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Abbreviations: 
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OX, oxalate 
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Abstract 

 

During its intra-erythrocytic growth phase, the malaria parasite Plasmodium falciparum relies heavily 

on glycolysis for its energy requirements. Pyruvate kinase (PYK) is essential for regulating glycolytic 

flux and for ATP production, yet the allosteric mechanism of P. falciparum PYK (PfPYK) remains 

poorly understood. Here we report the first crystal structure of PfPYK in complex with substrate 

analogues oxalate and the ATP product. Comparisons of PfPYK structures in the active R-state and 

inactive T-state reveal a ‘rock-and-lock’ allosteric mechanism regulated by rigid-body rotations of each 

subunit in the tetramer. Kinetic data and structural analysis indicate glucose 6-phosphate is an activator 

by increasing the apparent maximal velocity of the enzyme. Intriguingly, the trypanosome drug suramin 

inhibits PfPYK, which points to glycolysis as a set of potential therapeutic targets against malaria. 
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Introduction 

 

Plasmodium falciparum is the etiologic agent of the most severe forms of malaria, which caused 

~435,000 deaths in 2017 [1]. During the intra-erythrocytic stage of its life cycle, the malaria parasite  

depends heavily on glycolysis for ATP production[2,3], which makes glycolytic enzymes natural anti-

malaria drug targets [4,5]. The activity of pyruvate kinase (PYK, EC 2.7.1.40) catalyzes the last step of 

glycolysis to produce ATP and is regulated by several physiological effectors. Three allosteric sites 

have been identified in PYKs: the canonical site, which is generally regulated by fructose 1,6-

bisphosphate (F16BP)[6-8], fructose 2,6-bisphosphate (F26BP) [9,10], or AMP [11]; the sugar-

monophosphate site found in mycobacteria [11]; and the amino-acid site found in cancer cells[12,13].  

 Two PYK isoenzymes have been discovered in P. falciparum [4,14]: PYK-I (canonical PYK, 

(UniProtKB C6KTA4) mainly involved in glycolysis and PYK-II that localizes to the apicoplast and 

correlates with lipid synthesis. Here, unless stated otherwise, PfPYK stands for P. falciparum PYK-I. 

About 15 years ago, Chan et al. were first to clone the gene for PfPYK and expressed it as a recombinant 

PfPYK enzyme[15]. However, the kinetic characterization was performed on GST-tagged PfPYK. 

Given its large size (~26 kDa), it is likely that the GST tag partially hindered or affected conformational 

changes occurring in the PfPYK tetramer (~55 kDa per monomer), which are crucial for allosteric 

regulation. So, a structure/function study of the native enzyme remains to be done. Here, we report 

biochemical and structural studies of an untagged PfPYK that reveal a “rock-and-lock” allosteric 

mechanism regulated by rigid-body rotations and a B-domain motion controlled by active-site ligand 

binding. 

 

Results and discussion 

 

Untagged PfPYK protein production 

PfPYK was purified from an Escherichia coli expression system and the N-terminal His6-tag was 

cleaved to generate a fully untagged PfPYK (See Materials and methods). The untagged PfPYK shows 

similar activity to the GST-tagged PfPYK with a kcat value of 248 ± 2.1 s-1 versus 257 s-1, respectively 
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[15] (Table 1). For the substrate phosphoenolpyruvate (PEP), the untagged PfPYK displayed sigmoidal 

kinetics in the absence of effector, with a S0.5 value of 0.33 ± 0.01 mM and a Hill coefficient (h) of 1.4 

± 0.1, indicating positive cooperativity. Likewise, the untagged enzyme showed sigmoidal kinetics with 

respect to its substrate ADP with a S0.5 value of 0.24 ± 0.01 mM and a h of 1.6 ± 0.1. In contrast, the 

GST-tagged PfPYK exhibits hyperbolic kinetics with respect to both substrates under similar assay 

conditions [15]. This difference may be due to the presence of a GST tag in this previous study.  

 

The activation of untagged PfPYK 

We then investigated the enzymatic effects of a series of metabolites on PfPYK (Fig. 1A). In agreement 

with previous findings by Chan et al.[15], we did not observe effects from “canonical” activators such 

as F16BP and F26BP. Interestingly, glucose 6-phosphate (G6P) showed a notable PYK activation, 

while the known inhibitor oxalate (OX) significantly inhibited the enzyme activity (IC50 ~149 µM). The 

binding of G6P and OX, which potentially lock the enzyme in its active state, increased the thermal 

stability of the enzyme (Fig. 1B). In the presence of G6P at a concentration of 5 mM, both the enzyme 

activity (kcat) and the catalytic efficiency (kcat/S0.5) of PfPYK were enhanced by ~1.5-fold without 

affecting the affinity and cooperativity towards the PEP substrate (Table 1; Fig. 1C). This suggests that 

PfPYK could be a V-type allosteric enzyme with respect to G6P. One of the phosphate binding motifs 

at the canonical effector site is highly conserved and is named “PO4-2 motif” (Fig. S1; Table S1). 

