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A modified and improved method to measure economy-wide carbon rebound 12 

effects based on the PDA-MMI approach 13 

 14 

Abstract: Although energy technological progress has been regarded as an important 15 

driver for reducing carbon emissions, the existence of carbon rebound effect prevents 16 

a portion of the potential carbon reductions to be realized. Compared with the energy 17 

rebound effect, research on the carbon rebound effect is scarce because it is always 18 

equated with the energy rebound effect. However, the carbon rebound effect is more 19 

complex. Given that the traditional method for carbon rebound effect assessment only 20 

reflects energy rebound effects, our study proposed an improved 21 

production-theoretical decomposition analysis (PDA)-Meta-frontier Malmquist index 22 

(MMI)-based method and explored carbon rebound effects in China from 2006 – 2015. 23 

Our results show that (1) the eastern and western regions faced fewer carbon rebound 24 

effect risks compared with those of the central region due to decreasing emission 25 

intensity associated with energy technological progress; (2) the reductions in emission 26 

intensity in the eastern region relied both on coal and non-coal technology, whereas 27 

the western region only relied on coal technology; and (3) the non-coal technology in 28 

the eastern region was at the meta-frontier, whereas the non-coal technology of other 29 

regions exhibited catch-up effects. 30 

 31 

Keywords: carbon rebound; economic growth; technological progress; 32 

production-theoretical decomposition analysis 33 
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1. Introduction 34 

With the rapid development of urbanization and industrialization around the world, 35 

several countries are facing a paradox between economic growth and carbon emission 36 

reductions (Liu et al., 2017; Cheng et al., 2018; Chen et al., 2019; Dubey et al., 2019). 37 

Given that many economic driving forces are also sources of carbon emissions, a 38 

focus on technology has become central to the research efforts of many countries, 39 

particularly as technological progress in energy has been widely regarded as an 40 

important factor in the reduction of carbon emissions worldwide (Liu et al., 2015; 41 

Zhang et al., 2016a; 2016b; Li et al., 2017a; Chen et al., 2019). However, many 42 

scholars have also pointed out that energy technological progress can also lead to 43 

increased carbon emissions due to the energy rebound effect (Yang et al., 2017a; Wu 44 

et al., 2018; Jin et al., 2019).  45 

The energy rebound effect was first proposed by Khazzoom (1980) and Brookes 46 

(1990a, 1990b), and was described as a phenomenon whereby technological 47 

development not only leads to energy conservation but also leads to a decrease in the 48 

real cost of energy consumption and thus offset a part of potential energy savings. 49 

Moreover, since carbon emissions are strongly and positively related to energy 50 

consumption, the energy rebound effect can also impact carbon emissions and thus 51 

lead to carbon rebound effects (Brännlund, 2007; Druckman et al., 2011). In line with 52 

Druckman et al. (2011) and Yang et al. (2017), the definition of carbon rebound is 53 

similar to that of the energy rebound effect: a portion of the potential reduction in 54 
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emissions is not attained due to the reduced effective price and cost of energy use 55 

caused by energy technological progress. 56 

Although the increased energy price caused by energy technological progress can 57 

offset both potential energy savings and carbon reductions, carbon rebound effects 58 

cannot be equated with energy rebound effects, since the potential carbon reductions 59 

include not only the energy-saving effects derived from energy technological progress 60 

but also the impacts of emission intensity caused by different types of energy 61 

technological progress (Brännlund et al., 2007; Zhang et al., 2013; Wang and Wei., 62 

2014; Li and Lin, 2016; Li et al., 2017a; Chen et al., 2019). Changes in emission 63 

intensity include the optimization of the energy consumption structure associated with 64 

energy technological progress (i.e., a decreasing proportion of high-emission energy 65 

use) and reductions in the carbon emission efficiency of particular energy types (Yang 66 

et al., 2017a). Therefore, a gap should be present between carbon and energy rebound 67 

effects, which help implement effective policies to reduce greenhouse gas emissions, 68 

and is also benefit the development of future studies in the field. 69 

 With regard to the existing literature, several studies have focused on assessing 70 

rebound effects from the time that this phenomenon was first described. Table 1 71 

summarizes recent representative studies on carbon and energy rebound effects. 72 

 73 

[Insert Table 1 here] 74 

 75 

Based on a thorough literature review, we found that many studies have mainly 76 
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focused on characterizing energy rebound effects, whereas research on carbon 77 

rebound effects is scarce. In turn, carbon rebound effect studies can be divided into 78 

two categories based on the rebound effect mechanism. The first category mainly 79 

focuses on estimating carbon rebound effects in particular areas from a 80 

microeconomic standpoint. The second category focuses on economy-wide carbon 81 

rebound effects on a macroeconomic level. 82 

Regarding the first category, Brännlund et al. (2007) pointed out that Swedish 83 

household energy rebound effects significantly impacted carbon rebound effects. 84 

Further, they found that a 20% increase in household energy efficiency translated to 85 

an approximate 5% increase in carbon emissions. Similarly, Druckman et al. (2011) 86 

analyzed the carbon emissions and reductions of UK residents and confirmed the 87 

existence of carbon rebound effects, which amounted to approximately 34%. Zhang et 88 

al. (2017) implemented a two-stage almost ideal demand system (AIDS) model to 89 

estimate direct and indirect carbon rebound effects caused by provincial private 90 

vehicles in China from 2001 to 2012. They found that the direct carbon rebound effect 91 

dominated the total carbon rebound effect in most provinces.  92 

As for the second category, research on economy-wide carbon rebound effects is 93 

very scarce. Yang et al. (2017) used an energy rebound effect framework to estimate 94 

regional carbon rebound effects in China (which excluded the impacts of emission 95 

intensity) and found that carbon rebound effects varied regionally, ranging from 96 

10-60%. Based on a framework provided by Zhang et al. (2017), Wu et al. (2019) also 97 

calculated the regional carbon rebound effects in China by employing a combination 98 
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of the data envelopment analysis (DEA) production model and sequential 99 

Malmquist-Luenberger index. The conclusions provided by Wu et al. (2019) also 100 

confirmed the existence of carbon rebound effects in China, and the results were 101 

similar to those of Zhang et al. (2017). Similarly, based on an integration of the 102 

logarithmic mean Divisia index (LMDI) and production-theoretical decomposition 103 

analysis (PDA), Yang et al. (2019) analyzed the driving forces of carbon emissions in 104 

China and estimated carbon rebound effects. However, their study also failed to 105 

account for the notable effects of emission intensity associated with technological 106 

progress.  107 

In line with existing studies, we found that the current methods for carbon 108 

rebound effect calculation mainly derive from energy rebound effect estimation 109 

frameworks. The traditional methods for calculating energy rebound effects can 110 

successfully estimate potential and offset energy savings; however, they cannot reflect 111 

the impacts of either the energy consumption structure or carbon emission efficiency, 112 

which have been reported by several studies (Zwaan et al., 2002; Brännlund et al., 113 

