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Abstract

Artificial neural network (ANN) has become an important method to model
the nonlinear relationships between weather conditions, building characteris-
tics and its heat demand. Due to the large amount of training data required
for ANN training, data reduction and feature selection are important to
simplify the training. However, in building heat demand prediction, many
weather-related input variables contain duplicated features. This paper de-
velops a sensitivity analysis approach to analyse the correlation between in-
put variables and to detect the variables that have high importance but con-
tain duplicated features. The proposed approach is validated in a case study
that predicts the heat demand of a district heating network containing tens
of buildings at a university campus. The results show that the proposed ap-
proach detected and removed several unnecessary input variables and helped
the ANN model to reduce approximately 20% training time compared with
the traditional methods while maintaining the prediction accuracy. It indi-
cates that the approach can be applied for analysing large number of input
variables to help improving the training e�ciency of ANN in district heat
demand prediction and other applications.
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1. Introduction

In recent decades, a lot of e↵orts have made to reduce greenhouse gas
emissions and the consumption of fossil fuel to mitigate the global environ-
mental degradation and warming [1]. Many countries have deployment tar-
gets for low carbon technologies such as photovoltaic panels, electric vehicles
and heat pumps with the aim to cut CO2 emissions [2]. In terms of global
energy consumption, buildings are becoming an important sector in current
and future energy landscapes [3, 4, 5]. In Europe, the energy consumption of
buildings has steadily increased and accounts for nearly 40% of total energy
usage [6]. In most cold areas, such as Scotland, heating accounts for the
highest proportion of total building energy consumption and is much higher
than other sectors such as cooling and electricity [7]. Load forecasting is es-
sential for energy consumption management and anomaly detection of energy
usage in buildings as well as for the integration of variable renewable sources
[8]. Therefore, to improve the energy e�ciency, the accurate prediction of
building’s heat demand becomes the main target [9].

The modelling of building heat demand can be classified into three main
categories: engineering modelling methods, data-driven methods, and their
hybrids [10, 11]. Engineering methods develop bottom-up building models
and simulate the heat transfer process based on physical principles [12]. Most
building energy simulators use bottom-up building models and heat trans-
fer principles to simulate the energy consumption, e.g. TRNSYS, Energy-
Plus and Integrated Environmental Solutions Virtual Environment (IES-VE)
[13, 14]. However, building energy simulators require a detailed description
of the building to account for the end-use heat demand and have long simu-
lation times, especially for large energy networks. The required number and
accuracy of parameters and computational cost are the main drawbacks of
these methods. For these reasons, data-driven methods have become popular
as an alternative modelling approach to predict the heat demand of buildings.

The data-driven models are developed using statistical methods to fit
the input parameters to outputs without any knowledge of their physical
relationship, a so called “black-box” model. The input parameters for build-
ing energy consumption include both the environmental parameters, such
as temperature, solar radiation, humidity, and atmospheric pressure, as well
as building design parameters, such as percentage area of windows, thermal
properties of walls, and building orientation and also the occupant behaviour
[15]. Apart from these, recent research indicates that the time series data,
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such as time of day and days of the week, is also important as input vari-
able of data-driven models [4]. That is because the heating time is normally
correlated to both the indoor temperature and heating mode, which can be
known as a kind of occupant behaviour. Comparing with the conventional re-
gression modelling technique, artificial intelligent (AI) techniques are known
to perform more reliable and e�cient in many modelling tasks [16, 17, 18].
The commonly used AI techniques include genetic algorithms, support vec-
tor machine and artificial neural networks (ANN) [19, 20]. ANN has become
one of the most important methods in empirical nonlinear modelling and is
widely used to model complex functional relationships between weather con-
ditions and building characteristics as inputs and its heat demand as outputs
[15, 21]. The commonly used measurement methods for validating the re-
sult of ANN models include mean absolute error (MAE), mean square error
(MSE), correlation (R), and coe�cient of determination (R2) [22]. The ma-
jor advantages of ANN are its very low model construction cost and ability of
flexible input-output mapping for complex systems [23]. Whatever complex-
ity of the target system, the ANN is able to use the simplest construction
to model its behaviour. This feature of ANN make it widely used to fore-
cast irregular variables, which includes geography information such as wind
speed [24] and global solar radiation [25], random building energy usage such
as electricity usage [8], cooling load [26] and energy consumption [16, 21],
and power generation systems such as photovoltaic [27, 28] and PV/thermal
system [22].

