven transport in the spontaneously hypertensive rat (SHR) due to changes in vessel 293 

stiffness and arterial pulse wave velocity (6), others report that overall CSF-ISF exchange is 294 

reduced (78, 79). 295 

Hypoxia and CSF transport: implications for high altitude sickness 296 

To the best of our knowledge, no animal experiments have investigated the effect of high-297 

altitude hypoxia on GS transport. The potential mechanisms involved in potential GS changes in 298 
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high-altitude sickness is discussed below and are based on current evidence of CSF transport in 299 

conditions where hypoxia is thought to be implicated (e.g. cSVD, stroke and traumatic brain 300 

injury) and inspired by excellent recent reviews by Lawley et al., (65) and Hackett and Roach 301 

(40). Further, given the common involvement of deep white matter in high-altitude cerebral 302 

edema (HACE) and cSVD we will highlight how peri-vascular transport of CSF might be 303 

affected in conditions of acute mountain sickness (AMS) and HACE. Symptoms of AMS include 304 

headache, fatigue, nausea and vomiting and sleep disturbance; and the headache component is 305 

thought to involve pain transmission via the trigemino-cervical complex like in migraine 306 

headache (14). The much more severe condition of HACE is rare but can occur with rapid 307 

ascents to altitudes of >4,000m and afflicted subjects have ataxic gait, and altered mentation 308 

(40). The prime ‘insult’ instigating altitude sickness is obviously related to hypoxia; however, it 309 

is currently not possible to predict who will be susceptible to developing AMS or HACE (40, 310 

94). A hypothesis proposed states that individual susceptible to high-altitude sickness are those 311 

with less intracranial and intraspinal ‘compliance’ or a lower CSF-to-brain parenchymal tissue 312 

volume ratio (94). This hypothesis has been indirectly supported by studies demonstrating that 313 

older subjects have a lower incidence of AMS compared to younger subjects at moderate altitude 314 

(93) and evidence of higher CSF-to-brain tissue volume in elderly when compared to young 315 

adults (39). An in-depth discussion of the CNS ‘compliance’ hypothesis was recently presented 316 

by Lawley et al. (65) and readers are referred to this excellent review for details of the proposed 317 

CSF pathophysiology in high-altitude illness. Here, we briefly discuss pathophysiology of AMS 318 

and HACE from the point of view of GS transport and brain waste drainage. Assuming that the 319 

primary outcome in high altitude illness is rapid onset hypoxia, cerebral overperfusion, increased 320 

sympathetic activity and ‘brain swelling’ secondary to vasodilation, and BBB compromise (in 321 
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the setting of HACE) (40) several key points regarding how GS transport might be affected can 322 

be inferred: 323 

 Hypoxic vasodilation and increased cerebral blood flow (CBF): Adaptive 324 

mechanisms to optimize oxygen delivery during high-altitude hypoxia involve an 325 

extraordinary network of direct and reflex pathways that ultimately affect ventilation and 326 

hemodynamics. Several clinical studies using MRI and arterial spin labeling pulse 327 

sequences have documented significant (~5-20%) increases in CBF (68, 105) in younger 328 

subjects with acute exposure to high altitude as well as reduced cerebral vascular 329 

reactivity (CVR) (105). Hypoxic arterial vasodilation by MR angiography was 330 

confirmed in the human brain at high altitude (68). Further, enlargement of the cerebral 331 

venous sinuses by MR venography was also documented in human subjects exposed to a 332 

hypoxic challenge (108). Although no study as of yet have investigated solute CSF and 333 

parenchymal transport under conditions of high-altitude hypoxia, we have documented 334 

impaired GS transport in the setting of isoflurane-induced enlargement of the venous 335 

sinuses (8). It is likely therefore, that high-altitude induced global vasodilation will 336 

negatively impact CSF influx and therefore GS transport.  337 

 Heart rate and respiration: Clinical research studies in healthy subjects have shown 338 

that during ascent to high altitude heart rate and ventilation increase (31, 90, 101). The 339 

increased heart rate is caused by the associated hypoxemia (e.g., PaO2 lower than 50 340 

mmHg has been documented at 12-15,000 ft (31)) and is chemoreflex instigated via 341 

chemosensitive cells located in the carotid bodies and the aortic body (42). Similarly, the 342 

increased minute ventilation (primarily increased tidal volume) at high altitude is also 343 

primarily mediated via low arterial O2 and stimulation of the chemoreceptors (42).    A 344 
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moderate increase in heart rate would in principle increase CSF influx and facilitate 345 

enhanced CSF-ISF exchange (48). However, the more influential physiological driver of 346 