2007; Ma et al., 2008; Chen et al., 2020a). Given that carbon rebound effects include 114 

not only the energy-saving effects caused by technological progress but also the 115 

optimization of the energy consumption structure and reductions in carbon emission 116 

coefficients, the carbon rebound effects assessed by the traditional method may be 117 

largely similar to energy rebound effects, thus leading to inaccurate conclusions. 118 

Additionally, although several studies have calculated carbon rebound effects, few 119 

studies have analyzed the underlying mechanisms that lead to different regional 120 
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results. 121 

Therefore, this study proposes a modified and improved PDA-Meta-frontier 122 

Malmquist index (MMI)-based approach to assess economy-wide carbon rebound 123 

effects, which accounts for the effects of energy technological progress on emission 124 

intensity. Upon comparing carbon and energy rebound effects, we estimated the 125 

impacts of energy technological progress on emission intensity (i.e., the ratio of total 126 

carbon emissions to total energy consumption), which included the impacts of energy 127 

technological progress on the energy use structure and carbon emission efficiency. To 128 

further analyze the underlying mechanisms of energy technological progress on 129 

regional emission intensity, we divided total energy use into coal and non-coal 130 

technologies and combined the LMDI and PDA-MMI approaches to decompose the 131 

changes in emission intensity, after which we obtained the impacts of coal and 132 

non-coal technology on emission intensity and carbon rebound effects. Moreover, we 133 

further analyzed the regional catch-up effects of the coal and non-coal technological 134 

gaps on emission intensity and carbon rebound effects based on the group and global 135 

frontiers provided by the MMI method. Simultaneously, we focused on China as the 136 

research objective given that this nation is one of the largest carbon emitters 137 

worldwide (Dong et al., 2016; Chen et al, 2019; Cheng et al., 2018; Chen et al., 138 

2020b). The results of this analysis may provide useful information and references for 139 

other countries with high carbon emissions. 140 

Specifically, our study makes the following contributions: (1) We proposed a 141 

modified and improved PDA-MMI-based method to more accurately assess 142 
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economy-wide carbon rebound effects, which overcomes the shortcomings of the 143 

traditional method and identifies the gap between energy and carbon rebound effects. 144 

(2) We further analyzed the mechanisms underlying how regional energy 145 

technological progress influences emission intensity and carbon rebound effects 146 

instead of only calculating carbon rebound effects. (3) Based on national and regional 147 

data from 2005-2015, we found that the eastern and western regions of China faced 148 

fewer risks of carbon rebound effects compared with those of the central region due to 149 

reduced emission intensity derived from technological development. (4) The 150 

reductions in emission intensity in the eastern region relied both on coal and non-coal 151 

technology, whereas those of the western region only relied on coal technology. 152 

 153 

2. Methodology 154 

This section of our study introduces the derivations of the traditional method to 155 

calculate economy-wide carbon rebound effects and points out the flaws of the 156 

traditional method, with the aim to provide more accurate policies for curbing carbon 157 

rebound effects. Next, this study proposes a modified and improved method to 158 

estimate carbon rebound effects, which overcomes the disadvantages of the traditional 159 

methods. 160 

2.1. Traditional methods for economy-wide carbon rebound effect calculation 161 

It is crucial to first introduce the traditional method for rebound effect 162 

measurement, including its origin and derivations. In line with the existing literature, 163 
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the framework to calculate the economy-wide carbon rebound effect is derived from 164 

the method for energy rebound effect assessment (Yang et al., 2017a; Wu et al., 2018; 165 

Chen et al., 2019; Chen et al., 2020a, 2020b). The traditional formula to estimate 166 

economy-wide energy rebound effects is the following: 167 

1 1 1
1

1 1

( )Re
( )

+ + +
+

+ +

× − ×
=

× − ×

t t t t
t

t t t t

A Y Y EI
B EI EI Y

                                        (1) 168 

where 1Re +t  represents the economy-wide energy rebound effects during period 1+t ; 169 

1+tY  represents the economic output during period 1+t ; 1+tEI  represents the energy 170 

intensity during period 1+t ; 1+tA  represents the contribution rate of technological 171 

progress to economic output, which is always represented by the ratio of 172 

technological change rate to the output change rate (Lin et al., 2012; Li et al., 2016; 173 

Yang et al., 2017; Chen et al., 2020a); 1+tB  represents the contribution rate of 174 

technological progress to potential energy savings caused by energy intensity, which 175 

is represented by the contribution of industrial energy intensity to energy intensity1. 176 

The numerator and denominator of Eq. (1) represent the increase in energy 177 

consumption through the technological progress output channels and the potential 178 

energy consumption savings associated with technological progress, respectively.  179 

The traditional economy-wide approach to estimate the energy rebound effect has 180 

been widely accepted by several studies (Lin et al., 2012; Li et al., 2017b; Lin et al., 181 

2017; Jin et al., 2019; Chen et al., 2020a), and some scholars further assessed carbon 182 

rebound effects based on the traditional method (Yang et al., 2017a; Wu et al., 2018; 183 

Cheng et al., 2018). The formula for economy-wide carbon rebound effect estimation 184 
                                                             
1 Scholars always use the LMDI method to decompose the changes in energy intensity into the effects of industrial 
structure and industrial energy intensity and used the contribution of industrial energy intensity to represents 1+tB . 
The detailed formula can be found in Appendix A1. 
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is as follows: 185 

1 1 1
1

1 1

( )Re
( )

+ + +
+

+ +

× − ×
=

× − ×

t t t t
t

t t t t

A Y Y CIC
C CI CI Y

                                       (2) 186 

where 1Re +tC  represents the economy-wide carbon rebound effects during period 187 

1+t ; 1+tY  represents the economic output during period 1+t ; 1+tCI  represents the 188 

energy intensity during period 1+t ; 1+tC  represents the contribution rate of 189 

technological progress to the potential carbon reductions caused by carbon use 190 

intensity, which is represented by the contribution of the industrial energy intensity to 191 

carbon intensity2. 192 

This approach is not fundamentally different from the previous method for energy 193 

rebound effect assessment, except that energy intensity is replaced by carbon intensity. 194 

In fact, we consider this to be the major flaw of this carbon rebound effect calculation 195 

method. The denominator in Equation (2) reflects the direct effects of technological 196 

progress on energy savings and carbon reductions, which can be easily understood 197 

with Eq. (A1.3-4) provided in Appendix A1. However, technological progress can 198 

also have significant impacts on emission intensity (i.e., C E ; not to be confused 199 

with carbon intensity). Consistent with previous studies, technological progress 200 

reduces the proportion of fossil fuel (e.g., coal) consumption (Cheng et al., 2017; 201 

Chen et al., 2020a). Notably, the 1 1( )+ +× − ×t t t tC CI CI Y  calculation has the same 202 

meaning as the 1 1( )+ +× − ×t t t tB EI EI Y  calculation, since they both only consider the 203 

direct impacts of technological progress on energy. Therefore, based on the traditional 204 

method, the energy and carbon rebound effect results would be largely equal, 205 
                                                             
2 Similar to the calculation of the contributions of technological progress to potential energy savings, the LMDI 
method is used to decompose the carbon intensity and obtain 1+tC . The detailed formula can be found in 
Appendix A1. 



