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Summary

The extraordinary advancements in neuroscientific technology for brain recordings
over the last decades have led to increasingly complex spatio-temporal datasets. To
reduce oversimplifications, new models have been developed to be able to identify
meaningful patterns and new insights within a highly demanding data environ-
ment. To this extent, we propose a new model called parameter clustering functional
Principal Component Analysis (PCl-fPCA) that merges ideas from Functional Data
Analysis and Bayesian nonparametrics to obtain a flexible and computationally feasi-
ble signal reconstruction and exploration of spatio-temporal neuroscientific data. In
particular, we use a Dirichlet process Gaussian mixture model to cluster functional
principal component scores within the standard Bayesian functional PCA framework.
This approach captures the spatial dependence structure among smoothed time series
(curves) and its interaction with the time domain without imposing a prior spatial
structure on the data. Moreover, by moving the mixture from data to functional prin-
cipal component scores, we obtain amore general clustering procedure, thus allowing
a higher level of intricate insight and understanding of the data. We present results
from a simulation study showing improvements in curve and correlation reconstruc-
tion compared with different Bayesian and frequentist fPCA models and we apply
our method to functional Magnetic Resonance Imaging and Electroencephalogram
data analyses providing a rich exploration of the spatio-temporal dependence in brain
time series.

KEYWORDS:
Bayesian hierarchical models, Clustering, Dirichlet process, Functional data analysis, Neuroscience,
Spatio-temporal data

1 INTRODUCTION

Several tools for the recording of different brain processes, such as functional Magnetic Resonance Imaging (fMRI) and Elec-
troencephalogram (EEG) produce remarkable amounts of spatio-temporal data which challenge researchers to find suitable
models for increasingly complex datasets. Consequently, the last decade has seen a marked increase in the development flexible
methods for high dimensional data in neuroscience. Functional Data Analysis (FDA) is a fairly recent research field in statistics
concerned with the analysis of data providing information about curves, shapes and images which vary over a continuum, usually
time or space (see Ramsay and Silverman1 for an overview). In the FDA framework, data can be considered as noise-corrupted,
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discretised realisations of underlying smooth functions (curves or trajectories) which are recovered using basis expansions and
smoothing.2 Many standard statistical tools have been translated into the FDA framework. Functional Principal Component
Analysis (fPCA) is a technique that defines a set of smooth trajectories as an expansion of orthonormal bases (eigenfunctions)
and weights which are called functional principal component scores (fPC scores).1 One of the advantages of fPCA is that it can
be conveniently represented as a hierarchical mixed model in the Bayesian setting, with the joint posterior distribution of the
fPC scores being the main target of inference.3
There has been a growing interest in applying FDA to neuroscientific data (see, among others, Viviani et al.,4 Tian et al.5 and

Hasenstab et al.6). Often, in the FDA literature, underlying random curves are assumed to be independent and their correlation
is ignored if believed to be mild.7 However, curve dependence is of particular importance in the analysis of brain activity
because of the complex architecture of spatio-temporal connections between brain areas.8 Recently, Liu et al.7 considered spatial
dependence among trajectories bymodelling the covariance of the fPC scores within a frequentist approach. Their results showed
significant improvements in curve reconstruction compared to the standard approach assuming independence, especially with
low signal-to-noise ratios.
The present study introduces a new method for the analysis of functional data in neuroscience. We develop a novel Bayesian

fPCA model called Parameter Clustering fPCA (PCl-fPCA) that makes use of a Dirichlet Process (DP) mixture9–11 to model
the prior distribution of the fPC scores. Different functional mixture models that cluster functions through clustering of the
coefficients in a basis expansion have been proposed in the literature.12–19 However, these works have focused on a global
clustering of curves, without considering local differences as well as the possibility of a dynamic evolution of dependence among
curves. In this work we use the principal component bases due to their straightforward interpretation and employ DP mixture
priors for every eigendimension retained. By allowing different clustering of the fPC scores for each eigendimension retained,
we avoid the limitations of assuming separability of the cross-covariance and any a priori spatial covariance structure of the
data, obtaining further insights from space-time interactions.
The study of how interactions among brain regions change dynamically during an experiment (i.e. dynamic functional con-

nectivity) has recently attracted wide interest in the neuroimaging literature. This analysis has the potential to improve our
understanding of how the brain works under both physiological and pathological conditions with recent studies focusing on
the application of dynamic functional connectivity to aging,20 schizophrenia,21 dementia and Parkinson’s disease.22 This is a
new frontier for neuroscientific research and the development of suitable models able to capture the intricate spatio-temporal
dynamics in the data will lay the foundations for the progress in this area in coming years.23
In this regard, we show that our approach has multiple advantages in the analysis of neuroscientific data as it offers further

insights into the spatio-temporal structure of the data as a result of dimension-specific curve classification; it improves curve
reconstruction thanks to the local borrowing of information compared to current fPCA approaches; and it can be defined as a
simple and computationally feasible hierarchical model which can be easily implemented in R.
The rest of the paper is structured as follows: in Section 2 we overview the standard Bayesian fPCA model and introduce

our new method, along with computational details. Section 3 reports the setting and results of a simulation study where we
compare the performance of PCl-fPCA with standard Bayesian and frequentist fPCA approaches under different data generating
processes and noise levels. Section 4 addresses the application of our method to a resting-state fMRI dataset and a task-based
EEG recording and we discuss the further insights obtained in the spatio-temporal structure of the data and the underlying
neurophysiological processes. Conclusions are discussed in Section 5.

