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Abstract 9 

Discrete element modeling (DEM) of polydisperse granular materials is significantly more 10 

computationally expensive than modeling of monodisperse materials as a larger number of particles is 11 

required to obtain a representative elementary volume, and standard contact detection algorithms 12 

become progressively less efficient with polydispersity. This paper presents modified contact-detection 13 

and inter-processor communication schemes implemented in LAMMPS which account for particles of 14 

different sizes separately, greatly improving efficiency.  15 

This new scheme is applied to the inertial number (𝐼), which quantifies the ratio of inertial to confining 16 

forces. This has been used to identify the quasi-static limit for shearing of granular materials, which is 17 

often taken to be 𝐼 = 10−3. However, the expression for the inertial number contains a particle diameter 18 

term and therefore it is unclear how to apply this for polydisperse media. Results of DEM shearing tests 19 

on polydisperse granular media are presented in order to determine whether 𝐼 provides a unique quasi-20 

static limit regardless of polydispersity and which particle diameter term should be used to calculate 𝐼.  21 

The results show that the commonly used value of 𝐼 = 10−3 can successfully locate the quasi-static 22 

limit for monodisperse media but not for polydisperse media, for which significant variations of 23 

macroscopic stress ratio and microscopic force and contact networks are apparent down to at least 𝐼 =24 

10−6. The quasi-static limit could not be conclusively determined for the polydisperse samples. Based 25 

on these results, the quasi-staticity of polydisperse samples should not be inferred from a low inertial 26 

number as currently formulated, irrespective of the particle diameter used in its calculation.   27 
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Introduction 28 

Polydisperse granular materials (i.e., those containing a range of particle sizes) occur in many physical 29 

and industrial settings, such as geomaterials, avalanches and landslides, crushing of mining ores and 30 

food processing. Often the range of particle sizes in such systems covers several orders of magnitude. 31 

For example, the granular filter material used to construct the Bennett Dam in Canada contains particles 32 

ranging from 0.08 to 75 mm [1]. Such a range of length scales presents significant computation 33 

challenges to the discrete element method (DEM), typically used to model such systems. These 34 

challenges reflect the fact that in polydisperse systems (i) a larger number of particles is required to 35 

obtain a representative elementary volume (REV) than for a monodisperse system and (ii), the standard 36 

contact detection algorithms used in such modeling can become progressively less effective with 37 

increasing particle size ratio. 38 

While growing computational power has allowed effective investigation of increasingly polydisperse 39 

systems [2-4], and algorithmic enhancements in contact detection [5,6] have improved the efficiency of 40 

such simulations, there remain challenges. This remains particularly true for simulations requiring long 41 

time scales. Many physical processes and standard laboratory tests such as geomechanical element 42 

testing involve extremely low strain rates imposed over a long time period and it can generally be 43 

assumed that quasi-static shearing occurs. These conditions would be impractical to replicate in a DEM 44 

simulation of reasonable computational cost, so the simulated strain rates are artificially increased by 45 

orders of magnitude. Correspondence between the simulations and reality is maintained by loading the 46 

granular material quasi-statically, i.e., the loading occurs sufficiently slowly that inertial effects can be 47 

neglected. In order to identify the boundary between the quasi-static and inertial or dense-flow regimes, 48 

the dimensionless inertial number, 𝐼 =  𝜀̇𝑑√
𝜌

𝑝
 is used, where 𝜀̇ is the shear rate, d is particle diameter, 49 

𝜌 is particle density and 𝑝 is the mean confining stress [2, 3]. The inertial number represents the ratio 50 

of inertial to confining forces, and as 𝐼 → 0 the flow regime tends to the quasi-static limit. Radjai [4] 51 

states that “For a confining pressure 𝑝 (counted positive for compressive stresses) and particles of 52 

average diameter 𝑑, the contact forces of static origin are of the order of 𝑓𝑠 = 𝑝𝑑2... At the same time, 53 
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for a shear strain rate 𝜖�̇� , the time scale of the flow is Δ𝑡 = 𝜖̇
𝑞
−1 and thus the order of magnitude of the 54 

impulsive forces is given by the momentum per unit time 𝑓𝑖 = 𝑚𝑑𝜖�̇�/Δ𝑡, where 𝑚 is the average 55 

particle mass. In the quasi-static limit, the condition 𝑓𝑠 ≫ 𝑓𝑖 implies 𝐼 ≡ 𝜖�̇�√
𝑚

