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Abstract  

3D printing applications in separation science are currently limited by the lack of materials 

compatible with chromatographic operations and 3D printing technologies. In this work, we propose 

a new material for Digital Light Processing printing to fabricate functional ion exchange monoliths in 

a single step. Through copolymerisation of the bi-functional monomer 2-(Acryloyloxy)ethyl] 

trimethylammonium chloride, monolithic structures with quaternary amine ligands were fabricated. 

The novel formulation was optimised in terms of protein binding and recovery, microporous 

structure and its swelling susceptibility by increasing its crosslink density and employing 

cyclohexanol and dodecanol as pore forming agents. In static conditions, the material demonstrated 

a maximum binding capacity of 104.2 ± 10.6 mg/mL for BSA, in line with commercially available 

materials. Its anion exchange behaviour was validated by separating BSA and myoglobin on a 
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monolithic bed with Schoen gyroid morphology. The same column geometry was challenged for the 

purification of C-phycocyanin from clarified as well as cell-laden Arthrospira platensis feedstocks. 

This represents the first demonstration of one-step printed stationary phases to capture proteins 

directly from solid-laden feedstocks. We believe that the material here presented represents a 

significant improvement towards implementation of 3D printed chromatography media in the field 

of separation science.  

Keywords: 3D printing materials, Anion exchange monolith, Protein adsorption, Digital Light 

Processing, C-phycocyanin 

Abbreviations 

AETAC – 2-(Acryloyloxy)ethyl] trimethylammonium chloride  

A. platensis – Arthrospira platensis  

CPC – C-phycocyanin 

DEGEEA – Di(ethylene glycol) ethyl ether acrylate  

Digital Light Processing – DLP 

EBA – Expanded bed adsorption 

MYO – Myoglobin 

PEGDA - Polyethylene glycol diacrylate 

QA – Quaternary Amine 

 

1. Introduction  

Chromatographic separations currently rely on randomly packed spherical adsorber beads, with 

slurry packing procedures being the only economical and feasible method for column packing. 

However, computer simulation have demonstrated that ordered structures have the potential to 

greatly improve separation performances [1,2]. With the introduction of 3D printers, it is now 



www.jss-journal.com Page 2 Journal of Separation Science 

 

 
This article is protected by copyright. All rights reserved. 
 

feasible to fabricate stationary phases with ordered three-dimensional morphology according to 

digital models [3]. 

The suitability of 3D printing to create ordered structures for chromatographic applications has been 

previously demonstrated. In 2014, Nawada et al. [4] experimentally proved that ordered beds were 

endowed with lower height equivalent to a theoretical plate (HETP) than randomly packed beds, as 

earlier suggested by simulations [1,2]. However, the commercial materials employed did not allow 

for the testing of protein separation due to their lack of suitable chromatographic ligands. McDonald 

et al. [5] employed a commercial material (Veroclear-RGD810, Stratasys Ltd.) for 3D printing that 

displayed a net negative surface charge to enable separation of a range of test components, such as 

dyes and proteins. However, commercial materials for 3D printing are non-porous and with 

proprietary composition, limiting their application in chromatography. According to a different 

preparation method, commercial materials for 3D printing can be used to fabricate sacrificial 

moulds, which are then infused with a traditional material for chromatography such as porous 

agarose or cellulose hydrogels, followed by chemical modification for the introduction of the 

chromatographic ligand [6]. 

In 2019 we proposed new material formulations compatible with commercial 3D printers but also 

bearing appropriate chromatographic functionality [7]. There, we demonstrated full integration of 

3D printing technology to manufacture monolithic stationary phases in one simple step. The one-

step fabrication method proposed was based on the bifunctional monomer 2-(Acryloyloxy)ethyl] 

trimethylammonium chloride (AETAC), bearing a positively charged quaternary amine (QA) group as 

well as a 3D printable acrylate group in its structure (

 

Figure 1). 
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In this work, we present our recent material optimization efforts with crucial key improvements with 

respect to the first version of the QA material presented in 2019. After determining the best ligand 

density for BSA adsorption in static adsorption experiments, we demonstrate, for the first time, the 

separation of BSA and myoglobin (MYO) in dynamic conditions using a QA functional monolith with 

Schoen gyroid bed geometry. Subsequently, we investigated the potential of the 3D printed 

monolith to purify C-phycocyanin (CPC), a blue phycobiliprotein produced in cyanobacteria and algae 

[8]. CPC is a high value product widely used in the food, cosmetic and pharmaceutical industries as a 

naturally derived blue pigment [9]. In this study we used the monolith to purify CPC directly from 

crude CPC extracts of the cyanobacterium Arthrospira platensis (A. platensis) in a single step 

chromatographic method. 

2. Materials and Methods 

A detailed description for the protein adsorption in batch conditions, protein purification in 

dynamic conditions, purification of C-phycocyanin, sample preparation for scanning electron 

microscopy, and a flowchart of the custom-built chromatography system are available in the 

Supporting Information. 