Although the construction of ANN has these advantages, its shortcomings
are the large amounts of data required for the training, long training time,
high risk of overfitting and di�culty of interpreting the knowledge gained
by “black-box” models [29]. A common way to reduce these shortcomings
is to delete unimportant data components in the training sets to obtain
smaller networks, reduced-size data vectors and minimised redundancy in the
training data [30, 31]. This can be achieved by analysing the total disturbance
of network outputs due to perturbed inputs [31]. Reducing the number of
inputs to an ANN model and to select key variables is known as feature
selection, which aims at identifying the most relevant input features within a
dataset [32, 33, 34]. Researchers have analysed di↵erent methods of feature
selection for ranking and identifying important inputs, such as sensitivity
analysis, fuzzy curves, and change of MSE [30].

Sensitivity analysis identifies which input parameters are important for
the prediction of the output variable and also quantifies how the changes in
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the values of the input variables alter the value of the output variable [29, 35].
Several methods have been proposed to explain the contribution of variables
in ANN models, including the adaptation of their connection weights [36], a
fictitious input matrix considering a successive variation of one input variable
while the others are kept constant [37], the connection weights selected by a
randomization approach [38], a perturbation of the input variables [39], the
partial derivatives of the output according to the input variables using the
connection weights of the ANNs [40, 41]. Typical model sensitivity analyses
are “one-at-a-time” simulations that evaluate the impact of each input in turn
and ignores the interactions with other input variables [41, 42]. However, in
predicting the district heat demand with given weather information, it is
found that most input variables contain duplicated feature even if they show
a high importance in the sensitivity analysis indicating that the training data
can be further simplified to reduce the training cost and the risk of overfitting.
Therefore, the correlations among inputs also need to be analysed to simplify
the training data and remove the duplicated features.

This paper develops a sensitivity analysis method to rank the input vari-
ables and to identify input variables with duplicated feature. Both methods
are used to remove features in order to reduce the training data and time,
and thus improve the e�ciency of ANN while maintaining the prediction
accuracy. The proposed approach analyses the correlation among inputs by
calculating the coe�cient of determination of each variable with all others.
The results are used to remove variables with low importance as well as vari-
ables that have high importance but with duplicated feature from the set of
input variables. The approach is evaluated in a case study of predicting the
heat demand of a district heating network containing tens of buildings at the
campus of the University of Glasgow.

2. Artificial Neural Network Used in Building Heat Prediction

In predicting the energy consumption of a district heating network, using
engineering simulation to build a bottom-up model of each building is not
e�cient because it would require a very large number of hard to get building
and occupant activity data, and the simulation would be computationally
expensive and time consuming. This paper builds models of some sample
buildings in the IES-VE software in order to collect data to train an ANN
model. After the model is well trained, it is used to predict the heat demand
of a district containing tens of buildings, as shown in Figure 1.
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Figure 1: Structure of neural network to predict the heat demand of a district.

2.1. Artificial Neural Network Model

Neural network is a computational model for nonlinear data fitting that
typically includes the input layer, hidden layers, and the output layer [19].
There can be one or more hidden layers depending on the complexity of the
model and training data. Each layer has several neurons and every neuron
is connected to the output of all the neurons in the previous layer through
adaptable synaptic weights [43]. The training of ANN uses a group of input
patterns in a data mapping process to produce the dependent variables for the
corresponding inputs [44]. In the ANN data mapping process, the neurons
in the input layer are multiplied by the weight of corresponding neurons in
the hidden layer and then summed up with bias to the neurons in the output
layers [21]. The predicted results are compared with the historical data, and
their errors are used to update the neuron’s weights by suitable adaptation
[19].

The process of ANN can be described in mathematical formulas. Define
xk(k = 1, 2, . . . , n) as the k-th input attribute value which is passed along
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the links to the other layers. The weighted sum of signals,
P

, arriving at the
input of the next neuron is subjected to a transfer function, which is most
commonly the sigmoid function [45] with the following formula

f
⇣X⌘

=
1

1 + e�
P (1)

The j-th hidden neuron hj(j = 1, 2, . . . , p) receives the sum of neuron value

multiplied by the weights w(2)
kj and bias b(2)kj associated with the link as

hj = f

 
nX

k=1

w(2)
kj xk + b(2)kj

!
(2)

The output neurons are defined as yi(i = 1, 2, . . . ,m), which are summed up
with their input signals and activation transfer function as

yi = f

 
pX

j=1

w(1)
ji f

 
nX

k=1

w(2)
kj xk + b(2)kj

!
+ b(1)ji

!
(3)

where f is the activation function, the sigmoid function used in the paper;
w(1)

ji , b
(1)
ji , w

(2)
kj and b(2)kj are the weights and bias linked to the output layer (1)

and hidden layer (2), respectively. This is a typical two-layer ANN model
with an output layer and one hidden layer.