𝑝𝑑
≪ 1”. Andreotti et al. 56 

[5] explain that 𝐼 can be interpreted as the ratio between two timescales: 𝐼 =
𝑡𝑚𝑖𝑐𝑟𝑜

𝑡𝑚𝑎𝑐𝑟𝑜
, where 𝑡𝑚𝑖𝑐𝑟𝑜 =57 

 
𝑑

√𝑝 𝜌𝑑⁄
 , representing the rate of microscopic rearrangements of particles subject to a pressure 𝑝 and and 58 

𝑡𝑚𝑎𝑐𝑟𝑜 =  
1

�̇�
, representing the macroscopic shear rate. In the quasi-static regime, macroscopic 59 

rearrangements can be considered to occur very slowly in comparison with the microscopic 60 

rearrangements.  61 

Based on the empirical assessment of 2D DEM simulation results of plane shear tests, da Cruz et al. [2] 62 

set the practical limit of the quasi-static regime at 𝐼 ≤  10−3. Considering conditions at the critical state 63 

in 3D DEM simulations of geotechnical element testing, Perez et al [3, 6] found the limit at 𝐼 ≤ 64 

7.9× 10−5. 65 

The above work has been influential in improving the quality of DEM simulations for granular materials 66 

under quasi-static conditions, in that it is now relatively common to set shear rates so that 𝐼 ≤  10−3 or 67 

𝐼 ≤  10−4. However, the use of a single particle diameter, 𝑑, in the calculation of 𝐼 suggests a 68 

monodisperse material. In reality many granular materials, including most geomaterials, are 69 

polydisperse. An ideal definition of inertial number would be able to identify a unique quasi-static limit 70 

regardless of the particle size distribution of the material under shear. The selection of an appropriate 71 

diameter term for use in the calculation of inertial number is required to define such an inertial number. 72 

Apart from the work of Rognon et al. [7], who proposed a packing fraction-weighted inertial number to 73 

account for granular flows involving discs of different diameter to account for segregation, there has 74 

been very little work to examine the effectiveness of inertial number in defining the quasi-static limit 75 

for polydisperse materials.  76 

To provide access to the low strain rates and long time scales required to address the question of where 77 

the effective inertial regime lies in polydisperse systems, this paper first addresses an improved contact 78 
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detection method implemented in the popular molecular dynamics code LAMMPS [8]. A series of DEM 79 

triaxial compression tests is then carried out at varying shear rates on materials with varying degrees of 80 

polydispersity using the new contact detection method. Analysis of a selection of preliminary results 81 

allows the validity of the previously proposed limits for quasi-static behavior to be examined using 82 

various diameter terms to calculate the inertial number.  83 

Methodology 84 

Modified DEM Model 85 

DEM simulations were carried out using a modified version of the open-source DEM code Granular 86 

LAMMPS [8]. In order to improve efficiency when simulating highly polydisperse materials, the 87 

contact detection and inter-processor communication algorithms in LAMMPS were modified from the 88 

existing link-cell method [8] to a new method termed the hierarchical stencil method, which is 89 

conceptually similar to the hierarchical grid methods used in MercuryDPM [9, 10] but utilizes the 90 

existing LAMMPS stencil capabilities developed by in ’t Veld et al. [11]. A brief outline of the 91 

modification is given here; full details of the implementation and parametric studies are available at 92 

[12]. 93 

The existing LAMMPS contact detection is a combination of the widely-used Verlet neighbor list and 94 

link-cell methods [8]. In DEM simulations, Verlet neighbor lists store all pairs of particles which are 95 

within a distance 2rskin of each other, where rskin is the “skin distance”, as defined in Figure 1. The 96 

additional skin distance means the neighbor list must be constructed intermittently (e.g., when any 97 

particle has moved a distance of rskin/2 since the last rebuild). At each intermediate timestep, only the 98 

particle pairs on the neighbor list are checked for contact; where contact exists, the force is calculated. 99 

