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Summary
Leaf-area-index (LAI) underpins terrestrial ecosystem functioning, yet our ability to 

predict LAI remains limited. Across Amazon forests, mean LAI, LAI seasonal dynamics, 

and leaf-traits vary with soil moisture-stress. We hypothesise that LAI variation can be 

predicted via an optimality-based approach, using net canopy C-export (NCE, 

photosynthesis minus the C-cost of leaf growth and maintenance) as a fitness proxy. 

We applied a process-based terrestrial ecosystem model to seven plots across a moisture-

stress gradient with detailed in-situ measurements, to determine nominal plant C-budgets. 

For each plot, we then compared observations and simulations of the nominal (i.e. 

observed) C-budget to simulations of alternative, experimental budgets. Experimental 

budgets were generated by forcing the model with synthetic LAI time-series (across a 

range of mean LAI and LAI seasonality) and different leaf-trait combinations (leaf mass 

per unit area, lifespan, photosynthetic capacity, and respiration rate) operating along the 

leaf-economic spectrum. 

Observed mean LAI and LAI seasonality across the soil moisture-stress gradient 

maximised NCE, and were therefore consistent with optimality-based predictions. Yet, the 

predictive power of an optimality-based approach was limited due to the asymptotic 

response of simulated NCE to mean LAI and LAI seasonality. Leaf-traits fundamentally 

shaped the C-budget, determining simulated optimal LAI and total NCE. Long-lived leaves 

with lower maximum photosynthetic capacity maximised simulated NCE under aseasonal 

high mean LAI, with the reverse found for short-lived leaves and higher maximum 

photosynthetic capacity. The simulated leaf trait-LAI trade-offs were consistent with 

observed distributions. 

We suggest that a range of LAI strategies could be equally economically viable at local-

level, though we note several ecological limitations to this interpretation (e.g. between-

plant competition). In addition, we show how leaf-trait trade-offs enable divergence in 

canopy strategies. Our results also allow an assessment of the usefulness of optimality-
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based approaches in simulating primary tropical forest functioning, evaluated against in-

situ data.

Keywords Optimisation, Canopy Dynamics, Leaf Traits, Tropical Rainforests, Fitness Proxy, 

Moisture-Stress

1. Introduction
Leaf area index (LAI, the total one-sided leaf area per unit ground area) determines canopy light 

interception, evapotranspiration and energy exchange between the land and atmosphere, driving 

significant spatial and temporal variability in carbon (C) assimilation (Caldararu et al., 2012, 

Muraoka et al., 2010, Street et al., 2007, Xu &  Baldocchi, 2004). Accordingly, LAI is a key 

property in the investigation of global biogeochemical cycles for both field and model-based 

studies (Baldocchi et al., 1996, Carswell et al., 2002, Sellers et al., 1997). Principal determinants 

of global variation in LAI include moisture-stress, photoperiod, temperature and nutrients (Fisher 

et al., 2012, Grier &  Running, 1977, Iio et al., 2014, Jolly et al., 2005, Schleppi et al., 2011, 

Wright et al., 2013). 

However, our ability to simulate spatial and temporal variation in LAI remains limited. Resolving 

this knowledge gap is important in the tropics (De Weirdt et al., 2012, Kim et al., 2012) as its 

forests, for instance those in the Amazon, have a large influence on the global C cycle (Liu et al., 

2017, Malhi et al., 2008, Pan et al., 2011) and climate system. Broad patterns across the Amazon 

basin are clear; mean LAI decreases and LAI seasonality increases with increasing soil moisture-

stress, as forests shift from humid towards seasonally dry (Araujo-Murakami et al., 2014, Malhi et 

al., 2014). However, the climate sensitivity of phenological change remains unpredictable.

A key challenge in process-based modelling of LAI in tropical forests is to capture the 

phenological sensitivity to climatic forcings, via leaf senescence and leaf net primary productivity 

(NPP). Leaf-out timing and leaf turnover are often dependent on environmental factors including 

plant available water and radiation (Myneni et al., 2007); however these processes are highly 

parameterised within models and lack a clear theoretical under-pinning (Table S1). Moreover, 

many models continue to simulate leaf NPP as a fixed fraction of total NPP (Clark et al., 2011, 

Thornton &  Zimmermann, 2007). Such model structures lack the capacity to actively vary LAI in A
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response to soil moisture-stress, particularly within the context of climatic change. As a result, 

current terrestrial biosphere and ecosystem models predict LAI dynamics poorly for Amazon 

forests across a range of dry season intensities: in a model-data comparison study for this region, 

Restrepo‐Coupe et al. (2017) found that of the models tested (IBIS, ED2, JULES, and CLM3.5), 

only ED2 did not grossly overestimate mean LAI. Indeed, none of the models tested were able to 

capture dry season changes in LAI for equatorial forests.  Xu et al. (2016) similarly found that 

while the ED2 model (with an updated PFT and hydrology scheme) was able to capture spatial 

patterns in LAI across the Central American region, it simulated mean LAI ca. 1m2m-2 higher than 

MODIS estimates, and its simulated LAI seasonality was lower. However, it is important to note 

that uncertainty in MODIS LAI estimates is high in tropical regions (Liu et al., 2018, Xu et al., 

2018). 

The simulation of seasonal and annual LAI dynamics could be usefully improved via an 

optimality-based approach (Anten, 2016, Thomas &  Williams, 2014). Such an approach assumes 

that plants aim to maximise fitness (i.e. optimise), where fitness is defined as the capacity to grow, 

reproduce and survive (Geber &  Griffen, 2003, Violle et al., 2007). Within an optimisation 

framework, leaf, root and stem growth, together with plant traits, are adjusted to maximise plant 

fitness. Net canopy C export (NCE; or variant of) is a commonly used fitness proxy (Franklin et 

al., 2009, McMurtrie &  Dewar, 2011, McMurtrie et al., 2008). Akin to leaf level C optimisation 

approaches (Ackerly, 1999, Kikuzawa, 1991), NCE balances canopy level C gain via gross 

primary productivity (GPP) against C loss via growth (NPPLeaf) and respiration (RMLeaf and RGLeaf 

; leaf maintenance and leaf growth respiration respectively) (Givnish, 2002, Reich et al., 2009). 

 [1]𝑁𝐶𝐸 = 𝐺𝑃𝑃 ―   𝑁𝑃𝑃𝐿𝑒𝑎𝑓 ― 𝑅𝑀𝐿𝑒𝑎𝑓 ― 𝑅𝐺𝐿𝑒𝑎𝑓

The maximisation of NCE is dependent on leaf traits, including but not limited to, photosynthetic 

capacity, leaf mass per unit area (LMA), leaf maintenance respiration rate, and leaf lifespan (Field, 

1983, McMurtrie &  Dewar, 2011). Leaf traits directly influence the rate of C gain via 

photosynthetic capacity. Leaf traits also directly influence C losses, including C used for leaf 

growth via LMA and leaf maintenance respiration via metabolic activity (Thomas et al., 2019). In 

addition, leaf traits indirectly affect C assimilation and leaf maintenance C-costs, through the 

influence of leaf lifespan on total standing leaf biomass. 
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Leaf traits vary widely across the Amazon basin. Leaf nitrogen content is associated with 

photosynthetic capacity and maintenance respiration (Evans, 1989, Reich et al., 2008), varying 

seven fold across Amazonia (6-41 mg g-1) whilst LMA varies ten-fold (30-299 gm-2) (Fyllas et al., 

2009) and individual leaf lifespans can range from less than two months to over four years (Reich 

et al., 1991). Combinations of leaf traits have been shown to exist along a leaf-economic 

spectrum, exhibiting trade-offs among key trait-based axes of functionality (Wright et al., 2005, 

Wright et al., 2004, Wright &  Westoby, 2002). ‘Slow’ leaf traits (i.e. long leaf lifespan, high 

LMA, low photosynthetic capacity and low metabolic rate) typically dominate in evergreen terra-

firme forests (e.g. Carswell et al. 2000), whilst fast leaf traits (i.e. short leaf lifespan, low LMA, 

high photosynthetic capacity and high metabolic rate) are more prevalent in seasonally dry forests 

(Fyllas et al., 2009, Givnish, 2002, Poorter &  Bongers, 2006, Wright et al., 2001). It is therefore 

critical to account for spatial variation in leaf traits, and their covariance, when investigating the 

interaction between NCE, LAI and soil moisture-stress across Amazon forests. 