2.1. Materials 

2-(Acryloyloxy)ethyl] trimethylammonium chloride (AETAC, 80 wt % in water), di(ethylene glycol) 

ethyl ether acrylate (DEGEEA, technical grade ≥ 90 %), ethanol (absolute, HPLC grade, ≥ 99.8 %), 

hexamethyldisilazane (≥ 99.9 %), myoglobin (MYO, equine heart), Trizma® base and hydrochloride 

were obtained from MilliporeSigma (St. Louis, MO, USA). 1-dodecanol, bovine serum albumin (BSA, 

protease free powder), cyclohexanol , sodium chloride, sodium phosphate mono and dibasic were 

purchased from Fisher Scientific (Hampton NH, USA). Polyethylene glycol diacrylate (PEGDA, SR259, 

average MW 200 g/mol) and alkoxylated pentaerythritol tetraacrylate (SR494) were kindly donated 

by Arkema-Sartomer (Colombes, France). Phenyl bis(2,4,6-trimethylbenzoyl)-phosphine oxide 
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(Omnirad 819) and Tinuvin 326 were kindly provided by IGM resins (Waalwijk, The Netherlands) and 

BASF (Ludwigshafen, Germany), respectively. All chemicals were used as received. 

2.2. 3D printing material preparation 

The 3D printing material was prepared by dissolving 1 g of the photoinitiator Omnirad 819 and 

0.125 g of the photoabsorber Tinuvin 326 in 100 mL of the pre-printing mixture composed of 48 % 

(v/v) cyclohexanol, 12 % (v/v) 1-dodecanol, 12 % (v/v) PEGDA, 12 % (v/v) SR494 and 16 % (v/v) 

monomer mixture (AETAC & DEGEEA). Materials with QA ligand densities of 2.33, 1.73, 1.14 and 0.57 

mmol/mL were obtained by using monomer mixture having 100, 75, 50, 25 % (v/v) AETAC in DEGEEA 

, respectively, with 0 % AETAC employed as control material. The prepared printing material was 

stored covered in aluminium foil to prevent uncontrolled polymerisation until usage.  

2.3. 3D Model creation and 3D printing 

For static protein batch adsorption, hollow cylinders fitting into 96-microplate wells (Figure 2-A, B) 

were designed as described in [7]. For dynamic separation experiments, a monolithic column with 

Schoen gyroid geometry was employed. This structure was obtained from a Schoen gyroid unit cell 

(2π x 2π x 2π) generated in Wolfram Mathematica 12 (Wolfram Research Inc., Champaign, IL, USA) 

according to equation (1): 

   ( )     ( )     ( )     ( )     ( )     ( )    (1) 

The unit cell was then scaled to a side length of 1 mm (corresponding to wall thickness of 500 µm), 

replicated in the three dimensions, and assembled into a cylindrical column (5 mm radius, 20 mm 

length) using Netfabb 2017 (Autodesk, San Rafael, CA, USA).  

Both models were sliced into 100 µm thick 2D layers using Netfabb 2017 and 3D printed using a 

Solflex 350 digital light processing (DLP) printer (W2P Engineering GmbH, Vienna, Austria). After 
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printing, all 3D printed parts were extensively cleaned in ethanol on a roller mixer (SRT9D, Stuart, 

Staffordshire, UK). Parts were stored in 20 % (v/v) ethanol until further use. 

3. Results and Discussion 

In this work, a DLP printer was employed for the direct 3D printing of QA-functionalized 

chromatographic adsorber. DLP 3D printing materials are complex mixtures composed of 

photopolymerisable monomers and crosslinkers forming the polymeric network, photoinitiators 

required to start the photopolymerisation reaction and photoabsorber to increase the printing 

resolution [10,11]. These formulations need to be adapted for use in chromatography by introducing 

suitable chromatographic ligands and porosities to increase binding capacity. 

Strong anion exchange functionalities were embedded into the stationary phase due to 

incorporation of the bifunctional monomer AETAC in the parent formulation, providing positively 

charged quaternary amine (QA) groups (  

Figure 1-A) [12]. Material porosity was achieved by introducing porogenic solvents soluble in the 

printing formulation but not taking part to the polymerisation reaction [13]. 

3.1. Optimization of material formulation 

The scope of this work was to optimise the previously published QA 3D printing material [7] in terms 

of protein adsorption, protein recovery as well as its compatibility with current chromatography 

processes. By changing the material composition, the following main challenges have been 

addressed:  
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1. Optimization of bind and elute characteristics. In previous batch adsorption experiments [7], 

higher protein binding capacities were achieved by decreasing the ligand densities. Also, 

recovery over the elution step was of only about 10 % or less (Figure 3-B), a result associated 

with the stationary phase overcrowded with QA ligands leading to configuration change and 

irreversible adsorption. To further investigate these two observations, materials with lower 

concentrations of the QA-bearing monomer AETAC were prepared, leading to stationary phases 

with lower ligand densities. Di(ethylene glycol) ethyl ether acrylate (DEGEEA, 

 

2. Figure 1-B) was introduced into the formulation as non-functional monomer to maintain a 

constant monomer to crosslinker ratio (40:60 volume based) while allowing changes in the QA 

ligand density. DEGEEA was chosen as non-functionalised monomer since it presents similar 

backbone to the PEGDA crosslinker employed and similar molar mass to the functional AETAC 

monomer. The influence of ligand density on binding and elution is further discussed in section 

3.2. 