To avoid brute-force construction of the neighbor list, the link-cell method is used. A regular grid of 100 

cells is overlaid on the DEM domain and, for each particle, a subset of link-cells are searched to create 101 

the neighbor list. For example, in Figure 1 the link-cell length is 𝑟𝑐𝑒𝑙𝑙 =  𝑟𝑚𝑎𝑥 +  𝑟𝑠𝑘𝑖𝑛. Considering the 102 

green particle in Figure 1, the neighbor list is constructed by checking the ‘home’ link-cell plus 103 

surrounding link-cells within 2𝑟𝑐. The list of cells to be checked is stored in a pre-computed stencil [11].  104 



5 

 

LAMMPS implements a standard approach of domain decomposition with message passing via the 105 

message passing interface (MPI) in parallel. This means that particles are “owned” by a given MPI task 106 

dependent on their position. In order that all relevant interactions may be located, a given local domain 107 

must obtain information on particles in adjoining regions. Communication of ghost particles within a 108 

“halo” of cells with dimension 𝑟ℎ𝑎𝑙𝑜 = 2𝑟𝑐 is performed to fulfil this requirement, as shown in Figure 109 

2.  110 

The Verlet/link-cell method is highly efficient for monodisperse packings of particles. However, as the 111 

packings considered become increasingly polydisperse, the efficiency of the method reduces [12]. 112 

Consider a granular system with two types of particle having radii 𝑟𝑠 and 𝑟𝑙  (for small and large). This 113 

introduces three different interaction cut-off ranges: 𝑟𝑐
𝑠𝑠, 𝑟𝑐

𝑠𝑙, and 𝑟𝑐
𝑙𝑙. In principle, one should choose 114 

the cell width to be 𝑟𝑐𝑒𝑙𝑙  = 2𝑟𝑐
𝑙𝑙 to ensure all large–large interactions are captured. However, the 115 

resulting cell size will necessarily drag into the search very many small–large and small–small pairs 116 

well beyond their respective cut-offs. This is inefficient and becomes more inefficient as the ratio 𝑟𝑙 /𝑟𝑠   117 

increases. Similarly, the communication halo will be of dimension 𝑟ℎ𝑎𝑙𝑜  = 2𝑟𝑐
𝑙𝑙.  Therefore, as the link-118 

cell and halo sizes are both based on the largest particle, for polydisperse packings many more particle 119 

pairs must be considered in neighbor list construction and inter-processor communication than for 120 

monodisperse packings.  121 

The new hierarchical stencil method overcomes this limitation as follows: 122 

• Particle types are allocated based on particle radius; 123 

• Cell lists are instantiated for each particle type. The sizes of the link-cells are based on the 124 

largest particle of each type in a similar way to Ogarko & Luding [9]. For example, for a 125 

bidisperse system, two particle types and two cell lists with sizes 𝑟𝑐
𝑠 and 𝑟𝑐

𝑙 are instantiated.   126 

• Interactions between particles of the same type are identified using a stencil within the 127 

appropriate cell list as shown schematically in Figure 3 for a bidisperse system.  128 

• For interactions between two particles of different types, particle i is located within the cell list 129 

of the j-type particles. An appropriate stencil is then used to perform the neighbor list 130 
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construction in the j-type cell list. The most efficient way to locate particles is using a one-way 131 

search which identifies potential small–large pairs by considering only small particles and using 132 

the large particle cell list to search for interactions, and using a symmetric stencil in the large 133 

cell list (Figure 3b) to examine large neighbors [12].  134 

• in ’t Veld et al. [11] improved the existing LAMMPS inter-processor communication by 135 

introducing multiple halos for different interaction types. For a bidisperse system the halo width 136 

is 𝑟ℎ𝑎𝑙𝑜
𝑠𝑙  for small particles, and 𝑟ℎ𝑎𝑙𝑜

𝑙𝑙  for large particles, where for example 𝑟ℎ𝑎𝑙𝑜
𝑠𝑙 =  𝑟𝑐

𝑠 +  𝑟𝑐
𝑙 as 137 

shown in Figure 4. This is sufficient to allow identification of all potential pairs. Potential 138 