11 

rendering the carbon rebound effect calculations questionable. 206 

 207 

2.2. Revised and improved PDA-based method 208 

According to the definition proposed by previous studies (Saunders, 2008; 2013; 209 

Jin et al., 2019), the energy rebound effect is derived from the elasticity of the energy 210 

service to energy efficiency, and can be calculated as follows: 211 

( )Re 1
( )

∂ × ∂ × ∂ ×
= = = +
∂ × ∂ × ∂ ×
S h hE h E h
h S hE e h E

                                     (3) 212 

where S  represents the energy service; E  represents the actual energy consumption 213 

under the effect of technological progress or energy efficiency; h  represents the 214 

technological level or energy efficiency. Based on the definition of carbon rebound 215 

effects (Brännlund et al., 2007; Druckman et al., 2011), the formula to estimate carbon 216 

rebound effect can be obtained as follows: 217 

Re 1∂ ×
= +
∂ ×
C hC
h C

                                                   (4) 218 

where c  represents the actual carbon emission under the impacts of technological 219 

progress or energy efficiency. 220 

Based on the principles of the economy-wide method for energy rebound effect 221 

calculation, deformations to Eq. (4) were made to obtain Eq. (5): 222 

, 1 1
1

, 1 1

1
1

1 1 1

1
1

( )Re 1 1 1
( )

( )

( ) ( )

+ +
+

+ +

+
+

+ + +

+
+

∆ × − ××
= + = + = +

× ∆ × − ×

− ×
× − ×

= =
− ×

− ×

t t t t t t
t

t t t t t t

t t
t

t t t t t t

t t t t
t t

t

c h AC C hdc hC
dh c h C h h C

AC C h
AC h C h h h

h h C Ch h
h

                        (5) 223 

where tAC  represents the actual and eventual carbon emissions after the reduction 224 

and rebound impacts of technological progress or energy efficiency. Here, a decrease 225 
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in h  reflects technological progress, which is similar to energy intensity and carbon 226 

intensity. Given that tC  represents carbon emissions under the impacts of 227 

technological progress, 
t

t

AC
h

 reflects the potential carbon emissions in an economic 228 

context with regard to technological progress, whereas 
t

t

C
h

 reflects the potential 229 

carbon emissions under a specific economic context without technological progress. It 230 

is worth mentioning that such principles originated from previous studies, which used 231 

the production-theoretical decomposition analysis (PDA) method to decompose the 232 

changes in carbon emissions (Wang et al., 2015; Wang et al., 2018).  233 

Thus, 
1

1
1( )
+

+
+ − ×
t t

t
t t

AC C h
h h

 represents the increased carbon emissions (or unrealized 234 

carbon reductions) caused by economic growth which was stimulated by 235 

technological progress. Moreover, 1( )+− ×
t

t t
t

Ch h
h

 represents the potential carbon 236 

reductions caused by technological progress, which help overcome the shortcomings 237 

of the traditional method and reveal the gap between energy and carbon rebound 238 

effects, given that they reflect three key aspects in potential carbon reductions 239 

associated with technological development: (1) the energy-saving effects caused by 240 

energy technological progress; (2) energy consumption structure optimization caused 241 

by different types of energy technological progress; and (3) reductions in carbon 242 

emission coefficients. Given that the carbon emission estimation is mostly based on 243 

the method proposed by the Intergovernmental Panel on Climate Change (IPCC), 244 

yearly carbon emission coefficients remain unchanged. Therefore, the potential 245 

carbon reductions only include energy-saving effects and optimization of energy 246 

consumption structure optimization (i.e., the decreasing proportion of high-emission 247 
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energy in total energy use). 248 

Additionally, now that 
t

t

AC
h

 accounted for both economic context and 249 

technological progress, 
1

1
1( )
+

+
+ − ×
t t

t
t t

AC C h
h h

 can be replaced by 
1

1 1
1( )
+

+ +
+× − ×
t t

t t
t t

C CA h
h h

. 250 

Where 1+tA  also represents the contribution rate of technological progress to 251 

economic output. 
1

1
1( )
+

+
+ − ×
t t

t
t t

C C h
h h

 reflects the changes in carbon emission under 252 

different economic situations (i.e., carbon emissions at different production fronts). 253 

Hence, 
1

1 1
1( )
+

+ +
+× − ×
t t

t t
t t

C CA h
h h

 can also reflects the increased carbon emissions (or 254 

unrealized carbon reductions) caused by economic growth that was stimulated by 255 

technological progress. Moreover, we adopted the distance function to reflect the 256 

technological level, which has been implemented in many studies (Fan et al., 2015; 257 

Wang et al., 2015; 2018; Zhao et al., 2019). Therefore, the following equations for 258 

carbon and energy rebound effect assessment were obtained: 259 

1
1 1

1
1

1

( )
Re

( )

+
+ +

+
+

+

× − ×
=

− ×

t t
t t

Ct t
t C C

t
t t
C C t

C

C CA D
D D

C
CD D
D

      

1
1 1

1
1

1

( )
Re

( )

+
+ +

+
+

+

× − ×
=

− ×

t t
t t

Et t
t E E

t
t t
E E t

E

E EA D
D D

ED D
D

          (6-7)                           260 

where t
CD  and t

ED  respectively represent the Shephard undesirable output and 261 

energy input distance functions, which were first adopted by Zhou and Ang (2008) 262 

and are now widely accepted.  263 

Moreover, as the economy-wide carbon and energy rebound effects can be 264 

estimated by our improved approach, we can further obtain the elasticity of emission 265 

intensity with regard to energy technological progress, which is similar to the 266 

approach used by Chen et al (2020a). The calculation model is as follows: 267 
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1 1
1 1 1 1

1 1

1 1

( )Re Re
( )

( ) ( )

( ) ( )

+ +
+ + + +

+ +

+ +

∂ × × ∂ ×
= − = −

∂ × × ∂ ×
∂ × ∂ × ∂ ×

= + −
∂ × ∂ × ∂ ×

× − × × − ×
= −

− × − ×

CE

t t t t
t t t t

C Et t t t
C C E E

t t
t t t t
C C E Et t

C E

CE E h E hk C
h CE E h E

CE h E h E h
h CE h E h E

C C E EA D A D
D D D D

C ED D D D
D D

                          (8) 268 

 269 

2.3. Effects of different types of technological development on emission intensity 270 

Similar to the elasticity of emission intensity to technological progress, we can 271 

obtain the difference between carbon and energy rebound effects, which is caused by 272 

the impacts of different types of energy technological development on emission 273 

intensity. However, the underlying mechanism is not clear by calculating the elasticity 274 

of emission intensity to technological progress. Therefore, we further analyzed the 275 

impacts of different types of energy technological development on targeted regional 276 

emission intensities by combining the LMDI and PDA approaches. The index identity 277 

can be constructed as follows: 278 

( )
( )

