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ABSTRACT. Cs4PbBr6 is regarded as an outstanding luminescent material with good thermal 

stability and optical performance. However, the mechanism of green emission from Cs4PbBr6 has 

been controversial. Here we show that isolated CsPbBr3 nanoparticles embedded within a 

Cs4PbBr6 matrix give rise to a “normal” green luminescence while superfluorescence at longer 

wavelengths is suppressed. High-resolution transmission electron microscopy shows that the 

embedded CsPbBr3 nanoparticles are around 3.8 nm in diameter and are well-separated from each 

other, perhaps by a strain driven mechanism. This mechanism may enable other efficient 

luminescent composites to be developed by embedding optically active nanoparticles epitaxially 

within inert host lattices. 
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In recent years, lead halide perovskite materials have become regarded as a new generation 

of functional materials for solar cells, lasers, photodetectors and light-emitting diodes (LEDs).1-6 

Perovskite nanocrystals (NCs) are also considered to have great potential for backlight displays 

because of their excellent photoluminescence (PL) performance and quantum yield.7-11 Although 

perovskite NCs have been successfully demonstrated in light-emitting devices, poor stability is the 

main limitation for commercial applications,2, 12 and issues of thermal stability, photostability, 

water-resistance, and anion exchange need to be overcome.  

One approach to solve these problems is to reduce the structural dimension.13-17 In zero-

dimensional perovskite-related Cs4PbBr6, strong green PL emission can be observed dependent on 

particle size.14 The PL has been attributed to Br defects in the crystals,18-21 but other studies22 

discovered CsPbBr3 nanoparticles embedded in Cs4PbBr6 and proposed that the emission of green 

light comes from these rather than the Cs4PbBr6 host.21, 23 However, further studies have suggested 

that the embedded CsPbBr3 phase may tune an impurity mechanism for PL of Cs4PbBr6,
24 and the 

mechanism of green emission from Cs4PbBr6 remains under debate.25 In this research, we have 

further explored the emission from Cs4PbBr6 and we have also tuned reagent ratios while 

synthesizing Cs4PbBr6 to explore the PL behavior and phase transform process, and we 

demonstrate that the embedded CsPbBr3 nanoparticles are the origin of green emission in Cs4PbBr6 

crystals. 

Polycrystalline Cs4PbBr6 was synthesized by the antisolvent method with the Cs/Pb 

precursor ratio of 3.33, and CsPbBr3 QDs for comparison were synthesized through a hot-injection 

method. Detailed processes are presented in the Methods section. Powder synchrotron X-ray 

diffraction (XRD) data in Figure. 1a shows that our Cs4PbBr6 crystals are single phase and the 
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previously reported rhombohedral structure (crystal open database; COD No.1538416) fits the data 

well with lattice parameters a = 13.72939(15) and c = 17.31874(25) Å (Table S1). 

HRTEM, on the other hand, revealed many embedded dots (black spots in each particle) 

in the Cs4PbBr6 crystals, as shown in Figure. 1b. High-quality HRTEM images from this beam 

sensitive material have been recorded, showing the lattice fringes of the Cs4PbBr6 crystals as well 

as the embedded dots. As exhibited in Figure. 1c, the fringes “A” of the parent crystal have a d-

spacing of 3.99 Å, corresponding to the (300) planes of the rhombohedral structure of Cs4PbBr6, 

while the fringes “B” in a dark dot have a d-spacing of 2.90 Å, which can be indexed to the (200) 

planes of the cubic CsPbBr3 structure. The inset of Figure. 1c shows a size distribution of the 

embedded CsPbBr3 nanoparticles based on a measurement of randomly selected 200 dots. Almost 

all these dots are smaller than 10 nm and their average size around 3.8 nm in diameter. The dark 

contrast of these embedded dots is mainly dominated by the mass contrast due to a relatively higher 

concentration of Pb in CsPbBr3.  

The [111] direction of the CsPbBr3 nanoparticles observed by HRTEM is coincident with 

[001] of Cs4PbBr6 host crystals and the hexagonal symmetries of these phases match well in the 

(001) planes of Cs4PbBr6 with the [100] direction of Cs4PbBr6 parallel to [110] of CsPbBr3. 

Consequently, the ideal inter-axes angle between the [100] of Cs4PbBr6 and the [100] of CsPbBr3 

is 65.9 degrees. The corresponding measured angle between the marked fringes in Figure. 1c is 63 

degrees. The structural projection along the [001] zone axis of Cs4PbBr6 and the [111] axis of 

CsPbBr3 (as shown in Figure. 1d) with the [100] direction of Cs4PbBr6 parallel to the [110] of 

CsPbBr3 gives a good lattice match (a mismatch of +4.7% between d100(Cs4PbBr6) = 11.89 Å and 

3d110(CsPbBr3) = 12.45 Å). Similarly in the [001] axis direction of Cs4PbBr6, the d001(Cs4PbBr6) 

= 17.32 Å has only a -2.1% mismatch to 5d111(CsPbBr3) = 16.945 Å. Although the lattice matching 
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is good, the slight mismatch will create a strain field in the host material that likely acts to limit 

the size of the CsPbBr3 particles and keep them well separated, which is important to the optical 

properties as discussed below. Thus they can be embedded epitaxially into Cs4PbBr6 crystals. 