The error between target vector and predicted outputs from ANN model
are used to validate the training performance. The appropriate error function
is the mean square error (MSE) defined using the di↵erences between the
output vector yi and the target vector ti as

MSE =
1

m

mX

i=1

(ti � yi)
2 (4)

The training approaches of ANN include general regression, backpropa-
gation (BP), radial basis function and fuzzy inference system. In this paper,
the BP learning algorithm is adopted to a typical two-layer ANN model. The
BP algorithm is a supervised iterative training method based on searching
the global minimum in the di↵erence between ANN output and target [46].
The errors in the output are propagated back by calculating the derivatives
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that indicate the amount of ‘responsibility’ of each neuron using the gradient
descent method [45]

�(1)i = yi (1� yi) (ti � yi) (5)

�(2)j = hj (1� hj)
X

i

�(1)i wji (6)

where �(1)i and �(2)j indicate the responsibilities of output-layer neurons and
hidden-layer neurons, respectively. Then the weights and bias of links can
be updated based on the responsibilities [47, 48] as

w(1)
ji = w(1)

ji + ⌘�(1)i hj (7)

w(2)
kj = w(2)

kj + ⌘�(1)j xk (8)

b(1)ji = b(1)ji + ⌘�(1)i (9)

b(2)kj = b(2)kj + ⌘�(2)j (10)

where ⌘ is the learning rate of the BP neural network.
Apart from the methods and algorithms of machine learning in data-

driven models, the data selection with di↵erent features and sizes used for
training is also a vital factor of the model performance [19].

2.2. Data Collection from Building Energy Simulator

The development of a data-driven model will normally consist of data
collection and processing as well as model training and testing. The training
process of ANN requires a group of datasets from historical data records,
which is used as benchmarks to train and test the model’s performance.
The ANN model uses 26 input neurons for ANN training corresponding to
the input variables shown in Table 1, and 20 hidden neurons for internal
relation of the ANN model. The data of input variables used for training
includes the corresponding hour of the day and months of the year, selected
environmental variables, building information and heat demand of all target
buildings. However, the collection of the required historical data will take
at least several months but ideally several years in recording data from sen-
sors. To simplify the data collection process, the training data is taken from
simulated results generated in the building energy simulation software IES-
VE, which was calibrated and validated against measured data in previous
publications [49, 50].

7



Table 1: Variables and units of input variables for ANN training

Types Variables Units

Times series
Time of a day hr
Month of a year month

Environment
variables

Dry-bulb temperature �C
Wet-bulb temperature �C
Dew-point temperature �C
Daily mean temperature �C
Max. adaptive temp. �C

Wind speed m/s
Wind direction deg
Direct radiation W/m2

Di↵use radiation W/m2

Global radiation W/m2

Solar altitude deg
Solar azimuth deg
Cloud cover oktas

Atmospheric pressure Pa
External relative humidity %
External moisture content kg/kg

Building
information

Floor area m2

Volume of plant m3

Windows area %
Plant radiant fraction 0.0 ⇠ 0.1

Time of heating hrs/day
Room heating setpoint �C

Number of people pers
DHW consumption I/(h · pers)

IES-VE is an integrated system to build bottom-up models of buildings
for thermal analysis and heating load simulation using the Apache engine.
After setting the latitude and longitude of the target buildings, the weather
profile for the building energy simulation is obtained from the weather station
at the nearest airport. For this study it is Glasgow airport which is 9 km
from the University of Glasgow.

In addition to the weather profile, di↵erent building characteristics will
also a↵ect the thermal behaviour of the building. The floor area, building
volume, windows area and type, and wall thickness and material are the key
characteristics of a building. Apart from these, the building heat demand also
depends on its type of operational function. For example, the normal working
hours of an o�ce building are from 8:00 to 18:00, and its heat demand is
di↵erent from that of a restaurant opening from 12:00 to 22:00 or a library
open for 24 hours. The data is collected from the sample building models
built in IES-VE which were calibrated to fit the recorded data of real heat
energy consumption [49, 50]. The collected data is normalised before it is
used to train the ANN model for the prediction of heat demand of the district
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heating network.