3. Optimization of the porous microstructure. The PEG previously used as porogenic compound 

produced pores of relatively small size (10 – 20 nm) [14]. Small sized pores cause serious mass 

transfer limitations by hindering free diffusion along the porous network, effectively lowering 

the diffusion coefficient within the stationary phase. Pores of small size may also negatively 

impact on protein recovery over elution as irreversibly immobilized species further reduce the 

pore dimensions. A mixture of cyclohexanol and dodecanol was thus employed as porogens as 
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they are widely employed in traditional fabrication of monoliths [13,15,16]. SEM analysis (Figure 

2-C) of monoliths produced with the new formulations shows a highly interconnected porous 

network, with pores in the 100 – 300 nm range as measured from the SEM images. Commercial 

chromatographic adsorber beads display pores in the order of 10 - 100 nm [17], hence, similar 

mass transfer rates are expected for the proposed material formulation.  

4. Optimization of mechanical properties. Relatively low mechanical stability and significant 

swelling/shrinking upon buffer change were observed in [7]. This was corrected by increasing 

the density of crosslink bonds through the introduction of SR494 (

 

5. Figure 1-C), a supercrosslinker, providing four photopolymerisable acrylate groups per molecule 

and based on polyethylene glycol (PEG) motifs for low non-specific protein binding. As a 

compromise in providing chemical and mechanical strength as well as allowing the creation of a 

porous network, the supercrosslinker was employed in combination with PEGDA, the previously 

applied crosslinker providing two polymerisable acrylate groups. This provided mechanically 

stronger parts and limited shrinkage/swelling of the 3D printed structures upon buffer change. 

For instance, when the salt concentration was increased from 0 to 1 M NaCl, monoliths 

containing solely PEGDA as crosslinker demonstrated a pore volume shrinkage of 20 %, whereas 

using SR494 as crosslinker resulted in a decrease of only 12.5 % (Figure S2). 

6. Optimization of visual appearance. Structures printed with the initial material formulation 

displayed red colour [7], indicating that some of the photoabsorber, the red dye reactive orange, 
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remained in the material despite extensive washing procedures. Reactive orange has a negative 

charge in its structure and binds tightly to the positive QA ligands by electrostatic interactions. 

The low concentration of reactive orange in the material formulation ensured availability of QA 

ligands for protein binding, but the red colouration was considered a nuisance for future 

commercial exploitation. Reactive orange was replaced by Tinuvin 326, a charge neutral light-

yellow dye. This facilitated removal of the photoabsorber after printing to produce white 

structures (Figure 2).  

3.2. Protein adsorption in batch experiments 

The equilibrium binding capacity of materials with different ligand density (control, 0.57, 1.14, 1.73, 

2.33 mmol/mL) was investigated, with resulting adsorption isotherms displayed in Figure 3-A. 

Adsorbers with hollow cylindrical shape fitting into wells of a 96-well microplate were printed to 

facilitate the adsorption experiment (Figure 2-A, B) [7]. This allowed in-situ measurement of protein 

concentration in the liquid phase using a plate reader. The equilibrium data measured were fitted 

using the Langmuir isotherm (R2 > 0.96, best-fit parameters in Table 1). The highest maximum 

binding capacity of 104.2 ± 10.6 mg/mL was found for the material with a ligand density of 

1.73 mmol/mL. Further increasing or decreasing the ligand density resulted in lower binding 

capacities (Figure 3-B), revealing a compromise between amount of exposed ligands and steric 

hindrance due to previously adsorbed biomolecules, which was in line with that of commercial 

chromatography materials [18,19]. The 3D printed materials previously tested [7] had larger ligand 

densities (2.03 - 3.18 mmol/mL) but lower binding capacities (up to 73.7 mg/mL) compared to the 

new materials presented in this work (Figure 3-B). It is worth noting that the trend of binding 

capacity with ligand density overlaps across the two material formulations (Figure 3-B), indicating 

that binding is principally, if not solely, due to the positive charges of the AETAC monomer. This is 

further confirmed by the results obtained with the control material containing no QA ligands which 

showed negligible protein adsorption. No protein adsorption for the control also validated the use of 
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this material formulation as stationary phase with low non-specific binding characteristics [20]. 

Protein recovery in the elution step showed a similar trend, with recovery peaking at 47.09 ± 5.06 % 

for the material with 1.73 mmol/mL ligand density. This suggested that BSA tends to bind strongly to 

the materials developed, potentially through a combination of ion and hydrophobic interactions. 

Yet, the newly developed materials had 5 x higher elution recoveries than the previous materials [7] 

(elution < 10 %, Figure 3-B), indicating a substantial improvement. To support future optimization of 

elution conditions, the mechanism behind the observed protein binding is currently investigated. 

3.3. Protein separation and purification in dynamic mode 

The best performing material (1.73 mmol/mL ligand density) was tested in dynamic conditions for 

the separation of a model protein mixture of BSA and MYO as well as the purification of CPC from a 

complex feedstock. The design freedom of 3D printing was further exploited by creating monoliths 

with Schoen gyroid bed geometry (Figure 2-D,E,F). Schoen gyroids are part of the triply periodic 

minimal surface family which are impossible to create with traditional manufacturing methods. 

Advantages of the Schoen gyroid geometry include excellent structural strength, high permeability 

and interconnected pathways [21,22]. In computer simulations, they have demonstrated HETP 

values than ordered spherical beads thanks to their uniform flow channels [23]. A Schoen gyroid 

structure was chosen as stationary phase geometry due to its superior HETP characteristics 

compared to randomly packed beds [23]. A monolith with 500 µm walls and 50 % porosity was 

designed and 3D printed (Figure 2-D, E). The cylindrical monolith was then introduced into a glass 

column (Figure 2-F) and connected to a chromatography system.  

