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Optimal Design of Retailer-Prosumer Electricity Tariffs
Using Bilevel Optimization

Veronika Grimm1,6, Galina Orlinskaya2,6, Lars Schewe3,
Martin Schmidt4, Gregor Zöttl5,6

Abstract. We compare various flexible tariffs that have been proposed to cost-
effectively govern a prosumer’s electricity management—in particular time-of-
use (TOU), critical-peak-pricing (CPP), and a real-time-pricing tariff (RTP).
As the outside option, we consider a fixed-price tariff (FP) that restricts the
specific characteristics of TOU, CPP, and RTP, so that the flexible tariffs are
at least as profitable for the prosumer as the FP tariff. We propose bilevel
models to determine the optimal interplay between the retailer’s tariff design
and the prosumer’s decisions on using the storage, on consumption, and on
electricity purchases from as well as electricity sales to the grid. The single-
level reformulations of the considered bilevel models are computationally highly
challenging optimization problems since they combine bilinearities and mixed-
integer aspects for modeling certain tariff structures. Based on a computational
study using real-world data, we find that RTP increases retailer profits, however,
leads to the largest price volatility for the prosumer. TOU and CPP only yield
mild additional retailer profits and, due to the multiplicity of optimal plans on
the part of the prosumer, imply uncertain revenues for the retailer.

1. Introduction

In recent years, renewable and decentralized generation has increased worldwide.
Households nowadays often consume and produce energy and, at the same time, due
to innovations like the internet of things, there are ample opportunities for dynamic
control of demand and supply within and beyond a single household. In particular,
smart meters in combination with production, storage, and smart grid technologies
will considerably broaden the possibilities of so-called “prosumers” to optimize their
electricity consumption, production, and storage. In the context of buildings, also
heat production from electricity (e.g., through heat pumps), as well as heat storage
will gain more importance since energy efficiency is a main focus of the EU’s climate
action programs [15]. Since also in the mid-term prosumers will cover parts of their
electricity consumption via the grid, electricity retailers have new opportunities to
raise additional revenue by offering tariffs that allow prosumers to shift their electricity
consumption to periods with low wholesale electricity prices. Accordingly, various
contributions highlight the scope of demand response in today’s electricity markets;
see, e.g., [9, 17, 23, 28, 32, 43, 50].

In this contribution, we shed light on the scope of demand response in the interaction
between a retailer and prosumers. In particular, we assess a retailer’s ability to raise
additional profits through flexible tariffs. Our main focus is on the design of different
types of tariffs, taking into account the specific load shifting potential of a typical
prosumer. To that aim, we study the interaction of two agents. We consider an
electricity retailer who buys electrical power on the wholesale market at the hourly
fluctuating spot-market prices and then resells it to his customers. We consider a
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customer who possesses some small-scaled energy generation and storage facilities; in
particular a photovoltaic (PV) system and a battery as well as a heat pump and a heat
storage unit. We call this customer a prosumer. The prosumer operates his domestic
system optimally given the electricity prices that he faces if he buys electricity to cover
residual load from the retailer. By modeling both electricity generation and storage as
well as heat generation and storage, we provide a model of the prosumer on which
future research can build on to capture more specific approaches in the context of
sector coupling. In particular, this allows an analysis of how the possibility to store
both heat and electricity at different efficiencies affects tariff design.

In order to adequately account for the specific incentives of different agents, we rely
on bilevel modeling techniques. This allows to explicitly consider the decisions of the
agents in the model but also implies challenges in solving the models.

In our analysis, we compare various tariffs with flexible pricing in order to assess their
impact on the prosumer’s decisions on system operation and electricity consumption
via the grid, as well as the attractiveness of the tariffs from the perspective of the
retailer.

As a benchmark, we consider a fixed-price (FP) tariff in which the electricity price is
constant over time. Alternative tariffs introduce various kinds of flexible pricing aimed
at shifting electricity consumption to low price intervals. As alternative tariffs we
focus on time-of-use pricing (TOU), real-time-pricing (RTP), and critical-peak-pricing
(CPP) tariffs. Those are most prominently discussed both by policy makers (see, e.g.,
[54] and [53] for the U.S. and [16] for Europe) and in the scientific community (see,
e.g., [29, 41, 57, 59]). The RTP tariff implies a simple pass-through of wholesale prices.
In TOU pricing, peak and off-peak periods as well as the corresponding prices are
explicitly agreed on in advance among the retailer and the prosumer. This is not
the case for CPP. Although CPP defines possible peak periods in advance, it gives
the retailer considerable leeway in setting peak prices. The prices can therefore vary
between the individual peak periods and are not contractable up front (except for
possibly a price cap). In order to provide a clean comparison of the different tariffs,
we assume that the prosumer must be indifferent between all tariffs, which can be
achieved by a (lump-sum) compensation between the retailer and the prosumers.

Our study provides a number of new and interesting insights on flexible pricing.
First, we show that the simple pass-through of wholesale prices in the RTP tariff yields
the highest additional profits for the retailer. However, a detailed modeling of the
prosumer’s production and storage facilities reveals that the potential for additional
efficiency gains through load shifting is limited. As compared to RTP, the CPP and
TOU tariffs allow only moderate additional gains for the retailer. This is mainly due
to the fact that the limited possibilities for load shifting in combination with the
fixed time windows for peak prices imply that only little efficiency potential can be
raised. On top of the low efficiency potential in the optimistic case, in the case of CPP
and TOU there is considerable uncertainty for the retailer as to whether the possible
additional profits can be fully realized due to multiplicity of optimal operation plans
of the prosumer. In essence, the retailer has to bear the risk that the prosumer acts
against him, which makes flexible tariffs less attractive.

Our results shed light on some aspects concerning flexible prosumer tariffs that
imply challenges for tariff design and are partly in contrast to some other contributions
in the literature. In particular, attractiveness of flexible tariffs is only mild against
the background that (i) load shifting potential might be only moderate if detailed
technical configurations are accounted for and that (ii) flexible tariffs imply multiple
solutions of the prosumer’s optimization problem, which raises revenue uncertainty for
the retailer.

The remainder of the paper is organized as follows. We start by discussing the
related literature in detail in Sect. 2 and then state the general setup in Sect. 3.
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In particular, we introduce the different tariff options in Sect. 3.2 and provide a
detailed description of the prosumer’s problem to operate existing facilities optimally
in Sect. 3.3. We then explicitly state the optimization problems for each tariff in Sect. 4
and conduct a computational study based on real-world data both for the demand
profiles and the technical data of the installed technologies. The computational study
and results are presented in Sect. 5 before we conclude the paper in Sect. 6.

2. Related Literature

A large body of literature empirically analyzes data from field experiments, providing
vast evidence that flexible retail tariffs indeed induce reactions of consumers. Therefore,
given adequate incentive structures, such tariffs may also influence consumption and
production patterns of prosumers; see, e.g., [26, 27, 34, 57] for California, [20] for the
case of Ireland, [3] for Sweden, [39] for Norway, and finally [12, 37, 44] for the case of
Germany. Those studies strongly motivate our general research questions, whereas
the methodological focus of our contribution lies in determining the specific incentives
of different tariff structures for market participants.

Another strand of literature takes a system perspective and thoroughly analyzes the
overall benefits that can potentially be obtained through flexible reaction of prosumers
considering different types of demand side management; see, e.g., [9, 17, 23, 43, 47, 63].
These contributions focus on system optimal solutions that maximize the cumulative
welfare of all agents involved regardless of the outcome for every single agent.

Other contributions consider interactions between different agents and analyze the
potential of specific contracting and pricing choices for consumers offering demand
response to improve operation and investment of the distribution network; see, e.g., [24,
25, 36, 40, 55, 62]. These contributions develop interesting network-tariff structures
to provide price signals for flexible demand to properly reflect congestion arising in
the distribution network. However, in contrast to our work, analysis of different retail
tariffs is out of scope of these contributions.

Another branch of articles concentrates on risk management by retailers through
analyzing the optimal portfolio for retailers regarding long- and short-term contracts
with different types of providers of demand response; see, e.g., [6, 11] as well as [21,
22, 42] for more recent work. Whereas those contributions give detailed insights on
the stochastic problems arising in the context of optimal portfolio choices and risk
management, they have to abstract from modeling in detail the optimal reaction of
customers to changed retail tariffs. On the other hand, our work incorporates modeling
of the optimal operation of all prosumer’s facilities in response to the different retail
tariffs proposed by the retailer.

Our models take into account different goals of every agent and we thus directly
contribute to the literature that explicitly disentangles incentives of flexible consumers
and their contract partners. This is typically implemented by relying on bilevel
formulations, which allows to analyze the provision and contracting of demand response
and flexible smart grid technologies from different perspectives. There are some papers
that model retailer and prosumer separately as different agents in a bilevel setting
to properly analyze the response of the prosumer to the incentives provided by the
retailer. For example, [38] or the last model in [21] analyze how optimally chosen
energy prices can provide proper incentives to providers of demand response. Some
literature extends the agents’ incentives to a multi-leader-multi-follower game; see,
e.g., [1, 2, 56]. Finally, [5, 41, 59, 60, 64] explicitly consider optimal design of different
retail tariffs. They compare fixed-price tariffs with more flexible tariffs such as TOU
or time-and-level-of-use pricing for consumers who also offer demand response.

