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Abstract: The remotely operated vehicles (ROVs) are important to provide the technology support1

for both the traditional offshore structures and rapidly-growing renewable energy facilities during2

their full-lifecycles, such as site survey, installation, inspection, maintenance and repair. Regarding3

the motion and performance of a ROV, the understanding of its hydrodynamic properties is essential4

when exposing to the disturbances of wave and current. In this study, a numerical model is proposed5

within the frame of an open-source platform OpenFOAM. The hydrodynamics of the adopted6

ROV (BlueRov2) in its four principal degrees of freedoms (DOFs) is numerically simulated by a7

Reynolds-Averaged Navier-Stokes (RANS) solver. Meanwhile, an experimental test is carried out8

by using a novel technique on measuring the hydrodynamic forces and moments. To validate9

the numerical prediction methodologies, a set of systematic simulations of the ROV subjected10

to the disturbances caused by various flow conditions are performed. Comparing to the model11

test measurement, the numerical model proved to be reliable in offering a good estimation of the12

hydrodynamic parameters. This also indicates that the presented numerical methodologies and13

experimental techniques can be applied to other types of open-frame ROVs in quantifying the14

hydrodynamic parameters, capturing the physics of the fluid-structure interaction (FSI) and feature of15

the turbulent vorticity which are all essential for the effective control of the ROVs under the nonlinear16

flow disturbances.17

Keywords: Remotely operated vehicle; Hydrodynamic forces and moments; Numerical simulation;18

Experimental test; Turbulent flow modelling19

1. Introduction20

The remotely operated vehicles are important to deliver the services like subsea survey,21

underwater condition assessment, and data acquisition in a complex environment which are risky22

and expensive to do by human divers. The fast development of the offshore renewable industry23

also creates new demand for underwater data collection, damage and corrosion assessment for the24

offshore wind farms and subsea renewable energy facilities. However, there are challenges for ROV25

control when facing the unpredictable disturbances caused by the current and waves in its operating26

environment [1]. The model-based controllers usually require the hydrodynamic parameters of the27

ROV to build a precise dynamic model in predicting its behaviours. One of the common methods to28

investigate the hydrodynamic parameters of the vehicle is the experimental test which can be classified29

into two categories. Within the first category, substantial researches have been conducted to extend the30

towing tank principle from the ship models to the underwater vehicle identification such as the planar31
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motion mechanism (PMM) which carried out in a towing tank for seakeeping tests and other tests32

with free-running models in all degrees of freedom (DoFs) [2–5]. A free decay test is an alternative33

method used for the ROV testing [6]. Besides, a modification test method, based on the free decay test34

applying a pendulum motion instead of the spring oscillation, is proposed in Eng et al. [7,8]. In the35

second category, vehicles generate the forces and moments by their own propulsion system, rather36

than by the externally forced motions. The parameters are identified by either the least square method37

[9–11] or a grapho-analytical method [12]. A comparison between model tests employing methods38

from the above two categories was carried out for the heave freedom of degree in [13]. Although39

these methods are the most prevailing ones among all the experimental approaches, data obtained40

from above tests is not completely reliable because of the facility limitations and errors, and they are41

generally time-consuming and high cost.42

With the significant growth of the computer hardware capability in the recent decades, the43

applications of Computational-Fluid Dynamics (CFD) in the hydrodynamics study tend to become44

prevailing [14–17]. Skorpa [18] studied the drag, lift and moment history for the Merlin WR200 ROV45

model with different turbulent models in FLUENT. Numerical modelling was carried out to the RRC46

ROV and validated by a free-decaying model testing [19,20]. Suzuki et al. [21] evaluated two kinds of47

forced oscillation methods on PICASSO, in which both the steady-state and unsteady-state conditions48

were simulated considering the wall effects [22]. Generally, the simulation of a six-DoF dynamics model49

of the ROV is more challenging than that of a torpedo-shaped streamlined autonomous underwater50

vehicle (AUV) which has an analytical solution. Theoretical models are not suitable for the open-frame51

