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The Future Role of Machine Learning in Clinical 
Transplantation
Katie L. Connor, MRCS,1,2,3 Eoin D. O’Sullivan, MBBS,3 Lorna P. Marson, MD,2,3  
Stephen J. Wigmore, MD,2,3 and Ewen M. Harrison, PhD4

INTRODUCTION
From the beginning of solid organ transplantation, there 
has been a fastidious approach to the collection of data. 
This highly organized approach has allowed important 
observational studies to be performed and has provided 
rich data for traditional research methods. However, we 
have now entered an era where these increasingly large and 

integrated datasets—including electronic health records, 
clinical images, and multiomics datasets—are amenable to 
more sophisticated machine learning (ML) approaches.

We use ML every day, often without realizing it. We might 
log onto a phone using facial recognition, issue requests to a 
virtual personal assistant using our voice (eg, Siri or Alexa), 
or compose sentences in an email with predictive natural 
language processing. ML tools have also become central to 
modern biomedical research, due to better access to large 
datasets, the exponential increase in processing power, 
and key algorithmic developments allowing ML models 
to tackle increasingly challenging data. In healthcare, ML 
models can already harness electronic healthcare records 
to predict the future risk of acute kidney injury,1 diagnose 
retinopathy,2 and derive novel features from existing data, 
such as the detection of patients with atrial fibrillation from 
an ECG acquired during sinus rhythm3 and the deduction 
of coronary arterial blood flow from cardiac CT.4

In this review, we explore how ML can now help clini-
cians and patients to develop cutting-edge prediction mod-
els, perform clinical image analysis, analyze high-throughput 
genomics and analyze complex fused datasets, with the 
potential to generate novel insights relevant to modern 
transplantation practice (Figure 1). We will focus on some 
key clinical themes in transplantation where ML is driving 
progress, explore the future clinical potential of ML and dis-
cuss the challenges and limitations of these powerful tools.

ARTIFICIAL INTELLIGENCE, MACHINE LEARNING, 
AND DEEP LEARNING

Artificial intelligence (AI) can been loosely be described 
as the ability to automate and enhance intellectual 
tasks normally performed by humans, in a way that we 
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Abstract: The use of artificial intelligence and machine learning (ML) has revolutionized our daily lives and will soon be instru-
mental in healthcare delivery. The rise of ML is due to multiple factors: increasing access to massive datasets, exponential 
increases in processing power, and key algorithmic developments which allow ML models to tackle increasingly challenging 
questions. Progressively more transplantation research is exploring the potential utility of ML models throughout the patient 
journey, although this has not yet widely transitioned into the clinical domain. In this review, we explore common approaches 
used in ML in solid organ clinical transplantation and consider opportunities for ML to help clinicians and patients. We 
discuss ways in which ML can aid leverage of large complex datasets, generate cutting-edge prediction models, perform 
clinical image analysis, discover novel markers in molecular data, and fuse datasets to generate novel insights in modern 
transplantation practice. We focus on key areas in transplantation where ML is driving progress, explore the future potential 
roles of ML, and discuss the challenges and limitations of these powerful tools.
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consider “smart.” ML is one important facet of AI, with 
which a machine can “learn” from data without being 
explicitly programmed to do so. At its most fundamen-
tal, ML requires humans to provide both the input data 
(or features) and to define an expected output. Thereafter, 
the ML procedure generates a set of rules which allow 
the input to lead to the desired output (Figure 2). Often, 
this process is performed iteratively until the model can 
achieve a predicted output which matches the provided 
actual output or “label” with a desired level of speed 
and accuracy; this constitutes the “learning” or training 
component of the model. Once trained, the ML system 
should be able to generate similarly accurate outputs 
from new unlabeled data based on these learned “rules.” 

This learning can be thought of as a series of data trans-
formations, performed to generate more contextually 
meaningful representations with the goal of matching 
input to output.5 By generating algorithmic “rules” to 
interpret data, these systems can adapt to analyze com-
plex datasets—an ability of great potential for healthcare 
data analysis.