2 METHODS

2.1 Bayesian Functional PCA
The standard FDA model is given by

Yit = Xit + �it, (1)
where Yit denote the noise-corrupted, discretised, observed data for every spatially-correlated region (trajectory) i = 1,… , n
and time point t = 1,… , T ; Xit the associated underlying random curve as a realisation of an L2 stochastic process
{

Xt ∶ t ∈ [1, T ] ⊆ 
}

with mean �t and covariance function G(s, t); and �it the noise term with zero mean and precision �.24
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Functional PCA assumes that the covariance kernel G(s, t) of the process Xt can be represented by the Karhunen-Loève
expansion, such that

G(s, t) =
∞
∑

k=1
�k�kt�ks, s, t ∈ [1, T ], (2)

Xit = �t +
∞
∑

k=1
�ik�kt, i = 1,… , n, (3)

where �kt are orthonormal eigenfunctions and �k are the associated eigenvalues. Then, each realisation Xit can be represented
by a linear combination of eigenfunctions �kt, which are usually assumed to be observed, and fPC scores �ik, which are the
main goal of inference. The reader is referred to Chapter 8 of Ramsay and Silverman1 and the recent review of Joliffe and
Cadima25 for a more detailed presentation of functional PCA. Although the number of eigendimensions can also be modelled
with an appropriate distribution (see, for example, Suarez et al.26), this considerably increases the computational complexity of
the model and thus in practice onlyK pre-determined terms of the linear expansion are retained pertaining to those that explain a
sufficiently large part of the total variability in the data.27 Often the case �t = 0 is assumed and the centred data Ỹit are obtained
by subtracting an estimate �̂t of the population average.3
The fPC scores �ik are given prior probability distributions in the Bayesian framework. The standard Bayesian fPCA model3

assumes fPC scores to be independent draws from a univariate zero-centred normal distribution whose variance is dependent
on the eigendimension k. The most straightforward hierarchical representation of the standard Bayesian fPCA model is

Ỹit =
K
∑

k=1
�ik�kt + �it, (4)

�ik|sk ∼ N(0, s−1k ),
�it|� ∼ N(0, �−1),
sk ∼ Γ(a, b),
� ∼ Γ(a′, b′),

with a, a′, b, b′ usually set to low values (e.g. 10−3). In this model the noise term is assumed to be Gaussian and independent
gamma priors are placed over the precision parameters because of their conjugacy property, permitting closed-form conditional
posterior distributions and the use of Gibbs sampling.
Recently, Liu et al.7 proposed to capture spatial dependence through a suitable model for the covariance of fPC scores. In

particular, they defined Cov(�ik, �i′k) as a function of the correlation coefficient �ii′k which they modelled using the Matérn func-
tion family and estimated the corresponding parameters. This approach implies the a priori definition of a covariance structure
which depends on the distance between observations; such assumptions might not be suitable for complex spatio-temporal phe-
nomena such as brain activity where dependencies are the result of both structural and functional neuronal pathways as well as
task-specific characteristics. In this study, we overcome these limitations to achieve a higher level of flexibility in the modelling
of the spatio-temporal covariance of neuroscientific data.

2.2 PCl-fPCA model
In this section we present the structure of the PCl-fPCAmodel and the features of this approach that improve the current methods
for functional PCA. The following hierarchical model defines the probability distribution generating observed time series. We
present and comment on each level separately.
Level 1: As the standard Bayesian fPCA model in Equation (4), the distribution of the centred data given the parameters of

the underlying smooth function and the noise term is given by:

Ỹi|Xi, � ∼ NT(Xi, �
−1I), (5)

Xi =
K
∑

k=1
�ik�k,

where Ỹi, Xi and �k are T-dimensional vectors and NT(Xi, �−1I) denotes a multivariate Gaussian distribution with mean Xi
and variance-covariance matrix �−1I such that I denotes the T × T identity matrix. As in Equation (4), the eigenfuctions �k are
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assumed to be observed and the parameter � does not depend on i or t, i.e. the noise is assumed to be constant in both space and
time, although other characterisations are possible.24 It follows that the likelihood function is given by

L(Ỹ|X, �) =
( �
2�

)T n∕2
exp

{

− �
2

n
∑

i=1
(Ỹi − Xi)

′(Ỹi − Xi)
}

. (6)

Level 2: To encode fPC scores cluster membership we introduce a classification variable cik as a stochastic indicator that
identifies which latent class j in eigendimension k is associated with parameter �ik. Prior distributions of the fPC scores �ik,
given the parameters of underlying clusters

[

(�1k, s1k),… , (�Jk, sJk)
]

and the classification variable cik, are given by

�ik|cik, �1k,… , �Jk, s1k,… , sJk ∼ N
(

�cik , s
−1
cik

)

, (7)

where �cik=j and scik=j denote the mean and precision for the j-th cluster in the k-th eigendimension, respectively. Here we use a
J−dimensional mixture of Gaussian distributions, independently, for each retained eigendimension k = 1,… , K as we permit
different (independent) partitions of the fPC scores for each mode of variation. It is worth recalling that, in the context of DP
mixtures, J represents an upper-bound on the number of fPC score clusters.28 In the rest of the manuscript we define J+k < J
as the (data-driven) number of non-empty clusters in each eigendimension k.29
Level 3: Prior distributions for

[

(�1k, s1k),… , (�Jk, sJk)
]

and (c1k,… , cnk), given hyperparameters rk, �k and parameters
(p1k,… , pJk), are given by

c1k,… , cnk|p1k,… , pJk ∼ fC
(

p1k,… , pJk
)

, (8)
�jk|r ∼ N(0, r−1k ),
sjk|� ∼ Γ(1, �k),

where fC denotes the categorical distribution which generalises the Bernoulli random variable to J outcomes. Cluster precision
sjk can also be modelled using Uniform distributions on the cluster standard deviation where �jk = 1∕