Our approach extends those studies in mainly two ways. First, when analyzing
optimal tariff structures, prosumers are modeled as followers on lower levels of the
multi-level models like in [5, 21, 38, 41, 59]. To the best of our knowledge, however, all
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those studies of tariff design in a bilevel setting are limited to simplified formulations
of the model for demand response of end customers such as load curtailment and load
shifting. In contrast, we explicitly model physical smart grid technologies such as
electricity generation and storage in combination with heat production and storage
on the lower level. The explicit modeling of the interaction of electricity and heating
technologies at the lower level of a bilevel problem makes our approach more complex
and also computationally harder to solve compared to simplified formulations on the
lower level or the modeling of these technologies on the upper level. The integrated
analysis of power and heat in the household is particularly interesting against the
background that, in recent years, energy efficiency and the integration of batteries,
heat pumps, and heat storage in integrated energy systems has gained increasing
attention in EU-wide and national policy initiatives; see, e.g., [14] or [15].

Note that consumers who provide demand response based on available smart grid
technologies like, e.g., battery, heat storage unit, heat pumps, own electrical energy
generators, etc., are of increasing importance when thinking about smart grids and
new retail tariffs.

Second, we additionally analyze critical-peak-pricing. For CPP, we explicitly have
to disentangle those components of the retail tariff that are already fixed at the time
of signing the retail contract (mid-term perspective) and those which can be decided
by the retailer after signing the contract (short-term perspective). This is particularly
important in the context of flexible tariffs. Our analysis properly combines those
aspects and thus, to the best of our knowledge, is the first contribution in the context
of retail tariff design that brings together these two different timescales. We are thus
convinced that our analysis provides an important contribution to this ongoing and
highly relevant literature.

3. General Framework

We consider a retailer who buys electricity at the spot market and resells it to his
local prosumers. To this end, a contract between the retailer and the prosumer needs
to be signed that specifies the type of energy supply tariff and the details of the chosen
tariff.

In this section, we first introduce some preliminary notation in Sect. 3.1 and then
describe the main principles of the four different considered tariff types in Sect. 3.2.
Afterward, the prosumer with all associated facilities is described in Sect. 3.3. Based
on these descriptions, the resulting mathematical optimization models are developed
in Sect. 4.

3.1. Preliminaries. We consider a fixed time horizon [0, te] ⊂ R modeling the time
span of the considered energy supply contracts. This time horizon is discretized
as T = {t0, t1, . . . , tk} with t0 = 0 and tk = te representing start and end of the
relevant time span, e.g., one year. Thus, we have k+ 1 time points and k time periods
with period lengths τj := tj − tj−1, j = 1, . . . , k. Here, we consider an equidistant
discretization with τ = τj for all j = 1, . . . , k. The discretized time horizon without
the first period is denoted by T 0 := T \ {t0}. We associate each interval [tj−1, tj ] with
its end point tj and use tj to denote the corresponding time period.

We assume that the time horizon exhibits some kind of periodicity and subdivide T
accordingly into time intervals T =

⋃I
i=1 Ti with Ti representing, e.g., days of the year.

Thus, we assume that these intervals are equally long. This subdivision is also applied
to the discretized horizon so that we obtain Ti = {tsi , . . . , tei}, i = 1, . . . , I, where each
discretized subinterval has its start point tsi and end point tei . Thus, it holds ts1 = t0
and teI = te. Each of the intervals Ti, i = 1, . . . , I, comprises N time periods.

We remark that, if not stated explicitly otherwise, all quantities indexed with t
have to be interpreted as quantities averaged over the corresponding time period.
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3.2. Retailer and Tariff Descriptions. The retailer buys electricity at the spot
market and faces the corresponding spot-market prices γtspot. Afterward, this electricity
is resold to the prosumer. The details of this reselling are defined in corresponding
energy supply contracts (which we call tariffs in the following) between the retailer
and the prosumer. In this paper we consider four different types of tariffs: (i) a
conventional FP tariff (FP), (ii) a time-of-use tariff (TOU), (iii) a real-time-pricing
tariff (RTP), and (iv) a critical-peak-pricing tariff (CPP).

Note that currently the most prevalently used electricity retail tariffs are FP tariffs
and, to some extent, traditional TOU tariffs that are best known as day-night pricing.
In the context of modern metering and information technologies, more dynamic
time-based retail tariff structures are emerging. Here, RTP and CPP are the most
prominent ones. These are the tariffs that are most frequently discussed in the scientific
community; see, e.g., [29, 41, 57, 59]. Moreover, they are currently proposed as the
most promising candidates for a large-scale implementation of dynamic electricity
pricing both by governments in the US (see, e.g., [54] and [53]) as well as in the EU
(see [16]). In fact, we already observe retail companies offering these tariffs in real-life
electricity markets both in the EU [49] as well as in the US [48].

To compare these tariffs, we will compare each of the flexible tariffs with the
conventional tariff. The conventional tariff offers the same fixed electricity price
throughout the entire time horizon. In the following we will use the terms conventional
tariff and FP tariff as synonyms. For our comparisons, we always assume that the
prosumer has the choice between the conventional tariff and the respective flexible
tariff. Since the prosumer has the conventional tariff as an outside option, the retailer
has to make the prosumer indifferent between the conventional and the flexible tariff.
Note that with a TOU tariff this implies that the peak and the off-peak prices have to
be set such that, given expected peak and off-peak consumption, the prosumer bears
the same cost of electricity consumption as under the conventional tariff. Through
better adjustment of prosumers’ energy management pattern to electricity market
prices, an efficiency gain will be introduced by the TOU tariff, which is earned by
the retailer. The same is the case for real-time-pricing, where this efficiency gain is
captured by the retailer in form of a lump-sum payment that the prosumer has to
pay up-front if he chooses the RTP tariff. In the case of the CPP tariff, the retailer
retains considerable flexibility with regard to pricing in peak periods. This exposes the
prosumer to the risk that the sum of the volume-related payments will by far exceed
the payments in the case of the conventional tariff. The retailer could only make the
prosumer indifferent between CPP and the conventional tariff by taking away the
pricing leeway in peak periods by means of a very restrictive cap on peak prices. This
is, however, contrary to the spirit of the CPP tariff. In our analysis, we thus assume
lump-sum compensations up-front to possibly induce switching to the CPP tariff.

3.2.1. Fixed-Price Tariff. In the FP tariff, the prosumer pays a fixed baseline price γbase
for each MWh of electrical energy throughout the entire time horizon T . In this case
the baseline price γbase is the only contractual element that the retailer and the
prosumer need to agree on. Throughout this article we will consider an exogenously
fixed level of the baseline price γbase obtained from our data; see Sect. 5.1.

The overall profit of the retailer is given by

fConv :=
∑
t∈T

(
γbase − γtspot

)
P t
im, (1)

where P t
im is the amount of electrical energy purchased by the prosumer from the

retailer at time t. Note that in case of the FP tariff, the retailer does not take any
decisions. This tariff serves as an important benchmark, however, in the following
way. We construct all subsequent tariffs exactly such that they induce the very same
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final profit for the prosumer, leaving the prosumer indifferent between choosing the
FP tariff or any of the subsequently proposed tariffs.

3.2.2. Real-Time-Pricing Tariff. In contrast to the FP tariff, in a real-time-pricing
tariff the prosumer agrees to directly pay the hourly day-ahead spot-market electricity
prices for his consumption. These prices are exogenously specified parameters in the
RTP tariff and are not controlled by the retailer. However, the retailer obtains his
profits from the RTP tariff by specifying a lump-sum payment ρRTP. Within our
framework the retailer can optimally choose ρRTP, but he is restricted by the fact that
the FP benchmark tariff is an outside option for the prosumer. As the retailer simply
passes on the spot-market prices to the prosumer without any extra charges, the entire
profit of the retailer consists of the lump-sum payment made by the prosumer. We
define that for ρRTP > 0 the payment is received by the retailer, whereas for ρRTP < 0
it is received by the prosumer. Thus, the retailer’s objective function reads

fRTP := ρRTP. (2)

For a discussion and comparison of the specific timing relevant for the different tariffs
we refer to Sect. 3.2.5.

3.2.3. Time-of-Use Tariff. High prices and peak electricity demand are usually periodic
and thus associated with particular daytimes. As noted before, we consider a time
horizon T (corresponding to, e.g., one year), which is divided into time-repeating
intervals Ti (representing, e.g., days). In time-of-use tariffs, the retailer determines a
further splitting of these sub-intervals Ti into a peak time and an off-peak time, i.e.
Ti,peak ∪Ti,off-peak = Ti with peak part Ti,peak and off-peak part Ti,off-peak of day i. To
stick as close as possible to the currently used TOU tariffs in reality, we focus on the
case in which we only have two switches between off-peak and peak times throughout
one day. That is, we assume that at least one of these intervals, i.e., either Ti,peak
or Ti,off-peak, has to be connected. These peak and off-peak periods are assumed to be
the same for every day of the year; see, e.g., [54] or [16].