To help understand when ML might be applicable to 
solving clinical questions, it can be helpful to consider 
approaches under 3 broad categories: supervised learn-
ing, unsupervised learning, and deep learning (DL). The 
decision on the most appropriate approach depends on the 
research question (Table 1) and, in practice, many work-
flows will have elements of multiple categories.

F2
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FIGURE 1. Applications of machine learning approaches to clinical transplantation. ML approaches have been tested at multiple stages 
in the journey of a transplant recipient with the ability to analyze large and diverse datasets. In future, we may see increasing use of ML 
for these roles and in transplantation research. AE, adverse events.AQ2

FIGURE 2. The core concepts in machine learning and deep learning. A, Machine learning (ML) and deep learning (DL) are both 
forms of artificial intelligence. The key difference is that in ML and DL, the models are capable of generating their own “rules” or data 
transformations constituting the training or “learning” component of the model which can later be applied to datasets where the 
expected answer is not known. B, Basic structure of the components of a DL model and the iterative structure of training. During 
the training, the user provides the input data which will comprise a number of variables (features). These data will undergo a series 
of transformations and the model will generate a prediction (eg, graft failure). The model performance is then assessed by comparing 
the predicted outcome with the actual outcome (Loss score). This is then fed back into the model to optimize the data transformation 
steps (eg, by modifying the weighting given to a feature). This process is then repeated until the predicted outcome matches the actual 
outcome as closely as possible. This ML algorithm can then be applied to “unlabeled” data where the outcome is not known to generate 
a prediction. Figures adapted from Deep Learning with R.5
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In supervised learning, the user can provide an initial 
dataset, where the “outcomes” are classified (labeled), and 
the algorithm can learn to make predictions using the input 
data (features). Here, the term supervised refers to the fact 
that we provide labels for the desired outcome (eg, graft 
survival), guiding the learning of the model. Once trained, 
the model should be able to predict outcomes based on 
the input features alone (unlabeled data). By contrast, in 
unsupervised learning, the model is trained on unlabeled 
data. Here the output is achieved by “clustering” data and 
searching for similarities or heterogeneity. For example, 
when analyzing molecular features of a biopsy, the model 
will search for and extract features from the data allow-
ing clustering into clinical subtypes. This has the benefit 
of not requiring a researcher to pre-label features which 
might be either unfeasible, prohibitively labor-intensive, or 
introduce excessive bias. An unsupervised approach might 
also support the discovery of hidden or novel features or 
structure within data.

“DL” is a new branch of ML that has emerged as an 
important tool for analyzing complex data such as images, 
speech, and language. In DL, successive sequences of data 
transformations, termed layers, are employed to increase 
a model’s accuracy and generate meaningful representa-
tions of the data (Figure 2). It is these “layers” that repre-
sent the “deep” in DL. DL models are based on artificial 
neural networks (ANNs). Neural networks are networks 
of interconnected nodes which are modeled loosely on the 
neurons in the human brain. Each “node” can be assigned 
a value based on the features of the dataset, which can be 
tuned and weight-adjusted (typically by the network itself 
as it trains itself) before being passed to the next node 
(Figure 2). This may occur thousands of times or more as 
the models retain those elements that increase accuracy 
and adjust others, thus slowly converging on an optimal 
solution. The number of these nodes, their overall struc-
ture, and the specifics of how they connect to each other 
is known as the network architecture. There are many 
architectures under the umbrella term of ANN including 

convolutional neural networks (CNNs), recurrent neural 
networks, and general adversarial networks. Readers may 
wish to experiment with the TensorFlow playground, an 
opensource library of tools for ML, which allows interac-
tive visualizations of neural networks and how they oper-
ate (https://playground.tensorflow.org).