3.3.1. Separation of BSA and myoglobin from clarified solutions 

A 1.6 mL column was employed for the separation of a model protein mixture of BSA and MYO. 

Three runs were carried out to demonstrate protein separation and reproducibility over subsequent 

runs. The chromatograms obtained, presented in Figure 4, show a first initial peak corresponding to 

the flow through, followed by two peaks over the salt gradient applied (0 – 300 mM NaCl over 
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20 CV). The first peak (retention volume of 7.4 ± 0.1 CV, ionic strength of 3.1 mS/cm) corresponds to 

elution of MYO as confirmed by control experiments obtained by an injection of pure MYO 

(7.7 + 0.01 CV, 3.6 mS/cm). The second peak (18.7 ± 0.1 CV, 19.0 mS/cm) corresponds to elution of 

BSA, as substantiated in a control run with pure BSA (retention volume 18.0 ± 0.7 mL, 18.4 mS/cm). 

The observed elution order is in line with the pI of the two proteins (pIMYO = 7.0, pIBSA = 4.8), 

demonstrating separation behaviour in line with ion exchange interactions. The three consecutive 

separation runs showed great reproducibility in terms of protein retention time (relative error 0.4 to 

2.3 %) as well as observed peak areas (relative error 3.7 to 8 %), showcasing the robustness of the 

novel material and fabrication method presented.  

A wall thickness of 500 μm was chosen to ensure prints of consistently good quality, at the expense 

of incomplete protein adsorption and band broadening effects. This is basically due to protein 

diffusion through the relatively thick stationary phase as the main limiting factor for mass transfer 

and adsorption in the 3D printed monoliths. Protein adsorption and separation resolution can be 

greatly improved by 3D printing stationary phases with finer details, in line with the size of current 

adsorptive resins for chromatography of approximately 50 μm diameter. While typical DLP printers 

can produce pixel sizes down to 50 µm in the x-y plane, the printing of complex but continuous and 

connected features requires a minimum of 3 pixels width, corresponding to a minimum of 150 µm 

thickness. In addition, issues associated with light scattering from the UV light engine and digital 

mirror device apparatuses reduce the theoretical print resolution. Poor mechanical properties of 

models containing very fine struts further limit the minimum size that can be reliably 3D printed. 

Current developments are aiming to further decrease the printing resolution by employing higher 

resolution projectors, optimisation of the optics and light path to reduce scattering, and increase of 

the mechanical properties of the materials – also one of the goals of the current paper. As the 3D 

printing technology evolves, it is likely that the 3D printing of stationary phases with 50 μm feature 

size will be achieved in the near future. On the other hand, we are observing a shift in the 

biopharmaceutical market as it moves towards larger biological entities such as viral particles or 
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stem cells. These pose a major challenge to current downstream operations due to their structure 

complexity, shape, and size, with serious diffusional limitations even in traditional chromatographic 

stationary phases [24]. 

3.3.2. Purification of C-phycocyanin from solid-laden suspensions 

Limitations in the resolutions of a 3D printer can be employed effectively as a positive attribute, with 

the fabrication of stationary phases with relatively large channels to allow the flow of cell- or 

particle- laden samples directly onto the column without the need for previous sample clarification 

[6]. This concept was proven here for the purification of CPC from unclarified A. platensis biomass. In 

particular, high-shear homogenised A. platensis biomass was fed directly to the 3D printed 

monoliths (Schoen gyroid, 50 % porosity, 500 µm walls, 3 mL CV) and the eluted fractions were 

assessed in relation to CPC purity and recovery. 

The unclarified supernatant had to be tested in a custom-built set-up as it is not safe to employ the 

ÄKTA™ Pure system with solid-laden solutions. Accordingly, preliminary experiments were run with 

clarified feedstock (i.e. cell debris removed via centrifugation and filtration) on both the custom built 

and the ÄKTA™ Pure systems to compare the results across the two experimental platforms. These 

experiments also offer a benchmark to evaluate the separation performance of the novel 3D printed 

QA-materials. Good agreement was found for the purification of clarified CPC extracts across the 

two experimental systems (Figure 5-A), with average purification factors over the elution step of 2.8 

and 3.1 for the custom-built and the ÄKTA™ Pure systems, respectively (Figure 5-C). Purities up to 

4.0 were also recorded in the central fractions of the elution step, suggesting that different CPC 

fractions could be collected to suit different applications, e.g. pharmaceutical and/or analytical grade 

CPC. In particular, as also indicated by the A620 signal in Figure 5-A, the majority of CPC is eluted at 

the beginning of the elution step, with later fractions containing significantly less CPC and at the 

same time relatively higher amounts of co-eluting contaminants. This is also reflected in the trend of 

the purification factor presented in Figure 5-C, with an initial elution spike followed by a steady 

decline. An overall CPC recovery of 65 % and 54 % was measured with the custom-built and the 
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ÄKTA™ Pure systems, respectively. This is in line with the recovery measured in the batch adsorption 

experiments with BSA, confirming the need to optimize the conditions of the elution step to achieve 

complete recoveries. Most importantly, the consistency in the recovery data across experimental 

set-ups further validates the appropriateness of the custom-built rig to carry out chromatographic 

runs. The main apparent drawback of the custom-built apparatus lies in the higher noise of the 

measured results, ascribed to its manual handling and control, but with overall trends well matching 

the automated ÄKTA™ Pure system. 