 

Figure 1. Structural characterization of the Cs4PbBr6 crystals. a, Refined synchrotron XRD 

(beamline energy 20 keV) pattern of the specimen. b, TEM image of Cs4PbBr6 crystals with 

embedded CsPbBr3 crystals as dark dots. c, HRTEM image of a Cs4PbBr6 crystal with embedded 

CsPbBr3 dots. The fringes marked A (d = 3.99 Å) are in the parent Cs4PbBr6 crystal region and 
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that marked B (d = 2.90 Å) in an embedded dot can be indexed to the CsPbBr3 structure. The inset 

of (c) shows a size distribution of the embedded CsPbBr3 dots, matching to a log-normal 

distribution curve. The arrow points to an area of slight crystal damage. d, Model showing how a 

CsPbBr3 nanoparticle is embedded epitaxially within the Cs4PbBr6 host lattice, projected on the 

(001) plane of the latter. 

To explore the optical behavior of Cs4PbBr6 crystals, we carried out temperature-dependent 

steady-state PL spectroscopy measurements (10-300 K). As shown in Figure. 2a, the crystals 

exhibited an intense green emission band in the spectral region from 490 nm to 550 nm upon 

above-bandgap excitation at 274 nm. When the temperature rose from 10 K to 300 K, the intensity 

of the emission band decreased greatly by a factor 6.7, along with an obvious blue-shift in peak 

wavelength from 530.5 nm to 520.0 nm. Such temperature-dependent PL behavior coincides very 

well with that of CsPbBr3 quantum dots (QDs) previously reported,26-27 suggesting that the green 

PL of Cs4PbBr6 crystals is dictated by the emission of CsPbBr3 embedded in the lattice of 

Cs4PbBr6. Figure. 2b shows the temperature-dependent PL excitation spectra of Cs4PbBr6 crystals 

by monitoring the green emission at 524 nm, which displays broad excitation bands from 250 nm 

to 500 nm with “hole burning” at around 310 nm. The excitation band with the energy below 3.82 

eV and above 4.13 eV are ascribed to the absorption of CsPbBr3, while the temperature-dependent 

“hole burning” at 310 nm agrees well the localized exciton absorption of Cs4PbBr6 crystals.28 This 

can be further verified by the temperature-dependent PL emission spectra of Cs4PbBr6 crystals 

upon excitation at 310 nm, as shown in Figure. 2c. As the temperature fell below 200 K, the green 

emission of CsPbBr3 was detected along with an ultra-violet emission with a central wavelength 

at 375 nm. The emission band at 375 nm can be assigned to the 3P0→
1S0 transition of Pb2+ ion in 

isolated [PbBr6]
4- octahedra.29-31 Meanwhile, it was found that both the CsPbBr3 and Pb2+ 
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emissions weakened significantly with the temperature rise and nearly vanished when the 

temperature was higher than 200 K, due to the increased thermal quenching at higher temperatures. 

10 K PL excitation spectrum of the crystals by monitoring the Pb2+ emission at 375 nm shows a 

strong excitation band around 310 nm, ascribed to the 1S0→
3P1 transition of Pb2+ ion in isolated 

[PbBr6]
4- octahedra in Cs4PbBr6 (Figure. 2d). In summary, the temperature-dependent PL 

evolution for the green emission of Cs4PbBr6 crystals is very similar to that of CsPbBr3 QDs.  

 

Figure 2. Photoluminescence of the Cs4PbBr6 sample. a, Temperature-dependent PL emission 

spectra of Cs4PbBr6 upon excitation at 274 nm in the temperature range of 10–300 K. b, 

Normalized PL excitation spectra of Cs4PbBr6 as a function of temperature by monitoring the 

CsPbBr3 emission at 524 nm. c, Temperature-dependent PL emission spectra of Cs4PbBr6 upon 

excitation at 310 nm in the temperature range of 10–300 K. d, 10 K PL excitation spectrum of 

Cs4PbBr6 by monitoring the Pb2+ emission at 375 nm. 
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To further examine the type of luminescence centers in the green-emitting Cs4PbBr6 

material, the time-resolved emission spectra of Cs4PbBr6 crystals and dried CsPbBr3 QD powders 

(for comparison) were compared in the temperature range of 10-300 K. Figure. 3 presents time-

resolved emission spectra (streak images) of Cs4PbBr6 crystals (Figures. 3a, b, c) and CsPbBr3 

QDs (Figures. 3d, e, f) obtained at a time range of 1 ns. The room temperature streak images of 

both Cs4PbBr6 crystals and CsPbBr3 QDs systems show an emission band located around the same 

central wavelength (520 nm), however with different FWHM (~10 nm for Cs4PbBr6 crystals and 

~30 nm for CsPbBr3 QDs). As the temperature decreases the FWHM of both systems decreases, 

most significantly for CsPbBr3 QDs which is accompanied by a shift of the emission center 

towards red (green curves in Figures. 3d, e, f). CsPbBr3 QDs at the temperature lower than 250 K 

exhibit an additional type of luminescence, possessing emission wavelength slightly shifted 

towards the red (red curves in Figures. 3d, e). Under pulsed excitation, the intensity of the 

additional luminescence is much greater than the regular emission and the decay time of the 

luminescence is at least an order of magnitude shorter than the regular luminescence of CsPbBr3 

QDs. The precise determination of the decay time was not possible due to the finite duration of the 

excitation pulse (FWHM ~30 ps, see the pink curve in Figures. 3 a-f). 