ROVs since the flow-structure interaction through the vehicle is not considered. Although there are52

consistent efforts to improve the algorithm efficiency and robust [23–26], due to its inherent complex53

structure and FSI feature, the applications of CFD in the ROV modelling are still computational54

costly and unaffordable, especially considering the modelling of thruster-hull and thruster-thruster55

interaction effects. This also leads to certain kind of simplifications adopted in the simulation practice,56

and the error discrepancies between the numerical simulation results and that of the experiment tests57

are around 20%-30%. However, the tool of CFD still plays an important role considering the limitation58

of the model test in the cost, test model scale and facility capability.59

As part of the ORCA Hub project [27,28], both experimental and numerical studies have been60

carried out to investigate the hydrodynamic performances of the ROV. In the numerical modelling, a61

CFD package OpenFOAM [29] is adopted to implement the methodology proposed in this paper. As62

an open-source solver, it is a powerful field manipulation tool offering versatile libraries and utilities63

[30]. In terms of the user-friendly customizable solvers, the object-oriented techniques of C++ allow64

the codes to closely resemble its mathematical expression and makes the top-level syntax amenable65

to further development. All these features of OpenFOAM enable it to tackle the key issues posed66

in this study like the dynamics mesh tracking and turbulent flow modelling, making it a suitable67

platform for the targeted numerical modelling. Besides, the experimental investigation of the vehicle68

was conducted in the FloWave wave and current facility [31], located at the University of Edinburgh.69

A novel test method was designed to match the requirement of the study and make the best usage of70

the FloWave facility [32]. During the test, eight tethers were applied to hold the ROV in place without71

introducing substantial interference, and each tether was equipped with a load cell to track the motions72

and rotations which is integrating with an underwater video motion capture system.73

2. Dynamic of the ROV74

In this study, BlueROV2 (Blue Robotics, Torrance, USA), a commercially available ROV is used.
The BlueROV2 depicted in Figure 1 has an open-frame structure with a dry weight of 10 kg and is 457
mm long, 338 mm wide, and 254 mm high. BlueROV2 is ideal for operations in shallow to moderate
waters with a standard 100 m depth rating and up to 300 m tether, and comprised of six T200 thrusters
together with a rugged frame and quick-swappable batteries. More details about BlueROV2 is given
by [33]. The coordinate system used in the ROV analysis is illustrated in Figure 1. To describe the
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6-DOF differential nonlinear equation of motion of an underwater vehicle, the equations given by
Fossen [34] are applied and can be expressed as

MRBv̇ + CRB (v) v + MAv̇r + CA (vr) vr + D (vr) vr + g (η) = τ (1)

in which, MRB and CRB ∈ R6×6 are the rigid body forces, MA, CA and D ∈ R6×6
represent the75

hydrodynamic forces; g (η) is the hydrostatic forces. The right-hand term τ ∈ R6×1
is the external force76

term. The hydrodynamics forces is the function of the relative velocity (vr) that between the flow and77

the vehicle.

Figure 1. The coordinate system used in the ROV analysis
78

For the BlueROV2, the metacentric height provides adequate static stability which guarantee79

the passive pitch and roll motions and leads to a small roll and pitch angle amplitude. Hence, the80

nonlinear components of the forces and moments can be considered caused by the viscous effects of81

the flow, which becomes less important as the pitch angle is small [1]. Therefore, the hydrodynamics82

behaviour in the surge, sway, heave and yaw are treated as the four principal degrees of freedoms of83

BlueRov2.84

3. Hydrodynamic Model85

The fluid dynamics model in this study is based on the Navier-Stokes equations and the continuity86

equation. Considering an incompressible Newtonian fluid, the momentum and continuity equations87

can be written as88

∂ui
∂t

+ uj
∂ui
∂xj

= −1
ρ

∂p
∂xi

+ ν
∂ui

∂xj∂xj
(2)