Direct application of crude CPC extracts resulted in a qualitatively similar chromatogram to the ones 

obtained feeding clarified CPC extracts (Figure 5-B). The flow-through during loading of the 

unclarified sample showed a significantly larger absorbance signal, consistent with the higher levels 

of proteinaceous contaminants present in the crude CPC extract. The recovered CPC in the pooled 

elution step showed an average purification factor of 2.7, in line with the runs with the clarified 

sample. This is further confirmed by the profile of the purification factor presented in Figure 5-C for 

all three cases studied here. The latter is a key result, as it demonstrates that the ligand-protein 

interactions and CPC adsorption were not affected by the presence of cell debris and other solid 

particulate in the feed. A recovery of 38 % was detected when using the crude CPC extract, 

somewhat lower than when using clarified CPC extracts. This is in line with complex binding 

behaviour of the multicomponent feed on the stationary phases [25]. 

Many procedures for the purification of CPC have been described in literature, most relying on a 

combination of multiple purification steps, usually including ammonium precipitation, dialysis, and 

packed bed AEX chromatography to achieve CPC purities of up to 6.7 [26–37]. The AEX 

chromatography step alone in packed bed mode provides purification factor ranging from 1.3 to 4.9. 

Reported single step CPC purification procedures from crude feedstocks are generally based on 

expanded bed adsorption (EBA) chromatography [32,33,38,39] or membrane chromatography [40]. 

Among these, EBA operates by fluidising the chromatographic particles thanks to an impinging 

upwards flow of the mobile phase, thus creating large pore space for the unhindered flow of the 
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solid-laden feed. This is conceptually similar to the 3D printed monolith here presented, with the 

flow-through channels designed prior to 3D printing in the three-dimensional CAD model. The 

proposed 3D printing approach embodies other advantages over EBA such as increased stability in 

the monolithic format over a fluidised bed generally hard to stabilise and operate, as well as the 

possibility to fine tune the channels to suit specific applications, e.g. suspensions containing different 

particulates, flow rates, viscosities, etc. [41]. Accordingly, the results obtained in this work are 

compared with past data reported for CPC purification using Q and DEAE Streamline media in EBA 

mode (Table 2). In particular, purification factors ranging between 2.7 and 4.8 were obtained with 

EBA, respectively, providing recoveries up to 79 % [32]. Moraes et al. [32] compared the purification 

of crude CPC extract using EBA (Streamline Q XL resin) to the purification of clarified extract 

(centrifugation and filtration) on packed bed Q-Sepharose FF, revealing a similar final purity of 1.6 

and 1.7 and a purification factor of 3.2 and 2.8, respectively. This demonstrates that EBA provides 

the same purification power as a packed bed column, independent of the presence of cell debris in 

the applied sample. The same trend was demonstrated for DEAE functionalised chromatography 

beads, achieving a purification factor of 4.6 for a clarified CPC sample [42] and 4.8 for a crude CPC 

sample [33]. The purification factors for the 3D printed monoliths are in agreement with the 

reported values for commercial materials, and are independent of the initial sample purity (Table 2). 

Recovery in the elution step for the 3D printed monoliths is slightly lower than for commercial 

materials. While this is consistent with the adsorption results obtained with BSA, it further highlights 

the need to optimise the elution conditions, e.g. by appropriately modulating pH, ionic strength 

and/or flow rate of the elution buffer.  

 

4. Concluding remarks 

In this work we report a novel material formulation to produce QA monoliths in a single fabrication 

step through 3D printing technology, i.e. not requiring follow up activation and functionalization 

protocols to introduce ion exchange ligands. Optimization of the parent material composition 
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enabled overcome a number of hurdles associated with previous “one-step” 3D printable materials 

for chromatography, including improved protein binding through selection of appropriate ligand 

density, enhanced elution characteristics for higher protein recoveries, improved mechanical 

properties, more open porous microstructure to favour mass transfer within the stationary phase, 

and a more “customer-oriented” aesthetic appearance. The proposed material showed excellent 

protein binding capacity of up to 104 ± 10.6 mg/mL in batch adsorption experiments with BSA, 

comparable with commercially available QA materials [43]. 

After optimization, the QA material was tested in dynamic conditions for i) the separation of BSA and 

MYO as model proteins from a clear solution and ii) the purification of CPC from homogenized 

extracts containing cell debris, i.e. sample loaded with no clarification. This is the first demonstration 

to date that a 3D printed stationary phase can indeed enable protein separation and protein capture 

directly from solid-laden feeds. In particular, separation of BSA and MYO using a linear salt gradient 

demonstrated good reproducibility in terms of retention time and peak area for the two analysed 

proteins. The dimensions of the three dimensional gyroid were chosen to ensure reproducible and 

reliable printing process over chromatographic performance. This resulted in band broadening 

effects and poor resolution btw the two proteins due to mass transfer limitations into the 500 µm 

thick walls of the chromatographic material. We expect current limitations in the resolution of 3D 

printing technologies to be overcome in the near future, enabling fabrication of stationary phases 

with dimensions in the same order as preparative chromatography beads (50 µm). Resolution 

limitation was turned into an advantage by exploiting the large printed channels for the capture of 