1

,
,

1

1

/ , , , ,
, , , ,

=

=

=

= ×

= × ×

= × ×

∑

∑

∑

t
i

t
i

tt tt i
i i

t t t
i i i

t G tti i E G ti
t t E

i i
i

t t t
i i i

i

C EC
E E E

E D K L E Y CC
D K L E Y C

E E

ce PES TE

                          (9) 279 

where i  represents the thi  type of energy consumption; ice  represent the carbon 280 

emission coefficient of the thi  type of energy consumption; iPES  represents the 281 

potential energy consumption structure, excluding the impacts of technological 282 

progress (Zhang et al., 2013; Wang et al., 2015, 2018); iTE  represents the thi  type 283 

of energy technological progress calculated with the PDA approach (Oh et al., 2010; 284 
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Wang et al., 2018).  285 

Based on the LMDI provided by Ang et al. (2005), the emission intensity changes 286 

caused by the carbon emission coefficient, potential energy consumption structure, 287 

and energy technology from a start time to the reported time can be decomposed with 288 

Equation (10), as presented in Table 2. Additionally, since the carbon emission 289 

coefficient was obtained from the IPCC and remains constant each year, the impact of 290 

the carbon emission coefficient would be zero and thus was not considered in 291 

downstream calculations. 292 

, , , ,

, ,

, ,

1 1= =

∆ = ∆ + ∆ + ∆

= ∆ + ∆

= ∆ + ∆∑ ∑i i

b t b t b t b t
ce PES TE

b t b t
PES TE

i i
b t b t
PES TE

i i

CE CE CE CE

CE CE

CE CE

                                      (10) 293 

 294 

[Insert Table. 2 here.] 295 

 296 

2.4. Environmental production technology based on meta-frontier 297 

In accordance with section 2.2, we proposed an improved approach to calculate 298 

economy-wide carbon and energy rebound effects based on the PDA approach. 299 

Moreover, we adopted the meta-frontier PDA approach to estimate the Shephard 300 

undesirable output and energy input distance functions instead of using the traditional 301 

PDA approach. The meta-frontier PDA approach was adopted mainly for two reasons, 302 

as explained below. 303 

First, although the traditional PDA approach helps estimate the Malmquist index, 304 

which reflects technological changes, it can only obtain relative technological 305 
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progress rates based on a contemporaneous benchmark technology set and fails to 306 

analyze the time-series technological changes based on an intertemporal benchmark 307 

technology set (Li et al., 2016). Second, considering that interregional technology 308 

differences may cause changes in carbon emissions (Du et al., 2014, 2017; Zhang et 309 

al., 2015; 2016a; Zha et al., 2019; Liu et al., 2019; Chen et al., 2020a), especially 310 

between the eastern, central, and western regions of China3, it is important to divide 311 

the technology set into three groups and estimate the technological progress based on 312 

interregional differences.  313 

Therefore, we treated each province as a decision-making unit (DMU) in the 314 

production process and divided their production technology into three groups based 315 

on region (i.e., eastern, central, and western).  316 

Furthermore, contemporaneous, intertemporal, and global production technology 317 

is defined as follows:  318 

{ }( , , , , ) : ( , , ) ( , ); 1, 2,3= =t
groupiP K L E Y C K L E produce Y C i                       (11) 319 

{ }( , , , , ) : ( , , ) ( , ); 1, 2,3; 1,2,...,= = =T
groupiP K L E Y C K L E produce Y C i T t               (12) 320 

}{ 1 2 3= ∪ ∪T T T T
global group group groupP conv P P P                                     (13) 321 

where E  represents energy consumption; K  represents capital; L  represents labor 322 

force; Y represents economic output and desirable output; C represents carbon 323 

emissions and undesirable output; t
groupiP  represents the thi  group’s production 324 

                                                             
3 The eastern region includes Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, 
Zhejiang, Fujian, Shandong, Guangdong, and Hainan; the central region includes Jilin, 
Heilongjiang, Anhui, Jiangxi, Henan, Hubei, Hunan, and Shanxi; the western region 
includes Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, 
Gansu, Qinghai, Ningxia, and Xinjiang. 
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technology at time point t ; T
groupiP  represents the thi  group’s production technology 325 

during period T  ( }{1,2,3,...,=T t ). 326 

Based on the PDA approach proposed by Zhou and Ang (2008), we first 327 

calculated each group’s energy input and undesirable output distance for the 328 

contemporaneous benchmark technology set as follows: 329 

{ }1 1sup : ( , , / , , );λ λ=S t
E groupiD K L E Y C P                                    (14) 330 

{ }1 1sup : ( , , , , / ; )θ θ=S t
C groupiD K L E Y C P                                    (15) 331 

Next, following the meta-frontier concepts proposed by Oh et al. (2010), global 332 

meta-frontier’s and each group’s energy input and undesirable output distance for a 333 

given intertemporal benchmark technology set were estimated as follows: 334 

( / ) ( / )== × × = × ×G S I S G I S IS GI
E E E E E Ei E E ED D D E D D E D D D D                          (16) 335 

( / ) ( / )= × × = × ×G S I S G I S IS GI
C C C C C C C C CD D D C D D C D D D D                           (17) 336 

Therefore, we can obtain the global meta-frontier energy input and undesirable 337 

output distance by solving the corresponding linear equations, and they are detailed in 338 

Appendix A2. 339 

 340 

2.5 Data 341 

Due to data availability and consistency constraints, the scope of our study was 342 

limited to carbon emissions produced by energy sources in 30 provinces of China 343 

(except for the Tibet, Hong Kong, Macao, and Taiwan regions due to a lack of data) 344 

from 2005 to 20154. Additionally, as the fixed capital stock of Chongqing and 345 

                                                             
4 In the China Energy Statistical Yearbook, the total energy consumption comprises 
raw coal, cleaned coal, briquettes, other washed coal, coke, gasoline, diesel oil, 
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Sichuan were merged during the early periods, Chongqing and Sichuan were 346 

evaluated as a single province.  347 

The variables examined in this study can be classified as output and input 348 

variables. Output variables include regional economic output (100 million yuan) and 349 

carbon emissions (million tons), which represent desirable and undesirable output, 350 

respectively. In order to eliminate the impact of prices on economic output, we 351 

converted the nominal GDP to its true GDP value in 1978. The data was obtained 352 

from the China Statistical Yearbook (2006–2016). Regional carbon emissions were 353 

calculated following the methods described by the IPCC, which have been widely 354 

adopted in several studies (Yang et al., 2017a; Wang et al., 2018; Chen et al., 2019; 355 

Zha et al., 2019). 356 

Regarding input variables, we considered capital stock (100 million yuan), human 357 

capital stock (10,000 people per year), and energy consumption (10,000 tons of 358 

standard coal equivalent, TCE). The perpetual inventory method was used to calculate 359 

fixed capital stock, as described in previous studies (Liu et al., 2019; Chen et al., 360 

2020a; 2020b), after which it was converted to its real value in 1978 to eliminate the 361 

impact of prices and inflation. The “education years law” method was used to 362 

estimate human capital, as described by many previous studies (Yang et al., 2017b; 363 

Chen et al., 2020a). The data for industrial and residential energy consumption was 364 

obtained from the China Energy Statistical Yearbook (2006–2016)5 following widely 365 