∂uj

∂xj
= 0 (i = 1, 2, 3) (3)

in which x is the Cartesian coordinate, t is the time, u is the velocity, p is the pressure, ν is the kinematic89

viscosity and ρ is the fluid density. Subscripts i and j are summation indexes, which represent relevant90

Cartesian components and equal to 1, 2 and 3 for three-dimension issues in this study. It should91

be noted that here and throughout this paper, a summation over the range of that index is implied92

whenever the same index appears twice in any term. In the Reynolds-Averaged Navier-Stokes (RANS)93

model employed in this study, an ensemble averaging method is applied for the unsteady turbulent94

flow modelling. The idea is that the unsteadiness in the flow is ensemble-averaged out and regarded95

as part of the turbulence. The flow variables are represented as the sum of the average and fluctuating96

term:97
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ui(xi, t) = ui(xi) + ui
′(xi, t) (4)

where the symbols (−) and (′) stand for the average and the fluctuating component, respectively.98

Repeating a series of measurement with the number of Nt samples, it can be described as99

ui (xi, t) =
1

Nt

Nt

∑
n=1

uni (xi, t) (5)

in which Nt represents the total number of independent trials, uni (xi, t) is u(xi, t) captured at the100

nth series. Adopting it to the incompressible continuity equation and substituting Equation 4 to the101

corresponding momentum equation, it eventually leads to RANS equation102

∂ui
∂t

+ uj
∂ui
∂xj

=
∂

∂xj

[
−1

ρ
Pδij + ν

(
∂ui
∂xj

+
∂uj

∂xi

)
− ui

′uj
′

]
(6)

There are three stress terms on the right-hand side: − 1
ρ Pδij is the mean pressure field; δij is the

Kronecker delta (δij = 1 if i = j and δij = 0 if i 6= j) and ν
(

∂ui
∂xj

+
∂uj
∂xi

)
represents the viscous stress

from the momentum transfer at the molecular level, ui
′uj
′ is the Reynolds stresses arising from the

fluctuating velocity field. To close the system, following the Newton’s law of viscosity where the
viscous stress is proportional to the velocity gradient, this leads to

τij = µsij = µ

(
∂ui
∂xj

+
∂uj

∂xi

)
(7)

in which µ = νρ is the dynamic viscosity of the flow. In the stress tensor matrix, the diagonal103

components are the normal stresses, and the off-diagonal components are the shear stresses. Since the104

turbulent kinetic energy k is the half trace of the Reynolds stress tensor, this gives105

k =
1
2

ρui
′ui
′ (8)

Since the isotropic stress is defined as 3
2 kδij. the deviatoric part of the stress can be found by

aij = ui
′uj
′ − 3

2
kδij (9)

The turbulent-viscosity hypothesis is introduced by Boussinesy [35] which analogy to the106

stress-strain relation for a Newtonian fluid(see Equation 7), since the turbulent stresses increase107

as the mean rate of deformation increase. Based on the turbulent-viscosity hypothesis, the turbulent108

stress can be derived as109

τij = −ui
′uj
′ = νT

(
∂ui
∂xj

+
∂uj

∂xi

)
− 3

2
kδij (10)

in which νT = νT(xi, t) refers as the turbulent or eddy viscosity. This hypothesis introduces the110

macroscopic representations of the micro-scale fluctuating flow. It offers an access to model the111

overall effects of small vortexes by correlations and meanwhile, resolve the larger eddies through112

the numerical simulation. Therefore, the computational time is dramatically reduced compared to113

the direct numerical simulation (DNS) in which the fluctuating flow and small eddies are directly114

modelled. By substituting Equation 10 into Equation 6, it gives115

∂ui
∂t

+ uj
∂ui
∂xj

=
∂

∂xj

[
νe f f

(
∂ui
∂xj

+
∂uj

∂xi

)]
− 1

ρ

∂

∂xj

(
P +

2
3

ρk
)

(11)
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νe f f (xi, t) = ν + νT (xi, t) (12)

where ν is the constant molecular viscosity and νT(xi, t) is the spatial-temporal dependent116

turbulent/eddy viscosity, and together they compose the effective viscosity νe f f (xi, t).117