Optimality-based canopy models have had some success in predicting mean tropical LAI and its 

seasonality. For example, Caldararu et al. (2016) present a leaf phenology model which optimises 

net C assimilation (photosynthesis minus leaf maintenance C-costs) as a function of temperature, 

available light, soil water and leaf ageing. The model was able to explain 98% of spatial variation 

in tropical forest mean LAI, and 63% of variation in LAI amplitude (for the year 2006; where the 

model was parameterised on a pixel-by-pixel basis using a Markov Chain Monte Carlo fitting 

algorithm against MODIS LAI training-data for the years 2001-2005). However, Caldararu et al. 

(2016) did not compare fitted model parameters (which included photosynthetic efficiency, leaf 

maintenance C-costs, and leaf ageing rate) to ground-based estimates, nor did fitted parameters 

adhere to known inherent co-variation as a result of physiological trade-offs (Osnas et al., 2013). 

Elsewhere, leaf lifespan has been presented as an emergent property of carbon optimality 

modelling, evaluated against observation data (Xu et al., 2017). While optimality-based canopy 

models have been applied globally, model evaluation against tropical forests field estimates of C 

fluxes (i.e. GPP, NPP and respiration) has been limited (Caldararu et al., 2014, Vico et al., 2017). 

Furthermore, current approaches have yet to explore how observed variation in traits 

(photosynthetic capacity, LMA, leaf maintenance respiration rate, and leaf lifespan) affect C-cost 

and gain dynamics. Until now, a lack of fundamental information on C uptake, allocation, 
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metabolism and plant traits has limited the scope for more detailed optimisation theory testing 

against tropical forest in-situ data.

To this end, we use the process-orientated terrestrial ecosystem Soil-Plant-Atmosphere model 

(SPA), to investigate LAI optimality through analysis of plant C and water cycles, for forest plots 

with detailed C budget measurements across an Amazonian moisture-stress gradient. Previous 

work calibrating SPA to plots across the moisture-stress gradient, has shown that modelled C 

dynamics are consistent with field estimates (Flack-Prain et al., 2019), and therefore provide a 

basis for model experimentation of C dynamics.

Our key science questions are:

1. How does (a) mean LAI and (b) LAI seasonality impact NCE trade-offs between leaf C 

costs and C assimilation across the moisture-stress gradient

2. Are in-situ LAI measurements consistent with optimality-based predictions?

3. How do trait trade-offs across the leaf economic spectrum impact optimal LAI dynamics?

For question one, we hypothesise that leaf growth and maintenance C-costs increase with mean 

LAI independent of climate (Figure 1). In the absence of drought, GPP increases with mean LAI 

(prior to shading effects), making high LAI an optimal strategy. Under high moisture-stress, GPP 

is increasingly limited at higher LAI, resulting in a lower optimal leaf area. With respect to LAI 

seasonality (see Equation 2), we hypothesise that under low seasonal moisture-stress leaf C-costs 

increase with LAI seasonality. High LMA and faster leaf turnover result in higher leaf growth 

costs. In addition, (annual) GPP decreases as LAI seasonality increases. As a result, we predict 

aseasonal LAI will be optimal for forests with more consistent year-round rainfall. Conversely, 

where seasonal moisture-stress is high, we predict leaf C-costs decline as LAI seasonality 

increases. Maintenance respiration costs decrease alongside seasonal declines in LAI. GPP does 

not increase as LAI seasonality declines if GPP is limited by seasonal moisture-stress. We 

therefore hypothesise that higher LAI seasonality will be economically optimal in sites with 

stronger seasonal climates. As such we predict that in response to question two, C cycle dynamics 

under optimal mean LAI and LAI seasonality (i.e. that which maximises NCE) will reflect and 

explain in-situ data.

For question three we investigate how NCE responds to changes in leaf traits (photosynthetic 

capacity, LMA, leaf maintenance respiration rate, and leaf lifespan). Leaf traits determine C-costs A
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of canopy construction and longevity, which influence the economics of optimisation. Therefore, 

an alternative hypothesis is that variation in leaf traits will allow aseasonal LAI even in seasonal 

climates. Optimal leaf traits (i.e. that which maximise NCE) are predicted to match observed trait 

distributions across the moisture-stress gradient. Furthermore, we hypothesise that leaf traits and 

LAI will be inextricably linked, and that optimal leaf trait strategies will depend on LAI and vice 

versa. 

Optimisation approaches could offer a unique opportunity to reduce uncertainty in predictions of 

Amazon phenology, and consequently C fluxes. This study will test the suitability of a C 

economic optimisation approach to predict ecosystem functioning in response to soil water 

limitation. We use Amazon permanent sample plots with uniquely detailed time-series 

measurements of C fluxes and LAI, together with a comprehensive suite of leaf trait estimates 

(Doughty et al., 2015, Fyllas et al., 2009, Malhi et al., 2015). We simulate a range of mean LAI 

and LAI seasonalities and evaluate their optimality by comparing their NCE. This approach allows 

us to present comprehensive predictions about the sensitivity of NCE to LAI. Furthermore, we are 

able to present trade-offs in C allocation dynamics, leaf traits, and soil moisture-stress, referenced 

against in-situ data. We discuss the potential for optimisation approaches to improve earth system 

model predictions of canopy properties and C cycling.

2. Materials and Methods 
2.1 Site Characteristics 

This study uses field data from Amazon forests sites of the Global Ecosystem Monitoring network 

(GEM; Malhi et al., 2015). We focus on seven one-hectare permanent sample plots along 

moisture-stress gradients in the east and west Amazon, distributed across four locations (Table 1). 

Moisture-stress across plots is quantified using maximum climatological water deficit (MCWD), a 

measure of seasonal water deficit where more negative values relate to larger water deficit, and 

potentially greater moisture-stress (the focal MCWD gradient spans -86 to -498 mm; see 

supporting information, SI, for MCWD equation). Soil and species composition differs between 

localised plots, with little evidence of anthropogenic disturbance (Malhi et al., 2015). A short 

description of each plot is given here, with further details on site characteristics available in 

Aragao et al. (2009), Quesada et al. (2012), Metcalfe et al. (2010), Araujo-Murakami et al. 

(2014), Malhi et al. (2014), Doughty et al. (2015), Malhi et al. (2015) and Rocha et al. (2014). A
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Core terra-firme Amazon forest plots, CAX04 and CAX06 are located in the Caxiuanã National 

Forest in Para State, Brazil and occupy the least moisture-stressed zone of the gradient (MCWD -

86mm). TAM05 and TAM06, located in the Tambopata Biological Reserve in the Madre de Dios 

region of Peru, are subject to a moderate dry season (MCWD -256mm). Transitional forest plots -

KEN01 and KEN02 - are situated in the Hacienda Kenia in Guarayos Province, Santa Cruz, 

Bolivia, and are subject to a more intense dry season (MCWD -342mm). The Tanguro plot, 

located in the Fazenda Tanguro, Mato Grosso State, Brazil, occupies the highest moisture-stress 

zone along the gradient (MCWD -498mm). 