CSF dynamics at high altitude is likely to be an increase in respiratory tidal volume. 347 

Thus, human studies have shown that voluntary deep inspiratory breathing is a major 348 

driver CSF fluid flow through the cerebral ventricles and basal cisterns (27). The 349 

mechanism underlying deep inspiratory breathing on accelerating CSF flow dynamics is 350 

related to a more negative thoracic pressure during inspiration which will directly impact 351 

hydrostatic pressure gradients for flow along the perivenous conduits into meningeal 352 

lymphatics (27). Furthermore, a recent study showed that during normal human sleep, 353 

slow oscillating neural activity precedes coupled waves of blood and CSF flow in the 354 

brain (33). Thus, based on these data one might hypothesize that at high altitude, the 355 

beneficial effects of increased respiratory tidal volume on CSF fluid flow would serve to 356 

counteract the negative effects of nocturnal hypoxemia and restless sleep (31) on overall 357 

waste drainage. More studies are needed to explore the potential beneficial effect of 358 

maximizing deep inspiratory breathing at high altitude for prevention of AMS. 359 

 Brain swelling: Increased blood volume and brain volume increases is documented in 360 

high altitude illness (38, 56). In HACE, vasogenic edema (evaluated by MRI and T2 361 

relaxation) has been documented in deep white matter (corpus callosum) (41). However, 362 

whether or not cytotoxic edema occurs in AMS or HACE is contentious. In AMS one 363 

study documented very small increases in T2 values in the splenium of the corpus 364 

callosum with exposure to hypoxia (56). The same study also reported that the apparent 365 

diffusion coefficient (ADC) increased during the hypoxic episode in most brain regions 366 

but in AMS subjects minor decreases in the ADC was documented, which suggest the 367 
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presence of cytotoxic edema (56). Regardless, ‘brain swelling’ in high-altitude illness is 368 

associated with displacement of CSF (94, 108). These data strongly suggest that CSF 369 

transport from the subarachnoid space into peri-arterial conduits in the brain parenchyma 370 

is compromised in high-altitude illness and CSF-ISF exchange and waste clearance will 371 

consequently decline. Further, the formation of edema will further compromise cerebral 372 

perfusion eventually causing ischemia thereby instigating a vicious cycle towards 373 

aggravating the insult. It is tempting to speculate that the diversion of CSF away from 374 

brain parenchyma in the case of ‘brain swelling’ in high altitude sickness might be 375 

advantageous. CSF can certainly exit from the cranium without having to pass through 376 

the brain parenchyma (23, 53) and these alternate pathways would facilitate maintaining 377 

lower ICP. Intriguingly, cisternotomy and diversion of CSF (referred to clinically as 378 

“CSF-shift edema”) in severe cases of TBI has been shown to decrease brain swelling, 379 

mortality and morbidity in afflicted subjects (15, 16).  380 

 Sleep disturbances:  Interrupted sleep and sleep disturbances have been documented in 381 

humans at high altitude (52, 84, 95). A recent metanalysis highlighting 382 

polysomnographic sleep studies revealed a reduction in non-rapid eye movement 383 

(NREM) sleep and reduction in slow wave sleep at high altitude (10). Because GS 384 

transport is most efficient during slow wave sleep (109) it could be inferred that brain 385 

waste drainage is impaired in subjects with restless sleep at high altitude, and thus 386 

potentially contribute to the pathogenesis of acute mountain sickness (AMS). In support, 387 

a recent positron emission tomography (PET) study using a radioactive A ligand 388 

showed increased uptake of A in the brain of healthy human subjects after one night of 389 

sleep deprivation (98). Furthermore, a clinical research study conducted at high altitude, 390 
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demonstrated that hypoxemia, unstable nocturnal ventilation (central apnea), and restless 391 

sleep were early symptoms in subjects who later developed AMS (31). There is currently 392 

a gap in knowledge regarding the effect of central or obstructive sleep apnea (OSA) on 393 