2.3. Sensitivity Analysis of Input Variables
The collected data of weather information and building characteristics

are defined as input variables to the ANN model. The data of building heat
demand is used to calculate the training error of the ANN model output.
The training error is used to update the ANN parameters of weights and
bias of each neurons in the hidden and output layers. To validate the e↵ect
of model variables, the sensitivity analysis has been designed to provide the
elementary e↵ect of each variable. The increase or decrease of each variable
will then provide a clear e↵ect on the output.

The commonly used global sensitivity analysis method is the Morris
method, which has been used to test the elementary e↵ect in the case. The
basic idea of the Morris method is to evaluate the response of the model
output on the basis of a small change in a single input variable. The mean
elementary e↵ect of a single variable from the complete set of data points of
size U is presented as

µ⇤
k =

1

U

X����
f (x1, · · · , xk +�k, · · · , xn)� f (x1, · · · , xn)

�k

���� (11)

However, in real engineering applications, the input variables are normally
varied simultaneously with time and it is di�cult to find the e↵ect of a small
change of only a single variable on the target variable. Some research in
analysing ecology data has realised the potential weakness of perturbing a
single factor at a time [29]. The input xk with n input variables and output
y = f(x1, · · · , xn) at time step (q) comparing with that at time step (q � 1)
can be presented as

x(q)
k � x(q�1)

k = �(q)
k (12)

y(q) � y(q�1) = f
⇣
x(q�1)
k +�(q)

k

⌘
� f

⇣
x(q�1)
k

⌘
(13)

Combined with Equation (11) with U = 1, the output of Equation (13)
can be represented by the elementary e↵ect µk as

y(q) � y(q�1) = �(q)
1 µ1 +�(q)

2 µ2 + · · ·+�(q)
n µn

=
h
�(q)

1 , · · · ,�(q)
n

i
⇥

2

64
µ1
...
µn

3

75
(14)
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In the standard Morris method, the mean value is calculated to average
the elementary e↵ect of a single variable in fitting the data. To calculate the
elementary e↵ect of multiple variables, the problem is changed to finding a
pair of µk to fit the relationship between changes on each variable to outputs
as 2

64
�(2)

1 · · · �(2)
n

... �(q)
k

...

�(U)
1 · · · �(U)

n

3

75⇥

2

64
µ⇤
1
...
µ⇤
n

3

75 =

2

64
y(2)� y(1)

...
y(U)� y(U � 1)

3

75 (15)

Normally, the simplest way is to calculate the inverse matrix of �(q)
k

and its product with the output. However, the inverse matrix can only be
calculated if the original matrix is square and non-singular. This is di�cult
and not always satisfied in data regression problems. The common approach
for the linear equation is to find the least-square solution to minimise the
unfitted error referring to all used data points for sensitivity analysis. Then
the most suitable µ⇤

k can be worked out to solve (15).

2.4. Determine the Correlation of Input Variables

To find the correlation between input variables and outputs, the most
common method is regression. Linear regression is a powerful tool that uses
mathematical manipulations to transform the relationship between depen-
dent and independent variables into a linear form. Based on this, many
procedures were developed to derive the equation of a straight line using
the least-squares criterion for calibration. However, most engineering data is
poorly represented by a straight line.

An alternative calibration is to fit polynomials to the data using polyno-
mial regression, where the simplest is quadratic regression [51]. The quadratic
regression ensures that the first-order derivative is continuous. The least-
squares procedure can easily be extended to fit the data to a 2nd-order poly-
nomial as the quadratic least square regression (QLSR) approach. The QLSR
has the advantage to integrate both the convergence property of least squares
and the probabilistic property of fuzzy regression to fit a non-linear mapping
[52, 53, 54].