2.2 LAI and Leaf Trait Dynamics across the Soil-Moisture Gradient  

We used linear regression models to provide an overview of the spatial covariation of observed 

annual mean LAI, LAI seasonality and leaf traits across the MCWD gradient (see supporting 

information, SI, for full details on LAI and leaf trait measurements). In the analysis we also 

included precipitation seasonality (%) as a characteristic of precipitation regime (see section 2.5 

for calculation).  

2.3 The Soil-Plant-Atmosphere Model

SPA is a process-based hydrodynamic, terrestrial ecosystem model (Williams et al., 1996), which 

has previously been calibrated and evaluated against measured C and water fluxes for moist 

tropical forests in Caxiuanã (eastern Amazon) and Manaus (central Amazon) (Fisher et al., 2007, 

Williams et al., 1998). The pathways through which soil moisture LAI, and leaf traits impact C 

assimilation and leaf C costs (i.e. NCE) in SPA are summarised in Figure 2, and are described 

below.   

SPA simulates the vertical distribution of canopy layer specific energy-balance, heat and mass 

exchange, including photosynthesis and transpiration for up to 10 canopy layers (Bonan et al., 

2014, Williams et al., 1996). Each canopy layer in SPA is further partitioned between sunlit and 

shaded fractions. The radiative transfer scheme determines the canopy interception of radiation 

(following Beer-Lambert’s Law) and its subsequent transmittance, reflectance and absorption of 

long wave, near infra-red and direct and diffuse photosynthetically active radiation (PAR) for each 

canopy layer and the soil surface (Williams et al., 1998). The long wave radiation balance is 

updated by the impact of the soil and canopy energy balance on temperature (Smallman et al., 

2013). Boundary layer exchange is subject to the decay of wind speed above and within the 

canopy profile modified by the impact of the surface energy balance on turbulent exchange A
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(Smallman et al., 2013). The vertical distribution of nitrogen (N) within the canopy is represented 

as an exponential decay function (Williams et al., 1996). At the leaf level, the Farquhar model is 

used to determine photosynthesis (Farquhar &  Von Caemmerer, 1982). The Penman-Monteith 

equation is used to estimate transpiration. 

SPA simulates leaf-level C and water fluxes through eco-physiological principles governing 

stomatal opening, balancing atmospheric demand for water and available supply from the soil to 

optimise photosynthesis (Bonan et al., 2014, Smallman et al., 2013, Williams et al., 2001, 

Williams et al., 1996). The stomatal conductance model in SPA optimises leaf C gain per unit 

nitrogen within the limits of water supply, therefore preventing leaf water potential dropping 

below a critical value. The model thereby combines an intrinsic water use efficiency and hydraulic 

safety, to optimise simulated stomatal conductance (Bonan et al., 2014, Fisher et al., 2006). The 

rate of liquid phase supply is dependent on plant water storage, soil water potential, and soil-to-

leaf hydraulic resistance (Williams et al., 1996; William et al., 2001). In SPA, sap flow is buffered 

by stored plant water. Simulated soil water inputs via precipitation account for canopy 

interception, and subsequent evaporation and drainage. Soil water retention curves then relate soil 

texture to water transfer through the soil profile (Saxton et al., 1986). Soil water content and soil 

radiation balance is used to calculate water evaporation from the soil surface (Amthor et al., 

1994). Root water uptake is computed as a function of root dimensions (surface area, biomass and 

depth) and soil hydraulic conductivity. Root resistivity and root biomass per unit soil volume 

determine root-to-stem conductance (Williams et al., 2001). Aboveground hydraulic conductance 

is calculated assuming resistance to xylem water supply increases with the height of the canopy 

layer (Williams et al., 1996). As in a pipe model, each canopy layer has an independent water 

supply system.  

Phenology in this application of SPA was forced using LAI timeseries (Figure 2). Foliar C stocks 

at a given timestep were computed as a function of LAI and leaf C per unit area (see SI for 

equations). Leaf NPP was calculated as the difference between the foliar C stock of the current 

timestep and that of the previous timestep following leaf litterfall. Leaf NPP was determined prior 

to other plant NPP components. Where the leaf NPP requirement exceeded total NPP for the given 

timestep, the non-structural C (NSC) pool was drawn upon. When the NSC pool became depleted, 

a fraction of NPP was redirected towards NSC storage in subsequent timesteps when leaf NPP did 

not exceed total NPP. Leaf litterfall in SPA was simulated as a function of day of peak leaf fall, A
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leaf fall period and potential leaf lifespan (see SI for equations). The parameters were calibrated 

against plot litterfall data. Where leaf litterfall was insufficient to support a decline in forced LAI 

across two timesteps, the deficit was added to the leaf litterfall pool. When not forced with in-situ 

LAI, the capacity of SPA to simulate canopy dynamics has been demonstrated by both López-

Blanco et al. (2018) and Sus et al. (2010).

Root and wood C allocation and turnover is simulated by the sub model DALEC2 (Bloom &  

Williams, 2015). Following the subtraction of foliar NPP from the total NPP pool, the remaining 

NPP was distributed between roots and wood as a function of fixed, plot-specific allocation 

fractions. Root and wood turnover was simulated as a function of component C stock using a 

fixed, plot-specific turnover rate parameter. 

Autotrophic respiration in SPA was computed on a mass basis. Leaf respiration was calculated as 

a function of leaf N content (Flack-Prain et al., 2019, Reich et al., 2008) and total leaf C stock (see 

SI). Wood and fine root maintenance respiration were estimated as a function of component C 

stock and a respiration coefficient parameter. When calculating wood respiration there was no 

distinction between sapwood and heartwood. Growth respiration was calculated as a fixed 

proportion of NPP (0.28) (Waring &  Schlesinger, 1985).  Within SPA, C allocation to respiration 

was executed before allocation to growth. 

2.4 Model Set-up, Calibration, and Evaluation

We used field estimates of plant traits, initial C stocks, soil texture, meteorology and LAI to drive 

SPA (Figure 2) at each permanent sample plot across the GEM network (see SI). Specifically, the 

model was parameterised using local estimates of: soil texture, soil C stock, leaf N content, LMA, 

photosynthetic capacity (κc, and κJ ; Vcmax and Jmax normalised by leaf N content respectively), the 

fraction of NPP allocated to fine roots and wood, root depth, foliar, wood and fine root C stocks, 

and wood and fine root respiration coefficients. Fine root and wood turnover rates were assumed 

proportional to component NPP (given the maturity of stands and their disturbance history). Wood 

and root respiration measurements were used together with component C stocks to estimate plot-

specific wood and root respiration coefficients. SPA hydraulic conductance parameters derived 

from detailed field measurements at an Amazon moist forest site were used in model runs for all 

plots (Fisher et al., 2007, Fisher et al., 2006, Rowland et al., 2015a). Hydraulic conductance 

parameters include stem conductance, minimum leaf water potential, intrinsic water use 

efficiency, leaf capacitance, and root resistivity. Hourly meteorological forcing data were supplied A
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from weather stations located within 1km of the study plots. Data gaps in air temperature, wind 

speed, shortwave radiation and vapour pressure deficit records which were less than six 

consecutive hours were estimated by spline interpolation. Data gaps greater than six hours, or gaps 

in precipitation measurements were filled using hourly spline-interpolated and bias corrected 

ERA-Interim data (Dee et al., 2011). Solar zenith angle was accounted for when interpolating 

solar radiation values. Monthly LAI measurements were scaled to daily estimates via linear 

interpolation to force simulated LAI. 

Time-series field measurements of soil moisture and leaf litterfall were used to calibrate simulated 

soil water drainage parameters and leaf fall parameters respectively. Within SPA, the empirical 

model used to simulate soil hydraulics (Saxton et al., 1986, eqn. 10) was calibrated by adjusting 

the slope of the interaction between soil texture and water retention, to reflect tropical soil 

moisture dynamics (to within standard error estimates of annual mean soil moisture). Modelled 

leaf litterfall was calibrated to accurately simulate litterfall period and amplitude (within standard 

error estimates of annual litterfall), using field measurements to retrieve model parameters on leaf 

fall timing, duration and potential leaf lifespan (Table 2). 