√

(sjk).30 Hyperparam-
eters r and � are often centred around empirical estimates in the literature31; here, we take advantage of the properties of fPCA
decomposition to tune the higher hierarchical levels in our model around weakly informative prior distributions. It follows from
the Karhunen-Loève representation that, for any given i, �ik are uncorrelated fPC scores with monotonically decreasing variance
given by the eigenvalues �k 7; therefore, sensible functions of the empirical estimates of the eigenvalues �̂k can be used to fix r
and � under the assumption that, for every eigendimension k, the position and dispersion of a cluster are both functions of �̂k.
We note that setting r = 1∕�̂k and � = �̂k worked well in our simulations and application.
Level 4 and 5: Prior distribution for (p1k,… , pJk), given hyperparameter � and prior distribution for � are given by

p′jk|�k ∼ Beta(1, �k), (9)

p1k =
p′1k

∑J
j=1 p

′

jk

; pjk =
p′jk

∏

l<j(1 − plk)
∑J
j=1 p

′

jk

, j = 1,… , J

�k ∼ U[0, Qk],

where pjk follow the stick-breaking construction32 with parameter �k modelling the prior belief over the mixing proportions
p1k,… , pJk. The dispersion parameter � is usually fixed or modelled with a prior distribution; here we used a uniform distribu-
tion with sufficiently large Q.11,33–35

Different specifications of sjk and Q can be employed for k = 1 and k = 2,… , K to incorporate the knowledge that the first
eigendimension is more likely to capture global patterns in the data while the following dimensions are more sensitive to local
features. For example, in the first eigendimension one can use the gamma distribution for the cluster precision in Equation (8)
as it assigns more weights to large clusters than a uniform on the standard deviation which can be used instead in the subsequent
dimensions. We provide specific examples in Section 3.1 and the results of a sensitivity analysis on Q, � and s in the WebA
section of the Supplementary Material file.
The model structure can be displayed with a direct acyclic graph (DAG) (Supplementary Material, WebB section, Figure 1).

As J approaches infinity the model corresponds to a DP mixture model10,11,33,34,36 with the difference that we have placed here
multiple independent mixtures over the prior distribution of the fPC scores. In practice we used the truncated stick-breaking
construction and tested the model with different commonly chosen values of J (J = 20, 30 and 50). The upper bound J should
be chosen sufficiently large to ensure J+k < J in each eigendimension. Larger J s will naturally impact on computations (e.g.
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in our applications we observed the computational time of the model with J = 50 to be ∼ 1.5 higher than with J = 20). All
the conditional posteriors of this model (most of them available in closed form) are provided in Appendix A. Markov chain
Monte Carlo (MCMC) techniques are used to simulate from the joint posterior distribution of all parameters given the data.
Reconstruction of the smooth trajectories xit is made easy by its linear relationship with the model parameters �ik; thus it is
possible to obtain the posterior distribution of the i-th curve for every t and at every MCMC iteration w,

x(w)it = x̄t +
K
∑

k=1
�(w)ik �kt, i = 1,… , n; t = 1,… , T , w = 1,… ,W , (10)

where x̄t is the smoothed estimate of the sample mean
∑n
i=1 yit∕n. It follows that symmetric 95% point-wise credible intervals

for each trajectory-specific mean can be obtained easily from Equation (10) by considering the (1 − �)∕2 and �∕2 quantiles of
the

{

x(1)it ,… , x(W )
it

}

empirical distribution.

2.3 Clustering
In this section we focus on the clustering of fPC scores. The discrete nature of the DP is very useful for clustering as it allows
ties among the latent cik 37; therefore, DP mixtures implicitly return classification through the allocation of each fPC score to a
generating distribution with some probability. Clustering uncertainty can be evaluated at different levels such as the number of
clusters, the size of each cluster and the fPC scores assigned to them. For the explorative purpose of our model we avoid the use
of automated algorithms to select a final partition of the fPC scores (either classical hierarchical or partitioning algorithms based
on the similarity matrix34 or more recently proposed algorithms based on a loss function over clusterings38). Instead, we propose
a 3-step exploration of the empirical distribution of generated clusterings which we find useful to evaluate clusters uncertainty
arising from the data. After burn-in, the empirical distribution of generated clusterings

{

c(1)k ,… , c(W )
k

}

can be considered a
good approximation of the true posterior distribution10 and it can be used to obtain other distributions of interest, such as the
number and size of non-empty clusters, maximum a posteriori probabilities (MAPs) and pairwise probability matrices (PPMs).
We make use of these distributions in a 3-step exploration.
Step 1: The distribution of the number of non-empty clusters J+k can be obtained by exploring the values of the classification

variable ck for all theW iterations retained after burn-in
(

J+,wk = maxj
{

cwk
})

. Although considering the number of non-empty
clusters J+k does not account for size and stability (i.e. the number of times a cluster appears in theMCMC chain), the distribution
of J+k provides a useful first check for assessing the presence of more than one cluster in each eigendimension. For this purpose,
we used the Bayes Factor (BF) defined as

{

P�(J+k = 1)∕P�(J
+
k > 1)

}

×
{

P (J+k > 1)∕P (J
+
k = 1)

}

where P�(J+k = j) denote
posterior probabilities and P (J+k = j) the relative prior probabilities which can be obtained by simulating from the prior
distribution of ck. A BF greater than 1 suggests absence of clusters in the fPC scores of a specific eigendimension; hence, this
step identifies those eigendimensions where clusters are more likely to exist in the data.
Step 2: The distribution of the cluster size can be obtained by counting for each iterationw the number of fPC scores allocated

to the same label
(

∑n
i=1 I

(

c(w)ik = j
)

, ∀j ∈
[

1, J+k
]