Moreover, the retailer sets a TOU-specific baseline price γret ∈ R≥0, γret ≤ γbase,
for the entire time horizon and adds a markup γtou ∈ R≥0 for each time block Ti,peak.
The baseline price γret is paid by the prosumer in off-peak time periods while the
price γret + γtou applies in peak time periods. Note that γtou is independent of i
and t, i.e., the markup is the same for all peak time periods of the entire time horizon.
To allow for a direct comparability of the different tariffs we furthermore impose
that the prosumer has to be at least indifferent between choosing the TOU tariff as
compared to the benchmark FP tariff. All details of the TOU tariff are specified
and contracted already at the time of signing the TOU contract; see Sect. 3.2.5 for a
detailed illustration of the specific timing of all tariffs.

In sum, the retailer, at the time of signing the contract, optimally chooses the
partition of the day into peak and off-peak time periods as well as the baseline price γret
and the markup γtou such as to leave the prosumer indifferent as compared to the FP
tariff. After contract signature, no further decisions are taken by the retailer.

The profits of the retailer are given by total revenues from electrical power sold to
the prosumer minus total costs of this power bought at the spot market:

fTOU := γret
∑
t∈T

P t
im + γtou

I∑
i=1

∑
t∈Ti,peak

P t
im −

∑
t∈T

γtspotP
t
im. (3)

Note that the TOU tariff with γret = γbase and γtou = 0 is equivalent to the FP tariff.

3.2.4. Critical-Peak-Pricing Tariff. Let us now describe the last considered tariff: the
CPP tariff. In this tariff, the retailer again tries to exploit the periodicity of electricity
demand and prices, but maintains some flexibility also after signing of the contract.
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As before, all sub-intervals Ti of the time horizon T are split into peak Ti,peak ⊂ Ti
and off-peak Ti,off-peak ⊂ Ti time periods, i.e., Ti = Ti,peak∪Ti,off-peak for all i = 1, . . . , I.
This partition of the day into peak and off-peak time is identical for each day.

Similar to the TOU tariff, at the time of signing the CPP contract the retailer and
the prosumer agree on a baseline price, which applies during off-peak times.

Unlike the TOU tariff, however, at the time of signing the CPP contract the retailer
and the prosumer do not fix the specific level of the extra markup charged during peak
times. In the contract, they agree that later on flexible markups γtcpp with an upper
bound γ̄cpp ≥ γtcpp can be announced by the retailer in peak-time periods t ∈ Ti,peak,
i = 1, . . . , I. More formally, we obtain

γtcpp = 0 for all t ∈ Ti,off-peak, i = 1, . . . , I, and γtcpp ≤ γ̄cpp for all t ∈ T. (4)

The precise markups can be announced flexibly by the retailer long after signing
the retail contract. In the TOU tariff, on the contrary, the retailer does not have
this degree of freedom but has to fix a constant markup for all peak time periods
already at the time of signing the contract. The CPP tariff is thus considered to allow
the retailer to have considerably more flexibility by allowing him to directly react to
changing conditions in electricity markets; see, e.g., [58] or [30].

The optimal design of all components of the CPP tariff in principle results in a both
theoretically and computationally rather involved trilevel problem: First, all contract
details are determined optimally such as to guarantee indifference of the prosumer.
Second, after contract signature, peak prices are determined by the retailer. Finally,
the prosumer takes all operational decisions. To keep our computations tractable, we
have to exogenously fix those components of the CPP contract, which have a direct
impact on the decisions on the two later stages. This allows us to solve the overall
problem as a bilevel problem; see also Section 4.5. In our setup, we thus have to
assume that the partition in peak and off-peak times as well as the baseline price and
the upper bound for peak prices γ̄cpp are given exogenously. (In our computational
analysis in Section 5 we will use the partition that is optimal for the TOU tariff). This
clearly implies that the specific CPP tariff determined is not the best possible CPP
tariff and a CPP tariff for which all components are chosen optimally might perform
slightly better.

As for the RTP and the TOU tariff, we also construct the CPP tariff such that
the prosumer is indifferent as compared to choosing the conventional FP tariff. To
maintain tractability, as discussed above, in case of the CPP tariff the retailer has to
specify a lump-sum compensation ρCPP up-front in the CPP energy supply contract.
We define that for ρCPP > 0 the payment is received by the retailer, whereas for
ρCPP < 0 it is received by the prosumer.

The profits of the retailer are given by total revenues from electricity sold to the
prosumer minus total spot-market costs, i.e.,

fCPP :=
∑
t∈T

(γbase + γtcpp)P t
im −

∑
t∈T

γtspotP
t
im, (5)

plus the lump-sum payment, i.e., fCPP-all := fCPP + ρCPP.
For a detailed illustration of the specific timing of the CPP tariff as compared to

the other tariffs see Sect. 3.2.5. The explicit mathematical model is stated in Sect. 4.5.
Obviously, the CPP tariff with γtcpp = 0 for all t ∈ T is equivalent to the FP tariff.
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3.2.5. Discussion of the Tariffs. Before we introduce the mathematical optimization
models of the four tariffs, let us first provide a quick survey of the timing of the
decision-making processes for the different tariffs shown in Figure 1. Decisions of
the retailer regarding the different tariff parameters are all taken before the start of
the supply-time horizon, i.e., at the time of signing the supply contracts. In case of
the flexible CPP tariff, however, the retailer additionally specifies peak prices γtcpp,
which are announced to the prosumer after contract signature on a day-ahead basis.
Once all tariff details are known by the prosumer, he can proceed with optimizing his
day-ahead operation plans. The analysis of our setup thus results in a sequence of
linked optimization problems. The retailer decides on different tariff structures by
anticipating the prosumer’s purchase and operational decisions, which take place later
on. Thus, we will consider bilevel models in which the prosumer’s decisions are always
considered at the lower level; see also Section 4.

Note that in our setup, the conventional FP tariff serves as a benchmark regarding
prosumer profits. That is, we explicitly construct the other tariffs such that they
induce the same final profits for the prosumer. Thus, the prosumer will be indifferent
between signing either of the proposed supply contracts. In case of the TOU tariff, we
directly obtain indifference by optimally adjusting the baseline price γret and the TOU
markup γtou. In case of the RTP and CPP tariff, this is obtained by appropriately
adjusting the level of the lump-sum payments ρRTP and ρCPP. Since the prosumer is
kept indifferent, the final profit differences resulting for the retailer for the different
tariffs should be interpreted as the potentially obtained overall benefit, which, in
practice, will be shared in one way or another according to the prevailing competitive
situation at the market or, e.g., according to varying risks induced by the different
tariffs in the context of risk sharing. For a more detailed discussion of possible
implications in case of risk and uncertainty see Section 4.6.

3.3. Prosumer. The prosumer signs a contract for a specific electricity supply tariff
and then controls his facilities to cover his overall demand for electricity and heat in a
way that maximizes his overall profit obtained from selling PV-generated electrical
energy. The model describes electricity production, storage, and consumption as well
as heat production, storage, and consumption together with the optimal coupling of
these two energy systems. It is a particular feature of our approach that we explicitly
consider the interaction of electricity and heat production as well as storage within
the household. This allows us to directly assess the current political tendencies to
promote energy efficiency by integrating households’ heat and electricity systems; see,
e.g., [14], or [15]. Our setup thus allows to explicitly analyze how the operation of the
different components interact with the different tariff structures.

3.3.1. Electricity Production (Photovoltaic System). Electricity production of the
prosumer is assumed to take place by a rooftop photovoltaic (PV) power station. This
PV station generates electricity P t

pv ≥ 0 during time period t ∈ T that the prosumer
can either consume directly, store in the battery, or feed into the main grid. The
nominal capacity P̄pv of the considered PV module provides an upper bound for
the power output, i.e., P t

pv ≤ τP̄pv for all t ∈ T . A list of all controllable and given
quantities of the PV, as well as of all other facilities, is given in Table 1 at the end of
this section.

Since PV production mainly depends on solar radiation, it cannot be controlled by
the prosumer. Thus, P t

pv is a given parameter. On the other hand, the amount of PV
generated power P t

pv-ex that is fed into the main grid during each time period t ∈ T
can be controlled and is subject to the condition

P t
pv-ex ≤ P t

pv for all t ∈ T. (6)

3.3.2. Electricity Storage (Battery). Electricity can be stored in a battery to better
manage the prosumer’s overall energy system such as, e.g., to store solar generated
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energy or electricity purchased from the retailer when it is available at a cheaper price.
The battery can either be charged (P t

bat-c > 0) or discharged (P t
bat-d > 0). For both

cases, specific upper bounds limit the amount of charged and discharged power, i.e.,

P t
bat-c ≤ τP̄bat−c, P t

bat-d ≤ τP̄bat−d for all t ∈ T. (7)

Moreover, the power balance in the battery over time is given by

Et = (1− αbat)Et−1 − P t−1
bat-d
ηbat-d

+ ηbat-cP
t−1
bat-c for all t ∈ T 0, (8)

where Et is the amount of electrical energy stored in the battery at the beginning of time
period t, αbat ∈ [0, 1) is the self-discharge rate of the battery, and ηbat-c, ηbat-d ∈ (0, 1]
are the efficiencies of the charging and discharging process.