SPA was evaluated against independent field estimates of annual ecosystem C fluxes, including 

NPP, GPP, NCE and autotrophic respiration. Total NPP and autotrophic respiration were 

calculated as the sum of measured leaf, root, and wood NPP and respiration respectively. GPP was 

calculated as the sum of total measured NPP and autotrophic respiration, and NCE was calculated 

as the sum of measured root and wood NPP and respiration (i.e. GPP minus leaf NPP and 

respiration). 

The calculation of model uncertainty as a result of parameter error was limited to that associated 

with LAI estimates, as the availability of uncertainty estimates for leaf traits and rooting properties 

was plot-dependent, and there were no uncertainty estimates for hourly meteorological data or soil 

properties. Model uncertainty estimates were calculated by simulating C fluxes for each plot under 

the upper and lower standard error of monthly LAI field measurements. Following model 

calibration, simulated C fluxes were evaluated against field estimates of GPP, respiration and 

NPP, using linear regression models. Field estimates were derived from a suite of biometric time-

series measurements including dendrometers, root ingrowth cores, infra-red gas analysers and 

litterfall traps (Doughty et al., 2015), further details of which can be found in the SI. A
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2.5 Modelling C Cycle Sensitivity to LAI and Soil Moisture-Stress Interactions

We tested whether the maximisation of NCE explained observed mean LAI and LAI seasonality 

across the MCWD gradient. We forced the model at each plot using a suite of synthetic LAI time-

series, and retrieved the resultant C budget. For each plot, during model experiments; 

meteorology, soil texture, the fraction of NPP allocated to wood and roots (following leaf NPP 

allocation), initial C stocks and leaf traits were kept constant. To generate the synthetic LAI time-

series, we systematically varied mean LAI (Figure S2) and LAI seasonality (Figure S3) against the 

observation data at each plot. First, to vary mean LAI, for each plot, we adjusted the annual mean 

to between 1-8 m2 m-2 at 0.5 m2m-2 intervals, conserving the nominal seasonal cycle (n=105; 7 

plots × 15 synthetic LAI time-series). Second, we constructed synthetic LAI time-series for each 

plot (n= 63; 7 plots × 9 synthetic LAI time-series), which conserved nominal mean LAI, but 

varied LAI seasonality (Table S2).

The timing of  in the synthetic LAI time-series were aligned with seasonal lows in the 𝐿𝐴𝐼𝑚𝑖𝑛

observation dataset. LAI seasonality ( ; %), was calculated as the average difference between 𝐿𝐴𝐼𝑠

monthly LAI and the annual mean:

 [2] 𝐿𝐴𝐼𝑠 =  
∑𝑛

𝑖 = 1

|𝐿𝐴𝐼𝑖 ― 𝐿𝐴𝐼|

𝐿𝐴𝐼  . 100

𝑛

Where is LAI for a given month,  is nominal mean LAI, and n is the number of months in 𝐿𝐴𝐼𝑖 𝐿𝐴𝐼

the time-series. Estimates of local precipitation seasonality (used in regression analyses to relate 

LAI and leaf trait distributions to precipitation regime) were calculated using an analogous 

equation, where was substituted for precipitation in a given month, and  was substituted 𝐿𝐴𝐼𝑖 𝐿𝐴𝐼

for mean monthly precipitation. 

For each LAI timeseries (observed or synthetic), model simulations were run using local climate 

data, allowing sufficient iterations for C cycle feedbacks on component C pools to reach steady 

state (300 years). We computed the interaction between C assimilation, the C-cost of leaf growth 

and maintenance (i.e. GPP and NCE), and mean LAI/LAI seasonality for each plot. We compared 

nominal annual mean LAI to that under the simulated maximum NCE. We then compared field 

estimated and model simulated NCE under nominal LAI, to the maximum simulated NCE 

retrieved from synthetic LAI time-series runs (for mean LAI and LAI seasonality). Field estimated 

error was the propagated standard error of components (i.e. GPP, leaf NPP, and leaf respiration).  A
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Optimal mean LAI and LAI seasonality was defined as that which maximised NCE under the plot 

conditions. 

2.6 Leaf Trait Interactions with NCE along Soil Moisture Gradients

We tested the impact of leaf traits on optimal LAI across the MCWD gradient. We focused on 

exploring the extremes of the moisture gradient, choosing plots with typically drier (KEN02) and 

moister (CAX04) climate and soils to simplify the analysis. We used the fast leaf traits observed at 

the drier KEN02 plot (i.e. short leaf lifespan, low LMA, high photosynthetic capacity and high 

metabolic rate), and the slow leaf traits nominal at the moister CAX04 plot (i.e. long leaf lifespan, 

high LMA, low photosynthetic capacity and low metabolic rate; Table 2), to construct model 

forcings for a fast and slow leaf trait cohort. At both plots, we forced the model with the fast and 

slow leaf trait cohort, under the suite of synthetic LAI time-series outlined in the previous section 

(n=100; for mean LAI 2 plots × 15 synthetic LAI time-series × 2 leaf trait strategies, plus for LAI 

seasonality, 2 plots × 10 synthetic LAI time-series × 2 leaf trait strategies) and retrieved simulated 

NCE. As before, for each plot we kept meteorology, soil texture, the fraction of NPP allocated to 

wood and roots, and initial C stocks constant. We compared the interaction between NCE and 

mean LAI/LAI seasonality, under the different leaf trait cohorts, on drier and moister soils. We 

then contrasted field estimated and model simulated NCE under nominal LAI-leaf trait 

distributions, to the maximum simulated NCE retrieved from synthetic LAI-leaf trait runs. 

3. Results
3.1 Model Calibration and Evaluation

SPA was calibrated to effectively simulate soil moisture and leaf litterfall variation and dynamics 

across sites (Table 3, Figures 3 & S5). SPA-simulated GPP was within field estimate error bounds 

for five of the seven plots (Figure S5; the disparity between error bounds for the remaining two 

plots was marginal at 115 gC m-2 yr-1 and 50 gC m-2 yr-1 for KEN01 and TAM06 respectively). 

The GPP-MCWD interaction was consistent between simulated GPP and estimates derived from 

field measurements (slope of GPP~MCWD interaction; SPA=2.4±0.8; GEM =2.0±0.9).  Modelled 

and observed NCE were significantly correlated across plots (R2=0.62, p=0.04). A breakdown of 

model performance with respect to leaf, root, and wood NPP and respiration, is described in Flack-

Prain et al. (2019). Model calibration and evaluation results are presented in full in the SI.
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3.2 LAI and Leaf Traits Trends along the MCWD Gradient

Canopy and leaf level properties co-varied across the MCWD gradient (Figure S6; Table 4). Mean 

annual LAI decreased as precipitation seasonality increased (R2=0.57, p=0.05). LAI seasonality 

increased in line with precipitation seasonality (R2=0.87, p=0.002). Congruously, a significant 

negative interaction existed between mean annual LAI and LAI seasonality (R2=0.79, p=0.008). 

Across the canopy-to-leaf scale, mean annual LAI increased significantly with LMA (R2=0.86, 

p=0.002). Mass based foliar N content decreased significantly with mean annual LAI, and 

increased significantly with LAI seasonality (R2=0.92, p<0.001 and R2=0.77, p=0.009 

respectively). At the leaf-level, a significant negative correlation existed between LMA and mass 

based foliar N content (R2=0.85, p=0.003). Correspondingly, mass based foliar N exhibited a 

significant negative correlation with calibrated leaf lifespan (R2=0.57, p=0.05). 