small–small pairs may be located on the basis of 𝑟ℎ𝑎𝑙𝑜
𝑠𝑠  . In addition, a significant efficiency 139 

saving can the made as all potential small–large pairs are located by examining owned small 140 

particles, meaning no small ghost particles beyond 𝑟𝑐
𝑠𝑠 are required. The ghost cut-off distance 141 

for large particles is unchanged at 𝑟ℎ𝑎𝑙𝑜
𝑙𝑙  , and potential large–large pairs are identified as before. 142 

• The discussion thus far has focused on bidisperse systems. Generalization of the scheme to 143 

polydisperse systems is straightforward. A number of cell lists of varying size are selected and 144 

particle i is assigned a type based on the smallest cell for which 𝑟𝑖 + 𝑟𝑠𝑘𝑖𝑛 ≤  𝑟𝑐. The number 145 

and size of cell lists must then be selected. Previous studies [13] suggest this is strongly 146 

dependent on the particle size distribution for the problem at hand, and no general law is 147 

available to decide without testing. However, for the continuous polydisperse systems 148 

simulated here it was found that two or three cell lists with a logarithmic size spacing was 149 

optimal [12]. This is in contrast to the findings of Krijgsman et al. [13] for the hierarchical grid 150 

method, highlighting that although the two schemes are conceptually similar, important 151 

differences in implementation exist.  152 

More detail on the classes of the C++ implementation in LAMMPS are given in [12]. The 153 

implementation was validated using the analytical solution developed for the failure stress ratios in a 154 

face-centered cubic assembly of uniform rigid spheres [14] in which multiple particle types were 155 

assigned. A further validation was carried out by comparing the results of triaxial compression 156 

simulations using 74504 particles to the existing link-cell contact detection schemes. The variation in 157 
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coordination number and stress ratio at the critical state were found to be a fraction of a percent, 158 

representing rounding errors accumulated due to the neighbor lists being assessed in a different order 159 

with the different schemes. 160 

The speedup of the hierarchical stencil method over the link-cell method improves with increasing size-161 

ratio. For size-ratios of 𝑟𝑚𝑎𝑥/𝑟𝑚𝑖𝑛 = 10, speedups were at least 10, and for 𝑟𝑚𝑎𝑥/𝑟𝑚𝑖𝑛 = 100, speedups 162 

of up to 400 versus the existing link-cell method without communication improvements were obtained 163 

[12]. The hierarchical stencil also scales well to at least 768 processors, with scaling being greatly 164 

improved by the interprocessor communication improvements [12]. 165 

DEM Simulations 166 

A total of 76 DEM simulations of constant mean stress triaxial tests were carried out. Seven different 167 

polydisperse particle size distributions (PSD) were simulated, as shown in Figure 5. Samples of series 168 

“A” have an equal volume of particles per log diameter bin whereas samples of series “B” have an equal 169 

volume of particles per linear diameter bin. Series A therefore have relatively more fine particles. The 170 

number of particles in each sample is presented in Table 1. These were selected on a trial and error 171 

basis, taking care to ensure that an REV was achieved for each sample so that the sample responses 172 

with respect to I are meaningful. Unfortunately no clear relationship can be established between grading 173 

and number of particles for an REV. A conservative timestep of 7.5 × 10−8 s was used in all 174 

simulations, calculated using ∆𝑡 = 0.1 √
𝑚𝑚𝑖𝑛

𝐾𝑚𝑎𝑥
 where 𝑚𝑚𝑖𝑛 is the minimum particle mass and 𝐾𝑚𝑎𝑥 is 175 

the maximum contact stiffness [15] calculated using a 2% particle overlap (actual overlaps in the 176 

simulations at no point exceeded 1%).  177 

In each test the particles were initially generated in a random, non-touching cloud, before being 178 

isotropically compressed to 𝑝′ = 100 𝑘𝑃𝑎. A simplified Hertz-Mindlin contact model was used with 179 

shear modulus G = 29 GPa and Poisson’s ratio ν = 0.2. The initial interparticle friction coefficient of μ 180 