Therefore, we performed in silico docking of the activator G6P to the canonical effector site and found 

that the phosphate group of G6P formed a number of favorable interactions with the PO4-2 motif (Fig. 

1D). In contrast, citrate slightly decreased the affinity for the PEP substrate, with no obvious change in 

the apparent kcat (Table 1). It is noteworthy that citrate at 2 mM inhibited GST-tagged PfPYK activity 

by over 90% [16]. 

 

Crystal structure of PfPYK 

The only crystal structure of PfPYK in the inactive T-state was deposited to the Protein Data Bank by 

the Structural Genomics Consortium (SGC) (PDB ID: 3KHD). No report describing the structure and 

allosteric mechanism was published, which might be due to the lack of an active R-state structure for 
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comparison. Here, we successfully determined the crystal structure of PfPYK in the R-state with oxalate 

(substrate PEP analogue) and ATP bound at the active site (Table 2). Similar to other protozoan PYK 

structures [9,17], PfPYK adopts a tetrameric architecture formed by identical subunits with four 

domains (N-terminus, A, B and C domains) (Fig. 2A). The active site is located in the cleft between the 

A-domain and the lid-like B-domain, while the C-domain harbors a canonical effector site. While the 

activator G6P was present in the crystallization buffer, no electron density for the G6P moiety was 

observed. Thus, in the absence of the activator, the effector loop (residues 493-502) was flexible and 

could not be traced with confidence.  

  

Allostery of PfPYK  

The allosteric mechanism was analyzed at the level of quaternary protein structure by superposing the 

R-state tetramer structure (PDB ID: 6KSH) onto the inactive T-state tetramer structure (PDB ID: 

3KHD), excluding the mobile B domains. In agreement with the “rocking motion” mechanism 

identified in human M2PYK[12], as well as PYKs from trypanosomes [9,10,18] and  mycobacteria 

[11], the superposition suggests that each subunit of the tetramer simultaneously undergoes a 9o rigid-

body (AC-core) rotation concomitant with the T- to-R-state transition (Fig. 2B). We next explored the 

determinants of these concerted rigid-body rotations during the allosteric interconversion between the 

T- and R-state (Fig. 2C, D). Similar to trypanosomatid PYKs [9,10,18], several additional hydrogen 

bonds and salt bridges that lock the tetramer in the R-state form across the C-C interface of PfPYK, 

resulting in a larger interface area (Tables S2, S3). Similar interfacial changes were also found at the 

A-A interface. However, as the effector loop from the PfPYK structure was poorly defined in the 

electron density map, we were not able to confirm a role for this effector loop in the observed rigid-

body rotations, if any. Binding of the active-site ligand oxalate triggers a conformational change 

(“rock”) toward its more thermally-stable R-state (“lock”)[9,11]. In PfPYK, when the enzyme was 

mixed with oxalate alone or in the presence of G6P and ATP, the thermal stability increased slightly 

(ΔTm = ~1 oC), suggesting that the R-state conformation is more stable. This agrees with the structurally 

observed additional interface interactions (Fig. 1B).  
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 It is now well established that the lid-like B-domain of PYK can adopt multiple conformations 

regulated by the active-site ligands [9,11]. By superposition of the AC-cores from the R-state (PDB ID: 

6KSH) and T-state monomer (PDB ID: 3KHD), we found that the binding of oxalate and ATP caused 

the B-domain to rotate 40° toward the A-domain compared with the free T-state form (Fig. 3A, B). The 

closed conformation of the B-domain in OX/ATP-bound PfPYK was mainly stabilized by the 

interactions between ATP and the enzyme (Fig. 3C). In the open conformation, the B-domain residues 

Arg109 and Lys191 no longer form interactions with ATP.  

  

Suramin inhibition on PfPYK 

Having established PfPYK kinetics and OX/ATP-bound structure, we next assessed the effect of the 

trypanosome drug suramin [19] on PfPYK in order to explore the possibility of alternative treatments 

for malaria. Suramin was found to inhibit trypanosomatid PYKs by competing with the ADP substrate 

[20], which was also observed  in PfPYK (Fig. 4A, B). The proposed binding mode of suramin shown 

in Fig. 4C could lead to the design of new PfPYK inhibitors. 