Define the quadratic polynomial equation presented by the input variables
as

z = a0 + a1si + a2s
2
i (16)
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Assume the fitted value of the kth inputs as xk can be presented as the
sum of polynomial equations of the other n� 1 input variables

xk =
n�1X

c=1

zc + " (17)

where " is the unique information that is independent with any other input
variables. Then, the error between the real and fitted value of each input
variable can be represented by

eq = x(q)
k � z(q)c (18)

To calibrate the value of each parameter in the polynomial equation, the
estimated value can be obtained by fitting one variable at a time. The e↵ect
of other variables can be added to the error. The accumulated square error
of U data points can be presented as

Ek =
UX

q=1

e2q (19)

To minimise the accumulated square error by adjusting the parameters,
the partial derivative of the accumulated square error with respect to each
parameter can be presented as

8
>>>>>>>>>>><

>>>>>>>>>>>:

@Ek

@a0
= �2

UX

q=1

⇣
x(q)
k � a0 � a1s

(q)
k � a2s

(q)
k

2
⌘

@Ek

@a1
= �2

UX

q=1

h⇣
x(q)
k � a0 � a1s

(q)
k � a2s

(q)
k

2
⌘
s(q)k

i

@Ek

@a2
= �2

UX

q=1

h⇣
x(q)
k � a0 � a1s

(q)
k � a2s

(q)
k

2
⌘
s(q)k

2
i

(20)

After defining the partial derivative as zero, the most suitable parameters
a⇤0, a

⇤
1, and a⇤2 can be obtained for the quadratic least square regression. After

that, the coe�cient of determination, R2 shows the quality of the fit of each
variable to the target input as

R2 ⌘ 1�
P

(xk � zc)
2

P
(xk � x̄k)

2 (21)
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where

x̄k =
1

U

UX

q=1

x(q)
k (22)

Based on the coe�cient of determination, the variable with the highest R2

value can be chosen to fit the target variable. Thus, one key variable with
its optimised parameters can be chosen in each iteration to fit the target
input variable. The remaining di↵erence between the target input variable
and its fitted value is used in the next iteration. The fitting process using
the QLSR is repeated until the R2 value is lower than the threshold. The
low R2 value indicates that there has not been enough evidence to show that
the remainder is determined by other variables. Then the assumed situation
in (17) has been achieved and the process can be stopped. It validates that
the correlation among input variables has been found as the target feature
can be presented by other input variables. The result can then be used to
remove the duplicated features from input variables to reduce the training
data.

3. Simulation Case Study

3.1. Input Variables and Sensitivity Analysis

The data used for ANN training is collected from IES-VE software database
containing building information, energy consumption including heat demand,
and weather profile, which is recorded by the nearest weather station in an
airport after setting the location. In total, the weather profiles include 16
di↵erent hourly recorded variables, as given in Table 1. A number of input
variables are shown in Figure 2 for a period of 30 days.

Figure 2 (a) shows the five types of temperature information: dry-bulb,
wet-bulb, dew-point, daily mean and maximum adaptive temperature. The
figures shows that the five temperature variables have similar tendency, i.e.
the di↵erent temperatures depend on the same weather information. Similar
results can also be found in direct radiation, global radiation and di↵use radi-
ation in Figure 2 (b). They have similar tendency under most circumstance.
Figure 2 (c) shows other useful input weather variables including solar alti-
tude, relative humidity and external moisture content for every hour. They
have no obvious dependency on other variables but possibly have hidden and
non-linear relationships, which will be discussed later. The ANN training
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(a)

(b)

(c)

Figure 2: A sample of input variables used in ANN training: (a) dry-bulb, wet-bulb,
external dew-point, daily mean and max adaptive temperatures, (b) direct, global and
di↵use radiations, (c) solar altitude, external relative humidity, and moisture content

aims to use these weather-based variables along with building information as
inputs and corresponding hourly heat demand as outputs.

Due to the multiplicity of the input variables, ANN training could take
an extremely long time, furthermore, it reduces the e�ciency in finding an
e↵ective input-output relationship in the ANN model. The sensitivity anal-
ysis (SA) introduced in Section 2.4 aims at analysing the sensitivity of each
input variable to the output. The result of SA of input variables is shown
in Figure 3. From the result, the wet-bulb temperature has the highest sen-
sitivity to the building heat demand. The input variables include both the
weather-based variables and the building information. From the SA result,
the top 5 highly sensitive variables are all temperature related. And the
building information with the highest sensitivity for heat demand prediction
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Figure 3: Sensitivity analysis result of all input variables

is the building volume. The wind direction is the variable with the lowest
sensitivity to heat demand. With the result of sensitivity analysis, the num-
ber of weather input variables can be reduced via choosing the inputs with
the highest sensitivity for training.