3.3 Impact of Mean LAI on NCE Trade-Offs across the Soil-Moisture Gradient

As a result of leaf C cost and C assimilation trade-offs, high mean LAI was economically 

deleterious within the model experiment for forest plots occupying drier soils, but remunerative 

for those occupying moister soils (Figure 4). Simulated leaf C-costs (via growth and maintenance) 

increased linearly with mean LAI. In contrast, simulated GPP increased with mean LAI for five of 

the seven plots. The rate of GPP increase slowed as mean LAI increased (Figure 4). At Tanguro 

and KEN02 (which occupy drier soils), GPP did not increase with mean LAI beyond an upper 

limit (5.5 – 6.0 m2m-2); at higher LAI GPP declined towards zero. The modelled decline of GPP to 

zero was due to reduced C availability for non-foliar growth (at high mean LAI) leading to an 

eventual collapse in fine root biomass stocks, whereby canopy function was no longer supported. 

The simulated response of leaf C-costs and C assimilation to mean LAI caused NCE to be 

progressively reduced at high mean LAI as soil moisture-stress strengthened. Consequently, 

simulated optimal mean LAI (i.e. LAI at which NCE was maximised; LAIOpt) declined as 

moisture-stress increased (Figure 5a; mean LAIOpt~ MCWD R2=0.72, p=0.02).

3.4 Consistency between In-Situ LAI Measurements and Optimality-Based Predictions from Mean 

LAI Experiment. 

In-situ measured LAI (LAIfield) maximised NCE without matching predicted optimal mean LAI 

(Figure 5a). Field measurements of NCE correlated significantly with simulated optimal NCE 

(NCEOpt; Figure 6; R2=0.83, p=0.004). Modelled NCE when SPA was forced with observed LAI 

was also consistent with NCEOpt (R2=0.94, p<0.001). Yet, LAIfield did not correlate significantly A
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with simulated mean LAIOpt (mean LAIOpt~ LAIfield R2=0.29, p=0.21).  Across the moisture-stress 

gradient, predicted mean LAIOpt was 22.6% higher than LAIfield. Simulated mean LAIOpt was 

within field observation error at three out of seven plots. In-situ measurements of LAI were 

simultaneously consistent with optimality-based predictions (i.e. maximised NCE), but 

inconsistent with predicted optimal LAI, because of the asymptotic response of simulated NCE to 

mean LAI over 1-2 m2m-2 differences in leaf cover (Figure 4).  

3.5 Impact of LAI Seasonality on NCE Trade-Offs across the Soil-Moisture Gradient

Trade-offs between leaf C costs and C assimilation resulted in seasonal LAI being deleterious 

within model simulations for forests occupying moister soils (Figure 6). However, for forests 

occupying drier soils, a wide range of LAI seasonalities proved equally optimal. For forest plots 

occupying moister soils, simulated GPP declined with increasing LAI seasonality (Figure 7). For 

forest plots occupying drier soils, simulated GPP reached an asymptote across LAI seasonalities of 

between 0-40%, declining thereafter. Across all plots, the modelled C-cost of leaf growth and 

maintenance increased with LAI seasonality. However, the slope of the leaf C cost-LAI 

seasonality interaction was reduced for drier plots. At low moisture-stress, the response of leaf C 

costs and C assimilation to LAI seasonality caused simulated NCE to decline with increasing LAI 

seasonality. At high moisture-stress simulated NCE varied little across a range of LAI 

seasonalities before declining. As a result, simulated optimal LAI seasonality increased 

significantly with moisture-stress (LAIOpt seasonality ~ MCWD R2=0.61, p=0.04; Figure 5b).

3.6 Consistency between In-Situ LAI Measurements and Optimality-Based Predictions from LAI 

Seasonality Experiment. 

Akin to trends in mean LAI, field measured LAI seasonality maximised NCE, but did not match 

the predicted optimal LAI seasonality. Across the moisture-stress gradient, NCEfield correlated 

significantly with predicted NCEOpt (NCEOpt ~ NCEfield R2=0.60, p=0.04, RMSE= 257.5 gC m-2 yr-

1, bias=6.5%). Modelled NCE when SPA was forced with observed LAI was also consistent with 

predicted NCEOpt (NCEOpt ~ NCESPA R2=0.98, p<0.001, RMSE=43.1 gC m-2 yr-1, bias=1.2%). 

LAIfield seasonality did not correlate significantly with simulated LAIOpt seasonality (LAIOpt 

seasonality ~ LAIfield seasonality R2=0.08, p=0.5). As before, field measured LAI seasonality 

supported optimal NCE without matching the simulated optimal LAI seasonality, because of the 

asymptotic response of simulated NCE across a range of LAI seasonalities (Figure 7). A
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3.7 Leaf Traits Interactions with the NCE along the Soil Moisture Gradient

Slow leaf traits were optimal (i.e. maximised simulated NCE) under high mean LAI, whilst fast 

leaf traits were optimal under low mean LAI (Figure 8). Simulated LAIOpt was 2.5 m2 m-2 higher 

under slow leaf traits compared to fast leaf traits, independent of moisture-stress (Figure 8 upper 

panels). Under high moisture-stress, slow leaf traits outperformed fast leaf traits (with respect to 

simulated NCE maximisation) for LAI > 4m2m-2. The transition point increased to ~5.5 m2 m-2 

under low moisture-stress. When the model was forced with local, observed LAI at the low 

moisture-stress plot, there was no significant difference in simulated NCE between nominal-slow 

and alternate fast leaf traits (nominal-slow 2709±301 gC m-2 yr-1; alternate fast 2846±73 gC m-2 

yr-1). Under high moisture-stress, when the model was forced with observed LAI, NCE was 33% 

higher for nominal-fast traits compared to alternate slow leaf traits (nominal-fast 1647±41 gC m-2 

yr-1; alternate slow 1238±57 gC m-2 yr-1). The interaction between optimal leaf trait strategy and 

mean LAI matched the observed coordination between leaf and canopy properties across the 

moisture-stress gradient. 

Under high moisture-stress, fast leaf traits were optimal across a range of LAI seasonalities 

(Figure 8). Under low moisture-stress, aseasonal LAI was optimal regardless of leaf trait strategy. 

At the drier forest plot, fast leaf traits generated stable simulated NCE across LAI seasonalities of 

0-25%, declining thereafter. At the moister forest plot, simulated NCE was maximised under 

aseasonal LAI; at 0% LAI seasonality under fast leaf traits; and at 0.17% LAI seasonality under 

slow leaf traits. Under high moisture-stress, simulated LAIOpt seasonality was 22% under fast leaf 

traits, which is close to LAIfield seasonality at 18%. Similarly, under low moisture-stress, simulated 

LAIOpt seasonality was 0.17% under slow leaf traits which matches observed LAIfield seasonality at 

0.2%. 

4. Discussion
Our aim was to test if key ecosystem properties (i.e. LAI dynamics and leaf trait suites) along a 

tropical forest MCWD gradient could be predicted using an optimality-based approach. We 

computed the sensitivity of NCE (representing C economic trade-offs, i.e. C assimilation minus 

leaf growth and maintenance C-costs) to moisture-stress across a spectrum of LAI strategies using 

a detailed process based model of C uptake, allocation and turnover. As moisture-stress increases, 

optimal mean LAI (i.e. that which maximised NCE) decreases, and optimal LAI seasonality 

increases. However, an asymptotic response of NCE to mean LAI and LAI seasonality limits the A
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predictive power of an optimality-based approach (Figure 4); optimal LAI estimates do not match 

in-situ observations closely. We went further, to evaluate the sensitivity of C cycle dynamics to 

coincident variation in leaf traits, LAI and moisture-stress. For forest plots occupying moister 

soils, slow leaf traits (i.e. long leaf lifespan, high LMA, low photosynthetic capacity and low 

metabolic rate) are optimal under aseasonal, high LAI. For forest plots occupying drier soils, fast 

leaf traits (i.e. short leaf lifespan, low LMA, high photosynthetic capacity and high metabolic rate) 

are optimal under low LAI (across LAI seasonalities of 0-20%). Predicted optimal combinations 

of mean LAI, LAI seasonality and leaf traits reflect observed dynamics across the moisture-stress 

gradient. 