= 0.15 was used during compression to create an initially dense packing configuration. Following 181 

isotropic compression, the friction was set to μ = 0.3 and the sample allowed to equilibrate. During 182 

shearing, the mean normal stress was maintained at 𝑝′ = 100 𝑘𝑃𝑎 to allow a constant value of I to be 183 
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maintained [3]. For each PSD a series of tests were carried out in which the axial shear rate, 𝜀1̇, was 184 

varied to impose different values of inertial number calculated using the maximum particle diameter, 185 

𝐼𝑑𝑚𝑎𝑥 =  𝜀1̇𝑑𝑚𝑎𝑥√
𝜌

𝑝
, ranging from 𝐼𝑑𝑚𝑎𝑥 =  5 × 10−3 to 𝐼𝑑𝑚𝑎𝑥 =  1 × 10−5 for samples with χ = dmax 186 

/ dmin = 1.2 and 5, and 𝐼𝑑𝑚𝑎𝑥 =  5 × 10−3 to 𝐼𝑑𝑚𝑎𝑥 =  1 × 10−6 for samples with χ = 10 and 20. 𝐼𝑑𝑚𝑎𝑥 187 

was selected as the default inertial number as it gives the largest value of I. 𝐼𝑑𝑚𝑎𝑥 =  1 × 10−6 proved 188 

to be the slowest simulation which could be practically carried out: to shear to 𝜀1 = 2% at this rate, 189 

sample A20 required around 480 hours using 180 cores and B20 required 288 hours using 72 cores on 190 

the Cirrus HPC facility (http://www.cirrus.ac.uk/). To reduce 𝐼𝑑𝑚𝑎𝑥 by a further order of magnitude 191 

would have been computationally infeasible.  192 

Results and discussion 193 

Plots of axial strain against stress ratio 𝜂 =  
𝑞

𝑝
, where q is the deviatoric stress, volumetric strain 𝜀𝑣 and 194 

mechanical coordination number 𝑍𝑚𝑒𝑐ℎ (the average number of contacts per stress-transmitting 195 

particle) for simulations with 𝐼𝑑𝑚𝑎𝑥 =  1 × 10−3 are shown in Figures 6 to 8. These strains are 196 

sufficient to allow the effect of I on material behavior to be determined in what Roux [16] called Regime 197 

2, in which particle rearrangements control the macro-scale quasi-static response. At this fixed inertial 198 

number, 𝜂 and |𝜀𝑣| increase while 𝑍𝑚𝑒𝑐ℎ decreases with increasing χ. 199 

Variation of sample response with Idmax 200 

Figure 9 shows the stress ratio at 𝜀1 = 2% with varying 𝐼𝑑𝑚𝑎𝑥 for all samples. The stress ratios are 201 

normalized by their values at 𝐼𝑑𝑚𝑎𝑥 =  1 × 10−3, which are shown on Figure 6. The most uniform 202 

sample, A1.2, shows approximately constant values at 𝐼𝑑𝑚𝑎𝑥 ≤  1 × 10−3. For all other samples the 203 

stress ratio reduces with inertial number with no sign of a plateau in values at 𝐼𝑑𝑚𝑎𝑥 =  1 × 10−6, most 204 

significantly for sample B20 for which 𝜂 =  0.846 𝜂(1𝑒−3). Interestingly, the trends do not exactly 205 

follow χ; most notably, A10 shows more variation with 𝐼𝑑𝑚𝑎𝑥 than A20. Figure 10 shows normalized 206 

values of solid packing fraction ϕ at 𝜀1 = 2%. Apart from the near-monodisperse A1.2, all samples 207 

show an increase in packing fraction as the inertial number reduces, although the magnitude of this 208 

http://www.cirrus.ac.uk/
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change is less significant than for the stress ratio. In contrast, mechanical coordination number (Figure 209 