)

or by monitoring the posterior distribution of the mixing proportions pjk.
Although there is no guarantee that fPC scores joining a cluster remain loyal to it, the size of clusters permits the identification
of clusters which are populated only sporadically as a result of the uncertainty in the classification of subsets of fPC scores. The
distribution of these clusters has typically a notable probability mass at zero. Therefore, this second step can help understand
the number and dimension of clusters we expect to see in each eigendimension and the relative uncertainty.
Step 3: Finally, MAPs and PPMs can help refine our understanding of the underlying clustering. MAPs are commonly used

to identify the most probable clustering for each observation and they can be computed by identifying for each fPC score the
posterior mode of cik from the empirical distribution of generated clusterings. MAPs are known to be limited by the possible
presence of multiple modes and cases where individuals who share the same modal group are less frequently together than with
others in different clusters. These issues can be addressed by the PPMs which represent the posterior belief for all pairs of curves
to belong to the same cluster regardless of the clustering label.33,34,36 For each iterationw, an n× n association matrix �(ck) can
be obtained with indicators �ii′ (ck) which takes value 1 if fPC score i and i′ in eigendimension k are clustered together and 0
otherwise. Element-wise averaging over all these association matrices yields the PPM. Combining the exploration of MAP and
pairwise probabilities can narrow down a decision on the most likely partition of the fPC scores.
Although we find limitations for each of these steps individually to draw robust conclusions, considering them together as a

whole provides rich information on the (a posteriori) most likely partition for each eigendimension. Particularly in the case of
complex phenomena, such as those captured by neuroscientific recordings, a thorough exploration of cluster uncertainty in the
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data should be always considered to ensure a sensible interpretation of the results. We present an application of these analyses
to fMRI and EEG data in Section 4. In a Bayesian mixture model where cluster identification is of interest, extra care should be
taken to avoid label switching arising from the symmetry in the likelihood of model parameters. This can be avoided either by
imposing identifiability constraints on the parameter space or by employing relabelling algorithms. In our simulation study and
applications we found that imposing constraints on the order of cluster means (�1k <,… , < �Jk) or weights (p1k <,… , < pJk)
was enough to successfully control label switching.

2.4 fPC score clustering as generalisation of standard clustering
In the standard infinite mixture model based clustering, the indicators ci = ci′ = j with i ≠ i′ would associate a couple of
trajectories to a certain cluster j with probability Pii′ . On the other hand, by placing infinite mixtures over the fPC scores for every
eigendimension retained, we allow for a more complex network of dependence among curves. In our model, cik and ci′k would
associate fPC scores i and i′ to potentially different clusters in every eigendimension kwith probability Pii′k. It follows that a pair
of curves could happen to share the same cluster in only part of the K eigendimension retained, expanding the standard model
based clustering to a richer classificationmethod. Furthermore, as each dimension represents a mode of variation (eigenfunction)
and its importance (eigenvalue), our method offers additional insights into the underlying spatio-temporal structure of the data. In
the following sections we show how clustering fPC scores produces a rich spatio-temporal exploration of complex neuroscientific
data.

3 SIMULATION STUDY

3.1 Simulation scenarios
We performed a simulation study to assess the performance of PCl-fPCA model and compare it to the standard Bayesian fPCA
model in terms of both curve reconstruction and classification for different data generating processes and noise levels. We also
included for comparison two frequentist approaches: the standard fPCA model1 and a modified version of the model by Liu et
al.7 that we adapted to the features of neuroscientific data. In this latter model, curve dependence is captured through the fPC
scores by means of independent Matérn functions for each eigendimension retained.
In order to test model performance with simulated data matching those of the targeted neuroscientific applications as closely

as possible, we generated two eigenfunctions from simulated data resembling evoked responses in the brain using the function
pca.fd from the fda package in R39. Subsequently, we defined three data generating processes (DGP) that differ in the way
the fPC scores are generated: in the first DGP (DGP1), scores are generated from different mixtures of Gaussian distributions
in the two eigendimensions considered; in the second DGP (DGP2), fPC scores dependence in the first eigendimension is
generated from a Matérn function while in the third DGP (DGP3), dependence of fPC scores is generated by independent
Matérn covariance functions with different parameter values in each eigendimension. For each DGP, we combined the two
eigenfunctions with the fPC scores to build the simulated datasets. We applied a random Gaussian noise and tested the models
with both high and low signal-to-noise ratios (STN=6 and 1 respectively). Figure 1 shows an example from the set of 100
generated curves in DGP1 where either a low or high random noise is added.
One hundred datasets (L = 100) for each DGP and STN were input to fPCA first for curve smoothing using cubic B-splines

and dimension reduction by estimating the respective eigenvalues and eigenfunctions using the function pca.fd from the fda
package in R39. We retained a number of dimensionsK explaining at least 95% of the total variability in curves. Figure 1 shows
eigenfunctions and their weights extracted after smoothing a set of low-noise curves for the first DGP.
We adapted the general model presented in Section 2.2 to the specific simulation analysis using eigenvalues �k and their

properties to develop vaguely informative prior distributions for the parameters r, � and Q (Equations (8) and (9)) in the two
eigendimensions retained k = 1, 2. We set r ∈

{

1∕�̂1, 1∕�̂2
}

and Q ∈ {10, 5} as well as setting sj,1 ∼ Γ(1, �1) and �j2 ∼
U[0,

√

�2]. The use of a uniform distribution in the second dimension favours the search of smaller clusters than in the first
eigendimension, as increasingly local features should be expected in trailing modes of variation.7 We made sure that even the
smallest upper-boundQ of the dispersion parameter � distribution represented an expected number of clusters a priori far higher
than the ground truth.40,41 A similar choice for � was specified by De Iorio et al.35 due to the resulting stable computations.
We coded the model in R using the rjags package42, and employed a conservative approach using 100, 000 iterations for

the burn-in and retaining the subsequent 100, 000 MCMC iterations.33,43 The convergence diagnostics did not suggest lack of
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FIGURE 1 Simulation study: (Top) an example of curves from DGP1 with low random noise (STN6) and high random noise
(STN1). (Bottom) the first and second eigenfunctions extracted from a set of DGP1 curves with STN6. This figure appears in
colour in the electronic version of this article.