4.1 Divergence in Canopy Economics across the MCWD Gradient Drives Optimal LAI 

Model experiments indicated that at the drier end of the moisture gradient high LAI canopies are 

economically unfavourable (Figure 4). Any C gains (via photosynthesis) from additional leaf area 

are outweighed by the increase in leaf growth and maintenance C-costs. Thus, consistent with our 

hypothesis, simulated NCE was maximised in drier forests by seasonal, low mean LAI (Figures 4 

& 5). Under moister conditions, simulated NCE was maximised by aseasonal, high mean LAI. 

Photosynthetic gains are maintained with high LAI canopies, and are economical, as soil moisture 

is a less limiting factor. 

4.2 Maximisation of NCE does not Predict In-Situ LAI 

As hypothesised, in-situ LAI measurements maximise NCE and are therefore consistent with 

optimality-based predictions (Figure 6). Yet, simulated optimal LAI is a relatively poor predictor 

of observed LAI dynamics (Figure 5). Simulated NCE responds asymptotically to changes in LAI 

seasonality at drier plots (Figure 7), and mean LAI (Figure 4). For example, NCE can vary little 

across a mean LAI range of ca. 2m2m-2 and a LAI seasonality range of up to 40% because of the 

complex trade-offs in the C economy linked to structural-functional interactions. This low 

sensitivity allows a range of mean LAI/LAI seasonalities to be similarly economically viable. As a 

result, despite matching optimality-based predictions (i.e. maximising NCE), mean LAIfield is not 

itself predicted well purely by the maximisation of NCE. Additional constraints to LAIfield beyond 

C-economics are then under-determined. 

Nutrient limitation was not accounted for in this analysis, but could be the additional constraint 

needed to improve optimality-based LAI predictions. Where moisture-stress is low, but nutrients 

are limited (i.e. Caxiuanã) optimal LAI exceeds in-situ measurements (Figure 4). Kumagai et al. A
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(2006) report higher LAIs of up to 6.8 m2m-2 (  = 6.2 m2m-2) in Bornean forests. Limited 𝑥

measurements indicate that soil nitrogen and pH across the Lambir Hills region are higher than at 

the Caxiuanã plots, as is soil phosphorus (CAX04 only) (Davies et al., 2005, Malhi et al., 2015, 

Quesada et al., 2010). Furthermore, field evidence shows that total leaf litterfall is positively 

associated with soil richness (Chave et al., 2010), and thus soil nutrient availability is likely to 

have a determinate effect on LAI dynamics. We suggest that foliar N and P demands may preclude 

otherwise optimal, higher LAI, in nutrient poor forests. 

Alternatively, the disparity between predicted optimal-LAI and in-situ LAI measurements could 

be a result of a focus solely on foliar investment. One hypothesis is that returns on canopy 

investment could decline relative to returns from investing in other tissues which support leaf 

function; for example, investment in roots for nutrient acquisition (e.g. Thomas and  Williams 

(2014)). The inclusion of investment returns across plant components could potentially reduce the 

range of equally viable LAI dynamics under current model assumptions. Haverd et al. (2016) have 

demonstrated optimisation of above versus belowground allocation to capture canopy dynamics 

across an Australian precipitation gradient. Another hypothesis is that LAI optimisation is 

sensitive to a reduction in marginal return rate (i.e. as the relative increase in net C gain starts to 

decline, plants may cease allocation towards the canopy). Further investigation into the presented 

model simulations show that if a marginal return rate function is added, whereby LAI ceases to 

increase when NCE is within <100 gC m-2 yr-1 of the maximum, mean LAI is more successfully 

predicted (R2=0.56, p=0.05, compared to simulated mean LAIOpt ~ LAIfield R2=0.29, p=0.21). 

Differences between simulated optimal LAI and observed LAI could also result from the radiative 

transfer scheme used.  Braghiere et al. (2019) recently found that the inclusion of leaf clumping 

into the radiative transfer scheme alleviated light limitation in lower canopy layers, especially 

where LAI was high (i.e. in the tropics). GPP increased as a result. However, leaf clumping was 

not simulated within SPA as local clumping estimates are unavailable for this study. Further work 

could therefore usefully test the sensitivity of NCE and LAI optimality to radiative transfer 

schemes. 

With respect to LAI seasonality, the viability of both seasonal and aseasonal LAI at drier forest 

plots is ecologically consistent with the expectation that high climatic seasonality promotes the 

coexistence of different LAI strategies (i.e. deciduous-evergreen) (Sakschewski et al., 2015). 

Furthermore, it is also consistent with in-situ observations. For example, at the Kenia plots, both A
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deciduous (e.g. Hura Crepitans L.) and evergreen (e.g. Dendropanax arboreus) species are 

present (Abelho et al., 2005, Figueroa-Esquivel et al., 2009, Poorter &  Bongers, 2006). Given the 

interaction between LAI seasonality and leaf trait strategy, we might expect community trait 

composition to also support a range of viable strategies (see section 4.5). 

4.3 Should Optimisation of Whole Stand C Dynamics Predict In-situ LAI?

In addition to asking why optimisation of whole-stand NCE does not predict observed LAI, we ask 

whether indeed it should (Anten &  During, 2011). To date, optimality-based ecosystem models 

and DGVMs have had varied success in predicting mean and seasonal LAI values that are 

consistent with field observations (De Kauwe et al., 2014, McMurtrie et al., 2008, Thomas &  

Williams, 2014, Walker et al., 2014b), and efforts have typically focused on single, mono-specific 

stands. In a mixed-species forest where a variety of plant strategies co-exist, LAI which exceeds 

the forest-wide optimum would increase competitiveness in individual trees (Anten, 2016).  van 

Loon et al. (2014) demonstrated how the inclusion of stem competition improved optimality-based 

predictions of LAI. However, given that in our study LAIfield was typically lower than simulated 

optimal LAI, including competition would not reduce the disparity between our optimality-based 

predictions and in-situ LAI measurements.  Furthermore, the disparity between observed and 

simulated optimal LAI could be the result of our fitness proxy selection (Dewar et al., 2009). 

Whilst NCE has proved a suitable measure of plant fitness elsewhere (McMurtrie &  Dewar, 

2011), it does not capture all aspects of plant fitness. It is possible that the appropriateness of NCE 

as a fitness proxy shifts as drought, nutrient limitation and disturbance increase, and plants must 

balance investment risk against shorter-term C gains.

4.4 Leaf Traits Determine Optimal LAI 

Simulated optimal mean LAI is dependent on leaf traits. Within model experiments, independent 

of precipitation regime, fast leaf traits support low mean LAI, while slow leaf traits support high 

mean LAI (consistent with in-situ data) (Figure 8; Table 2). As LAI increases, photosynthesis per 

unit leaf area declines. Consequently, under fast leaf traits high respiratory C-costs begin to 

outweigh C gains from high photosynthetic capacity. Conversely, lower respiratory C-costs under 

slow leaf traits are sustainable as leaf area increases. 

We show that leaf traits do not influence simulated optimal LAI seasonality at the moister forest 

plot where aseasonal LAI is most remunerative (Figure 8). However, at the drier forest plot, slow 

leaf traits are most remunerative under aseasonal LAI only, while fast leaf traits support a wider A
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range of LAI seasonalities (0-20%). Low leaf growth C-costs and high photosynthetic capacity 

allow fast leaf traits to support different LAI seasonalities (though notably at low mean LAI). 

Slow leaf traits were unable to achieve the same viable range in LAI seasonality, as the increase in 

new leaf growth (following seasonal turnover) had a higher C-cost (due to high LMA).