11) shows a similar trend regardless of the particle size distribution, with a small increase in normalized 210 

values as inertial number reduces. 211 

Further insight into changes in the stress-transmitting fabric of the sample showing the greatest variation 212 

in 𝜂 with 𝐼𝑑𝑚𝑎𝑥, B20, is given in Figures 12a and b and Figure 13a, which respectively show the 213 

probability density functions of normal contact force and the relative frequency distribution of 214 

connectivity (number of stress-transmitting contacts per particle). In Figure 12a and b it can be seen 215 

that the force network tends to become more inhomogeneous as the inertial number increases 216 

(resembling the increasing force inhomogeneity found by Voivret et al. [17] in 2D and Mutabaruka et 217 

al. [18] in 3D with increasing polydispersity). This suggests that at higher inertial numbers the deviatoric 218 

stress-transmitting strong-force network is more dominant, which explains the higher stress ratios at 219 

higher inertial numbers. Despite the relatively small changes in mechanical coordination number 220 

(Figure 11), the number of contacts per particle shows significant differences between samples sheared 221 

with different inertial numbers (Figure 13a). The more slowly a sample is sheared, the fewer relatively 222 

unstable particles with C = 2 or 3 or highly connected particles with C ≥ 18 are present. However, there 223 

are more particles with 4 ≤ C ≤ 17 when inertial numbers are low. In contrast, the near-monodisperse 224 

sample A1.2 has almost indistinguishable force and contact distributions for all samples with 𝐼𝑑𝑚𝑎𝑥 ≤225 

 1 × 10−3 as shown in Figure 12c and Figure 13b. Considering both macro and micro-scale results it 226 

can be concluded that a true quasi-static limit has not been reached for the polydisperse samples with 227 

χ ≥ 5. For frictional particles, the minimum number of contacts for static mechanical stability is 4 [19], 228 

and therefore the number of particles with four or more contacts can be taken as a measure of quasi-229 

staticity [3, 20]. This was termed the non-rattler fraction fNR by Bi et al. [21] and is plotted against 230 

inertial number normalized by values at 𝐼𝑑𝑚𝑎𝑥 =  10−3 in Figure 14a and as raw values in Figure 14b. 231 

Two features to note are (i) more polydisperse samples have a much lower fNR (i.e., a greater proportion 232 

of rattlers) and (ii) fNR reduces with 𝐼𝑑𝑚𝑎𝑥 for the more polydisperse samples. Shen and Sankaran [22] 233 

demonstrated that at higher strain rates the coordination number reduces but the size of groups of 234 

interconnected particles (analogous to the non-rattlers) increases, similar to the trend seen here. Large 235 



10 

 

numbers of rattlers will naturally be present in all highly polydisperse materials. It is possible that at 236 

inertial numbers around the previously defined quasi-static (monodisperse) limit (𝐼 =  10−3) these 237 

rattlers are more able to join and stabilize buckling force chains [23, 24] than at either higher or lower 238 

inertial numbers. This would account for the higher stress ratio and packing fraction at inertial numbers 239 

close to the monodisperse limit. These rattlers would be the smaller particles, which would be 240 

“captured” by the larger particles upon force chain buckling [25]. Interestingly, at 𝐼𝑑𝑚𝑎𝑥 =  5 × 10−3 241 

(above the usual definition for the quasi-static limit) the non-rattler fraction and stress-ratio are both 242 

higher, suggesting that this rattler “capturing” mechanism is mainly found below the monodisperse 243 

quasi-static limit. However, the relationship between rattlers and quasi-staticity requires further study.  244 

 Alternative definitions of inertial number 245 

Figure 15 presents the variation of normalized stress ratio for the series B tests with inertial number 246 

where two alternative definitions of inertial number are used: (i) 𝐼𝑑50 =  𝜀1̇𝑑50√
𝜌

𝑝
, where 𝑑50 is the 247 

median particle diameter (for which 50% of particles by volume are smaller) and (ii) 𝐼�̅� = 𝜀1̇ �̅�√
𝜌

𝑝
, 248 

where �̅� =  
∑ (𝑑𝑖 𝑉𝑝,𝑖)

𝑁𝑚𝑒𝑐ℎ
𝑖=1

∑ 𝑉𝑝,𝑖
𝑁𝑚𝑒𝑐ℎ
𝑖=1

 , 𝑁𝑚𝑒𝑐ℎ is the number of particles with two or more contacts, 𝑑𝑖 is the 249 

diameter of particle i and 𝑉𝑝,𝑖 is the volume of particle i. 𝐼�̅� takes a form similar to that proposed by  250 