Finally, electricity stored in the battery is limited by its capacity Ē > 0, i.e.,

0 ≤ Et ≤ Ē for all t ∈ T. (9)

3.3.3. Heat Production (Heat Pump). For heat production, we assume that the pro-
sumer owns a heat pump that uses electrical power to provide heat at some desired
temperature level. We denote the amount of electrical power that the heat pump
consumes by P t

h-pump ≥ 0. The amount of the resulting heat power that the heat
pump delivers to the heat storage depends on its coefficient of performance ηh-pump,
which is considered in Equation (12) in Sect. 3.3.4. We denote the maximum power
output of the heat pump by P̄h-pump, i.e.,

P t
h-pump ≤ τP̄h-pump for all t ∈ T. (10)

3.3.4. Heat Storage (Heat Storage Tank). For heat storage, we assume that the pro-
sumer can use a thermal water tank as a heat storage unit (HSU) to store heat.
Depending on the capacity of the tank as well as on the minimum and maximum
water temperature, the stored heat Ht is bounded from below and above:

0 ≤
¯
H ≤ Ht ≤ H̄ for all t ∈ T. (11)

Charging (P t
hsu-c > 0) of the HSU in time period t is modeled by

P t
hsu-c = ηh-pumpP

t
h-pump for all t ∈ T, (12)

where ηh-pump is the coefficient of performance and P t
h-pump is the electricity consumed

by the heat pump. Finally, the heat balance in the HSU over time is modeled similarly
to the energy balance in the battery, i.e.,

Ht = (1− αhsu)Ht−1 − P t−1
hsu-d
ηhsu-d

+ ηhsu-cP
t−1
hsu-c for all t ∈ T 0. (13)

Here, Ht is the heat stored in the HSU at the beginning of time period t, αhsu ∈ [0, 1)
is the self-discharge rate of the HSU, and ηhsu-c, ηhsu-d ∈ (0, 1] are the respective
charging and discharging efficiencies.

3.3.5. Balance Equations. We finally impose general energy and heat balance equations
of the considered system. Electrical energy balance reads

0 ≤ P t
im = P t

le + P t
h-pump + P t

bat-c − P t
bat-d + P t

pv-ex − P t
pv for all t ∈ T, (14)

where P t
im ≥ 0 is the power purchased by the prosumer from the retailer in time

period t and P t
le is the total electricity demand in time period t. We assume the

prosumer’s heat demand to be covered entirely by the HSU at each corresponding
time period. Thus, heat balance is modeled by

P t
lh = P t

hsu-d for all t ∈ T, (15)

where P t
lh is the heat load of the prosumer in time period t.
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Table 1. PV, battery, heat storage unit, and heat pump variables
(top) and parameters (bottom)

Symbol Explanation Unit Value

P t
im Power imported from the main grid MWh —
P t
pv-ex PV power fed into main grid MWh —
Et Energy stored in the battery MWh —
P t
bat-c Power charged to the battery MWh —
P t
bat-d Power discharged from the battery MWh —
Ht Heat power stored in the HSU MWh —
P t
hsu-c Heat power charged to the HSU MWh —
P t
hsu-d Heat power discharged from the HSU MWh —
P t
h-pump Power required to run the heat pump MWh —

P̄pv Nominal capacity of the PV module MW 0.01008
P t
pv Power generated by the PV module MWh —
γpv Feed-in tariff for PV-generated electricity EUR/MWh 125
ηbat-c Charging efficiency of the battery 1 0.9
ηbat-d Discharging efficiency of the battery 1 0.9
P̄bat-c Maximum charge capacity of the battery MW 0.0046
P̄bat-d Maximum discharge capacity of the battery MW 0.0046
Ē Maximum capacity of the battery MWh 0.0135
αbat Self-discharge rate of the battery 1 0.0004
ηhsu-c Charging efficiency of the HSU 1 1
ηhsu-d Discharging efficiency of the HSU 1 1
ηh-pump Performance coefficient of the heat pump 1 3
αhsu Self-discharge rate of the HSU 1 0.01
Ĥ Initial & minimal final heat in the HSU MWh

¯
H

Ê Initial & minimal final energy in the battery MWh 0

¯
H Minimum energy level of the HSU MWh 0.017919
H̄ Maximum energy level of the HSU MWh 0.033276
P̄h-pump Maximum power output of the heat pump MW 0.006

3.3.6. Objective Function. The goal of the prosumer is to maximize net profit, i.e.,
total revenues from electricity produced by the PV unit that is fed into the main grid
minus total costs for electricity bought from the retailer. With the feed-in price γpv
of the PV generated energy, the prosumer’s revenues from selling solar generated
electricity are given by

frev := γpv
∑
t∈T

P t
pv-ex.

For each MWh purchased from the retailer the prosumer has to pay a fixed amount of
taxes and fees γtax to the authorities, i.e.,

ftax := γtax
∑
t∈T

P t
im.

Finally, the prosumer buys electrical power from the retailer and pays for it according
to the particular tariff. We denote this part of the prosumer’s objective function
by fim and specify it further in the Sections 4.2–4.5 since it depends on the specifically
chosen tariff.

Thus, the overall optimization goal of the prosumer is to maximize

flow := frev − ftax − fim. (16)
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This objective function will later be used as (part of) the objective function of the
lower level in bilevel models. This is why we already use the index “low”.

Note that all controllable and exogenously given quantities of the prosumer’s
facilities are listed in Table 1. If specific values are given, their origin is discussed in
Sect. 5.1.

4. Optimization Models

In this section we collect the descriptions of the tariffs and the prosumer’s facilities
of the last section and state a specific optimization problem for every tariff. A
simplified summary of the models used is given in Figure 2. We start by describing the
optimization problem that the prosumer faces after a specific tariff has been chosen.
This is done in Sect. 4.1. Afterward, we combine this prosumer model with tailored
models for the specific tariffs to obtain models for the entire situation combining
the decisions of the retailer and the prosumer. Depending on the specific tariff, the
problem might be a single-level optimization or a multilevel problem. In addition,
it also depends on the specific tariff whether we need to incorporate mixed-integer
aspects in the model or not.

Note that the modeling of the design problem for the different tariffs as described
in the previous section only results in a single- or bilevel problem, if we impose the
assumption of perfect foresight for all agents. That is, throughout our formal analysis
we assume that all parameters of our setup are known by the agents at the time of
their decision making. Without this assumption of perfect foresight, the analysis of the
above described tariffs results in highly complicated stochastic multilevel optimization
problems, which are far from being tractable in practice.

Under perfect foresight all model parameters including the spot-market prices,
electricity and heat demand, as well as PV power output of the prosumer are known
beforehand. This allows us to solve the entire sequence of optimization problems
of the retailer and the prosumer after the signing of the contract simultaneously.
Consequently, the lump-sum payments ρRTP and ρCPP that are due at the contract
signing stage can be determined with the full knowledge of the prosumer’s optimal
operating plan for the entire time horizon. The same is valid for all variables of the
retailer in each of the four tariffs—in particular also for γtcpp.

As mentioned above, we obtain either single- or bilevel optimization problems
depending on the tariff that we analyze. The resulting problems are challenging, but
we will later show that we can still solve them for instances of relevant size.

4.1. The Prosumer’s Linear Optimization Problem. In this section we for-
mulate a linear optimization model (LP) for the prosumer, which is based on the
descriptions given in Sect. 3.3. In addition to the equations given there we furthermore
need the following constraints that allow us to state the complete model for the
prosumer problem.

Both for the battery and the heat storage unit we require initial and terminal
conditions to avoid undesired finite horizon effects:

Ht0 = Ĥ, Ĥ ≤ (1− αhsu)Hte + ηhsu-cP
te
hsu-c −

P te
lh

ηhsu-d
≤ H̄, (17)

and

Et0 = 0, Ê ≤ (1− αbat)Ete − P te
bat-d
ηbat-d

+ ηbat-cP
te
bat-c ≤ Ē. (18)

Recall that Ht and Et denote the amount of power stored at the beginning of the
corresponding time period t; cf. Sect. 3.3.2 and 3.3.4.
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The above constraints (17) and (18) impose conditions on the state of charge at
the beginning and the end of the time horizon. Here, we claim that the final state
of charge of the HSU and the battery should be at least the amount stored at the
beginning of the time horizon and not larger than the maximal capacity.

Throughout this paper we assume that in any given time period t the battery can
either be charged or discharged, but not both at the same time:

P t
bat-c = 0 or P t

bat-d = 0 for all t ∈ T. (19)

It can be shown that, if ηbat-c < 1 or ηbat-d < 1, every optimal solution of the
prosumer’s problem satisfies this assumption. As our data satisfies the above stated
condition, i.e., the battery does incur power losses in the charge/discharge process, no
additional mixed-integer techniques are required to model the disjunction in (19).

We are now ready to state the complete linear model of the prosumer’s optimization
problem:

max flow (20a)
s.t. PV model: (6), (20b)

battery model: (7)–(9), (18), (20c)
heat pump and HSU model: (10)–(13), (17), (20d)
balance equations: (14), (15). (20e)

Note that all constraints are linear. The linearity of the objective function depends on
the specific tariff model, which we discuss next.