APPLICATIONS OF ML IN TRANSPLANTATION

Clinical Prediction and Decision Support
ML can be used as a decision support tool by transplant 

clinicians at many points in the patient journey (Figure 1). 
Whilst regression models remain a standard approach 
when trying to predict outcomes in patients, increasingly 
complex supervised ML methods and DL approaches are 
being trialed with some success.6,7 There are several per-
ceived advantages of these more complex ML models. 
First, their ability to handle billions of raw input variables 
is an advantage when analyzing complex heterogenous 
datasets such as electronic health records. Applied to 
registry data, ML models can theoretically better handle 
nonlinear predictor-outcome relationships and multi-
dimensional interactions between predictors—allowing 
them to find uncommon patterns and novel predictors of 
outcomes within the data.

Listing for Transplantation
Predicting waiting list mortality and morbidity is impor-

tant in transplant decision-making in both listing for trans-
plantation, organ allocation algorithms and determining 
whether to accept a donor organ for a specified recipient. 
ML has helped researchers in cardiac transplantation, 
where random forest analyses have been employed to 
identify novel features that confer additive risk through 
complex interactions, not previously seen using Cox pro-
portional hazards models.8 However, many variables rel-
evant to waiting list mortality were not captured in the 
registry data and hence comparison against the gold stand-
ard was not possible.8

TABLE 1.

Examples of machine learning approaches and their application

ML approach Suitable questions Example algorithms

Supervised 
learning

Will the clinical features in my data predict kidney transplant eGFR at 1-year post- 
transplantation? (a regression problem)

Regression: Logistic regression, ridge regression, 
and regressions with LASSO (least absolute 
shrinkage and selection operator), support 
vector regression

Classification and clustering: Naive-Bayes 
classifiers, decision trees, random forests, 
and stochastic gradient boosting machines

Can I use laboratory data in an ITU cohort to identify patients who will require liver 
transplant within 1 mo? (a classification problem)

Does this kidney transplant biopsy demonstrate rejection and stage (eg, according to  
the Banff Classification) (a multi-class classification problem)

Unsupervised 
learning

Given a set of patient genomic data, cluster into similar genotypes (clustering) Graph-based clustering
tSNE
UMAP
K-Means clustering

Given a set of single-cell transcriptomes, cluster into similar subtypes (clustering)

Deep  
Learning

Given a training dataset of CT scans classified as malignancy/no malignancy, learn to 
classify new CT scans

Artificial Neural Networks (ANNs)

Convolutional Neural Networks (CNN)

Recurrent Neural Networks (RNN)

Given a training transcriptomic dataset of where an immune cell of interest is classified, 
identify these cells in new data

Given a large integrated dataset of longitudinal clinical, biochemical and genomic data and 
rejection outcomes, predict which patients will suffer organ rejection in new test data

tSNE, T-distributed stochastic neighbor embedding; UMAP, Uniform Manifold Approximation and Projection.

LWW 22/09/2020 15:11 4 Color Fig(s): F1-4 Art: TPA-2020-0404

Copyright © 2020 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

https://playground.tensorflow.org


4 Transplantation  ■  xxx 2020  ■ Volume 00  ■  Number XXX www.transplantjournal.com

In liver transplantation, an ML classification tree was 
deployed to create an optimized prediction of mortality 
(http://www.opom.online) to predict a patient’s 3-month 
waiting list mortality.6 The model outperformed Model 
for End-Stage Liver Disease scores, and allocation based 
on optimized prediction of mortality would theoretically 
reduce mortality by 418 deaths annually in a simulated 
liver allocation model analysis. This apparent improve-
ment justifies exploring the potential of such approaches in 
other organs and considering their role in clinical practice 
and waiting list management.