We interpret the additional luminescence as superfluorescence28 – luminescence due to the 

collective emission of multiple QDs located close to each other (at distances below the wavelength 

of the emitted light) so light emission from a QD can induce synchronous emission from nearby 

QDs. As a result, the QDs emit light collectively due to induced emission, with a much greater 

radiative rate, which corresponds to a much shorter decay time (of the order of picoseconds). The 

streak images of low-temperature emission in CsPbBr3 QDs (Figure 3d, e) show intense, short-

time superfluorescence from QDs remaining in proximity (coupled QDs) as well as residual 
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luminescence from the QDs that are too far from other QDs to emit collectively (uncoupled QDs). 

The Cs4PbBr6 sample does not exhibit superfluorescence at any temperature which indicated that 

the QDs embedded in the Cs4PbBr6 matrix are too far apart to exhibit coupling. In contrast, the 

free CsPbBr3 QDs tend to agglomerate easily leading to coupling and superfluorescence. High-

pressure studies also confirmed that the green PL of Cs4PbBr6 originates from the emission of 

CsPbBr3 embedded in the lattice of Cs4PbBr6 (shown in Supplementary Information). Hence, this 

study demonstrates that embedded CsPbBr3 nanoparticles in Cs4PbBr6 show different emission 

properties to aggregates of free CsPbBr3 QDs.  

 

 



 11 

Figure 3. Time-resolved emission spectra (streak images) at a time range of 1 ns. Cs4PbBr6 

sample at 10K (a), 150 K (b), 293 K (c). CsPbBr3 QDs at 10K (d), 150 K (e), 293 K (f). The green 

curve presents an integrated emission spectrum of light emitted in the time interval denoted by the 

green dashed lines. The red curve denotes the integrated emission spectrum of superfluorescence. 

The pink curve denotes the temporal shape of the excitation laser pulse. 

It is important to find how synthesis conditions affect the formation of embedded CsPbBr3 

in Cs4PbBr6. Hence we have synthesized a series of materials with the ratio of Cs/Pb reactants 

varied in the range from 1 to 4.5 using the same synthesis procedure as for the original Cs4PbBr6 

sample. From the XRD patterns, as shown in Figure. 4a, polycrystalline Cs4PbBr6 remains the only 

phase observed by XRD with the Cs/Pb ratio between 4.5 and 2.5. Peaks from the secondary phase 

of CsPbBr3 begin to emerge at a Cs/Pb ratio of 2.25, and increase in intensity as the Cs/Pb ratio 

decreases to 1. Correspondingly, the external quantum efficiency (EQE) of the samples rises 

smoothly up to 28.4% as the Cs/Pb ratio decreased from 4.5 to 2.5, as the concentration of 

embedded CsPbBr3 nanoparticles increases with falling Cs/Pb ratio, (Figure. 4b) but sharply 

decreases from 28.4% to 14.7% when the Cs/Pb precursor ratio reached 2.25, where secondary 

CsPbBr3 phase starts to emerge (Figure. 4c). CsPbBr3 has high photoluminescence if particle size 

is smaller than ~10 nm, but for Cs/Pb ratios below 2.5, the unconstrained secondary phase particles 

aggregate to larger sizes leading to their appearence in XRD patterns and the observed drop in 

overall EQE. These results thus confirm that the high-quality green PL emission of the Cs4PbBr6 

is from embedded CsPbBr3 nanoparticles, while any secondary CsPbBr3 phase luminescences with 

a much lower EQE.  
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Figure 4. Properties of Cs4PbBr6 samples when tuning the Cs/Pb precursor ratio. a, XRD patterns, 

b, Normalized PL emission spectra, and c, EQE, of Cs4PbBr6 samples synthesized with different 

Cs/Pb precursor ratios, showing single and mixed phase regions as observed by XRD. 

In summary, our results demonstrate that epitaxially embedded CsPbBr3 nanoparticles are 

responsible for the efficient green emission from Cs4PbBr6 crystals. CsPbBr3 impurity phase may 

also be present if samples are synthesized with a Cs/Pb precursor ratio lower than 2.5, but these 

have lower emission intensity. Our study shows that the properties of optically active nanoparticles 

are significantly altered by embedding them in a suitable inert host lattice, and this mechanism 

may enable further new efficient luminescent composites to be developed. 
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Complete experimental section, optical properties, further temperature-dependent PL 

properties, and pressure-dependent PL properties. 
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