Rognon et al. [7] for bidisperse granular flows. For both 𝐼𝑑50 and 𝐼�̅�, there is a similar trend of reducing 251 

𝜂 with inertial number, but the minimum inertial numbers are lower for 𝐼𝑑50 and 𝐼�̅� than for 𝐼𝑑𝑚𝑎𝑥.  252 

As the quasi-static limit has not been reached for samples with χ ≥ 5, the most effective inertial number 253 

for determining this limit cannot be established. As explained in the Introduction, the fundamental 254 

concept of inertial number is a ratio between the impulsive forces and the contact forces of static origin 255 

[4]. For a polydisperse granular material, the largest possible inertial number, as currently defined, 256 

requires maximizing the order of magnitude of the impulsive forces by using the largest particle 257 

diameter and mass in its calculation, while minimizing the contact forces of static origin by using the 258 

smallest particle diameter. In that ‘worst possible’ case, the inertial number would be 𝜒𝐼𝑑𝑚𝑎𝑥. 259 

Therefore, the current definition of inertial number does not permit differences in inertial number of 260 
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more than three orders of magnitude compared to the uniform case, irrespective of the definition of 261 

particle diameter adopted. Hence the inertial number, as currently defined, is not appropriate for locating 262 

the quasi-static limit for polydisperse granular materials.  263 

Conclusions 264 

Particulate simulations of continuously polydisperse granular materials with χ = dmax / dmin = 1.2 to 20 265 

were carried out using a DEM code which was modified for increased efficiency with polydisperse 266 

media. This was achieved by introducing a hierarchy of cell lists and improved interprocessor 267 

communication for particles of different diameter.  In order to investigate whether the quasi-static limit 268 

is the same for granular materials regardless of their particle size distribution, the polydisperse samples 269 

were sheared under triaxial compression to 𝜀1 = 2% with inertial numbers calculated using the 270 

maximum particle diameter ranging from 𝐼𝑑𝑚𝑎𝑥 =  5 × 10−3 to 𝐼𝑑𝑚𝑎𝑥 =  1 × 10−6. From the results 271 

the following conclusions can be drawn: 272 

• For a near-monodisperse particle size distribution (χ = 1.2) the quasi-static limit was found at 273 

approximately 𝐼𝑑𝑚𝑎𝑥 ≤  1 × 10−3, in agreement with previous studies [2]. 274 

• For the more polydisperse distributions, the quasi-static limit was not found even at 𝐼𝑑𝑚𝑎𝑥 =275 

 1 × 10−6 and, in general, more polydisperse distributions showed a greater reduction in stress 276 

ratio and more homogeneous force and contact networks with a reduction in inertial number.  277 

• More polydisperse distributions have more rattlers and the proportion of rattlers increases as 278 

inertial number reduces below 𝐼𝑑𝑚𝑎𝑥 =  1 × 10−3. These rattlers may be less likely to join and 279 

stabilize force chains at low inertial numbers, leading to a lower stress ratio.  280 

• Definitions of inertial number using alternative diameter definitions, for example the median 281 

particle diameter, 𝐼𝑑50, or a volume-weighted diameter, 𝐼�̅�, are also unable to determine a 282 

unique quasi-static limit regardless of particle size distribution.  283 

As currently defined, the inertial number is not appropriate for locating the quasi-static limit for 284 

polydisperse granular materials. Further work is required to determine where the quasi-static limit lies 285 

for polydisperse media and to establish whether the inertial number could be somehow adapted to find 286 
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this limit accounting for polydispersity. As both computational resources increase in power and further 287 

algorithmic improvements can be identified, it is hoped that future work will be able to access more 288 

highly polydisperse systems at yet smaller inertial numbers. Such simulations should be able to identify 289 

more exactly where the limiting inertial number lies. 290 
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Sample 