CPC directly from cell-laden unclarified samples in a unit operation closely resembling expanded bed 

adsorption chromatography. The novel 3D printed QA-monolith enabled one-step capture and 

purification of CPC at food grade quality directly from a homogenised cell suspension. Also, 

purification factors observed were in line to performance observed on commercial materials for EBA 

chromatography. In contrast to EBA systems, notoriously difficult to control especially in term of 

maintaining a stable bed height [32], the 3D printed stationary phases are in monolithic format, with 
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Schoen gyroid structure reproducibly fabricated, ensuring excellent bed stability and consistency of 

results. In addition, the 3D printed monoliths enable removal of filtration and/or centrifugation steps 

for sample clarification, allowing a reduction in processing steps, processing times and costs. This is a 

key consideration, as product losses during downstream processing and purification are still the 

main cost in bioproduction.  

We believe the results in this study set in stone the concept of directly 3D printed monoliths for 

chromatography. Future improvements in printing resolution together with bespoke stationary 

phase designs optimised for specific applications will enable a new paradigm in the chromatography 

arena. 

jssc202000722-sup-0001-SuppMat.pdf 

Supporting Information 

Acknowledgements  

We would like to thank IGM resin, BASF and Arkema for their continuous support and providing us 

with free samples. We also acknowledge the use of the Cryo FIB/SEM bought with the EPSRC grant 

EP/P030564/1 and Thomas Glen for help with the image acquisition. Ursula Simon would like to 

acknowledge the School of Engineering at the University of Edinburgh for funding her PhD 

scholarship. This project was co-funded by the Industrial Biotechnology Innovation Centre (IBioIC, 

grant number 2019-1-1) and ScotBio. Sarah Teworte would like to acknowledge the School of 

Engineering at the University of Edinburgh for funding her undergraduate summer research 

placement. 

 

Conflict of interest statement: There are no conflicts of interest to declare. 

 

REFERENCES 

[1] Dolamore, F., Fee, C., Dimartino, S., Modelling ordered packed beds of spheres: The 

importance of bed orientation and the influence of tortuosity on dispersion. J. Chromatogr. A 



www.jss-journal.com Page 16 Journal of Separation Science 

 

 
This article is protected by copyright. All rights reserved. 
 

2018, 1532, 150–160. 

[2] Schure, M. R., Maier, R. S., Kroll, D. M., Davis, H. T., Simulation of ordered packed beds in 

chromatography. J. Chromatogr. A 2004, 1031, 79–86. 

[3] Fee, C., 3D-printed porous bed structures. Curr. Opin. Chem. Eng. 2017, 18, 10–15. 

[4] Fee, C., Nawada, S., Dimartino, S., 3D printed porous media columns with fine control of 

column packing morphology. J. Chromatogr. A 2014, 1333, 18–24. 

[5] Macdonald, N. P., Currivan, S. A., Tedone, L., Paull, B., Direct Production of Microstructured 

Surfaces for Planar Chromatography Using 3D Printing. Anal. Chem. 2017, 89, 2457–2463. 

[6] Fee, C. J., Dimartino, S., Huber, T., Separation Medium, WIPO Patent 2017103863A1, publ. 

date December 16, 2017. 

[7] Simon, U., Dimartino, S., Direct 3D printing of monolithic ion exchange adsorbers. J. 

Chromatogr. A 2019, 1587, 119–128. 

[8] Puzorjov, A., McCormick, A. J., Phycobiliproteins from extreme environments and their 

potential applications. J. Exp. Bot. 2020, 71, 3827–3842. 

[9] Kuddus, M., Singh, P., Thomas, G., Al-Hazimi, A., Recent Developments in Production and 

Biotechnological Applications of C-Phycocyanin. Biomed Res. Int. 2013, 2013, 1–9. 

[10] Gong, H., Beauchamp, M., Perry, S., Woolley, A. T., Nordin, G. P., Optical approach to resin 

formulation for 3D printed microfluidics. RSC Adv. 2015, 5, 3627–3637. 

[11] Ligon, S. C., Liska, R., Stampfl, J., Gurr, M., Mülhaupt, R., Polymers for 3D Printing and 

Customized Additive Manufacturing. Chem. Rev. 2017, 117, 10212–10290. 

[12] Wang, M.-M., Li, N., Ai, L.-F., Li, L., Chen, X.-L., Jia, Y.-Q., Wang, X.-S., Poly[(2-(acryloyloxy) 

ethyl]trimethylammonium chloride- co -ethylene dimethacrylate monolith on-line solid-phase 



www.jss-journal.com Page 17 Journal of Separation Science 

 

 
This article is protected by copyright. All rights reserved. 
 

extraction coupled with liquid chromatography and tandem mass spectrometry for the fast 

determination of salicylic acid in foodstuffs. J. Sep. Sci. 2018, 41, 3432–3440. 

[13] Mansour, F. R., Waheed, S., Paull, B., Maya, F., Porogens and porogen selection in the 

preparation of porous polymer monoliths. J. Sep. Sci. 2020, 43, 56–69. 

[14] Courtois, J., Byström, E., Irgum, K., Novel monolithic materials using poly(ethylene glycol) as 

porogen for protein separation. Polymer (Guildf). 2006, 47, 2603–2611. 

[15] Du, K.-F., Yang, D., Sun, Y., Fabrication of high-permeability and high-capacity monolith for 

protein chromatography. J. Chromatogr. A 2007, 1163, 212–218. 