 

The design of selective inhibitors against PfPYK was hindered by limited structure illustration and its 

allosteric regulation study. More than 10 years have elapsed since the first crystal structure of PfPYK 

at ligand-free inactive state was reported (PDB ID: 3KHD). Unfortunately, the scientific report of 

PfPYK structure was unavailable in literatures until now. Furthermore, the production of stable and 

active untagged PfPYK seems to be a challenge where the published kinetics of PfPYK was studied in 

its GST-tagged form [15]. Here we report modified protocols for the overexpression and purification 

of untagged PfPYK and its crystallization, which enabled the study of kinetics and determination of its 

X-ray crystal structure in complex with active-site ligands. Remarkably, we have shown evidence for a 

unique V-type activation of PfPYK by non-canonical effector G6P. In addition to our findings in 

trypanosome PYKs [9,10,18], the rigid-body rotation was also found in PfPYK allosteric mechanism. 

However, it is still unclear whether activator G6P is involved in this conformational change due to the 

lack of G6P-bound PfPYK structure.   
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Materials and methods 

 

Details on the enzyme production. kinetics and biophysical analyses can be found in the Supporting 

Information. 

 

Crystallization and data collection 

The crystallisation experiments were performed by the vapour-diffusion method using the hanging-

drop technique at 4 °C. The drops were equilibrated against a reservoir filled with 1 ml well solution. 

To co-crystallise PfPYK with the PEP analogue oxalate (OX), product ATP and activator G6P, 1.0 μl 

protein solution was mixed with 0.5 μl ligand solution (20 mM) and incubated at room temperature for 

1-2 minutes. Then 1.5 μl well solution was added to the mixture for crystallisation. Oxalate is a 

structural analogue of the enolate form of pyruvate and has been generally used in crystallisation 

conditions to stabilise PYK in the active R-state [10,18]. The well solution consisted of 12% PEG 8000, 

10-20% glycerol, 50 mM TEA buffer pH 7.2, 100 mM KCl, 50 mM MgCl2.  

X-ray intensity data for the crystal of PfPYK was collected at the Australian Synchrotron 

(Australia). The dataset was from a single crystal flash-cooled in liquid nitrogen at 100 K. Data were 

then processed with MOSFLM [21] and scaled with AIMLESS [22,23]. The data-collection and 

processing statistics are summarised in Table 2. 

 

Structure determination 

The R-state PfPYK structure was solved by molecular replacement using the program Phaser [24]. The 

initial search model (PfPYK monomer) for the molecular-replacement experiment was obtained from 

the deposited T-state PfPYK (PDB ID: 3KHD). The structure was manually adjusted using Coot [25] 

followed by several cycles of restrained refinement in Autobuster [26]. Where appropriate, water 

molecules and ligands were added to the structure and TLS refinement was applied at later stage of 

refinement. Ligands OX and ATP were clearly identified and modeled, however, G6P density was not 

observed in the structure. 
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The quality of the structures was assessed using the MOLPROBITY server [27], and the figures 

were generated using PyMOL [28]. The data processing and refinement statistics are summarised in 

Table 2. The structure factors and coordinates for PfPYK-OX/ATP have been deposited in the RCSB 

Protein Data Bank as PDB entry 6KSH. 

 

Structure analysis 

The program Superpose [29] in the CCP4 [30] suite was used to calculate the allosteric rigid-body 

rotations and B-domain movements from the superposition of T-state and R-state tetramers as described 

previously [18]. Both RMS differences and rotation matrices were calculated in the superposition 

process [18].  

 

Molecular modelling 

Molecular modelling was employed to explore the interaction between PfPYK and G6P. The receptor 

was prepared in Chimera v1.11.2 [31] by removing water molecules, fixing non-standard residues, and 

adding hydrogen and charges using the ff14SB force field [32]. Then, AutoDock Vina v1.1.2 [33] was 

employed for docking G6P to the effector site. The ligand was treated as flexible while the protein was 

treated as rigid. A search space (25×25×25 Å3) was defined with the centre of mass of ligand in the 

binding site as the centre. 
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Table 1. Kinetic properties of PfPYK and the effects of modulatorsa 

 

Ligand Kinetic parameter Modulator 

  None +G6Pb +citrateb 

PEP S0.5 (mM) 0.33 ± 0.01 0.35 ± 0.02 0.41 ± 0.01 

 Hill coefficient, h 1.4 ± 0.1 1.5 ± 0.1 1.4 ± 0.1 

 kcat (s-1) 248 ± 2 383 ± 7 296 ± 3 

 kcat/S0.5 (s-1∙mM-1) 752 1094 722 

ADP S0.5 (mM) 0.24 ± 0.01 ndc nd 

 Hill coefficient, h 1.6 ± 0.1 nd nd 

 kcat (s-1) 246 ± 3 nd nd 

 kcat/S0.5 (s-1∙mM-1) 1025 nd nd 

Suramin IC50 (µM) 128 ± 14 

Oxalate IC50 (µM) 150 ± 11 

 
a Data represent mean ± SD for three replicates 
b The concentrations of modulators are: G6P - 5 mM, citrate - 5 mM 
c nd, not determined 
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Table 2. Data collection and refinement statistics 