4.2. The Entire Optimization Problem for the Fixed-Price Tariff. As already
discussed in Sect. 3.2.1, the conventional tariff’s baseline price γbase is given exogenously
as the average price of such tariffs in Germany. Given this baseline price, the costs of
the prosumer for electricity—as part of the objective function in (16)—are given by

fim = f convim = γbase
∑
t∈T

P t
im,

i.e., the prosumer’s objective function reads

flow = f convlow = frev − ftax − f convim . (21)

As the retailer cannot make any decisions in this case, the solution in case of the FP
tariff is obtained by simply solving the resulting single-level problem of the prosumer,
determining the optimal operation of his facilities. This optimization problem is given
by

max f convlow s.t. (20b)–(20e). (22)

4.3. The Entire Optimization Problem for the Real-Time-Pricing Tariff. In
the real-time-pricing tariff the spot-market prices γtspot are simply forwarded to the
prosumer. Thus, for the prosumer’s objective function (16) we specify the cost term fim
as

fim = fRTPim =
∑
t∈T

γtspotP
t
im + ρRTP,

where ρRTP is the lump-sum payment discussed in Sect. 3.2.2. Hence, the prosumer’s
objective function reads

flow = fRTPlow = frev − ftax − fRTPim . (23)

As already mentioned in Sect. 3.2.2, the lump-sum payment ρRTP is the only profit
the retailer makes out of the RTP tariff contract. Consequently, the retailer’s objective
function just maximizes ρRTP; see (2) in Sect. 3.2.2. However, the RTP tariff is
constructed such as to leave the prosumer indifferent as compared to the FP tariff.
Thus, the RTP tariff must satisfy the competition constraint

f convlow (y∗conv) ≤ fRTPlow , (24)
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Table 2. Variables (top) and parameters (bottom) of the TOU tariff
upper level model

Symbol Explanation Unit

γret Electricity baseline price of the retailer EUR/MWh
γtou Markup during a non-baseline (peak) time period EUR/MWh

zjpeak Non-baseline pricing in tj —
zjs-peak Non-baseline pricing switched on in tj —
zjs-off-peak Baseline pricing switched on in tj —

γtspot Spot-market price in t ∈ T EUR/MWh
γtax Electricity taxes and fees payed by prosumer EUR/MWh

where y∗conv is an optimal solution of the FP tariff model stated in Sect. 4.2. This
competition constraint provides an upper bound for the lump-sum payment. Thus,
the overall optimization problem with the retailer acting in the upper level and the
prosumer in the lower level reads

max fRTP = ρRTP

s.t. competition constraint: (24),

max fRTPlow : (23)
s.t. prosumer constraints: (20b)–(20e).

(25)

Note that the only decision variable of the retailer is the lump-sum payment ρRTP that
constitutes the profit of the retailer and evens out the profits of the prosumer in the
RTP tariff compared to the FP tariff. However, the lump-sum payment appears in the
lower level just as a constant term added to the prosumer’s objective function. Thus,
due to the simple way of price forwarding and the lack of other tariff mechanisms, the
retailer cannot influence the actions of the prosumer. This means that the solution
of the lower level is independent of the upper level’s decision (i.e., the lump sum).
Therefore, the problem can be solved sequentially as follows. First, we optimize the
lower-level problem and get an optimal solution y∗RTP. Based on y∗RTP and an optimal
solution y∗conv of the FP tariff model we compute the optimal lump-sum payment ρ∗RTP
that satisfies the competition constraint (24). As the retailer maximizes ρRTP, we get

ρ∗RTP = frev (y∗RTP)− ftax (y∗RTP)−
∑
t∈T

γtspot
(
P t
im
)∗ − f convlow (y∗conv) , (26)

where the variables (P t
im)
∗ are part of the solution y∗RTP.

4.4. The Entire Optimization Problem for the Time-of-Use Tariff. We now
describe the model of the time-of-use tariff. Since we interpret the intervals Ti as
days, we assume that they have the same number of time periods, i.e., |Ti| = |Tj | = N
for all i, j ∈ {1, . . . , I}. We also impose that the splitting into peak and off-peak
times is the same for every day, i.e., for every time interval Ti. Thus, if tj ∈ Ti,peak,
then t(j+N) ∈ T(i+1),peak for all j = 1, . . . , k − N and i = 1, . . . , I − 1. Given this
implication, it is sufficient to model the peak/off-peak split for the first time interval
and then expand it to the other time intervals. To this end, we introduce three binary
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variables per time period tj ∈ T1 = {0, . . . , N − 1}:

zjpeak =

{
1, if tj ∈ T1,peak,
0, if tj /∈ T1,peak, i.e., tj ∈ T1,off-peak,

(27a)

zjs-peak =

{
1, if peak pricing is switched on in tj ,
0, otherwise,

(27b)

zjs-off-peak =

{
1, if off-peak pricing is switched on in tj ,
0, otherwise.

(27c)

Next, we model that the peak and off-peak pricing mode needs to be switched on
exactly once during the day using the SOS-1-like constraints

N−1∑
j=0

zjs-peak =

N−1∑
j=0

zjs-off-peak = 1. (28)

Given peak or off-peak pricing in the time period tj−1, it continues in the following
time period, unless the pricing mode is switched in tj :

zjpeak − z
(j−1) mod N
peak = zjs-peak − z

j
s-off-peak for all j = 0, . . . , N − 1, (29a)

zjs-peak + zjs-off-peak ≤ 1 for all j = 0, . . . , N − 1. (29b)

With this TOU model we reformulate the prosumer’s objective function from Sect. 3.3.6,
i.e.,

fTOU
low = frev − ftax − fTOU

im (30)
with

fTOU
im =

∑
t∈T

(
γret + zt̃peakγtou

)
P t
im, t̃ := t mod N. (31)

Recall the retailer’s competition constraint from Sect. 3.2.3, which ensures that the
prosumer’s profit in the RTP tariff is not less than the profits under the FP tariff. We
adapt this constraint now for the TOU tariff and obtain

f convlow (y∗conv) ≤ fTOU
low , (32)

where y∗conv denotes an optimal solution for the single-level prosumer model (20).
Finally, we can rephrase the retailer’s objective function in (3) as

fTOU =
∑
t∈T

(
γret + zt̃peakγtou

)
P t
im −

∑
t∈T

γtspotP
t
im, t̃ := t mod N. (33)

Together with the competition constraint (32) we are able to state the TOU tariff
bilevel model as

max fTOU

s.t. TOU model: (27)–(29),
competition constraint: (32),

max fTOU
low

s.t. prosumer constraints: (20b)–(20e).

(34)

All TOU-specific variables and parameters of this model are listed in Table 2. Taking a
closer look at the model one observes that the only nonlinear terms in the model are the
products γretP t

im as well as the products zt̃peakγtouP
t
im in the objective functions (31)

and (33). The variables γret, γtou, and z
j
peak are upper and P t

im are lower-level variables.
Thus, the upper level is a mixed-integer quadratic problem in the upper-level variables
due to the product zt̃peakγtou, which, fortunately, can be linearized using standard
techniques. After such a linearization the upper level becomes a mixed-integer linear
problem. For fixed upper-level variables, the lower-level problem is a parametric LP
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Table 3. Variables (top) and parameters (bottom) of the first two
levels of the CPP model

Symbol Explanation Unit

ρCPP Lump-sum payment from the prosumer to the retailer EUR
γtcpp Extra charge during critical peaks time period EUR/MWh

γbase Electricity baseline price of the retailer EUR/MWh
γ̄cpp Upper bound for the CPP markup, γbase EUR/MWh
γtspot Spot-market price in t ∈ T EUR/MWh
γtax Electricity taxes and fees payed by prosumer EUR/MWh
Ti,off-peak Off-peak time period —
Ti,peak Peak time period —

depending on the upper-level decisions. From the latter it follows that we can state
optimality conditions for the lower-level LP exploiting the strong duality theorem of
linear optimization; see, e.g., [7]. By adding these optimality conditions together with
the original primal and dual lower-level constraints to the upper level, we obtain a single-
level mixed-integer nonlinear problem (MINLP), which is an equivalent reformulation
of the bilevel problem (34). In addition to the fact that such reformulations are usually
difficult to solve for practically relevant, i.e., large, instances, we have the additional
challenge here that the single-level reformulations contain bilinear terms of products of
primal upper and lower level variables. This situation always appears in bilevel pricing
problems; see, e.g., [33]. Thus, these problems are nonconvex, i.e., global, optimization
problems. More information on single-level reformulations of bilevel problems can
be found in, e.g., [18]. Note that solving this single-level reformulation always gives
optimistic solutions; cf., e.g., [33] or [10].

4.5. The Entire Optimization Problem for the Critical-Peak-Pricing Tariff.
For the critical-peak-pricing tariff model, the objective function of the prosumer from
Sect. 3.3.6 reads

fCPPlow := frev − ftax − fCPPim (35)
with

fCPPim :=
∑
t∈T

(
γbase + γtcpp

)
P t
im + ρCPP. (36)

Again, to even out the profits of the prosumer under the conventional and the CPP
tariff, the retailer has to satisfy the competition constraint

f convlow (y∗conv) ≤ fCPPlow , (37)

where y∗conv is an optimal solution of the FP tariff model as stated in Sect. 4.2.
Recall the timing of the CPP decision making process as stated in Figure 1. When

signing the contract both the baseline price γbase and the partition of the days into
peak and off-peak periods, Ti = Ti,peak ∪ Ti,off-peak, are exogenously given, and the
retailer only sets the lump-sum payment ρCPP. Overall profit maximization under the
competition constraint (37) thus constitutes the first level of the CPP tariff model.