[16] Merhar, M., Podgornik, A., Barut, M., Žigon, M., Štrancar, A., Methacrylate monoliths 

prepared from various hydrophobic and hydrophilic monomers - Structural and 

chromatographic characteristics. J. Sep. Sci. 2003, 26, 322–330. 

[17] Jungbauer, A., Chromatographic media for bioseparation. J. Chromatogr. A 2005, 1065, 3–12. 

[18] Franke, A., Forrer, N., Butté, A., Cvijetid, B., Morbidelli, M., Jöhnck, M., Schulte, M., Role of 

the ligand density in cation exchange materials for the purification of proteins. J. Chromatogr. 

A 2010, 1217, 2216–2225. 

[19] Wrzosek, K., Gramblička, M., Polakovič, M., Influence of ligand density on antibody binding 

capacity of cation-exchange adsorbents. J. Chromatogr. A 2009, 1216, 5039–5044. 

[20] Li, Y., Lee, M. L., Biocompatible polymeric monoliths for protein and peptide separations. J. 

Sep. Sci. 2009, 32, 3369–3378. 

[21] Jung, Y., Torquato, S., Fluid permeabilities of triply periodic minimal surfaces. Phys. Rev. E 

2005, 72, 056319. 

[22] Maskery, I., Sturm, L., Aremu, A. O., Panesar, A., Williams, C. B., Tuck, C. J., Wildman, R. D., 



www.jss-journal.com Page 18 Journal of Separation Science 

 

 
This article is protected by copyright. All rights reserved. 
 

Ashcroft, I. A., Hague, R. J. M., Insights into the mechanical properties of several triply 

periodic minimal surface lattice structures made by polymer additive manufacturing. Polymer 

(Guildf). 2018, 152, 62–71. 

[23] Dolamore, F., In Silico Analysis of Flow and Dispersion in Ordered Porous Media, University of 

Canterbury, Christchurch, New Zealand, 2017. 

[24] Moleirinho, M. G., Silva, R. J. S., Alves, P. M., Carrondo, M. J. T., Peixoto, C., Current 

challenges in biotherapeutic particles manufacturing. Expert Opin. Biol. Ther. 2020, 20, 451–

465. 

[25] Boi, C., Dimartino, S., Hofer, S., Horak, J., Williams, S., Sarti, G. C., Lindner, W., Influence of 

different spacer arms on Mimetic LigandTM A2P and B14 membranes for human IgG 

purification. J. Chromatogr. B 2011, 879, 1633–1640. 

[26] Silveira, S. T., De Menezes Quines, L. K., Burkert, C. A. V., Kalil, S. J., Separation of phycocyanin 

from Spirulina platensis using ion exchange chromatography. Bioprocess Biosyst. Eng. 2008, 

31, 477–482. 

[27] Liao, X., Zhang, B., Wang, X., Yan, H., Zhang, X., Purification of C-Phycocyanin from Spirulina 

platensis by Single-Step Ion-Exchange Chromatography. Chromatographia 2011, 73, 291–296. 

[28] Patil, G., Chethana, S., Sridevi, A. S., Raghavarao, K. S. M. S., Method to obtain C-phycocyanin 

of high purity. J. Chromatogr. A 2006, 1127, 76–81. 

[29] Kissoudi, M., Sarakatsianos, I., Samanidou, V., Isolation and purification of food-grade C-

phycocyanin from Arthrospira platensis and its determination in confectionery by HPLC with 

diode array detection. J. Sep. Sci. 2018, 41, 975–981. 

[30] Patel, A., Mishra, S., Pawar, R., Ghosh, P. K., Purification and characterization of C-

Phycocyanin from cyanobacterial species of marine and freshwater habitat. Protein Expr. 



www.jss-journal.com Page 19 Journal of Separation Science 

 

 
This article is protected by copyright. All rights reserved. 
 

Purif. 2005, 40, 248–255. 

[31] Niu, J.-F., Wang, G.-C., Lin, X., Zhou, B.-C., Large-scale recovery of C-phycocyanin from 

Spirulina platensis using expanded bed adsorption chromatography. J. Chromatogr. B 2007, 

850, 267–276. 

[32] Moraes, C. C., Sala, L., Ores, J. da C., Braga, A. R. C., Costa, J. A. V., Kalil, S. J., Expanded and 

fixed bed ion exchange chromatography for the recovery of C-phycocyanin in a single step by 

using lysed cells. Can. J. Chem. Eng. 2015, 93, 111–115. 

[33] Figueira, F. da S., Moraes, C. C., Kalil, S. J., C-Phycocyanin purification: Multiple processes for 

different applications. Brazilian J. Chem. Eng. 2018, 35, 1117–1128. 

[34] Amarante, M. C. A. de, Corrêa Júnior, L. C. S., Sala, L., Kalil, S. J., Analytical grade C-

phycocyanin obtained by a single-step purification process. Process Biochem. 2020, 90, 215–

222. 

[35] Boussiba, S., Richmond, A. E., Isolation and characterization of phycocyanins from the blue-

green alga Spirulina platensis. Arch. Microbiol. 1979, 120, 155–159. 

[36] Kumar, D., Dolly, Dhar, W., Pabbi, S., Kumar, N., Walia, S., Dhar, D. W., Pabbi, S., Kumar, N., 

Walia, S., Extraction and purification of C-phycocyanin from Spirulina platensis (CCC540). 