convergence for all the parameters of interest. We used a thinning of 5 to store results from 100 simulated datasets efficiently
(approximately 70 MB each with K = 2). It takes 36 minutes on average to complete one simulation run on a 2-core Intel CPU
running at 2.7 GHz with 8 GB RAM.
We used Integrated Mean Squared Error (IMSE) to measure and compare reconstruction performance between PCl-fPCA

model and the competitor models. IMSE and its associated approximation for every curve i are given by

IMSEi = E
{

∫
(

x̂it − xit
)2dt

}

≈ 1
L

L
∑

l=1

{

1
T

T
∑

t=1

(

x̂ilt − xit
)2
}

, (11)

where the expectation is taken with respect to the underlying curve xi. The IMSE is a useful measure of performance in density
estimation and is frequently used in curve reconstruction.44,45 In addition, as curves correlation �ii′ is often of interest in neuro-
scientific applications (e.g. for measuring the degree of functional connectivity between brain areas), we measured correlations
reconstruction using the L2 norm ||�̂ii′ − �ii′ ||2 and compared it with those of the competitor models.
In order to assess the proposedmodel clustering performance in DGP1, we adopted the Adjusted Rand Index (ARI) to quantify

the similarity between the estimated partitions (using MAP) and the ground truth for every simulated dataset l and eigendi-
mension k. The ARI is commonly used in the literature to assess clustering performance as it varies between exact partition
agreement (1) and when partitions agree no more than is expected by chance (0).36,46 Moreover, we measured the improvement
in distance (L2 norm) between the posterior pair-wise probability matrices and the ground truth to evaluate the clustering per-
formance of PCl-fPCA model by taking into account cluster uncertainty. Further details on the simulations setting can be found
in WebC section of the Supplementary Material.

3.2 Simulation results
Results of curve and correlation reconstruction are reported in Figure 2. The case where STN= 1 is particularly relevant because
neuroscientific data are usually affected by high noise. In this scenario, PCl-fPCA model highly improved curve reconstruction
compared to all competitor models as 100% of the true curves were better recovered under PCl-fPCA and the median improve-
ment in IMSE ranged from 22% to 45%. Moreover, a similar improvement was also obtained for DGP2 where clustering is
present in only one eigendimension (Figure 2, bottom left). In addition, correlation reconstruction was also better achieved under
PCl-fPCA with a median percentage of improvement ranging from 20% to 30% for DGP1 and 2% to 8% for DGP2 (Figure 2,
right column). In the case of low noise (STN6), the proposed model still performed better than the competitors for DGP1 and
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FIGURE 2 Simulation study: curve and correlation reconstruction for Data Generating Processes (DGP) 1 and 2 with high noise
(STN1). IMSE and RMSE improvement percentage using PCl-fPCA model versus standard Bayesian fPCA (BfPCA), fPCA
model for correlated curves (Matérn) and standard fPCA model (fPCA). This figure appears in colour in the electronic version
of this article.

TABLE 1 Simulation study: clustering performance of PCl-fPCA in DGP1. The table reports median and interquartile range of
ARI computed for each simulated dataset and every STN and eigendimension analysed.

Eigendimension ARI
STN=1

1st dim 1 [1,1]
2nd dim 0.753 [0.444,0.868]
STN=6

1st dim 1 [1,1]
2nd dim 0.966 [0.933,0.966]

achieved values of IMSE and RMSE similar to those of the best competitor models in DGP2 (Supplementary Material, WebB,
Figure 2). Interestingly, even when no clusters are expected in both eigendimensions (DGP3), the performance of the PCl-fPCA
was still comparable to the best ones achieved by competitor models for both low and high noise levels (WebB, Figure 3).
The performance of the PCl-fPCA model in terms of classification is reported in Table 1. The proposed model scored high

in the ARI classification index in both eigendimensions studied; two and three clusters were expected in the first and second
dimension respectively in DGP1. Clusters in the first eigendimension were always correctly identified by ARI for both high and
low signal to noise ratios. The identification of three clusters in the second eigendimension was more challenging as they were
smaller and nearer to each other; however, scores near 1 were almost always obtained when the low noise scenario was tested and
even in the case of high noise we observed fairly high scores. Similar results were achieved by measuring the improvement in
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distance (L2 norm) between the posterior pair-wise probability matrices and the ground truth to account for cluster uncertainty
in the classification performance (WebC, Table 2).
Figure 4 in section WebB of the Supplementary Material provides evidence of the improved level of information achieved by

PCl-fPCA in the DGP1 scenario. Overall, PCl-fPCAmodel outperformed the competitors in curve reconstruction under different
data generating processes, especially in the case of high noise in the data; moreover, for the case where clusters are not limited to
one eigendimension, the proposed model was able to retrieve the original spatial partition in each eigendimension and bring to
light important relationships between clusters. These results could further help the understanding of underlying neuroscientific
phenomena in a real data scenario.

4 APPLICATION

In this section we present two applications of the PCl-fPCA model to the analysis of neuroscientific data from fMRI and EEG
recordings. In Sections 4.1 and 4.2, the PCl-fPCA model is used to explore underlying brain patterns arising from a short time
window fMRI recording of a healthy subject at rest. In the emerging field of dynamic functional connectivity, the analysis of
the evolution of brain patterns within a short time window is of particular interest as it could uncover transient configurations of
coordinated brain activity.47 The aim of the present fMRI analysis is to verifywhether the results obtained on a short timewindow
recording (1 minute) are in line with the current knowledge on brain resting-state networks obtained from static functional
connectivity studies where results are typically averaged over 5-15 minutes recordings. In Sections 4.3 and 4.4 the PCl-fPCA
model is used for artefacts identification in the EEG recording of a healthy subject under a two-stimuli paradigm (match vs
unmatch images). The presence of artefacts originating from sources different from the brain and contaminating brain signals
is a well-known problem in EEG recordings and an active area of research in neurophysiology.48 The aim of the present EEG
analysis is to check whether the fPC-PCA model can be successfully used to identify the spatio-temporal features of different
artefacts and the location of the relative affected brain areas.