GS transport. However, increased perivascular space visibility on brain MRI images – a 394 

marker of cerebral small vessel disease (11, 106) - is associated with OSA (17, 102) 395 

suggesting perivascular space dysfunction and indirectly inferring glymphatic transport 396 

impairment (106). Clearly, more studies on the impact of obstructive and central sleep 397 

apneas on CSF transport, GS transport and waste drainage are needed to the further 398 

understanding of the pathogenesis of AMS. 399 

 400 

In conclusion, the current conception of how the glymphatic system operates in the central 401 

nervous system (CNS) under normal conditions and in states of neurodegeneration was reviewed 402 

here. We also revealed that there is limited information on how states of hypoxia affects GS 403 

solute transport and waste drainage in the live brain. Further, the reader must be aware that most 404 

of the discussion and data pertaining to hypoxia and pathophysiology of AMS from the point of 405 

view of GS transport are based on experiments conducted in rodents. Currently, a major barrier 406 

to understanding GS transport is the lack of non-invasive imaging technologies for accurate 407 

tracking solute transport and waste drainage in the human CNS. Future research efforts should 408 

focus on developing sensitive and specific biomarkers for tracking aberrant CSF fluid flow 409 

dynamics and endogenous waste drainage in real time.  410 

 411 

  412 
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 747 

Legends: 748 

Fig. 1: T2-weigthed MRIs acquired on a 1.5T MRI instrument (GE Signa HDx 1.5using a T2 fast-749 

spin-echo pulse sequence (4-mm thick slices) from the brain of a healthy 35-year-old female. 750 

Perivascular spaces are clearly visible (yellow arrows) in a typical pattern.  Data courtesy: 751 

Joanna Wardlaw. 752 

Fig. 2: Illustration of the glymphatic system of the brain. In principle, the GS comprise a peri-753 

arterial influx pathway and a peri-venous pathway for CSF transit which are coupled to the 754 

interstitial fluid (ISF) space via the aquaporin 4 (APP4) water channels. The AQP4 water 755 

channels are positioned on the glial endfeet that make up the outer perimeter of the perivascular 756 

space; the inner perimeter is the vascular basement membrane. CSF flows into the peri-arterial 757 

space, and mixes with ISF whereby waste solutes (black particles) are propelled towards the 758 

peri-venous conduits for ultimate drainage out of the brain.  759 

Fig. 3: Glymphatic transport visualized by optimal mass transport (OMT) analysis based on 760 

dynamic contrast enhanced MRIs obtained from a live rat after MR contrast administration into 761 

the CSF. The OMT based analysis derives ‘CSF transport pathlines’ which are shown as a color-762 

coded map overlaid on the corresponding volume rendered anatomical MRI. We are showing the 763 

effect of increasing the diffusion term in the optimal transport algorithm. Specifically, with a 764 
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minimal or absent diffusion term in the OMT analysis, the pattern of CSF parenchymal 765 

streamlines do not align well with physiological evidence of MR contrast uptake in live rodent 766 

brain (Fig. 3A, arrows on non-existing CSF pathlines). However, with more diffusion 767 

‘weighting’ (Fig. 3B) the aberrant parenchymal CSF pathways have disappeared and the uptake 768 

pattern better match what is observed on the MRI data, strongly suggesting that parenchymal GS 769 

transport is governed by both advection and diffusion. 770 

Fig. 4: A shows the conventional visualization of glymphatic transport in whole rat brain based 771 

on dynamic contrast enhanced (DCE) MRIs expressed as ‘% signal increase from baseline’ 1.5 772 

hrs. after administration of MR contrast into the CSF via cisterna magna. The color-coded map 773 

shows the spatial distribution of CSF tagged with MR contrast demonstrating that CSF and the 774 

contrast solute have penetrated into the cerebellum, midbrain, olfactory bulb and along the PVS 775 

of the middle cerebral artery as  highlighted in C. B shows the same data set processed by the 776 

GlymphVis algorithm with advection and diffusion terms deriving CSF streamlines. These 777 

streamlines show brain parenchymal CSF flow patterns at a fixed point in time. Please note that 778 

the CSF streamlines including transport along the MCA (D) are well matched to contrast uptake 779 

in the original data (compare with A, C). Scale bars = 2 mm. 780 
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