Indian J. Plant Physiol. 2014, 19, 184–188. 

[37] Feng, Y., Li, X., Wen, Y., Bu, Y., Method for Preparing High Purity Phycobiliprotein with 

Primary Column Chromatography, China 200810134122, publ. date July 16, 2008. 

[38] Moraes, C. C., da Costa Ores, J., Costa, J. A. V., Kalil, S. J., Recovery of C-Phycocyanin in the 

Presence of Cells Using Expanded Bed IEC. Chromatographia 2011, 74, 307–312. 

[39] Chen, K.-H., Wang, S. S. S., Show, P.-L., Lin, G.-T., Chang, Y.-K., A rapid and efficient technique 



www.jss-journal.com Page 20 Journal of Separation Science 

 

 
This article is protected by copyright. All rights reserved. 
 

for direct extraction of C-phycocyanin from highly turbid Spirulina platensis algae using 

hydrophobic interaction chromatography in stirred fluidized bed. Biochem. Eng. J. 2018, 140, 

47–56. 

[40] Lauceri, R., Chini Zittelli, G., Maserti, B., Torzillo, G., Purification of phycocyanin from 

Arthrospira platensis by hydrophobic interaction membrane chromatography. Algal Res. 

2018, 35, 333–340. 

[41] de Araújo, N. K., Pimentel, V. C., da Silva, N. M. P., de Araújo Padilha, C. E., de Macedo, G. R., 

dos Santos, E. S., Recovery and purification of chitosanase produced by Bacillus cereus using 

expanded bed adsorption and central composite design. J. Sep. Sci. 2016, 39, 709–716. 

[42] Bermejo, R., Ramos, A., Pilot scale recovery of phycocyanin from spirulina platensis using 

expanded bed adsorption chromatography. Chromatographia 2012, 75, 195–204. 

[43] Schmidt-Traub, H., Schulte, M., Seidel-Morgenstern, A., Preparative Chromatography. Third 

Edition, Wiley, Weinheim 2020. 

 

Figure captions 

 

Figure 1: Chemical structures of the QA-functionalised monomer AETAC (A), non-functionalised monomer DEGEEA (B) 
and supercrosslinker SR494 (C) applied in this work. 
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Figure 2: 3D printed QA-functionalised monoliths. (A) Hollow cylinder employed in batch adsorption (B) fitted into 96-
well plate allowing in-situ measurement of protein concentration using a plate reader. (C) SEM image of 3D printed QA 
material with optimal ligand density of 1.73 mmol/mL. (D, E) Cylindrical Schoen gyroid structure (F) introduced in glass 
column for protein separation. 

 

 

Figure 3: BSA adsorption onto the novel QA materials. (A) Equilibrium adsorption data together with best-fit Langmuir 
isotherm for different ligand densities (0, 0.57, 1.14, 1.73, 2.33 mmol/mL); (B) Maximum binding capacity, qmax, and 
percentage recovery during elution as a function of material’s ligand density in comparison to the previously published 
material [7]. 

 

 

Figure 4: Separation of MYO and BSA using a 1.6 mL Schoen gyroid column with 50 % porosity and 500 µm walls. Three 
consecutive runs are shown providing reproducible retention times for MYO (7.0 ± 0.1 CV) and BSA (18.7 ± 0.1 CV). Large 
fraction (36.7 ± 1.3 %) of the injected protein was observed in flow through, indicating mass transfer issues from the 
large printed channels (500 µm) into the porous printing material. 
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Figure 5: Chromatograms for CPC purification from A. platensis using 3D printed monolith with Schoen gyroid geometry 
(3 mL column volume, 50 % bed porosity, 500 µm wall thickness); A) Purification of clarified extract using an AKTA Pure 
in comparison to the custom-built (CB) liquid chromatography system; B) Comparison of CPC purification from clarified 
and crude CPC extracts on the custom-built system; C) Purification factor (A620/A280 normalised against initial sample’s 
purity) for the three chromatographic runs.  

 

TABLE 1 Langmuir best-fit parameters for the batch adsorption of BSA onto 3D printable materials with different ligand 
densities 

 

 Ligand density [mmol/mL] 

 0.57 1.14 1.73 2.33 

qmax [mg/mL]  53.5 ± 3.8 79.0 ± 3.2 104.2 ± 10.6 70.4 ± 2.0 

kD [mg/mL]  0.500 ± 0.151 0.513 ± 0.079 0.863 ± 0.270 0.181 ± 0.022 

R2 0.97 0.99 0.96 0.99 
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TABLE 2 Comparison of CPC purification performance of the novel 3D printed QA-monolith to commercial AEX resins in 
EBA mode 

 Sample Initial 
purity 

(A620/A280)  
[-] 

Purification 
factor [-] 

Recovery  
[%] 

Reference 

3D printed QA monolith Clarified  0.79 2.8 65 This work 

 
Unclarified  0.36 2.7 38 This work 

EBA: Streamline Q XL Unclarified  0.5 3.2 79 [32] 

 
 0.6 4.6 - [38] 

EBA: Streamline DEAE Clarified  0.19 4.6 - [42] 

 
Unclarified  0.6 2.7 59 [32] 

  
0.5 4.8 - [33] 

 

 

 