4.1 fMRI setting
The study relates to a thirty-year-old healthy woman volunteer who underwent a resting-state fMRI at the Department of Radi-
ology, Scientific Institute Santa Maria Nascente, Don Gnocchi Foundation (Milan, Italy) during February 2015. The recording
was carried out using a 1.5 T Siemens Magnetom Avanto (Erlangen, Germany) MRI scanner with 8-channel head coil. The sub-
ject was asked to lie down in the MRI machine in supine position with eyes closed while Blood Oxygenation Level Dependent
Echo Planar Imaging (BOLD EPI) images were acquired. She was instructed to keep alert and relaxed; no specific mental task
was requested.
High resolution T1-weighted 3D scans were also collected to be employed as anatomical references for fMRI data analy-

sis. Standard pre-processing involved the following steps: motion and EPI distortion corrections, non-brain tissues removal,
high-pass temporal filtering (cut-off 0.01 Hz) and artefacts removal using the FMRIB ICA-based Xnoiseifier (FIX) toolbox.49
After the pre-processing, the resulting 4D dataset was aligned to the subject’s high-resolution T1-weighted image, registered to
MNI152 standard space and resampled to 2×2×2 mm3 resolution. One minute length series (sampled at 0.5 Hz) were extracted
as the average signal within each of 90 regions of interest (ROIs) according to the Automated Anatomical Labeling (AAL90)
coordinates. The resulting 30 × 90 dataset was input to fPCA for curve smoothing and dimension reduction using the pca.fd
function from the fda package in R.39 The set of 90 smooth curves and the retained eigendimensions are shown in Figure 5
of Supplementary Material WebB. We kept the first three dimensions explaining more than 85% of the total variability while
accounting for more than 10% each.
We adapted the general model in Section 2.2 following the approach taken in the simulation study (Section 3.1), favouring

global patterns in the first eigendimension and local patterns in the remaining dimensions. We assessed convergence using trace
plots and BGR diagnostics and the number of independent retained samples by computing the effective sample size (WebD,
supplementary material). We employed the same computational approach described in Section 3.1 and it took 59 minutes to run
the analysis with K = 3 on a 2-core Intel CPU running at 2.7 GHz with 8 GB RAM. Furthermore, we carried out a sensitivity
analysis by varying the values of the hyperparameters �,Q and the distribution of s in each dimension (WebA, Supplementary
Material).
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FIGURE 3 fMRI data analysis: cluster identification. The first row shows the posterior probabilities of being empty for the
second to tenth clusters in the three eigendimensions (Dim 1:3) analysed. The second row shows the posterior distributions
of cluster size (given it is not empty) among the first four clusters (Cl1:Cl4, right to left). This figure appears in colour in the
electronic version of this article.

4.2 fMRI analysis results
The posterior probabilities associated with the single cluster (i.e. no clusters) scenario were 0.012, 0.124 and 0.058 for the three
eigendimensions k, respectively. The Bayes factors for the first eigendimension was 0.53, which indicates some evidence against
no clusters. Conversely, the second and third dimensions returned BF = 2.93 and 1.33 respectively, which can be interpreted as
evidence in favour of a single cluster. It is worth noting that, as the implied prior probabilities were highly in support of multiple
clusters, the BF for k = 2 and 3 show a diametrical change from prior to posterior belief. These results are also confirmed by a
BF sensitivity analysis which is reported in the supplementary material (WebA).
Figure 3 shows the posterior probability for a cluster being empty and the posterior distributions of cluster size given it is not

empty. Two to three clusters seem to emerge in dimension 1; the size of the second cluster (Cl2, second from the right in Figure 3,
bottom-left panel) has a peak around 20%, very small mass near zero, and a very low probability of being empty. The third cluster
(Cl3) has a size peaking at 12% but more mass near zero and a higher probability of being empty. On the other hand, dimension
2 and 3 seem to suggest the presence of no more than one cluster each. The second cluster in both these dimensions has higher
probability of being empty and the distributions of size have much more mass around zero. Furthermore, the distributions of
the first cluster (Cl1) in both dimensions have a notable peak around 90% suggesting that, even when more than one cluster is
considered, the large majority of fPC scores in dimension 2 and 3 tends to be gathered within a single large cluster.
The use of MAPs suggests there might be no more than 2 groups in the first dimension and 1 group in the second and third

dimensions. Clustering with MAPs in the first dimension identified 9% of curves whose trajectories are wigglier and with a
visibly shorter inter-peak difference between the first positive and negative peaks compared to the other group (WebB, Figure
6). Figure 7 of section WebB in the Supplementary Material shows an example of curve reconstruction using the posterior mean
and 95% point-wise credible bands of the subject specific mean. Curves in cluster 2 pertain to brain areas from the occipital lobe
(Calcarine, Cuneus, Lingual, Inferior Occipital Gyrus) and parietal lobe (Precuneus).
By analysing the pairwise probability matrix, a more comprehensive classification emerged. The previously dichotomous

partition in dimension k = 1 is now enriched by a third group of brain areas with no clear clustering preference (grey band at the
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FIGURE 4 fMRI data analysis: cluster identification with pairwise probabilities. Top-left: pairwise probabilities suggesting a
tripartition of curves in the first eigendimension. Top-right: cluster 2 updated according to the partition suggested by pairwise
probabilities. The thick line represents the cluster mean. Bottom: the 3-D representation of clusters 2 and 3 over sagittal and
axial slices of the human brain, where yellow (light) dots represent locations in cluster 2 and blue (dark) dots those in cluster 3.
This figure appears in colour in the electronic version of this article.