                                                                                                                                                                              
lubricants, fuel oil, naphtha, lubricants, paraffin waxes, white spirit, bitumen asphalt, 
petroleum, coke, LPG, refinery gas, other petroleum products, natural gas, LNG, heat, 
electricity, and other energy sources. 
5 The total energy consumption in the China Energy Statistical Yearbook comprises 
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accepted procedures (Wang et al., 2014; Ji et al., 2018). 366 

3. Results and Discussion 367 

3.1 Comparison of the results calculated by the traditional and improved methods 368 

As described in Section 2, we calculated the economy-wide carbon and energy 369 

rebound effects with the improved methods. Furthermore, we also calculated the 370 

carbon and energy rebound effect with the traditional method in order to compare 371 

results and reveal the shortcomings of the traditional method. These results are 372 

summarized in Table 3.  373 

 374 

[Insert Table. 3 here.] 375 

 376 

Among said results, ReC  and Re  represent the carbon and energy rebound 377 

effects, respectively. Notably, the economy-wide carbon and energy rebound effects 378 

calculated with the traditional approach were not significantly different, indicating 379 

that carbon rebound effects estimated by the traditional method are equivalent to the 380 

energy rebound effect, which is a questionable conclusion. Figure 1 compares the 381 

results of the two methods more intuitively: 382 

 383 

[Insert Figure. 1 here.] 384 

                                                                                                                                                                              
raw coal, cleaned coal, briquettes, other washed coal, coke, gasoline, diesel oil, 
lubricants, fuel oil, naphtha, lubricants, paraffin waxes, white spirit, bitumen asphalt, 
petroleum, coke, LPG, refinery gas, other petroleum products, natural gas, LNG, heat, 
electricity, and other energy sources. 
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 385 

where Re0C , Re0 , Re1C , and Re1 represent carbon and energy rebound effects 386 

calculated by the traditional and improved methods, respectively. Importantly, the 387 

results estimated by the traditional method are consistent with our predictions and 388 

opinions that were proposed in Section 2.1 regarding its flaws as it ignores the 389 

impacts of technological progress on the energy consumption structure, which has 390 

been confirmed by previous studies (Chen et al., 2020a). Therefore, the traditional 391 

framework and method may be unsuitable to estimate the carbon rebound effect, even 392 

if it can be applied to assess energy rebound effects. 393 

On the other hand, our improved method evidently overcomes the disadvantages 394 

of traditional methods, and the results estimated by our improved method reveal the 395 

significant impacts of technological progress on emission intensity. At the same time, 396 

the energy rebound effects estimated by our method are close to those estimated by 397 

the traditional method, suggesting that our method is robust and trustworthy (Lin et al., 398 

2012; Li et al., 2017b; Wu et al., 2018).  399 

At the same time, it was evident that there was a gap between the carbon and 400 

energy rebound effects estimated by the traditional method, indicating that the 401 

traditional method can only be applied when estimating energy rebound effects and 402 

not carbon rebound effects, while our improved method can be applied to estimate 403 

both energy and carbon rebound effects. 404 

As for the empirical results calculated by our approach, we found that the national, 405 

eastern, central, and western average carbon rebound effects were 36%, 38%, 41%, 406 
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and 30% during 2006-2015, suggesting that the carbon rebound impact in the western 407 

region was relatively low, whereas the risk of carbon rebound in the eastern and 408 

central regions was relatively high. The average national carbon rebound effects based 409 

on our methods were similar to those of Wu et al. (2018) at 32.5% and Yang et al. 410 

(2016) at 35%. Furthermore, although there were some fluctuations in the national, 411 

eastern, central, and western rebound effects during 2006-2015, the trends of carbon 412 

and energy rebound effects ultimately decreased overall, which is consistent with 413 

what has been found in previous studies (Lin et al., 2017; Chen et al., 2019; Chen et 414 

al., 2020a). Additionally, the carbon rebound effect turning point approximately 415 

occurred between 2010-2011, which is consistent with the results provided by Wu et 416 

al. (2018). 417 

However, the regional differences in the carbon rebound effect based on our 418 

approach are not consistent with those of previous studies. We found that the risk of 419 

carbon rebound effects in the western region was lower than that in the eastern and 420 

central regions. However, previous studies by Yang et al. (2016), Wu et al. (2019), and 421 

Chen et al. (2019) determined that the risk of carbon rebound effects in the central 422 

region was lower than in either the eastern or western regions, and the western region 423 

presented a high carbon rebound effect risk. 424 

These evident differences may be due to the shortcomings of the traditional 425 

approach that ignore the impacts of emission intensity. To test the reliability of the 426 

conclusions from past research, we also used the traditional method to estimate the 427 

regional carbon rebound effects, and they are presented in Table 3. Clearly, the results 428 
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we estimated in Table 3 can also be used to draw a similar conclusion. Therefore, we 429 

can reasonably speculate that the conclusions drawn by previous studies regarding 430 

regional carbon rebound effects may be wrong due to the limitations of the traditional 431 

method. In fact, the western region had the lowest risk of carbon rebound effects, but 432 

presented a relatively high risk of energy rebound effects.  433 

 434 

3.2 Impacts of regional technological progress on emission intensity 435 

Based on the empirical results provided in Section 3.1, we confirmed that our 436 

improved approach overcame the shortcomings of the traditional method for 437 

calculating carbon rebound effects by accounting for changes in energy consumption 438 

structure. Thus, it is important to further analyze the impacts of energy technological 439 

progress on emission intensity as well as to explore the reasons for the differences in 440 

regional carbon rebound effects. 441 

Based on the method provided in Section 2.3, the regional elasticity of energy 442 

technological progress to emission intensity was obtained, as illustrated in Figure 2. 443 

 444 

[Insert Figure. 2 here.] 445 

 446 

As can be seen in Figure 2, it is evident that national technological progress 447 

played an important role in reducing emission intensity in most years, which helped to 448 

reduce the proportion of high-emission energy use, as has been reported in previous 449 

studies (Chang et al., 2010; Cheng et al., 2018; Chen et al., 2020a). Regionally, we 450 
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found that eastern and western energy technological progress had a strong effect on 451 

reducing emission intensity, whereas central regional technological progress had no 452 

visible effects. The different impacts of regional technological progress may explain 453 

why the risk of carbon rebound effects in the western region was lower than that in 454 

either the western or central regions. Furthermore, western technological progress 455 

played a more significant role in decreasing emission intensity compared to that of the 456 

eastern region, indicating that the proportion of high-emission energy use declined 457 

faster in the west.  458 

The decreasing emission intensity observed in our study may have derived from 459 

the decreasing proportion of high-emission energy use with regard to total energy 460 

consumption. Further, the decreasing proportion of high-emission energy use may 461 

have been caused by two factors. Firstly, novel energy technological progress may 462 

have ultimately led to the widespread use of low-emission energy to substitute 463 

high-emission energy use and optimize the energy use structure. Secondly, energy 464 

technological progress focused more on high-emission energy and therefore 465 

conserved more high-emission energy use.  466 

Hence, on the one hand, given that the promotion of renewable and sustainable 467 

energy was mainly concentrated in the east (Gu et al., 2019; Chen et al., 2020a), we 468 

speculate that the decreasing ratio of high-emission energy use in the east may have 469 

been mainly due to the first factor. On the other hand, since ‘‘the optimized 470 

development of the energy and chemical industry’’ was regarded as a significant 471 

development goal of the western region, the western region paid more attention to the 472 
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development of high-emission energy technology and had a greater reduction of 473 

emission intensity than either the eastern or central regions (Chen et al., 2010; Dong 474 

et al., 2016; Liu et al., 2019). Therefore, we speculate that the decreasing ratio of 475 

high-emission energy use in the west may have been mainly due to the second factor.  476 