In the second level, the retailer sets CPP markups in order to maximize the profit
from selling electrical energy to the prosumer as stated in (5), while satisfying the
upper bounds for the CPP markup in (4). The third level is the optimization problem
of the prosumer. Thus, the overall resulting optimization model for the CPP tariff
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reads
max fCPP-all

s.t. competition constraint: (37),
max fCPP

s.t. CPP markup bounds: (4),

max fCPPlow

s.t. prosumer constraints: (20b)–(20e).

(38)

Recall from Sect. 3.2.4 that both the baseline price γbase and the identical partition
of the day into peak and off-peak periods, Ti = Ti,peak ∪ Ti,off-peak, are exogenously
given for the CPP tariff. Thus, the only decision variable of the retailer in the first
level is the lump-sum payment ρCPP. However, on levels two and three the lump-sum
payment appears only once—namely in the third level as a constant added to the
prosumer’s objective function. As a consequence, the first level does not influence
decision making either on the second or third level. Therefore, we can solve the second
and the third level jointly as a bilevel problem—similarly as in Sect. 4.4. Based on the
outcome, we then compute the lump sum of the first level of Problem (38) analogously
to the lump-sum computation for the RTP tariff in (26).

The only nonlinear terms in the model are γtcppP t
im for t ∈ T . These terms appear

in the objective functions (5) and (36) of both levels. As γtcpp are upper and P t
im

lower-level variables, these terms are quadratic only with regard to variables from
both levels. Thus, for fixed upper level variables γtcpp, the lower-level problem is a
parametric LP and the upper level is also linear in the upper-level variables. We
can thus solve the discussed CPP bilevel problem using the same reformulation as
described in Sect. 4.4.

4.6. Discussion of the Models. Observe, finally, that our formal analysis relies on
the assumption of perfect foresight of the retailer and the prosumer with regard to
all model parameters. In reality the retailer and the prosumer are likely to hold only
incomplete information regarding the evolution of, e.g., spot-market prices γtspot or
renewable energy production of the prosumer. The consideration of stochasticity in
our multilevel modeling would lead to extremely challenging stochastic, multilevel,
and mixed-integer optimization problems. As it turns out, see Section 5.1, the
considered multilevel problems in their deterministic version are very hard to solve in
practice and, thus, are already at the frontier of computational tractability. Solving
a stochastic variant of these models would, e.g., lead to bilevel problems with the
same characteristics but on huge scenario trees; see, e.g., [31]. Due to the curse of
dimensionality, the resulting nonconvex mixed-integer nonlinear problems would be by
far too hard to be solved for the settings considered in this paper.

On the other hand, the deterministic results obtained in our analysis provide
important benchmark results regarding the desirability of the different tariffs. Indeed,
stochasticity would induce further important aspects regarding the desirability of
the different tariffs. Risk for the prosumer in our setup would come from two major
sources: First, quantity risk due to PV feed-in. This, however, remains unchanged for
different tariff structures and is thus likely to affect all tariffs analyzed in a similar
way. Second, price risk directly induced by the tariff structure itself will affect the
different tariffs in a different way, since the FP and TOU tariff do not exhibit any
price risk for the prosumer by construction, whereas the RTP and the CPP tariff do.
Even for a risk-neutral prosumer, price risk will result in a less efficient operation
of storage devices (as compared to our perfect foresight analysis) and thus would
also require more prosumer-friendly contract terms in case of the RTP and the CPP
tariff. That is, since the FP and the TOU tariff by construction do not exhibit any
price risk for the prosumer, in case of risky spot-market prices the RTP and the CPP
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tariff should perform relatively worse as indicated by our quantitative results obtained
later; see Section 5.1. Furthermore, for a risk-averse prosumer this will be even more
pronounced and both the RTP and the CPP tariff become even less desirable.

5. Computational Study

5.1. Data Description. We use real-world data for the calibration of our models.
Most of the parameters regarding the prosumer are calibrated according to the
research project “Smart Grid Solar”, which has been funded by the Bavarian Ministry
of Economic Affairs and Media, Energy and Technology and the European Regional
Development Fund. The project was carried out in the period 2012–2017. In the
project, various partners from industry and economy worked together with research
institutions and local network operators under the coordination of the Bavarian Center
for Applied Energy Research (ZAE). During the mentioned period, the participating
project partners installed a smart grid infrastructure in a small village of northern
Bavaria. The infrastructure was operated and controlled in order to solve economic
and electrotechnical problems as well as to identify benefits and potentials of smart
grid systems. During the operation of the installed smart grid infrastructure, precise
data on different aspects (such as PV production, storage devices, and consumption)
have been collected.1

For our analysis we focus on a typical farmstead in that village considering an
exemplary prosumer with a photovoltaic system and an electrically driven heat pump.
For our computations we use actual hourly measured values from the year 2015 for
the output P t

pv generated by the PV system, for the heat demand P t
lh, and for the

electricity demand P t
le of the prosumer.

We furthermore consider an installed PV capacity of 0.010 08 MWp, which is on the
verge of eligible size for the German feed-in tariff γpv for small-sized PV panels; see [45]
for detailed information on governmental regulation and subsidization of photovoltaic
energy generation in Germany. The heat storage unit of the prosumer is a water tank
with a maximum capacity of 0.033 276 MWh and a self-discharge rate of 1 % per hour;
cf. Sect. 3.3.4. The coefficient of performance ηh-pump of the heat pump is assumed to
be 3; cf. [35]. To better reflect current conditions in Germany, where own consumption
of solar energy is more profitable now as it was the case when the PV system of the
considered prosumer was installed, in our model we equip the prosumer with a battery;
cf. Sect. 3.3.2. This is supposed to be a Tesla Powerwall with technical information
taken accordingly to [52].

For the calibration of the FP tariff γbase we take the average market price of FP
energy supply tariffs in Germany; see [4]. The spot-market prices γtspot are the publicly
available EEX prices of the [13].

Electricity consumers pay a considerable amount of fees and taxes for electricity
purchased from their retailers. This critically influences the operation of the facilities
of the prosumer when solving the trade-off between (i) immediate own consumption
and storage for later own consumption versus (ii) feed-in to and later purchase from
the grid. To realistically assess the decisions of the prosumer in our setup we explicitly
have to take into account the amount γtax of taxes and fees payed for the different
tariffs. For the levels of fees and taxes payed by the prosumer we adopt the values for
final household consumers from the year 2017 in Germany; see [4].

The computational hardness of the considered bilevel models, which result in MINLP
and nonconvex NLP reformulations for the TOU and CPP tariffs, respectively, does
not allow to solve the instances on an hourly discretization of the entire time horizon
of one year. Thus, from the available data of the year 2015 we pick one representative
week for winter, the mid-season, and the summer period and join them consecutively
in this order. The problems as described in Sect. 4 are solved on this time horizon

1For further information on the project see http://www.smart-grid-solar.de.

http://www.smart-grid-solar.de


20 V. GRIMM, G. ORLINSKAYA, L. SCHEWE, M. SCHMIDT, G. ZÖTTL

with objective functions scaled to a year (proportionally to the actual length of the
corresponding seasons). Thus, we obtain computational results for a year based on
the three chosen and representative weeks of every season.

Both the TOU and the CPP tariff have peak and off-peak day partitions. For the
TOU tariff, this partitioning is determined endogenously. To obtain a clear comparison
between these two tariffs, we take the peak and off-peak time periods as well as the
off-peak price from the optimal solution of the TOU model as input parameters for
the CPP model.

5.2. Computational Setup. All computations were performed on a 4 core Intel(R)
Core(TM) i7-4600U CPU with 2.1 GHz and 4 MB cache each as well as 8 GB RAM
under Ubuntu 18.04.1 LTS OS. For the data handling we used Python 3.7.0 with
Anaconda 5.3.0. The optimization models have been modeled using GAMS 25.1.2 [19].
All (mixed-integer) linear models have been solved with CPLEX 12.8.0.0 [8] and all
(mixed-integer) nonlinear models have been solved with BARON 18.5.8 [46, 51]. The
linear models were solved up to a relative optimality gap of 10−6 without imposing any
time limit. The running time for solving each linear model did not exceed 1 second.
The time limit for all nonlinear instances was 15 minutes and the optimality gap was
set to 1 %. Often, it was not possible to solve the (MI)NLP instances with a gap
of less than 1 % in the given time limit. If this was the case, we always specify the
achieved optimality gap individually in the text or in the corresponding tables. Let us
note at this point that we also used significantly larger time limits in our preliminary
numerical experiments. However, it turned out that BARON (as well as other tested
global solvers) get stuck after some minutes and made no more progress. Thus, the
achieved gap after a significantly longer computation time was still the same as after a
few minutes. This is why we decided to use 15 minutes as the time limit for the final
computations.