top-right of the pariwise probability matrix in Figure 4). Cluster 2 comprises 16% of curves which all represent areas from the
occipital lobe (yellow-light dots), while curves in cluster 3 (blue-dark dots) belong to the cingulate cortex (Middle and Posterior
Cingulate Cortex), parietal (Parietal Superior Lobule, Precuneus) and temporal (Middle and Inferior Temporal Gyrus) lobes
(Figure 4, a colour version of this figure can be found in the online version of the article).
We note that these three clusters are supported in the neuroimaging literature. It is well established that primary and extra-

striate visual regions are active at rest50 and have a role in processing mental imagery.51 Just outside the visual cortex, the
Temporal Inferior Gyrus takes part to the visual ventral stream which links information from the visual cortex to memory and
recognition.52 Moreover, the Posterior Cingulate Cortex is known to interact with several different brain networks simultaneously
and it participates in the Default Mode Network together with part of the parietal lobe.53 Conversely, it has been suggested that
areas pertain to the Prefrontal Cortex (all included in cluster 1) have less long-range connectivity in the resting state condition.54
Finally, the sensitivity analysis further confirmed our findings as they were robust to changes in both shape and value of the
hyperparameters (WebA, Supplementary Material).

4.3 EEG setting
For our second application we employed data from an EEG study on brain activations following object recognition tasks (Event
Related Potentials, ERPs).55 ERPs are very small bio-electrical signals generated by the brain in response to specific events or
stimuli. They are EEG changes time locked to motor, sensory or cognitive events that provide a non-invasive approach to study
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psychophysiological correlates of mental processes.56 In contrast, body or eye movements introduce large artefacts to EEG
recordings and trials contaminated with artefacts need to be corrected or even discarded.57 In the present study we employed the
PC-fPCA model for artefacts identification in the EEG recording of a single healthy subject. The individual was presented with
two separate stimuli in the forms of images taken from the 1980 Snodgrass and Vanderwart picture set.58 The second stimulus
was either a different image (unmatch) or the same image (match) as in the first stimulus. We used the data-driven clustering of
the PCl-fPCA model to identify the spatio-temporal features of different artefacts and the relative affected brain areas.
The data were recorded using a cap with 64 electrodes placed on the subject’s scalp and the brain activity at each recording

electrode was sampled at 256 Hz for 1 second. Further details on the recording setting can be found in Zhang et al.55 We
considered both the unmatched and matched tasks within the same analysis and used our PCl-fPCA model to find data-driven
differences in themorphology of the curves. Therefore, a 128×256 dataset was input to fPCA for curve smoothing and dimension
reduction using the pca.fd function from the fda package in R.39 The set of 128 smooth curves and the retained eigendimensions
are shown in Figure 8 of Supplementary Material WebB.We kept the first two dimensions explaining 90% of the total variability
while accounting for more than 10% each.We applied the samemodel settings described in Section 4.1; we assessed convergence
using trace plots and BGR diagnostics and the number of independent retained samples by computing the effective sample
size (WebD, supplementary material). We employed the same computational approach described in Section 3.1 and it took 64
minutes to run the analysis with K = 2 on a 2-core Intel CPU running at 2.7 GHz with 8 GB RAM.

4.4 EEG analysis results
Two clusters seem to emerge in dimension 1. The size of the second cluster (Cl2, second from the right in Figure 5, bottom-left
panel) has a peak around 20%, and a low probability of being empty. The third and fourth clusters (Cl3, Cl4) have both sizes
peaking near zero and higher probabilities of being empty. On the other hand, dimension 2 clearly indicates the presence of three
clusters with sizes peaking at 60%, 20% and 20% and very low probabilites of being empty. Furthermore, the distributions of the
first cluster (Cl1) in both dimensions have very lowmass near 1, supporting the presence of multiple clusters in both dimensions.
Both MAP and pairwise probability analyses confirmed the presence of 2 clusters in the first dimension and 3 clusters in the

second dimension (Figure 6). The second cluster in the first eigendimension contains all the recordings from electrodes in the
frontal areas for both the matched and unmatched tasks (Figure 9, WebB, Supplementary Material). These curves have a marked
peak at the end of the recording, indicating a possible artefact (probably originated from eye blinking), and they appear to have
two separate underlying patterns. These trends are captured in the clustering of the second eigendimension where the second
and third clusters further divided the EEG activity in the frontal brain areas between those recorded during the matched and
unmatched tasks (Figure 9, WebB, Supplementary Material). Notably, despite all curves showing more variability toward the
end of the recordings, we found that only those from frontal areas have a consistently different behaviour from that of the group.
This is in line with the work of Zhang et al.55, where the authors excluded frontal region recordings from part of their analyses
because of an inconsistent wave morphology compared with the wave form of the other regions. Frontal areas are known to be
prone to recording artefacts particularly from eye movement which might have affected the different wave forms observed in
these data.57 Furthermore, the data-driven separation of frontal area curves into tasks (matched and unmatched) suggests the
effect of two separate artefacts on the amplitude of these recordings.