 477 

3.3 Effects of technological advance on coal and non-coal emission intensity  478 

Based on the results presented in Sections 3.1 and 3.2, we found that the eastern 479 

and western regions presented a relatively low risk of carbon rebound effects, which 480 

may have been due to the impacts of different types of energy technological progress 481 

on emission intensity. Furthermore, the changes in emission intensity reflected the 482 

adjustment of the energy consumption structure, which we attributed to either the 483 

widespread use of low-emission energy or high-emission energy conservation. To 484 

further validate our conjecture and explore the underlying mechanisms, it was 485 

necessary to analyze the impacts of different types of energy technological 486 

development on emission intensity.   487 

Considering that coal is the main source of high carbon emissions in China 488 

(Cheng et al., 2018; Chen et al., 2020b) and the proportion of coal use had a 489 

significant influence on energy consumption structure (Cheng et al., 2018), we 490 

classified energy use into coal and non-coal categories. Based on a combination of the 491 

PDA and LMDI approaches provided in Section 2.3, we obtained the regional average 492 

effects of the potential consumption structure, and coal and non-coal energy 493 

technological progress on emission intensity. The empirical results are presented in 494 
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Table 4. Additionally, the detailed PDA formulas to estimate coal and non-coal 495 

distances are presented in Appendix A3. 496 

 497 

[Insert Table. 4 here.] 498 

 499 

,∆ b t
PESCE , ,∆ b t

TECE ,  ,
1∆ b t

TECE , and ,
2∆ b t

TECE  respectively represent the average impacts 500 

of the potential energy consumption structure and energy technology, coal technology, 501 

and non-coal technology on emission intensity. Evidently, the potential energy 502 

consumption structure in the eastern and central regions favored a reduction in 503 

emission intensity from 2005-2015, indicating that optimization of the eastern and 504 

central industrial structure played a more important role in carbon reduction, which is 505 

consistent with what has been reported in previous studies (Dhakal, 2009; Wang and 506 

Wang, 2018; Gu et al., 2019; Chen et al., 2020b). Further, ,∆ b t
TECE  indicated that 507 

energy technological changes in the eastern and western regions strongly decreased 508 

the emission intensity, whereas the technological changes of the central region had no 509 

visible effect. In the eastern region, the reduction effects from energy technological 510 

progress on emission intensity may have been the result of the promotion of 511 

low-emission energy, especially renewable and sustainable energy, being mainly 512 

concentrated in the east, which is consistent with what has been reported in the 513 

literature and existing conditions (Gu et al., 2019; Chen et al., 2020a). Actually, many 514 

scholars have also pointed out that locations within the eastern region, such as Beijing, 515 

Shanghai, and Jiangsu, always have more renewable and cleaner energy technology 516 
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than those of other areas and help to optimize the energy use structure (Wang and 517 

Wang, 2018; Lin et al., 2019). 518 

At the same time, in the western region, we found that a reduction in the effects of 519 

energy technological changes on emission intensity was more accentuated than that of 520 

the eastern region, which is consistent with what has been reported previously (Dong 521 

et al., 2016; Liu et al., 2019). Further, this phenomenon may be due to the energy 522 

technological progress in the western region being focused more on high-emission 523 

energy thus conserving more high-emission energy use, which has been confirmed by 524 

previous studies (Chen et al., 2010; Dong et al., 2016). For example, given the goal of 525 

‘‘the optimized development of the energy and chemical industry’’ in the west, the 526 

western regional power industry had lower carbon emission growth because of the use 527 

of advanced coal fired power generation technologies, such as supercritical flue gas 528 

desulfurization (FGD) systems ultra-supercritical FGD systems, and Integrated 529 

Gasification Combined Cycle Technology (IGCC; Chen et al., 2010). 530 

Furthermore, in order to characterize energy technological progress by region, we 531 

analyzed the impacts of coal and non-coal technological changes on emission 532 

intensity, which is presented in Table 4. Notably, the average effects of coal 533 

technological changes on the emission intensity of the eastern and western regions 534 

were both negative from 2005-2015, whereas coal technology failed to reduce 535 

emission intensity altogether. At the same time, we found that coal technology in the 536 

western region reduced emission intensity more than in the eastern region, which may 537 

explain why the western region faced fewer carbon rebound effect risks. On the other 538 



27 

hand, we found that non-coal technology in the eastern region played a role in 539 

decreasing emission intensity, whereas non-coal technology in the central and western 540 

regions rarely influenced emission intensity.   541 

Moreover, based on the meta-frontier analysis method provided in Section 2.4, we 542 

determined the catch-up effects due to the gap between contemporary technology and 543 

global benchmark technology (Liu et al., 2019) and estimated their effects on 544 

emission intensity based on the LMDI method. The results were presented as ,
1∆ b t

GapCE  545 

and ,
2∆ b t

GapCE . It is clear that the catch-up effect of coal technology played a positive 546 

role in reducing the emission intensity in the eastern and western regions, which is 547 

consistent with the results reported by Liu et al. (2019) and Zha et al. (2019). The 548 

catch-up effect of non-coal technology also played a positive role in reducing the 549 

emission intensity for the central and western regions, whereas the catch-up effect of 550 

non-coal technology in the eastern region was almost zero, suggesting that the 551 

renewable and cleaner technology in this region was optimal and at the meta-frontier, 552 

which is consistent with the findings of Gu et al. (2019) and Chen et al. (2020a).  553 

In summary, we can draw some conclusions regarding the mechanisms behind the 554 

carbon rebound effect gap in various regions: (1) The eastern region may continue to 555 

focus on both coal and non-coal technology, which helped to decrease the emission 556 

intensity and translated to carbon rebound effects that were lower than the energy 557 

rebound effects (Gu et al., 2019; Chen et al., 2020a). (2) Energy technology in the 558 

central region failed to reduce emission intensity, leading to high carbon rebound 559 

effect risks. (3) Energy technology in the western region was focused on coal 560 
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technology, which favored a decrease in emission intensity and carbon rebound 561 

effects (Chen et al., 2010). (4) The effects on emission intensity in the western region 562 

resulted in a greater reduction of the carbon rebound effects than in the eastern region, 563 

which may be because non-fossil energy is unable to substitute fossil energy in the 564 

short term (York, 2012; Chen et al., 2020a). 565 

4. Conclusions and Policy Implications 566 

Given that the traditional method for calculating rebound effects confuses carbon 567 

rebound and energy rebound effects, it is important to propose a modified method to 568 

accurately estimate the carbon rebound effect while identifying the difference 569 

between carbon and energy rebound effects, which is valuable for the development of 570 

future studies in the field. Therefore, this study has provided an improved method that 571 

was used to calculate the economy-wide carbon rebound effects in the national and 572 

regional economies of China from 2006-2015. Notably, the results estimated by our 573 

proposed method reveal the gap between carbon and energy rebound effects and draw 574 

conclusions that previous studies have failed to draw.  575 

As for the carbon rebound effect, we found that the eastern and western regions 576 

faced fewer carbon rebound effect risks compared with those of the central region, 577 

which contrasts with the findings of previous studies (Yang et al., 2017; Wu et al., 578 