The Equation 2 -12 are targeted at solving fixed mesh (Eulerian mesh) issues. However, if a118

moving structure is involved, as in this study, the computational mesh may need to move to conform119

to the motion of the rigid body. The alternative is introducing an additional treatment, e.g. treat120

the structure as an additional phase in the modelling system as in the immersed boundary method121

(IBM). In this study, the flow distribution in the computational domain and the mesh are updated122

following the motion of the structure and satisfying the adopted non-slip boundary condition on the123

structure surface. Meanwhile, the body motion is calculated based on the Newton’s 2nd law in which124

the force due to the fluid distribution variation on the structure is modelled by the pressure updated by125

Equation 11 on the rigid body surface. This indicated that the above equations require the accompany126

of a computational mesh which can cope with both the fixed Eulerian mesh and mesh following the127

body motion. This leads to the Arbitrary Lagrangian-Eulerian (ALE) form equations, which can be128

written as129

∂uTj

∂xj
= 0 (13)

∂uTj

∂t
+
(

uTj − ubj

) ∂uTj

∂xj
=

∂

∂xj

[
νe f f

(
∂uTj

∂xj
+

∂uTj

∂xi

)]
− 1

ρ

∂pT
∂xi

(14)

νe f f (xi, t) = ν + νT (xi, t) (15)

in which, uT and pT are the ensemble-averaged flow velocity and pressure, respectively. An additional130

term, ubj, is introduced in the convective term to accommodate the movement of meshes when flow131

subjecting to the motion of the body. If the nodal velocity is following the fluid velocity, i.e. ubj = uTj,132

Equation 14 is transformed to the corresponding Lagrangian form ; whereas if a static body is involved133

with fixed mesh, i.e. ub = 0 , Equation 14 convert to a Eulerian form which is same as Equation 11.134

3.1. OpenFOAM solver Validation135

In this section, the feasibility and the reliability of the OpenFOAM solver are examined at prior.136

Flow past a circular cylinder frequently serves as a classic example and benchmark in terms of flow137

separation and vortex shedding physics [36]. Besides, the flow disturbances caused by the interaction138

between a circular cylinder and the ROV will be one of the main focuses of ORCA project in following139

next stage. Therefore, the validation is carried out by using a circular cylinder subjected to the uniform140

current. In the validation, the drag coefficient from the experimental data for 40 < Re < 5× 105 and141

Schewe [37] for Re > 105, and corresponding numerical results from Stringer et al. [38] are compared142

to that predicted by the OpenFOAM solver. An appropriate turbulent model is desired in calculating143

the turbulent viscosity νT (xi, t) in Equation 15 . Hence, two classic turbulent models, i.e. k− ε and144

k−ω SST turbulent models are employed and evaluated, in which the main issues concerned is the145

drag/lift coefficient (see Equation 16 and 17) and vortex shedding frequencies that reflected by the146

Strouhal number (St).147

CD =
1
2

FD

ρu2 A
(16)

CL =
1
2

FL

ρu2 A
(17)

in which, u is the flow velocity; ρ is the fluid density; FD and FL are the drag force and the lift force,148

respectively; FD and FL is the force component in the direction of the flow velocity and the cross-flow149

direction, respectively and A is the cylinder cross-sectional area.150
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In the flow past a circular cylinder case, it is well understood that after the Reynolds number151

excess 40, the wake becomes unstable and eventually leads to a set of vortex street shedding alternately152

on either side of the cylinder at a certain frequency. This also results in the oscillation of the drag force153

together with the unsymmetrical distribution of the turbulent viscosity νT (xi, t) and vorticity (see154

Figure 2). More details about this physics can be seen in [24]. Figure 3 demonstrates the comparisons155

of CD, from which it is found that CD predicted by OpenFOAM with k − ω SST turbulent model156

generally agrees well with that of the experimental results, and the maximum relative discrepancy157