 

 PfPYK-OX/ATP 

PDB ID 6KSH 

Data collection  

Space group P 61 2 2 

Cell dimensions  

a, b, c (Å) 139.41, 139.41, 453.16 

α, β, γ (°) 90.00,90.00,120.00 

Solvent content (%) 57 

Resolution (Å) 60.37-2.60 

No. of measured reflectionsa 1695738 (251897) 

No. of unique reflections 81169 (11640) 

Wilson B-factor (Å2) 58.4 

Rmerge (%) 19.0 (131.9) 

I/σI 15.4 (3.1) 

CC (1/2) 0.998 (0.803) 

Completeness (%) 100.0 (100.0) 

Multiplicity 20.9 (21.6) 

Refinement  

Monomers in a.u. 4 

No. reflections 81001 

Rwork / Rfree 0.2072/0.1529 

No. of non-H atoms  

Protein 14985 

Water 950 

Ligands 160 

Average B-factor (Å2)  

Protein 55.2 

Water 54.1 

Ligands 50.9 

RMS deviations  

Bond lengths (Å) 0.010 

Bond angles (°) 1.25 

Ramachandran plots  

Favoured (%) 97.5 

Allowed (%) 99.5 

 
aThe numbers in parentheses refer to the last (highest) resolution shell.  
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Fig. 1. Modulation of PfPYK activity. (A) Regulation of PfPYK activity by small molecules. The 

magenta and black asterisks indicate ligands having the significant impact on enzyme activation or 

inhibition, respectively. Data represent mean ± SD for N=3 experiments. (B) Stabilisation of PfPYK by 

small molecules binding. The Tm values above 73 oC (no ligand) are highlighted. Data represent 

deviation about the mean for N=2. (C) Concentration-response curves observed for titration of PEP 

against PfPYK activity in the absence or presence of G6P. Data represent mean ± SD for N=4. (D) The 

proposed binding mode of G6P at the effector site derived from docking with “AutoDock”. Partial 

amino-acid sequence alignment of the effector site among PYKs is shown above the structure model. 

The amino acids involved in the effector binding (magenta circles) are indicated below the aligned 

sequences. 
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Fig. 2. Structure of PfPYK and overview of allosteric conformational changes. (A) Overall view 

of the PfPYK tetramer from the crystal structure. Each monomer comprises four domains shown in 

different colours: N-terminus in green (residues 1-28), A-domain in brown (residues 29-105, 204-375), 

B-domain in blue (residues 106-203), C-domain in pink (residues 376-511). The polypeptide chains are 

shown as ribbons while ligands and metals are shown as spheres. (B) Rigid-body rotation occurring 

during the transition between the T- (PDB ID: 3KHD) and R- (PDB ID: 6KSH) state of PfPYK. The 

transition between the T- (grey) and R-state is accompanied by a 9° rigid-body (AC core) rotation 

around the central pivot. (C) Interactions at the C-C interface between subunit 1 and subunit 3 in the R-
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state of PfPYK. Residues from subunit 3 involved in interface interactions are highlighted. (D) 

Comparison of the C-C interface between the T- and R-state of PfPYK.   
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Fig. 3. B-domain of PfPYK adopts a closed conformation to accommodate active-site ligands. (A) 

Subunits from two PfPYK structures (chain D in each structure) are superposed based on the AC-core, 

to show the relative movements of the B-domains: R-state PfPYK-OX/ATP (PDB ID: 6KSH) and T-

state PfPYK (PDB ID: 3KHD). (B) Enlargement of the catalytic site showing that the B-domain is in a 

closed conformation, when active-site ligands are bound. (C) Active-site interactions in the PfPYK-

OX/ATP structure. The presence of ATP, oxalate and metal ions is documented by an unbiased Fo-Fc 

electron density map (grey) contoured at 3σ.  
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Fig. 4. The drug suramin inhibits PfPYK by competing with substrate ADP. (A) Dose-dependent 

inhibition of PfPYK by suramin. Data represent mean ± SD for N=4. (B) Concentration–response 

curves observed for titration of ADP against PfPYK activity in the absence and presence of suramin. 

Data represent deviation about the mean for N=2. (C) Suramin and ATP are proposed to share an 

overlapping binding site. OX/ATP-bond PfPYK (PDB ID: 6KSH) was superimposed onto the suramin-

bound Leishmania mexicana PYK (LmPYK; PDB ID: 3PP7) structure, based on superposition of their 

Cα atoms.  