3.2. Analysis of Correlation Among Input Variables

In the sensitivity analysis, the five input variables with the highest in-
fluence on the output heat demand are wet-bulb, dry-bulb, dew-point, daily
mean and maximum adaptive temperatures. Even though the five variables
represent di↵erent types of temperature, they contain key information that
a↵ects all temperature-based variables. Thus, if the internal relationship be-
tween di↵erent input variables can be found, the number of input variables
can be further reduced.

As the wet-bulb temperature has the highest influence in the sensitivity
analysis to the output heat demand, it is tested and used as an example to
show the fitting result. The QLSR method proposed in Section 2.3 is used
to find the duplicated features in the target input variable. The fitting result
in Figure 4 show the wet-bulb temperature on the y-axis and the value of
the correlated variables on the x-axis. Figure 4 shows the fitting result in
the first iteration. From which, it shows the relationship between the wet-
bulb temperature with the other fifteen weather-based variables. To make it
clearer in comparison, the coe�cient of determination, which is also called
R-squared (R2), is used to determine the dependency between variables, as
shown in Figure 5 (a).

The variable with the highest R2 value is the dry-bulb temperature which
has around 97% determination with wet-bulb temperature. After subtracting
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Figure 4: Quadratic least square regression fitting curve of the wet-bulb temperature using
other weather-based input variables (1st iteration).

the determined part of dry-bulb temperature from the wet-bulb temperature,
the remaining part is used as the next target to run the second iteration in
QLSR. As shown in Figure 5 (b) to (d), the next determination variables
are the relative humidity and dew-point temperature. In the 4th iteration,
the R2 value has dropped below 35% and the error is less than 0.1% of the
nominal temperature range. Then the iteration stops.

The fitting result from QLSR shows that the wet-bulb temperature de-
pends on three other features, the dry-bulb temperature, relative humidity
and dew-point temperature, whose parameters of weights also provided from
the QLSR fitting. After that, the wet-bulb temperature can be fitted by
other three and the fitting weights based on equation (16). The fitted wet-
bulb temperature is compared with its real value as demostrated in Figure
6. In the figure, the solid black line indicates the real wet-bulb temperature
and the read dots indicate the fitted one that is calculated by other features.
The result shows that the average fitting error, which is given in the bottom
figure with the blue dots, is less than 0.5%. It also means thta the three
fitted variables have more than 99.5% information of wet-bulb temperature.
Therefore, it verifies that the wet-bulb temperature can be fully described
by the other three features.

If the wet-bulb temperature and other three features are all chosen as
the input variables for the ANN training, the output heat demand will be
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(a) (b)

(c) (d)

Figure 5: Coe�cient of determination of other weather-based input variables to Wet-bulb
temperature in each iteration: (a) 1st iteration, (b) 2nd iteration, (c) 3rd iteration and
(d) 4th iteration.

found related to both the wet-bulb temperature and the other three feature.
It causes the repeated training to the duplicated features. Thus, in order
to improve the e↵ectiveness of ANN training, the duplicated feature of wet-
bulb temperature can be removed from the training inputs and the number
of variables are then reduced for a faster training speed.

Similar with the QLSR approach used on the wet-bulb temperature fit-
ting, other variables are also tested for duplicated features before they are
used as inputs of ANN training. In the traditional sensitivity analysis re-
sult given in Figure 3, the cut-o↵ criteria is set as 0.02 to allow 15 variables
out of 26 used for the ANN training. After running the same approach on
the 15 variables, the result indicates that 3 features out of the 15 can be
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Figure 6: Fitting result of real wet-bulb temperature using searched input variables: (a)
comparison between real and fitted wet-bulb temperature, (b) di↵erence between real and
fitted temperature.

further removed to reduce the training load of ANN. They are the wet-bulb
temperature, the maximum adaptive temperature and the moisture content.
Using the QLSR approach, they are found containing duplicated features
with other variables and thus can be removed from the training inputs. All
other 12 variables, which are known as the result of sensitivity analysis with
reduced features, are chosen for the ANN training.

However, it has to say that the number of variables with duplicated fea-
tures depends on collected data and di↵erent case studies. In other cases that
using di↵erent data sources, the removed variables could be found no longer
containing duplicated feature with others. Thus, it is necessary to run the
proposed sensitivity analysis with reduced features approach for each data
source and case study.