Organ Allocation
Allocating organs is a complex process with multiple 

stakeholders, involving intensive computational elements, 
while incorporating ethical and political considerations. 
It is understandably impossible to test multiple allocation 
schemes simultaneously in real life; however, ML enables a 
variety of approaches to be modeled in silico. Multiperiod 
linear optimization modeling has allowed variations of 
kidney sharing practice and outcomes to be compared, 
which could facilitate novel approaches and computa-
tional changes to be tested before implementation, inform-
ing allocation strategies in the future.9 Simulated matching 
schemes allow for optimization for the desired patient and 
graft variables and even predict regional deficits. Neural 
networks have been successfully used to test a variety of 
donor-recipient matching approaches for liver transplan-
tation.10,11 ML allows us to hold up a mirror to our own 
decisions in this area, where human variability in decision 
making as to whether to accept a lung for transplanta-
tion has been captured using fuzzy decision tree mod-
els (82.1% accuracy).12 Finally, in silico modeling has 
allowed nonpermissive HLA mismatching to be predicted 
in hematopoietic cell transplantation based on an amino 
acid polymorphism on T-cell alloreactivity.13 Similar ML 
approaches may yet inform future solid organ allocation 
schemes with the potential ability to rapidly integrate com-
plex emerging elements of epitope matching, such as rapid 
protein-protein interaction modeling.

Prediction of Patient and Graft Survival
The majority of published clinical transplantation papers 

employing ML concern the prediction of either patient 
or graft survival following transplant, as summarized 
in Table  2. Typically, these studies analyze large registry 
datasets using a variety of ML methods, most commonly 
tree-based methods (decision/classification trees, random 
forests), Bayesian networks, and ANNs, with performance 
usually compared to traditional regression models or 
known clinical prediction scores.14

The accurate prediction of future graft function remains 
particularly challenging in cardiac transplantation, and 
this contributes to high organ discard rates.15 Over the last 
decade, increasingly sophisticated ML models have been 
employed to better predict cardiac graft function.7,8,16-18 
Initially, studies primarily employed ML models to identify 
novel predictive variables, which were then analyzed using 
logistic regression approaches.18 The International Heart 
Transplantation Survival Algorithm (http://www.ihtsa.
med.lu.se) employs ANN, decision-trees, and regression, 
outperforming standard classification scoring (eg, Donor 

Risk Index and index for mortality prediction after cardiac 
transplantation) with an area under the receiver operating 
curve (AUROC) 0.650 for the prediction of 1-year survival.7 
The IHSTA underwent external validation with Nordic data 
during development and has been subsequently tested on 
new United Network for Organ Sharing (UNOS) data with 
sustained performance.17 The Tree of Predictors model, pro-
vides risk stratification tailored to specific patient clusters 
and achieves an AUROC of 0.660 for 3-month survival 
on UNOS data.8 The next logical step would be for the 
direct comparison of these scoring algorithms on previously 
unseen data.

Despite this promising work there remains significant 
debate as to whether the marginal gains in predictive abil-
ity offered by these models are worth the limitations of 
their inherent complexity. Miller et al16 compared a num-
ber of regression models with multiple ML methodologies, 
including neural networks, naive-Bayes, tree-augmented 
naive-Bayes, support vector machines (SVMs), random 
forest, and stochastic gradient boosting, and found no 
significant advantage over regression analyses in predict-
ing 1-year survival after cardiac transplantation from the 
UNOS registry data. The authors concluded that where 
features (eg, registry data) are well defined, there may be 
minimal differences between complex classifiers (eg, deep 
neural networks, random forests) as compared to similar 
classifiers (eg, logistic regression).16

In liver transplantation, ML models have been employed 
to predict graft failure and patient survival in both adult and 
pediatric recipients (Table 2).19-21 In adult patients undergo-
ing liver transplantation, Molinari et al19 were able to very 
accurately predict patients with a high chance (≥10%) of 
mortality based on preoperative features using the combi-
nation of classification trees and ANNs (AUROC = 0.952). 
Whilst this study could be considered in decision support for 
listing, a limitation is that it only includes patients who under-
went surgery, rather than encompassing all patients who 
were potentially eligible for OLT. Other studies have been 
shown to either complement or outperform standard scoring 
algorithms such as Model for End-Stage Liver Disease.20,21 
Following liver transplantation, Lee et al22 were able to accu-
rately predict which patients developed acute kidney injury 
using SVM and random forest analyses, potentially providing 
a window for targeted intervention in high-risk patients.