5.3. Optimistic Prosumer Solutions. It is important to note that the single-level
reformulations of Sect. 4.4 and 4.5 used to solve the multilevel TOU and CPP models
imply the so-called optimistic assumption; cf., e.g., [10]. This assumption means
that if more than one optimal solution of the prosumer’s problem exists, the most
advantageous for the retailer is selected. In order to compare the computational results
properly, we need to consider optimistic behavior of the prosumer in the FP and the
RTP tariff as well.

For the FP tariff we achieve this by artificially extending the FP tariff model by an
upper level comprising just the corresponding objective function (1) of the retailer:

max fConv

max flow-conv

s.t. (20b)–(20e).
(39)

We solve this model using the same strong-duality based lower-level reformulation
as applied to the multilevel TOU and CPP models. Since (39) does not have any
upper-level variables, the resulting reformulation of the bilevel problem (39) remains
an LP and is solved up to a relative optimality gap of 10−6. In what follows, all
presented results (unless specified otherwise) in the tables and figures for the FP tariff
are obtained for the model (39) that incorporates the optimistic assumption on the
prosumer’s behavior. The prosumer’s optimal objective function value remains the
same as in the model (22) from Sect. 4.2.

The RTP tariff exhibits the optimistic behavior of the prosumer naturally, since the
goal of both the prosumer and the retailer is to maximize the prosumer’s profit. Recall
that the entire profit of the retailer in the RTP case is just the lump-sum payment
ρRTP charged from the prosumer; see Sect. 3.2.2. This lump-sum payment ρRTP
allows the retailer to extract all prosumer’s profits beyond those the prosumer would
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Table 4. Model sizes for single-level reformulations including opti-
mistic assumption.

Tariff Conv. RTP TOU CPP

Bilevel model? no no yes yes

Overall number of variables 8574 3529 10 160 10 086
Number of discrete variables 0 0 72 0
Number of nonlinear terms 0 0 4032 2016
Number of constraints 5047 1517 7618 7063

Table 5. Results for three exemplary weeks scaled up to a year (with
the optimistic assumption).

Tariff Conv. RTP TOU CPP

Retailer profit (EUR) 505.60 530.38 513.19 520.50
Gain (compared to conv. tariff) (%) — 4.67 1.48 2.86
Relative optimality gap (%) 0.00 0.00 3.24 2.14

Lump-sum payment (EUR) 0 530.38 0 −46.50
Average price (EUR/MWh) 64.20 31.10 63.89 66.51
Lowest price (EUR/MWh) 64.20 −20.07 57.76 57.76
Highest price (EUR/MWh) 64.20 75.87 66.70 71.17

have obtained under the FP tariff, cf. (24) and also (26) for the explicit formula for
calculating the lump-sum payment. Thus, in case of the RTP tariff, it is not necessary
to reformulate an extended problem version analogous to (39): The solution of the
problem (25) directly yields optimistic behavior of the prosumer.

In the optimal solution of the RTP and CPP tariff problems the corresponding
competition constraints (24) and (37) are satisfied with equality due to the profit
maximization objective of the retailer. Hence, the prosumer’s profit is the same for
the FP, the RTP, and the CPP tariff. In the TOU tariff the prosumer cannot earn less
than in the FP tariff case due to the TOU competition constraint (32). Consequently,
the TOU tariff is at least as attractive for the prosumer as the other three tariffs. In
all presented computational results the TOU competition constraint is also satisfied
with equality, making the prosumer’s profit equal for all four considered tariffs.

Before we move on to the actual computational results and their discussion, we
provide some details on model sizes for all four tariffs in Table 4. Note that these
details are always given for the corresponding single-level reformulation incorporating
the optimistic assumption.

5.4. Results for the Optimistic Prosumer Solution. Before we discuss the re-
sults in detail let us first note that all results presented in the tables in this section
have been scaled up to a time horizon of one year while the figures comprise the three
exemplary weeks without scaling.

Table 5 presents the most important properties of the optimal solutions under
the optimistic assumption for all four considered tariffs. The gain compared to
the conventional tariff (in percent) is the difference between the considered and the
conventional retailer profits divided by the retailer profit of the alternative tariff
considered. The relative optimality gap is the one obtained after the time limit was
exceeded. Thus, the retailer profit (and the respective gains) might be larger in those
columns with a positive optimality gap, i.e., for the TOU and the CPP tariff. As
expected, the retailer’s profits with flexible tariffs are higher than with the FP tariff.
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Table 6. Aggregated prosumer parameters (above) and results (be-
low; all scaled up to a year in MWh).

Tariff Conv. RTP TOU CPP

Electrical load 5.748 5.748 5.748 5.748
Heat load 15.607 15.607 15.607 15.607
PV power production 9.132 9.132 9.132 9.132

Total power bought 16.476 16.533 16.493 16.505
Total power sold 3.488 3.488 3.488 3.488
Battery and HSU losses 0.267 0.324 0.284 0.296
Total profit −4483.885 −4483.885 −4483.885 −4483.885

The RTP as the “flexibility benchmark” shows the highest profits compared to the
conventional tariff. It is followed by the CPP tariff for which retailer profit is at least
2.86 % higher than for the fixed-price tariff. The TOU tariff offers a gain of at least
1.48 %, which is smaller than in the CPP case. However, the larger optimality gap of
3.24 % in the TOU solution still leaves some room for a larger gain that, in the best case
(given the optimality gap), would be comparable to the CPP result. Prices faced by the
prosumer differ substantially across tariffs. The lowest average price2 is obtained for
the RTP, the highest average price for the CPP tariff. In both cases, the compensation
payment ρ adjusts the profit of the prosumer to the level of the fixed-price tariff so
that the retailer profits do not differ substantially in spite of the huge price differences
as compared to the benchmark. TOU results in approximately the same price level as
the fixed-price tariff. Whereas prices do not vary significantly between time periods in
TOU, there is more difference in the case of CPP. Not surprisingly, the highest price
fluctuation is shown by RTP.

One purpose of designing flexible energy supply tariffs is to provide incentives for
prosumers to apply load shifting. Thus, we now consider the load management of the
prosumer in more detail. To this end, we first present relevant aggregated input data
such as the total electrical and heat load as well as the total PV power production
scaled up to a year in Table 6. This input data is the same for all considered tariffs.
Moreover, we also specify aggregated results like the total yearly amount of electrical
power bought from or fed into the main grid as well as the aggregated losses of the
battery and the HSU caused by load shifting. As expected, these results may differ
between the different tariffs. The imported electrical power differs, with the smallest
amount for the FP tariff and then (in ascending order) for the TOU, the CPP, and
the RTP tariff. This order of amounts of electrical power bought from the main grid
exactly corresponds to the order of increasing losses in the battery and the HSU across
the tariffs (provided in the penultimate row of the table). Indeed, the more power
shifting occurs due to higher import price fluctuation of a certain tariff, the higher are
the losses in the battery and the HSU of the prosumer. The RTP tariff is the most
flexible tariff (w.r.t. the price of electricity) and thus corresponds to the highest losses.
Consequently, the RTP tariff drives the prosumer to buy the largest amount of power
from the main grid. The TOU and the CPP cause smaller losses and result in less
power bought from the main grid as the RTP—but still more than the FP tariff. Note
that the amount of PV power fed into the main grid is the same for all four tariffs.
The reason is that PV energy is used primarily for self-consumption, which is due to

2The average price is calculated by first multiplying the amount of purchased electrical energy at
each time period by the corresponding retailer price and weighting the products according to the
duration of the corresponding season. Then we sum these products over all time periods and finally
divide this sum by the total amount of electrical energy purchased throughout the entire time horizon,
which is also weighted according to different seasons.
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Figure 3. Energy balance, costs, and profits of the prosumer for the
conventional tariff

the very favorable treatment of self-consumption under the German regulation. Only
when the prosumer’s demand is satisfied, the remaining amount is sold. Thus, the
amount of sold PV energy does not depend on the electricity prices (and thus not
on the specific tariff). The prosumer’s profit is obviously the same for all four tariffs,
cf. Sect. 5.3, which is due to the constraint that all tariffs have to yield at least the
profits from the fixed-price tariff for the consumer.

To sum up, we observed that the higher the flexibility of the tariff, the more
load shifting and, consequently, power losses occur. To study the respective seasonal
dependencies more clearly, we now present the respective optimal load managements of
the prosumer for the three exemplary weeks. We start by discussing the FP tariff under
the optimistic assumption. The corresponding load management of the prosumer is
illustrated in Figure 3. The energy sources such as power bought from the main grid,
PV generated power, and power discharged from the battery are shown going down
below zero in the upper part of the figure. The power used by the prosumer to cover
electrical load, for the heat pump, for feed-in to the main grid, and for charging the
battery are plotted above zero. The second figure below shows the price for electrical
energy bought by the prosumer during each time period (red line; in EUR/MWh). Of
course, this is a flat line for the FP tariff. The other black line indicates the hourly
costs (negative values) or profits (positive values) of the prosumer during each time
period in EUR.

Here, larger amounts of electricity bought from the main grid correspond to higher
heat demand (and thus higher electrical demand used for the heat pump) in winter
and in the mid-season whereas smaller amounts of purchased electricity coincide with
larger amounts of self-generated PV power—particularly in the summer. Since the
price of electricity is constant over time in this tariff, the cost/profit curve of the
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Figure 4. Energy balance, costs, and profits of the prosumer for the
RTP tariff

prosumer is strongly related to the import (during the winter and mid-season week)
and PV curve (in the summer week).