3.3. ANN training and prediction performance comparison

To verify the e↵ectiveness of the proposed approach, this section gives the
comparison among the ANN training result of using all 26 input variables
(All), the top 15 input variables from sensitivity analysis (SA), and 12 input
variables chosen from the sensitivity analysis with reduced features (SARF).

The ANN is built and trained in Matlab with the built-in neural network
toolbox. The parameter of ANN models is set using 1 hidden layer with 20
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hidden nodes. The models are from the building models from the University
of Glasgow, which has 36 di↵erent buildings with di↵erent heating types,
and the total recorded data of 12 months’ weather profile. The training of
ANN uses part of the recorded data includes weather profile of 4 months
from January to April, building information of 10 randomly chosen sample
buildings and their heat demand. As the weather profile and heat demand
of the first 4 months and 10 sample buildings are used to train the ANN, the
remained 8 months weather profile is used to test the training performance
by predicting the heat demand of the remained 26 buildings.

Furthermore, the ANN training is using random initial weights and bias
value. In the ANN training, the stopping criteria is that the gradient reduc-
tion of training error using the initial parameters is low enough, which means
the training error is di�cult to be further reduced. The training performance
is mostly dependent on the initial parameters of weights and bias. Therefore,
only one set of training result is not enough to show and compare the per-
formance for randomly chosen initial weights. The simulation test uses the
MATLAB neural network toolbox for ANN model training. In order to make
a fair comparison and to give a convincing conclusion, the ANN training and
heat demand prediction should be repeated many times so that the statistic
results can be compared to show the average training performance. In the
case study, each method for ANN training has been repeated one thousand
times and the statistical results of all methods are compared. The probability
density functions of statistical prediction error of heat demand and training
time of ANN model for the one thousand repeated tests are shown in Figure
7.

Due to the randomness of the ANN training process, the results show
some variability and, thus, the medians of the statistical results are given
and compared. In the result of Figure 7 (a), the median of prediction error
using the original method is about approximate 60% prediction error while
that of SA and SARF are around 38% prediction error. And in Figure 7
(b), it is clear that the median of ANN training time with all variables is
about 43s, the median of training time of SA is 26s and that of SARF is 21s,
around 20% less training time than SA and 50% less than original all inputs.
In addition to the median of prediction error and training time, the variance
of SARF is obviously smaller than the variance of the case with all input
variables and similar to the variance of SA. This verifies that SARF will
reduce the uncertainty in ANN training and training time while achieving
better performance.
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Figure 7: Statistic ANN training performance and result comparison: (a) probability of
training error based on statistics, (b) probability of training time based on statistics.

In addition, the result in Figure 7 shows that the ANN training perfor-
mance using the Levenberg-Marquardt (LM) training function, which is the
most widely used training algorithm. However, there are many other training
algorithms, including BFGS Quasi-Newton (BFG), resilient backpropagation
(RP), scaled conjugate gradient (SCG), conjugate gradient with Powell/Beale
restarts (CGB), Fletcher-Powell conjugate gradient (CGF), Polak-Ribiére
conjugate gradient (CGP), one step secant (OSS), and variable learning rate
backpropagation (GDX). The next step is to verify the performance of the
developed SARP method in other training algorithms. Table 2, 3 and 4 show
the prediction error of all training functions using the original 26 input vari-
ables, 15 input variables from SA, and 12 input variables from SARF. The
indices for performance comparison are chosen as the mean, min and max
prediction error its standard deviation (STD) as well as the mean, min and
max prediction time and its STD.

To make the comparison clearer, the mean prediction error, error STD,
mean training time, and time STD are drawn in bar charts as shown in
Figure 8. The results show the prediction error and time of di↵erent training
functions in ANN model training. In comparison among di↵erent training
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Table 2: ANN test result in heat demand prediction using original 26 input variables

Algorithm
Mean

Error (%)
Min.

Error (%)
Max.

Error (%) Std. (%)
Mean

Time (s)
Min.

Time (s)
Max.