name 

Distribution 

type 

χ = dmax / 

dmin 

Number of 

particles 

Initial 

packing 

fraction, ϕ0 

Initial 

coordination 

number, Z0 

Initial 

mechanical 

coordination 

number, 

Zmech0 

A1.2 Log-Linear 1.2 21052 0.604 5.23 5.43 

A2 Log-Linear 2 45500 0.637 5.03 5.43 

A3 Log-Linear 3 72264 0.618 4.71 5.42 

A5 Log-Linear 5 202606 0.672 4.17 5.39 

A10 Log-Linear 10 156162 0.703 3.71 5.37 

A20 Log-Linear 20 358568 0.758 4.62 5.93 

B5 Linear 5 110445 0.673 3.51 5.36 

B10 Linear 10 828208 0.715 2.16 5.18 

B20 Linear 20 303889 0.749 0.79 5.34 

Table 1: dmax / dmin, number of particles, initial packing fraction and coordination number for 365 

the seven samples tested 366 

 367 
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 368 

 369 

Figure 2. Schematic showing link-cell contact detection in LAMMPS, where rmax is the 

maximum particle radius, and rc is the cell dimension. rc = rmax + rskin where rskin is the skin 

distance.   

Figure 1. 2D schematic of inter-processor communication in LAMMPS. Particle information 

within the halo of dimension rhalo must be communicated to the processor subdomain at every 

timestep.  
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 370 

 371 

Figure 3. 2D schematic showing interactions between different particle types: (a) small–small 

interactions; (b) small–large interactions; (c) large–large interactions. 

 372 
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 373 

Figure 4. Schematic of hierarchical stencil inter-processor communication (adapted from [11]). Halos 

of different dimensions are adopted depending on the interaction type (i.e. large-large, small-large or 

small-small).  

 374 

 375 

  376 
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 377 

 378 

Figure 5. Particle size distributions 

  379 

Figure 6. Stress ratio behavior during shearing at 𝐼𝑑𝑚𝑎𝑥 =  1 × 10−3.  380 
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  381 

Figure 7. Volumetric behavior during shearing at 𝐼𝑑𝑚𝑎𝑥 =  1 × 10−3.  382 

 383 

 384 

Figure 8. Mechanical coordination number during shearing at 𝐼𝑑𝑚𝑎𝑥 =  1 × 10−3.  385 

 386 
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 387 

Figure 9. Effect of 𝐼𝑑𝑚𝑎𝑥 on stress ratio at 𝜀1 = 2%. Results are normalized by the response 388 

at 𝐼𝑑𝑚𝑎𝑥 =  1 × 10−3: (a) Series A; (b) Series B 389 
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 390 

Figure 10. Effect of 𝐼𝑑𝑚𝑎𝑥 on solid packing fraction at 𝜀1 = 2%. Results are normalized by 391 

the response at 𝐼𝑑𝑚𝑎𝑥 =  1 × 10−3: (a) Series A; (b) Series B 392 

 393 

 394 

(b)

(a)
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 395 

Figure 11. Effect of 𝐼𝑑𝑚𝑎𝑥 on mechanical coordination number at 𝜀1 = 2%. Results are 396 

normalized by the response at 𝐼𝑑𝑚𝑎𝑥 =  1 × 10−3: (a) Series A; (b) Series B 397 
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 398 

Figure 12. Probability density functions of normal contact force, N, normalized by mean 399 

normal contact force, <N>. (a) sample B20; (b) sample A1.2.  400 

 401 
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 402 

Figure 13. Relative frequency plot of connectivity, C: (a) sample B20, contacts C ≤ 6 (note 403 

linear y-scale); (b) sample B20, contacts C ≥ 6 (note log y-scale) ;(c) sample A1.2, contacts 404 

C ≤ 6. 405 
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  406 

Figure 14. Effect of 𝐼𝑑𝑚𝑎𝑥 on non-rattler fraction fNR at 𝜀1 = 2%.: (a) Series A; (b) Series B 407 

(b)

(a)



27 

 

 408 

Figure 15. Effect of alternative inertial number definitions on stress ratio at 𝜀1 = 2%: (a) 409 

𝐼𝑑50; (b) 𝐼�̅� 410 

 411 

(b)

(a)