In contrast to the curves in the figure of the conventional tariff, Figure 4 for the
RTP tariff shows more jagged lines. This is particularly the case for the amount
of electricity bought from the main grid, for the heat pump, and thus also for the
cost/profit curve of the prosumer. The battery usage still mainly depends on the PV
power output as it is the case for the conventional tariff: For both tariffs, the battery
is used to store excess solar energy for later consumption.

The optimal prosumer’s load management in the TOU tariff is shown in Figure 5.
The peak time starts at 6 a.m. and lasts until midnight. The off-peak time accordingly
starts at midnight and lasts until 6 a.m. We can see that the price difference between
the peak- and off-peak times is much lower as compared to the RTP tariff in which the
spot-market prices are directly forwarded to the prosumer. It is also visible that the
TOU tariff induces a certain regular pattern of the behavior of the prosumer. Directly
before the end of the off-peak time period, the prosumer buys electricity and directly
uses it for the heat pump in order to store heat in the HSU that is then used in the
peak time period. Thus, for TOU as well as RTP, the main storage in colder periods
is the heat storage unit, as is the case for all four considered tariffs. Let us also note
that the specific moment of purchase is reasonable since earlier purchases would lead
to losses in the HSU. The battery does not play an important role during the colder
weeks. This changes in warmer periods in which the battery is mainly used to store
PV power in the mid-season and the summer.

The results under the CPP tariff are illustrated in Figure 6. The curves are less
jagged than with the RTP tariff, but show more peaks than the TOU tariff, and—as it
is also the case for the TOU tariff—have a more periodic pattern due to the periodicity
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Figure 5. Energy balance, costs, and profits of the prosumer for the
TOU tariff

of peak and off-peak times. Recall that peak and off-peak times of the CPP are the
same as those in the TOU, i.e., peak time from 6 a.m. to midnight, and off-peak
time from midnight to 6 a.m. The increased amount of peaks for the energy bought
from the main grid compared to the TOU tariff is caused by variations in the CPP
markup values during peak time periods. Note that the CPP markup values are highly
ambiguous if the prosumer does not buy any electrical power during the corresponding
period, e.g., during the summer. Here, the optimal markup level may adopt a high
value, but this does not affect the prosumer, whose energy demand is covered by the
PV panel in combination with the battery.

Moreover, note that the profitability of the CPP tariff is highly dependent on the
fixed upper bound for the CPP markups. Unless specified otherwise, all computational
results presented in this paper are given for γ̄cpp = 1.5γ∗tou, where γ∗tou is the TOU
markup from the optimal TOU solution. By choosing a higher upper bound value,
e.g., γ̄cpp = γbase, the retailer profit would be lower (517.95EUR) and the lump-sum
payment would increase to −611.08EUR. With γ̄cpp = 2γbase, the retailer’s overall
profit would amount to just 444.782EUR, being 13 % less than the profit under the
FP tariff.

5.5. Results under a Worst-Case Assumption. All results of the last section
are obtained under the optimistic assumption for the behavior of the prosumer.
However, this optimistic behavior is not a necessarily realistic assumption in practice.
Unfortunately, computing pessimistic solutions of bilevel problems is even harder
than computing optimistic solutions; see, e.g., [61], where a method is presented for
computing pessimistic solutions that builds upon methods for computing optimistic
solutions. Since the bilevel instances that we solve already are at the frontier of
computational tractability in the optimistic case, we have no hope on tackling the
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Figure 6. Energy balance, costs, and profits of the prosumer for the
CPP tariff

pessimistic case as well. Thus, we are also interested in some kind of worst case. To
this end, we proceed as follows. We fix the values of retailer’s variables from the
optimal solutions of the multilevel models for the TOU as well as the CPP tariff
and then solve the corresponding bilevel models minimizing the retailer’s objective
function:

min fTOU: (33) with fixed upper-level variables
max flow-TOU: (30)
s.t. (20b)–(20e).

As the lump-sum payment in the CPP tariff only depends on the optimal objective
function value of the lowest level, i.e., of the profits of the prosumer, it is also fixed
once the CPP model (38) is solved. Thus, it is sufficient for the CPP tariff to consider
only the second and third level of the CPP model, i.e.,

min fCPP: (5) with fixed second-level variables
max flow-CPP: (35)
s.t. (20b)–(20e).

For the conventional tariff we modify the artificial bilevel formulation (39) accord-
ingly and obtain

min fConv: (1)
max flow-conv: (21)
s.t. (20b)–(20e).
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Table 7. Total retailer profit for three exemplary weeks scaled to a
year (all values in EUR): optimistic assumption vs. worst case.

Conv. RTP TOU CPP

Optimistic 505.60 530.38 513.19 520.50
Worst case 505.60 530.38 508.01 510.44

We note that this does not give the pessimistic solution (in the classical sense of
bilevel optimization) but leads to a special notion of the worst case for the retailer.
Thus, it gives an insight on the dependence of the load management of the prosumer
if the latter faces some ambiguities regarding the control of his utilities.

Before we discuss the differences between these worst-case solutions and the solutions
obtained under the optimistic assumption, let us point out that in our computational
results the solution for the RTP and the FP tariff are the same for the optimistic and
the worst-case solution. The latter depends on the parameters of the model since
there could also exist instantiations in which these results may differ. For both the
TOU and the CPP tariff, however, corresponding gains in the worst case are below
the solutions with the optimistic assumption; cf. Table 7.

The mathematical reason for the differences between the optimistic and worst-case
setting is that in some cases the lower level of the considered multilevel problems does
not possess a unique solution for every upper-level decision. It is well-known that
this situation may lead to issues in bilevel optimization that are hard to analyze; cf.,
e.g., Chapter 7 of [10]. Regarding the application of bilevel optimization discussed
in this paper, a word of caution is thus appropriate. First, using usual optimization
models, i.e., single-level problems, for analyzing the impact of different tariff types
may not be appropriate since the different goals of the retailer and the prosumer
cannot be modeled properly in such a framework. Moreover, just applying bilevel
optimization using standard single-level reformulation techniques may also lead to
contestable results because the “most profitable” tariff may depend on how a prosumer
controls his utilities. If such a control is not unique, a profitable and flexible tariff
may even get worse than the standard FP tariff—depending on how “cooperative” the
prosumer behaves.

6. Conclusion

In this paper we analyze the potential to incentivize prosumers through flexible
tariffs in a smart energy system and thereby assess the possibilities of a retailer to raise
additional profits by using them. We focus on tariff design by the retailer who takes
into account the specific load shifting potential of prosumers who possess small-scaled
energy generation and storage facilities. It is a particular feature of the presented
approach that our prosumer model explicitly considers the interaction of electricity as
well as heat production and storage within a household.

The prosumer operates his domestic system optimally given the electricity prices
that he faces if he buys electricity from the retailer to cover residual load. In order to
appropriately model the specific decision environments and the interaction of retailer
and prosumer, we rely on bilevel modeling techniques. In our analysis we consider
four tariffs: a conventional fixed-price tariff (FP) in which the electricity price is
constant over time, real-time-pricing (RTP), time-of-use pricing (TOU), and critical-
peak-pricing (CPP). In order to allow for a proper comparison, we ensure that the
prosumer will maintain his level of profit if he switches from the conventional to either
of the three more flexible tariffs.

Our study provides a number of new and interesting insights on flexible pricing.
We show that the simple pass-through of wholesale prices in the RTP tariff yields
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the highest additional profits for the retailer within our framework. This is intuitive
since the price signal from the market induces the optimal use of the prosumer’s
flexibility. CPP and TOU only yield moderate additional gains in our analysis. This is
mainly due to the fact that load shifting potential turns out to be moderate if detailed
technical configurations are accounted for in combination with fixed time windows
for peak prices. In CPP, the prosumer will be aware of the risk of high peak prices
and therefore has to be compensated up-front by a lump-sum payment. On top of the
low efficiency potential in the optimistic case, in the case of CPP and TOU, flexible
tariffs imply multiple solutions of the prosumer’s optimization problem, which raises
revenue uncertainty for the retailer. In essence, the retailer has to bear the risk that
the prosumer acts against him, which makes flexible tariffs such as TOU and CPP
less attractive.

Our framework creates the basis for looking at prosumers with alternative technology
parks as well. If, for example, the prosumer has devices where energy production is
controllable, the efficiency potential of a flexible tariff may be higher.

Our results clearly illustrate that the design of flexible tariffs is extremely complex.
The performance of tariffs depends on many different details of the tariff structure
and also on the behavioral patterns of prosumers. In order to achieve significant
efficiency gains (which ultimately benefit the retailer or the prosumer), it is necessary
to optimize further aspects of the tariff beyond the multiple aspects that we already
addressed in our analysis. Possible extensions of our approach would be consideration
of further technologies and possibilities of the prosumer allowing for an explicit demand
reduction (additionally to demand shifting), optimal choice of duration and number of
peak intervals specifically for CPP or the consideration of direct load control. These
questions will be addressed in future work.
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