Time (s) Std. (s)
LM 88.81 24.56 199.96 52.99 42.47 33.46 58.63 5.93
BFG 29.90 20.56 121.61 8.38 16.77 13.47 23.38 1.54
RP 33.66 21.58 112.60 10.94 4.05 3.10 5.81 0.43
SCG 29.41 21.34 93.62 7.81 7.06 5.23 8.90 0.69
CGB 29.52 20.25 83.62 8.07 14.61 7.57 21.86 1.58
CGF 29.53 21.43 112.18 7.29 14.23 10.84 18.27 1.55
CGP 29.59 19.99 86.54 7.06 14.37 0.69 19.29 1.59
OSS 30.39 21.93 89.76 6.31 13.12 9.70 16.36 1.36
GDX 63.18 38.80 171.49 13.58 4.06 3.21 5.77 0.43

Table 3: ANN test result in heat demand prediction using 15 input variables from SA

Algorithm
Mean

Error (%)
Min.

Error (%)
Max.

Error (%) Std. (%)
Mean

Time (s)
Min.

Time (s)
Max.

Time (s) Std. (s)
LM 42.02 20.21 195.74 27.84 24.81 27.17 57.70 5.09
BFG 25.46 18.06 46.96 3.88 15.53 12.05 19.80 1.78
RP 29.09 20.84 58.42 4.89 4.05 2.99 5.74 0.52
SCG 25.72 19.29 55.29 3.64 6.96 5.50 11.67 0.89
CGB 25.29 18.98 54.58 3.84 14.67 0.51 22.86 2.24
CGF 25.40 18.98 43.80 3.42 14.44 10.83 21.45 1.87
CGP 25.66 19.18 49.98 3.96 14.55 11.25 22.73 2.12
OSS 27.74 20.66 55.91 3.88 13.15 10.42 19.23 1.64
GDX 59.32 33.85 153.99 15.28 4.12 3.08 8.18 0.65

functions, the BFG, SCG, CGB, CGG, and CGP have the relatively better
prediction result while the RP and GDX require the least training time. For
all the training function used in the above ANN training, the SARF uses the
least training time to perform a relatively better performance with the least
prediction error. It verifies that the proposed SARF method can improve the
ANN training e�ciency and reduce the training time to obtain the same or
even better performance in the heat demand prediction.

Table 4: ANN test result in heat demand prediction using 12 input variables from SARF

Algorithm
Mean

Error (%)
Min.

Error (%)
Max.

Error (%) Std. (%)
Mean

Time (s)
Min.

Time (s)
Max.

Time (s) Std. (s)
LM 38.31 20.84 209.48 21.53 20.80 3.95 38.34 7.71
BFG 25.72 17.48 38.74 3.08 12.65 9.15 19.87 1.75
RP 29.60 22.08 54.95 4.86 3.35 2.69 4.83 0.44
SCG 26.02 18.72 35.00 3.07 6.29 4.98 9.70 0.84
CGB 25.43 19.03 41.73 3.16 12.24 7.86 17.68 1.66
CGF 26.13 19.06 38.25 3.12 11.97 9.69 17.53 1.48
CGP 26.37 19.87 48.80 3.62 12.02 9.22 18.94 1.84
OSS 28.27 20.96 43.46 3.68 10.95 8.92 17.13 1.45
GDX 60.31 39.64 119.06 14.07 3.34 1.37 5.23 0.53
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(a) (b)

(c) (d)

Figure 8: Comparison of using SARF with traditional SA method in di↵erent training
functions. (a) Mean prediction error, (b) mean training time, (c) standard deviation of
prediction error, (d) standard deviation of training time.

4. Conclusion

With the development of ANN technology, the sensitivity analysis is nec-
essary to rank the importance of input variables due to a large amount of
training data. In predicting the district heat demand using weather informa-
tion, it is found that most input variables contain duplicated features which
is not required to train the ANN model. This paper proposed a method
with the ability to remove both the variables with low importance and the
variables that have high importance but contain duplicated features. The
proposed approach analysed the correlation among input variables via de-
tecting the coe�cient of determination of each variable with others referring
to the fitting error of quadratic least square regression. The approach is
validated in a case study of predicting heat demand in a district using an
ANN model that is trained by historic data from several sample buildings.
The traditional sensitivity analysis method ranked the input variables based
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on their influence on the heat demand. It was shown that the 15 most im-
portant features can be used to predict the district heat demand with the
same or even better performance than the complete set of features. The
proposed method further removed 3 important variables that are determined
by other variables via analysing the determination of each variable. The
results show that the proposed method can reduce training time by around
20% while achieving the same training and prediction performance compared
with the traditional sensitivity analysis method. With the developed sensi-
tivity and correlation analysis approach, the training data is simplified and
the e�ciency of training an ANN model can then be improved.
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