4.5 Fast and Slow Leaf Traits Both Maximise Fitness in Dry Forest Plots, but at Different LAI 

Model experiments, at drier forest plots, showed that fast and slow leaf trait strategies are equally 

viable, but at different mean LAI (Figure 8). These findings align with early conceptual 

approaches which used cost-benefit analyses to demonstrate how links between leaf longevity and 

phenology in temperate forests support coexistence of evergreen and deciduous trees (Kikuzawa, 

1991, Kikuzawa, 1996). Reporting on dry tropical evergreen and deciduous forests in Cambodia, 

Ito et al. (2007)  focused on sites located within 15 km which were thus assumed to be under the 

same precipitation regime. The evergreen forest had a mean LAI of 4.05 m2m-2, while the 

deciduous forest had a much lower mean LAI of 0.88 m2m-2. The difference in LAI is similar to 

that reported in this study, between predicted optimal LAI under slow and fast leaf traits at the dry 

forest plot (~2.5 m2m-2). Our results are also consistent with that of Sakschewski et al. (2015), 

who predict that variability in plant strategies should be highest in drier, seasonal areas. Our 

findings suggest that trait trade-offs across the leaf economic spectrum offer alternative routes to 

viable strategies, supporting different forest types under similar climates. 

4.6 Leaf Trait-LAI Dynamics are Important to C-Cycling Modelling 
Our findings align with a growing body of evidence which demonstrates the major role of leaf 

trait-LAI dynamics in driving regional to global scale variation in C fluxes (Trugman et al., 2019a, 

Trugman et al., 2019b, Verheijen et al., 2013, Xu et al., 2016). We therefore highlight the 

importance of concerted efforts to collate canopy aggregated leaf trait data (including LMA, 

photosynthetic rate, respiration rate, and leaf lifespan) and to record these characteristics through 

the canopy profile and over full phenological cycles (Lloyd et al., 2010, Meir et al., 2002). Trait 

data need to be linked to LAI observations and scaled appropriately to understand their economic 

interactions and sensitivities.

4.7 Limitations 

We identify a number of limitations to our results including the absence of leaf age effects, the leaf 

respiration model used, uncertainty in LAI field estimates and lack of in-situ data on the vertical 

profile of LAI within the canopy, except at a few tropical forest sites (Meir et al., 2000, Piayda et A
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al., 2015). In addition, we recognise that by not including error associated with all model 

parameters, nor including model structural error, the C flux uncertainty values presented in our 

analysis are likely underestimated. In particular our assumption of similar plant hydraulics across 

sites needs further exploration.  These weaknesses can be addressed through concerted modelling 

and data collection exercises.

We do not simulate a leaf age effect on carboxylation and electron transport rates as to do so 

would have induced greater uncertainty into our results. Wu et al. (2016) suggest that the 

interaction between leaf age and photosynthetic capacity reported for tropical forests (Kitajima et 

al., 2002, Kitajima et al., 1997, Xu et al., 2017), drives seasonal C flux dynamics. However, there 

were insufficient data currently to parameterise the leaf aging process across Amazon trees.  

We recognise the limitations of the leaf maintenance respiration model used, namely that though 

based on biological reasoning, it is an empirical approach (scaling respiration from leaf N content 

as a function of temperature to estimate respiration), and that tropical trees accounted for only a 

small proportion of the data used to build the model (Reich et al., 2008). Other models relating 

leaf N content to respiration rate vary in their parameterisation and form (i.e. linear versus the non-

linear Reich model; Atkin et al. 2015, Ryan 1991, Meir 2001). It is vital to improve process 

modelling of autotrophic respiration, and to find ways to test scaling this leaf process to the 

canopy, and evaluate its climate sensitivity (Thomas et al., 2019).

While accounting for LAI sampling uncertainty in our results, there is a risk of measurement bias 

which could shift reported LAI trends, especially at higher leaf area (Bréda, 2003, Jonckheere et 

al., 2004, Weiss et al., 2004). However, our LAI estimates (from hemispherical photographs) align 

approximately with destructive sampling measurements from Amazon forests under a similar 

precipitation regime (Caxiuanã 5.11 ± 1.41 m2m-2, McWilliam et al. (1993), 5.7 ± 0.5 m2m-2; 

Araújo et al., 2002; Fisher et al., 2007) so bias effects are unlikely to be large enough to influence 

our conclusions. In addition, we note that by using linear interpolation to scale monthly LAI 

estimates to daily values, we may have introduced some uncertainty into our results. However, we 

expect the effect to be minimal relative to the effect of in-situ LAI estimate uncertainty.

The sensitivity of NCE to differences in the vertical distribution of LAI also remains uncertain. 

Within SPA the default assumption is to uniformly distribute LAI over the canopy, as done here 

due to the lack of in-situ information. However, existing analysis of Amazonian forests have A
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shown that the vertical profile of LAI can deviate significantly from a uniform distribution 

potentially resulting in significant changes in light absorption and leaf ecophysiological properties 

(Meir et al., 2000, Stark et al., 2012), as also found in temperature forests (Kull et al., 1999). Stark 

et al. (2012) compared ground based and airborne Lidar estimation of vertical canopy profile of 

LAI, demonstrating the potential utility of airborne Lidar to resolve this current knowledge gap. 

An additional complication not yet addressed is that satellite and ground-based Lidar studies have 

presented evidence of divergent phenologies across different canopy layers (Smith et al., 2019, 

Tang &  Dubayah, 2017). 

5. Conclusion
We assessed the potential for optimality-based approaches to improve predictions of tropical LAI 

and reduce uncertainty in C flux estimates. Our results show that LAI variation across an Amazon-

wide moisture stress gradient was optimal in terms of maximising NCE, but that the predictive 

power of this focused optimisation approach was limited with respect to LAI, as a range of LAI 

strategies could be equally economically viable. We also demonstrated how different leaf trait 

strategies can support alternative LAI dynamics. Given the importance of leaf traits in shaping 

canopy dynamics, we further highlight the importance of mapping spatial, temporal and vertical 

leaf trait distributions via databases (such as the TRY trait database) and new remote sensing 

approaches. 
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Tables  

Table 1. Environmental characteristics summary of GEM network Amazon permanent 

sample plots (Malhi et al., 2015). Climate measures including maximum climatological water 

deficit (MCWD) are derived from local weather station data gap filled with ERA interim data 

for the years 2009-2010 (Dee et al., 2011).  

 Caxiuanã 

Control 

Caxiuanã 

Tower 

Tambopata 

V 

Tambopata 

VI 

Kenia 

Wet 

Kenia 

Dry 

Tanguro  

RAINFOR    site 

code 

CAX04 CAX06 TAM05 TAM06 KEN01 KEN02 --- 

Latitude (˚N) -1.716 -1.737 -12.831 -12.839 -16.016 -16.016 -13.077 

Longitude (˚E) -51.457 -51.462 -69.271 -69.296 -62.73 -62.73 52.386 

MCWD (mm) -85.5 -85.5 -256.2 -256.2 -342.3 -342.3 -498.1 

Precipitation 

Seasonality (%) 

166.1 166.1 287.9 287.9 391.2 391.2 126.8 

Soil type Vetic 

Acrisol 

Ferralsol Cambisol Alisol Cambisol Cambisol Ferralsol 

Sand (%) 83.69 32.54 40 2 58.05 55.48 45.73 

Clay (%) 10.68 53.76 44 46 19.13 18.25 48.9 
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Table 2. Mean LAI, LAI seasonality and leaf traits (leaf N content, photosynthetic capacity c,  J and LMA) used to parameterise SPA, and SPA 

calibrated leaf litterfall parameters (leaf fall day, leaf lifespan and leaf fall period) for Amazon permanent sample plots. Leaf fall day is the day of 

year leaf fall is initiated, leaf lifespan reflects potential lifespan of leaves and leaf fall period is the number of days over which leaf fall occurs. Leaf 

litterfall parameters were calibrated against GEM field estimates.    