5 DISCUSSION

The processing of the human brain is a complex phenomenon in both time and space. The modelling of spatio-temporal datasets
in the big data era is a challenge becoming every day more demanding as we struggle to keep up with the overwhelmingly larger
datasets we are required to make sense of. Moreover, the extraordinary advancements in neuroimaging of the last decades have
focused large part of neuroscientists and statisticians’ efforts on the spatial domain both in clinical practice and research (see,
for example, Durante et al.59). Nevertheless, the study of how interactions among brain regions change dynamically during an
experiment, (i.e. dynamic functional connectivity) has recently attracted interest in the neuroimaging literature.60 In fact, the
time domain retains important neurophysiological information on brain functioning and neuronal health and without it we are
at risk of drawing partial and possibly wrong conclusions on how the brain works.
In the present study we proposed a model that combines functional PCA and Bayesian nonparametric techniques to explore

spatio-temporal datasets flexibly. We combined the idea of introducing spatial dependence among curves through the fPC scores
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FIGURE 5 EEG data analysis: cluster identification. The first row shows the posterior probabilities of being empty for the
second to tenth clusters in the two eigendimensions analysed. The second row shows the posterior distributions of cluster size
(when not empty) among the first four clusters (Cl1:Cl4, right to left). This figure appears in colour in the electronic version of
this article.

proposed by Liu et al.7 with the infinite Gaussian mixture model to obtain a flexible modelling of the covariance structure.
The main results show a clear improvement of the PCl-fPCA model both in curve and correlation reconstruction compared to
different state-of-the-art fPCA models, particularly in the presence of high noise (as it is often the case in brain recordings) and
the ability of exploring curves dependence dynamically allowing for different spatial patterns for each eigendimension retained.
Improvements in the reconstruction of high-noise corrupted curves were also reported by Liu et al.7; in fact, the beneficial

effect of accounting for curves similarity is more evident when the true signal is well masked behind the noise. Nevertheless, a
direct modelling of large covariance matrices often resorts to the use of common covariance functions to avoid overparametri-
sation. The use of functions such as Matérn or rational quadratic implies a priori knowledge on the shape of spatial dependence.
We believe that this approach does not suit highly complex phenomena, such as brain processing, where dependence has a much
more elaborate architecture than a simple function of spatial proximity. Clustering the fPC scores allowed us to capture depen-
dence among curve flexibly without the need to estimate the relative spatial covariance matrix. Interestingly, our results suggest
that the high flexibility of PCl-fPCA model makes it a very suitable choice even in the cases where a single or even none of the
eigendimensions retained support clustering of fPC scores. Further improvements may be derived frommodelling the correlation
or autocorrelation structure of the noise, although the trade-off with model complexity should be taken into account.1
DP mixture models have also been used for clustering time series through the clustering of the relative coefficients in a

basis expansion representation. Many of these works have focused on global clustering, where curves are clustered together for
all their coefficients.12–19 However, not only in neuroscientific data, but in many other types of functional data, curves might
be characterised by regions of heterogeneous behaviours61; therefore, some authors have proposed alternative approaches that
allow also for local differences in the clustering.62,63 In the present study we moved from a global clustering of the data to a
local clustering of fPC scores to address both the exploration of brain activity data and to improve curve reconstruction. Dunson
et al.62 and MacLehose et al.63 used local clustering only as a means to improve estimation and their methods either neglect
inter-subject variability in the coefficients (Dunson et al.62) or lack cluster interpretability (MacRose at al.63). In contrast, our
approach combines the straightforward interpretation of the eigenfunctions with a local clustering of the fPC scores which
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FIGURE 6 EEG data analysis: cluster identification with pairwise probabilities. First column: pairwise probabilities suggesting
a bipartition of curves in the first eigendimension (top) and a tripartion in the second (bottom).

account for inter-subject variability within each cluster. Therefore, we obtained both an improved curve reconstruction and a
rich classification technique. In fact, curves are never identical, they can be potentially assigned to different clusters in each
eigendimension, and each eigendimension can have a different number of clusters (see Figure 4 of Supplementary Material
WebB for a visual example). In addition, the assumption of separability of the cross-covariance matrix is avoided and complex
time-space interactions are captured by the model; as a consequence, this local borrowing of information also improves the
reconstruction of the underlying smooth process. Moreover, we benefit from the properties of the fPCA expansion to tune the
hyperparameters and improve the MCMC convergence.
Cross-covariance matrices are often intractable if we do not resort to compromises in our models. A sensible compromise

should be tailored to the type of specific data. In this study, we compromised with the time domain by using fPCA with a fixed
number of eigendimensions while giving flexibility in the modelling of spatial dependence. This served the purpose of breaking
off from the separability assumption while, at the same time, favouring interpretation and a simple model structure. The fact
that the fPCs are treated as known for posterior inference might affect posterior uncertainty. One possible solution to improve
coverage is to employ simultaneous credible bounds. These are a finite collection of point-wise intervals, scaled to achieve a
specified coverage probability. Existing approaches include those of Besag et al.64; Krivobokova et al.65 and Crainiceanu et al.66
By means of a simulation study and the analysis of fMRI and EEG data, we demonstrate that PCl-fPCA is effective in

recovering the underlying smooth curves and it produces a valuable exploration of the spatio-temporal dependence in brain
time series. The next step in our approach is the extension to the modelling of multiple subjects’ recordings. There are different
challenges to consider in the analysis of groups such as the natural inter-individual variability in brain functioning and the
dimensionality of the data. We intend to expand our method to replicated data and multiple subjects experiments in our future
research. Exploring inter-individual patterns of functional connectivity and their uncertainty can help answer important questions
not only in the study of brain processes but also in the characterisation, early diagnosis and prognosis of brain diseases.
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APPENDIX

A POSTERIOR CONDITIONAL DISTRIBUTIONS

In this section we present the posterior conditional distributions for the parameters of our model (Section 2.2).
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where njk denote the fPC scores in the jtℎ cluster of the ktℎ eigendimension and �k the posterior support of �k.
In our model we fixed a′ = b′ = 10−3, zk = 1, vk = 0 and the upper-bound for the support of �k takes into account the

dimension-specific features of functional PCA as detailed in the paper, Section 2.2.
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