(around 13 %) is observed at Re = 5× 105. Since the drag force is the main concern in this study, the158

details of lift force comparison is not given here but can be seen in [24]. It should be pointed out that159

the success of RANS on modelling the turbulent flow largely relying on achieving the desired accuracy160

of the eddy viscosity. Since the eddy viscosity captured by k−ω SST model can satisfactorily reflect161

the macroscopic representation of the fluctuating flow field, one may agree that with the presence162

of an adverse pressure gradient, the performance of the k−ω SST is superior to that of k− ε model.163

Based on the fact that RANS solver with k− ω SST turbulent model can provide predictions fairly164

close to the experimental data within a large range of Re, the same numerical configuration will be165

employed in the following simulations.166

Figure 2. Instantaneous spatial distribution of the fully developed turbulent viscosity and vorticity
around the cylinder at Re = 106 [24]

Figure 3. Validation of the mean drag coefficient which is the function of Re [24]

4. Numerical Simulation Configurations167

In the numerical simulation, a rectangular computational domain is adopted. The length and the168

width of the computational domain are 28B and 16B respectively, where B is the characteristic scale169

of the ROV. The 3D and 2D views of the computational domains are given in Figure 4 and Figure 5,170

respectively. The CAD geometry of the vehicle is shown in Figure 6 (a) and the computational mesh is171

generated by OpenFOAM internal utility snappyHexMesh (see Figure 6(b)). A series of numerical172
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simulations target on the hydrodynamics performances of the four principal motions (surge, sway,173

heave and yaw) are conducted with the boundary conditions including:(1) a Neumann zero-gradient174

velocity boundary condition is implemented at the outlet boundary; (2) a slip boundary condition is175

applied at the top, bottom, front and back boundaries and (3) a non-slip condition is used on the body176

surface.177

Figure 4. Sketch of the 3D computational domain

Figure 5. 2D view of the domain (XY-plane) with the inlet and outlet boundaries

Figure 6. (a) The computer-aided design (CAD) model of the ROV applied in the numerical simulation
created by software SolidWorksTM; (b) Sketch of the computational domain with inlet and back
boundries

The investigations are performed at the Reynolds number ranging from 6.76× 104 to 3.38× 105
178

which corresponds to an incoming current velocity between 0.2m/s to 1.0m/s, with ρ = 1025kg/m3,179

ν = 1× 10−6m2/s and the characteristic length is 0.338 m. One may agree that all CFD work is highly180
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dependent on the mesh resolution. Therefore, for each of the four degree of freedoms, the convergence181

test against mesh resolution is performed to identify the suitable mesh configuration with a minimal182

computational cost. Wall treatment is always one of the biggest challenges raised in the turbulent183

flow simulation, which can be classified into two categories: the low-Reynolds-number (LR) models184

and high-Reynolds-number (HR) models. The low-Reynolds-number (LR) approach accompanied185

by a wall functions is targeting at the sublayer where exists a local low turbulent Reynolds number.186

One alternative to wall functions is to adopt a fine-grid configuration that allows the application of a187

laminar flow boundary condition. To reach the viscous sublayer, the normalized distance (y+ ) from188

the first mesh cell centre to body surface is supposed to be around 1, where y+ = u∗yw/νe f f . In the189

numerical practice, the desired y+ is usually obtained through consistent trials. However, the HR190

model can cope with a much larger y+ ( around 30) which integrates with a log law to estimate the191

gradient approaching the body wall. It should be noted that the first computational mesh should192

be placed either in the log-layer or the viscous sublayer but not in-between [39], since none of the193

categories can deal with the buffer layer where both viscous and Reynolds stresses are significant.194

Within certain mesh configuration, the time step size ∆t is automatically determined by using the fixed195