2018). The differences derive from the impacts of technological progress on emission 579 

intensity. We found that the reduction in emission intensity caused by energy 580 

technological progress resulted in fewer carbon rebound effects in the eastern and 581 
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western regions. Further, decreasing emission intensity in the eastern region may have 582 

been mainly due to the widespread use of low-emission energy (Wang and Wang, 583 

2018; Gu et al., 2019; Chen et al., 2020a), whereas the decreasing emission intensity 584 

in the western region may have mainly come from greater technological progress in 585 

high-emission energy, such as coal use (Chen et al., 2010; Dong et al., 2016; Liu et al., 586 

2019). Based on our empirical results, we suggest the following policy proposals to 587 

reduce carbon rebound effects. 588 

First, China should undoubtedly continue to invest in developments in energy 589 

efficiency to achieve energy conservation, as energy rebound effects still dominated 590 

carbon rebound effects and technological progress has strong potential to reduce 591 

energy consumption. Therefore, governments should continue to encourage 592 

technological innovation in the field of energy use. In particular, government should 593 

increase R&D investments and set up R&D platforms for both high-emission and 594 

cleaner advanced energy technologies (Chen et al., 2010; Chen et al., 2020a). At the 595 

same time, more fiscal subsidies should be put toward research institutes and 596 

enterprises, strengthening their cooperation and integrating production, teaching, and 597 

research (Zhou, 2018). 598 

Second, it is more useful to focus on improving high-emission energy efficiency 599 

to reduce carbon rebound effects, as emission intensity effects can lead to a greater 600 

reduction in carbon rebound effects. According to our empirical analysis, focusing on 601 

coal played a more significant role than any other factor in decreasing emission 602 

intensity and carbon rebound effects (Chen et al., 2010), which explains why the 603 
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western region faced fewer carbon rebound effect risks than those of the other regions, 604 

even with relatively high energy rebound effects. Considering that renewable and 605 

cleaner energy cannot substitute fossil energy in the short term (Chen et al., 2020a), 606 

the eastern and central regions should prioritize the improvement of coal efficiency, 607 

after which cleaner energy sources should be developed. 608 

Third, it is essential for governments to propose strict tax policy regulations to 609 

increase the effective price of energy consumption, especially for coal use and that of 610 

other fossil fuels. In accordance with the definition of energy and carbon rebound 611 

effects, it is the increase in the demand for energy services that leads to rebound 612 

effects. As a result, taxation policy regulations can help reduce energy rebound effects 613 

(Brännlund et al., 2007). Moreover, given that fossil energy consumption (especially 614 

coal use) is the main driver of carbon emissions around the world (Cheng et al., 2018), 615 

the tax policy regulations should focus more on the use of coal and other 616 

high-emission fossil fuels, which will not only reduce energy and carbon rebound 617 

effects but help renewable and cleaner energy alternatives substitute fossil fuels in the 618 

long term (Chen et al., 2020a), resulting in more potential carbon emission reductions. 619 
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Appendix A1 788 

The LMDI method to calculate the contributions of technological progress to 789 

potential energy savings (or energy intensity) is as follows: 790 

3 3

= × = ×∑ ∑
t t

t t ti i
i it t

i ii

E Y
EI ei IND

Y Y
                                    (A1.1) 791 

where t
iei  represents industrial energy intensity, reflecting technological progress; 792 

t
iIND  represents industrial structure; i  represents the different industries, including 793 

primary, secondary and tertiary industries. Furthermore, the contribution rate of 794 

technological progress to energy intensity can be estimated by using the LMDI 795 

method as follows: 796 
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Similarly, the method to calculate contributions of technological progress to 798 

potential carbon reductions (or carbon intensity) is as follows: 799 

3 3

= × × = × ×∑ ∑
t t t

t t t ti i i
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i ii i
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 802 

Appendix A2 803 

The each group’s contemporaneous Shephard energy input distance functions 804 

and Shephard undesirable output distance functions can be computed by the DEA 805 

method as described in the following equations, and we assumed constant returns to 806 

scale based on previous literature (Färe et al., 1989; Zhou et al., 2008)  807 
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Moreover, each group’s intertemporal and global meta-frontier’s Shephard 809 

energy input distance functions and Shephard undesirable output distance functions 810 

can be estimated with the following equations: 811 
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Based on the linear programming above, the meta-frontier energy input and 814 

undesirable output distance could be obtained: 815 

, , , , , ,= × = × × = × ×G t GI t I t GI t IS t S t t t t
E E E E E E E E ED D D D D D Gap Techch Effch                 (A2.4) 816 

, , , , , ,= × = × × = × ×G t GI t I t GI t IS t S t t t t
C C C C C C C C CD D D D D D Gap Techch Effch                (A2.5) 817 

where ,IS t
ED  and ,IS t

CD  represent the technical level; ,S t
ED  and ,S t

CD  represent  the 818 

level of technical efficiency; ,GI t
ED  and ,GI t

CD  represent the technology gap (Oh et al., 819 

2010; Zha et al., 2019). Next, we can apply these factors to the estimation of 820 

economy-wide carbon and energy rebound effects as follows: 821 
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Appendix A3 826 

The global meta-frontier’s coal and non-coal input distance for the intertemporal 827 

benchmark technology set can be estimated as follows: 828 
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− − − −= × ×G S IS GI
non coal non coal non coal non coalD D D D                                   (A3.2) 830 

and the corresponding distance functions can be computed by the DEA method as 831 

follows: 832 
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Moreover, each group’s intertemporal and global meta-frontier’s Shephard 834 

energy input distance functions and Shephard undesirable output distance functions 835 

can be estimated with the following equations: 836 
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Table 1. Representative literature on rebound effects from the past 10 years. 847 

Authors Period Regions Methods 
Research 

Objective 

Lin et al. 

(2012) 
1981–2009 China 

The LMDI and econometric 

methods 

Energy 

rebound 

effects 

Broberg. 

(2015) 
- 

Swedish 

industry 
Econometric method 

Energy 

rebound 

effects 

Yang et 

al. (2017) 
1998-2010 

Chinese 

provinces 
The LMDI and PDA 

Carbon 

rebound 

effects 

Wang et 

al. (2017) 
2000–2013 

Chinese 

industry 
Econometric method 

Carbon 

emissions 

and carbon 

backfire 

effects 

Zhou et 

al. (2018) 
- China CGE method 

Energy 

rebound 

effects 

Jin et al. 