Whilst in renal transplantation, a large number of stud-
ies have focused on the prediction of outcomes including 
delayed graft function, graft rejection, and graft survival 
(Table 2). The ability of such models to correctly identify 
a graft that will survive is typically quite high (AUROC 
> 0.8); however there is notable variation in performance 
even using the same models, suggesting that the training 
data is of vital importance in such cases.23-27 It remains 
unclear whether these ML models can outperform those 
based on multivariate regression methods, such as the iBox 
risk prediction score28 which is currently being considered 
by the Food and Drug Administration (FDA) for approval 
for use as a surrogate endpoint in clinical trials.

Following transplantation, the likelihood of future events 
or graft function is based on the trajectory/events to that 
point. For example, if an episode of acute rejection (AR) 
occurs in the first year after transplant, the future risk of 
renal transplant failure is higher.29 The current trans-
plant predictive scores are heavily biased to preoperative 

T2
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TABLE 2.

Summary of studies employing machine learning in the prediction of either patient survival or graft outcomes following 
transplantation

Author (year) Prediction Data ML model used Result

Kidney
 Yoo et al 

(2019)93
Graft survival Multicentre Study, Korea,  

1997–2012, (n = 3117)
Multiple Models Inc.:  

Tree-based models
Survival decision tree model performed best 

(C-Index 0.80) for 10-y survival
 Mark et al 

(2019)94
Graft survival UNOS, 2002–2011 (n = 163 199) Tree-based model 5-y C-Index 0.724

Outperformed the Estimated Post Transplant 
Survival (EPTS) score

 Shaikhina et al 
(2019)95

Graft rejection Patient records, United Kingdom, 
2003–2012 (n = 80), HLA 
incompatible patients

Tree-based model 85% accuracy. Identified factors associated 
with rejection

 Topuz et al 
(2018)96

Graft survival UNOS 2004–2015 (n = 31 207) Feature Selection Inc: 
SVMs, ANN, tree-based 
models

Analysis: BBN

Highest accuracy achieved using the BBN 
(accuracy 0.684) on fused data mining 
model

 Tapak et al 
(2017)97

Graft Rejection Patient records, Iran, 1994–2011 
(n = 378)

Artificial Neural Network AUROC ANN: 0.88, LR: 0.75

 Nematollahi  
et al (2017)98

Graft survival Patient records, Iran, 2002–2007 
(n = 717)

Multiple compared: ANN, 
SVM

AUROC: SVM = 0.86, ANN = 76.9,  
LR = 77.4

 Shahmoradi  
et al (2016)99

Graft survival Patient data, Iran, 2007–2013  
(n = 513)

Multiple compared: ANN, 
tree-based models

Overall accuracy: ANN 83.7%, tree-based 
models 83.28%–87.21%

 Esteban et al 
(2016)30

Death, graft loss, 
rejection

Patient data, Germany, 2005  
(n = 2061)

Artificial Neural Network Recurrent Neural Network performed best: 
AUROC 0.77–0.89

 Fouad et al 
(2015)100

Graft survival Patient records, Egypt, 1976–2007, 
live donor recipients

Regression, tree-based 
model, rule-based 
classifiers

Correlation coefficient 0.0.87, 0.737, 
and 0.733 for ruled based, TBM, and 
regression, respectively

 Decruyenaere 
et al (2015)101

Delayed graft 
function

Patient records, 2005–2011  
(n = 497), Belgium

Multiple models Inc:
SVM, tree-based models

Linear SVM has the highest discriminative 
capacity (AUROC of 84.3%) outperforming 
regression

 Brown et al 
(2012)102

Graft survival US Renal Data System, 2000-2001 
(n = 5144)

Bayesian belief network 1-y AUROC = 0.59, 3-y AUROC = 0.63

 Lasserre et al 
(2012)103

1-y eGFR Eurotransplant (n = 707),  
1998–2008

SVM Pearson correlation coeff. between predicted 
and real eGFR of 0.48

 Li et al 
(2010)104

Graft survival Regional Patients/UNOS,  
1987–2009 (n = 1228)