Courant number C0 (C0 = (u∆x) /∆t, where ∆x is the mesh size).196

5. Experiment Setup197

In this study, a new test technique was designed to quantify the hydrodynamic forces on a ROV198

in the FloWave facility. FloWave is a 25 m diameter circular tank with a total water depth of 2 m. The199

floor of the tank is buoyant and can be raised out of the water for model installation and the water200

currents can be generated from any direction of the tank(see Figure 7). More details of the FloWave201

current generation are provided in [31]. During the test, the ROV was connected to eight tethers202

to the frame at the height of 1 m from the floor (see Figure 7 (a)). The configurations of the frame203

and tethers are given by Gabl et al. [32]. The measurement instrumentation used were: (1) motion204

capturing system (MoCAP) to record the motion and rotation of the different structures, (2) load cells205

to measure the forces along the eight tethers. The MoCAP worked together with four underwater206

cameras provided by Qualisys. Knowing the position of the ROV, the mounting points (connection of207

the tether to the ROV) can be calculated as the virtual points. This allowed the direction of the force208

vector can be accurately determined and three-dimensional force components to be resolved. The209

working conditions tested in the model test can be seen in Table 1. For the surge drag measurement,210

the velocities examined was ranging from 0.2m/s to 1.0 m/s with a increment of 0.2m/s, and in both211

the forward and backwards surge directions. For the sway drag, a smaller velocity range which up to212

0.6m/s was tested, and also in the forward and backwards sway directions.213

Table 1. Experimental test working conditions

Surge Sway

Flow velocity [m/s] [0.2 - 1.0] [0.2 - 0.6]

Direction [degree] 180/-180 -90/90

Capture time [s] 512 512
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Figure 7. (a) Set up of the experiment in the FloWave circular tank; (b) Tethers equipped with load cells
attached to the ROV

6. Results Discussion214

The physics and quantified hydrodynamic forces on a ROV from the numerical simulation and215

experimental test are analysed and compared in this section. Figure 8 (a) reveals the instantaneous216

pressure distribution on the vehicle and the streamlines around the vehicle. Higher pressure is217

observed at the front of ROV while the wake at the rear creates a low-pressure region. Correspondingly,218

a low velocity area at the front of the ROV is captured which can be seen from Figure 8 (b).219

Figure 8. (a) Velocity streamlines around the vehicle and pressure on the vehicle; (b) Velocity field of
the vehicle from the numerical simulation

The flow separations and flow interactions between different parts of the vehicle are exhibited.220

There are three individual shedding first generated by the left, right frame and centre structure of the221

vehicle, respectively. Strong interactions among them are observed with the development of the flow222

which eventually results in a single shedding moving towards the outlet. The development of the223

turbulent vortices is captured which is triggered by the flow separation at the wake of the vehicle224

(see Figure 9 and Figure 10). The isosurfaces in Figure 9 are visualized vortices using Q criterion and225

coloured with stream-wise velocities. The separated flow and the corresponding shedding significantly226

alters the flow pattern at the wake of the ROV which leads to the non-linear and fluctuating drag227

forces acting on the ROV.228
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Figure 9. The isosurfaces vorticites structures coloured with stream-wise velocities

Figure 10. The interactions between flows generated by different parts of the vehicle

The instantaneous velocity field of the vehicle under the yaw motion is demonstrated in Figure 11.229

Three sets of individual vortex shedding are formed at the rear of the vehicle, but due to the inlet flow230

direction is not aligned with the vehicle movement direction in the rotational motion, the interactions231

between the three sets of the shedding are not as strong as that in the translational motion.232

Figure 11. Top view of the instantaneous velocity flow under the yaw motion of the ROV

Figure 12 demonstrates the time series of surge drag force exerting on the ROV under the flow233

velocities ranging from 0.2 m/s to 1.0 m/s. The surge and sway drag forces measured by the test234

are compared to the numerical results in Figure 13 and Figure 14, respectively. For the surge drag,235

it can be observed that a good agreement is achieved throughout the velocity range. However, the236

discrepancy between the numerical and experimental result is increasing with the increase of the237

velocity acting on the ROV. Similarly, the same trend is exhibited in the sway drag comparison, with238

the maximum discrepancy appears at the largest velocity tested (0.6m/s). The major sources of errors239