(2019) 
1971-2011 Korean DEA 

Energy 

rebound 
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effects 

Shao et 

al. (2019) 
1991-2016 

Shanghai 

(China) 

The state-space econometric 

method 

Energy 

rebound 

effects 

 848 

849 
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Table 2. Additive decomposition formula of driving factors. 850 

Driving factors of carbon 

emissions 

Additive decomposition formula 

,∆ b t
ceCE  ,

1

( ) ln( / )
ln( / )=

−
∆ = ×∑

t bi
b t t b
ce i it b

i

CE CECE ce ce
CE CE

 

,∆ b t
PESCE  ,

1

( ) ln( / )
ln( / )=

−
∆ = ×∑

t bi
b t t b
PES i it b

i

CE CECE PES PES
CE CE

 

,∆ b t
TECE  ,

1

( ) ln( / )
ln( / )=

−
∆ = ×∑

t bi
b t t b
TE i it b

i

CE CECE TE TE
CE CE

 

 851 

852 
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Table 3. Comparison of the rebound effects estimated by the two methods. 853 

Year Region 
Traditional method Improved method 

CRe Re CRe Re 

2006 

Nation 0.86  0.86  0.74 0.88 

East 0.92  0.92  0.72 0.90 

Central 0.76  0.74  1.25 0.88 

West 0.90  0.89  0.49 0.83 

2007 

Nation 0.60  0.60  0.59 0.61 

East 0.69  0.69  0.64 0.68 

Central 0.54  0.54  0.51 0.54 

West 0.49  0.49  0.54 0.49 

2008 

Nation 0.36  0.36  0.28 0.34 

East 0.42  0.42  0.31 0.36 

Central 0.30  0.30  0.25 0.30 

West 0.35  0.35  0.22 0.35 

2009 

Nation 0.36  0.36  0.34 0.37 

East 0.45  0.46  0.37 0.44 

Central 0.29  0.29  0.27 0.27 

West 0.33  0.33  0.37 0.34 

2010 
Nation 0.60  0.60  0.46 0.50 

East 0.77  0.77  0.49 0.50 
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Central 0.51  0.51  0.49 0.51 

West 0.48  0.48  0.35 0.50 

2011 

Nation 0.63  0.63  0.40 0.52 

East 0.61  0.60  0.36 0.50 

Central 0.53  0.53  0.68 0.53 

West 0.97  0.96  0.35 0.57 

2012 

Nation 0.34  0.35  0.23 0.32 

East 0.35  0.36  0.23 0.32 

Central 0.29  0.29  0.18 0.30 

West 0.41  0.41  0.27 0.33 

2013 

Nation 0.12  0.12  0.15 0.12 

East 0.16  0.16  0.21 0.15 

Central 0.10  0.10  0.11 0.10 

West 0.11  0.11  0.12 0.09 

2014 

Nation 0.28  0.28  0.20 0.29 

East 0.29  0.29  0.24 0.29 

Central 0.24  0.24  0.17 0.24 

West 0.32  0.32  0.16 0.32 

2015 

Nation 0.22  0.23  0.16 0.23 

East 0.29  0.29  0.21 0.28 

Central 0.17  0.17  0.13 0.17 

West 0.21  0.21  0.12 0.20 



48 

2006-2015(average) 

Nation 0.44  0.44  0.36 0.42 

East 0.50  0.50  0.38 0.44 

Central 0.37  0.37  0.41 0.38 

West 0.46  0.45  0.30 0.40 

 854 

855 
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Table 4. Effects of technological change on coal and non-coal emission intensity 856 

(units: 10-4 t/cet). 857 

Year Region 

,∆ b t
PESCE  ,∆ b t

TECE  ,
1∆ b t

TECE  ,
2∆ b t

TECE  ,
1∆ b t

GapCE  ,
2∆ b t

GapCE  

2005-2006 

East 0.00  -0.10  -0.07  -0.02  -0.04  -0.02  

Central -0.09  0.08  0.07  0.00  0.04  -0.02  

West -0.09  -0.02  -0.10  0.08  -0.13  -0.09  

2006-2007 

East 0.03  -0.10  -0.05  -0.05  -0.01  -0.02  

Central -0.06  0.03  0.00  0.03  0.07  -0.01  

West 0.00  -0.16  -0.16  0.00  -0.08  0.03  

2007-2008 

East -0.12  0.11  0.08  0.03  -0.03  0.02  

Central -0.26  0.25  0.18  0.07  0.14  0.07  

West 0.02  0.03  0.02  0.01  -0.03  -0.03  

2008-2009 

East 0.02  -0.05  -0.04  -0.01  -0.02  0.01  

Central -0.18  0.15  0.13  0.01  0.09  0.00  

West -0.03  0.07  0.08  -0.01  -0.10  0.00  

2009-2010 

East 0.17  -0.25  -0.22  -0.03  -0.05  -0.05  

Central 0.41  -0.39  -0.31  -0.08  -0.11  -0.17  

West 0.08  -0.18  -0.15  -0.03  -0.03  0.03  

2010-2011 
East -0.43  0.28  0.18  0.09  0.04  0.11  

Central -0.51  0.45  0.37  0.08  0.22  0.14  
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Note: Given that emission intensity is a type of ratio indicator, we averaged the 858 

decomposition results of the provinces in each region to represent the impacts of the 859 

potential energy structure and technology on emission intensity. 860 

861 

West 0.18  -0.25  -0.24  -0.01  0.00  0.00  

2011-2012 

East -0.23  0.16  0.13  0.03  -0.02  0.04  

Central -0.13  0.06  0.10  -0.04  0.25  -0.06  

West -0.11  0.13  0.11  0.02  -0.01  -0.02  

2012-2013 

East 0.14  -0.26  -0.18  -0.08  -0.09  -0.09  

Central -0.12  0.03  -0.01  0.04  0.00  -0.03  

West 0.23  -0.37  -0.27  -0.10  -0.06  -0.01  

2013-2014 

East -0.01  0.00  0.03  -0.03  0.01  -0.02  

Central 0.09  -0.10  -0.05  -0.04  0.08  -0.04  

West -0.16  0.13  0.13  0.00  -0.01  -0.01  

2014-2015 

East -0.02  -0.12  -0.07  -0.06  0.01  -0.07  

Central -0.07  0.03  0.06  -0.03  0.10  -0.04  

West -0.14  0.19  0.17  0.02  0.01  0.02  

2005-2015 

East -0.05  -0.03  -0.02  -0.01  -0.02  0.00  

Central -0.09  0.06  0.05  0.00  0.09  -0.01  

West 0.00  -0.04  -0.04  0.00  -0.04  -0.01  
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Figure Captions 862 

Fig. 1. Temporal changes in carbon and energy rebound effects in China based on the 863 

traditional and improved methods from 2005 to 2015. 864 

Fig. 2. Impacts of technological progress on emission intensity in China from 2005 to 865 

2015 (units: 10-2 t/cet). 866 

867 
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Fig. 1. Temporal changes in carbon and energy rebound effects in China from 2005 to 869 

2015 based on the traditional and improved methods. Re0C , Re0 , Re1C , and Re1 870 

represent carbon and energy rebound effects calculated by the traditional and 871 

improved methods, respectively 872 

873 
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Fig. 2. Impacts of technological progress on emission intensity in China from 2005 to 875 

2015 (units: 10-2 t/cet). 876 
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