Field Measured Parameters Calibrated Parameters

Annual 

mean LAI

(m2 m-2)

LAI 

Seasonality

(%)

Leaf N 

content

(mg g-1)

c

(μmol C gN-1 s-1)

J

(μmol C gN-1 s-1)

LMA

(g m-2)

Leaf Fall Day

(day of year)

Leaf Lifespan

(years)

Leaf Fall 

Period

(days)

CAX04 5.0 0.2 19.6 15.4 27.7 93.0 210 3 150

CAX06 5.2 2.2 24.3 13.2 23.8 87.4 190 1.45 100

TAM05 4.9 4.9 24.0 28.9 49.9 101.0 220 1.3 130

TAM06 4.6 8.9 24.8 29.0 50.3 96.0 230 1.42 100

KEN01 2.8 14.1 40.4 29.3 51.6 52.5 200 1.05 100

KEN02 2.2 18.4 55.3 28.9 50.3 41.8 180 1.01 100

Tanguro 4.1 1.6 31.2 30.0 53.1 64.4 180 1.04 120
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Table 3. Model calibration and evaluation performance for permanent sample plots across an 

Amazon mean MCWD gradient. SPA forced with observed LAI, calibrated using field estimates 

of leaf litterfall and soil moisture, and evaluated against annual NPP, GPP and autotrophic 

respiration. We compare modelled values to field estimates of C fluxes to derive the coefficient of 

determination, p-value and the normalised root mean square error.

R2 p RMSE(%)

Evaluation

GPP 0.36 0.15 11.2

Ra 0.59 0.04 12.2

NPP 0.38 0.14 12.0

NCE 0.62 0.04 12.8

Calibration 

Leaf Litterfall 0.99 <0.001 2.8

Litterfall Range 0.54 0.009 23.8

Litterfall Peak Timing 0.96 <0.001 7.1

Soil Moisture Range 0.35 0.21 14.7 

Soil Moisture Peak 

Timing 

0.98 <0.001 10.6
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Table 4. Linear regression analyses on the interaction between MCWD, precipitation seasonality, 

and in-situ measurements of mean LAI, LAI seasonality, leaf N content, LMA, and calibrated leaf 

lifespan across Amazon permanent sample plots.

Interaction Slope R2 p-value

Mean Annual LAI ~ MCWD + 0.35 0.16

Mean Annual LAI ~ Precipitation Seasonality - 0.57 0.05

LAI Seasonality ~ MCWD - 0.13 0.42

LAI Seasonality ~ Precipitation Seasonality + 0.87 0.002

Mean Annual LAI ~ LAI Seasonality - 0.79 0.008

LMA ~ MCWD + 0.37 0.15

LMA ~ Precipitation Seasonality - 0.23 0.27

LMA ~ Mean Annual LAI + 0.86 0.002

LMA ~ LAI Seasonality - 0.49 0.08

LMA ~ Foliar N Content - 0.85 0.003

LMA ~ Calibrated Leaf Lifespan (log-log) + 0.39 0.14

Foliar N Content ~ MCWD - 0.29 0.21

Foliar N Content ~ Precipitation Seasonality + 0.49 0.08

Foliar N Content ~ Mean Annual LAI - 0.92 <0.001

Foliar N Content ~ LAI Seasonality + 0.77 0.009

Foliar N Content ~  Calibrated Leaf Lifespan (log-log) - 0.57 0.05

Calibrated Leaf Lifespan ~ MCWD + 0.49 0.08

Calibrated Leaf Lifespan ~ Precipitation Seasonality - 0.20 0.31

Calibrated Leaf Lifespan ~ Mean Annual LAI + 0.28 0.23

Calibrated Leaf Lifespan ~ LAI Seasonality - 0.30 0.20
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Figure Legends
Figure 1. Hypothesised GPP, NCE and leaf growth and maintenance C-costs across a mean LAI 

gradient for a typical low and high moisture-stress plot. Optimal LAI is lower for high moisture-

stress plots, due the effect of water limitation on stomatal conductance, consequently limiting GPP 

and NCE at higher leaf area. GPP and NCE increase with mean LAI for low moisture-stress plots 

as water constraints to stomatal conductance are lower.

Figure 2. A summary of the pathways through which key leaf-level traits, LAI time-series (LAIt), 

meteorology, and soil properties constrain C and water fluxes in SPA. Model inputs derived from 

field measurements are presented in red. Dashed boxes identify model calibrated values. Green 

dotted circles highlight model values which determine total C assimilation, the C cost of leaf 

growth and maintenance, and phenology (where NCE = GPP – NPPLeaf – RMLeaf - RGLeaf). The 

joining together of multiple arrows indicates a collective impact. CLeaf = leaf C stock; NPPLeaf = 

leaf net primary productivity; LitterfallLeaf = leaf litterfall; RGLeaf = leaf growth respiration; 

RMLeaf= leaf maintenance respiration; NPPTotal= total net primary productivity; NPPRoot= fine root 

net primary productivity; CRoot= fine root C stock; GPP= gross primary productivity; LMA= leaf 

mass per unit area; ĸc & ĸj = Vcmax and Jmax normalised by leaf nitrogen content respectively (i.e. 

photosynthetic capacity); leaf N = leaf nitrogen content. 

Figure 3. Field estimated monthly LAI, leaf litterfall (GEM), and standard error, compared with SPA 

simulated leaf litterfall for seven plots at four locations across the Amazon basin. SPA leaf litterfall was 

calibrated against GEM estimates to derive three fixed model drivers relating to the leaf cycle (peak leaf 

fall timing, leaf fall period and leaf lifespan). GEM leaf litterfall data was available for 2009-2010 for 

CAX04, CAX06, TAM05, TAM06 and for 2010 only for KEN01, KEN02 and Tanguro. R2, p-value and 

RMSE estimates presented are derived from linear regressions between monthly GEM measurements and 

SPA simulations.

Figure 4. Model simulated NCE, GPP, and leaf growth and maintenance C-costs, for each plot 

along an Amazon MCWD gradient, forced with synthetic LAI timeseries ranging in mean LAI. 

Data points are field estimates of NCE, GPP, and leaf growth and maintenance. Error bars show 

the propagated error of summed components. 

Figure 5. The interaction between MCWD and simulated optimal (i.e. that which maximises NCE) 

and observed (i.e. field measured) mean annual LAI (a) and LAI seasonality (b).A
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Figure 6. A comparison of maximum simulated NCE forced with synthetic LAI timeseries ranging 

in mean LAI against (a) field estimated NCE, and (b) SPA simulated NCE under nominal LAI. 

SPA error bars represent simulated NCE and GPP under field measured LAI standard error. GEM 

error bars represent propagated error for summed field estimates of component NPP and 

respiration. The dashed line is the 1:1 and the solid line is the linear regression between NCE 

estimates.

Figure 7. Model simulated NCE, GPP, and leaf growth and maintenance, for each plot along an 

Amazon MCWD gradient, forced with synthetic LAI timeseries ranging in LAI seasonality. Data 

points are field estimates of NCE, GPP, and leaf growth and maintenance. Error bars show the 

propagated error of summed components. 

Figure 8. Simulated NCE for Amazon forest plots under low (CAX04) and high (KEN02) 

moisture-stress, forced with synthetic LAI timeseries ranging in mean LAI (top panels) and LAI 

seasonality (bottom panels) under fast (black) and slow (blue) leaf traits. Data points are field 

estimates of mean LAI/LAI seasonality and NCE. Vertical error bars show the propagated error of 

summed components. Horizontal error bars show LAI standard error.

Data Sharing and Accessibility
The data that support the findings of this study are openly available in Edinburgh DataShare at 

https://doi.org/10.7488/ds/2925, reference number 10283/3761.
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