Version August 31, 2020 submitted to J. Mar. Sci. Eng. 11 of 15

in the numerical simulations include the neglect of the geometry details, such as attached propellers240

and tether. Other error sources may the differences between the turbulent flow generated by the241

turbulent model and the reality in the FloWave.242

The damping coefficients for each direction are obtained by using a second-order polynomial fit243

(see Figure 15), and the resulting drag coefficients of the vehicle in its four principal DOFs are given in244

Table 2. As exhibited in Figure 15, the largest drag is observed in the heave motion due to its largest245

frontal area in the X-Y plane. Meanwhile, the drag force in the sway motion is slightly larger than that246

in the surge motion since the frontal area in the Y-Z plane is smaller than that of X-Z plane.247
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Figure 12. Surge force time series under the current velocity ranging from 0.2m/s to 1.0m/s
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Figure 13. Comparison of surge force between the numerical and experimental results
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Figure 14. Comparison of sway force between the numerical and experimental results
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Figure 15. Surge, sway and heave drag force under various velocities

Table 2. Table to test captions and labels

Damping coefficient Surge Sway Heave Yaw
KL KQ KL KQ KL KQ KL KQ

Values 1.3125 38.169 9.1435 129.6607 2.015 243.25 0 4.86

7. Conclusion248

In this study, a numerical model within the frame of OpenFOAM is proposed, which is capable249

of simulating multi DOFs motions and turbulent flow problems. We investigated the hydrodynamic250

behaviour of the BlueROV2 which is complex with an open frame structure. The accuracy and reliability251

of the numerical model are validated by the experiential test, in which a new test method targeted at252

the force and moment measurement of the vehicle is designed. With the hydrodynamic coefficients253

found by the numerical simulation, a more robust and stability control system can be designed in the254

dynamic positioning of ROV when facing the combined effect of current and turbulence. Besides, the255

hydrodynamic disturbances acting on the vehicle can be treated as external forces within the nonlinear256

ROV dynamic and propulsion model to improve its disturbance rejection performance. The good257

agreement with the experimental result builds the confidence of applying the proposed methodologies258

to more complex working scenarios. For instance, the marine renewable energy facilities are typically259

deployed in the shallow water environments where is characterised by strong hydrodynamic forces260
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involving both wave and current. In future work, the disturbances triggered by the presence of the261

flow surface should be tracked where a two-phase solver is required. Furthermore, the modelling of262

the nonlinear disturbances considering the direction between the wave and current is desired too.263
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Abbreviations272

The following nomenclature and abbreviations are used in this paper:273

274

D Cylinder diameter
U Incoming flow velocity
C0 Courant number
CL,CD Drag and lift coefficients
FL, FD Fluid drag and lift force
Nt Number of independent samples
Re Reynolds number
St Strouhal number
U Assemble-average velocity of the flow
fs Vortex-shedding frequency
u(xi, t) Velocity at the nth series
y+ Normalised distance
yw Distance from the centre of the first mesh cell to the wall
d Water depth
ui
′uj
′ Reynolds stresses

u∗ Friction velocity
νT(xi, t) Turbulent or eddy viscosity
τw Wall shear stress
4x Mesh size
k Turbulent kinetic energy
ε Turbulent dissipation
κ Von Karman constant
µ Dynamic viscosity
ν Constant molecular viscosity
ρ Flow density
ω Specific turbulent dissipation rate
ALE Arbitrary Lagrangian-Eulerian
AUV Autonomous Underwater Vehicle
DNS Direct Numerical Simulation
DOF Degree of freedom
FSI Fluid-Structure Interaction
FVM Finite Volume Method
HR High Reynolds number wall treatment
LR Low Reynolds number wall treatment
MoCAP Motion capturing system
QALE Quasi-Arbitrary-Lagrangian-Eulerian
RANS Reynolds-Averaged Navier-Stokes equations
ROV Remotely Operated Vehicle
SST Shear-Stress-Transport model
VIV Vortex Induced Vibration
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