Bayesian belief network Model could predict graft status but not 
duration of graft survival

 Lofaro et al 
(2010)105

Chronic allograft 
nephropathy

Italy, patient records (n = 80) Tree based model 5-y AUROC = 0.847

 Hummel et al 
(2010)27

Acute rejection, 
nephrotoxicity

Patient data, Brasil (n = 145) Artificial Neural Network ARej: best AUROC = 0.78
Nephrotoxicity: best AUROC = 0.66

 Greco et al 
(2010)106

Graft survival at 
5 y

Patient data, Italy (n = 194) Tree-based model 88% sensitive, 73% specific

 Akl et al 
(2008)26

Graft survival Patient-level, Egypt Artificial Neural Network ANN predictive accuracy was  
88% vs regression approach  
(72%)

 Santori et al 
(2007)25

Delayed graft 
function

Patient records, Italy, pediatric 
recipients (n = 148)

Artificial Neural Network ANN: sensitivity 0.875 and specificity  
0.87 vs LR sensitivity 0.37 and  
specificity 0.84

 Krikov et al 
(2007)107

Graft survival US Renal Data System (1990–1999) 
(n = 92 844)

Tree-based models AUROC (0.63, 0.64, 0.71, 0.82, 0.90) for  
1-, 3-, 5-, 7-, and 10-y GS

 Brier et al 
(2003)24

Delayed graft 
function

Patient records, USA (n = 304) Artificial Neural Network ANN was 63.5% sensitive and 64.8% 
specific. LR was specificity 90.7%

 Goldfarb- 
Rumyantzev  
et al (2003)108

Graft survival UNOS 1990–1998 (n = 37 407) Tree-based model Correlation coeff. to observed data r = 0.998 
for LR and r = 0.984 for TBM for 3-y GS

 Petrovsky et al 
(2002)23

Graft rejection ANZDATA Registry Database  
(n = 1542)

Artificial Neural Network Correctly predicted 59% of rejection 
outcomes

Continued next page
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variables, limiting their utility in predicting future risk fol-
lowing transplantation. ML models have the advantage in 
this regard, in that they can better handle sequences of data 
and missingness of data, and can be trained to extract vari-
ables (features) from complex datasets (eg, electronic health 
records).1 Esteban et al30 used a recurrent neural network 
architecture to predict the likelihood of renal allograft rejec-
tion, graft loss, and patient death at the point of assessment 
in clinic for the future 6 and 12 months. As well as consider-
ing baseline (static) features, they considered variables such 
as laboratory results and medication regimen as continuous 
variables following transplantation. The model was able to 

harness data from 193 111 clinic visits made by the 2061 
patients included and achieved an AUROC of 0.833 and 
area under the precision-recall curve of 0.345 for the overall 
outcome prediction. Important limitations to note include 
the single-center nature of the study, which will affect the 
generalisability of the model, as the data points generated 
will represent elements of local practice and human deci-
sions embedded within the quantitative data. Validation 
with an external cohort is required. Nonetheless, this 
approach could be considered to tailor treatment regimens, 
inform patients of their postoperative risk, and potentially 
guide weaning of immunosuppression.

Liver
 Molinari et al 

(2019)19
Mortality post-

liver Tx (90 d)
UNOS Registry. 2002–2013  

(n = 30 458). Preoperative 
features

Feature extraction: ANN, 
tree-based models 
analysis

AUROC: 0.61—all patients, 0.952—patients 
with ≥10% predicted mortality

 Wadhwani et al 
(2019)

Outcome post 
pediatric liver 
Tx (3 y)

SPLIT registry (n = 887). 
Perioperative and post-op year  
1 factor considered

Tree-based model Accuracy of 0.71, PPV = 0.83, and  
NPV = 0.70. This exceeds that of the naive 
prediction classifier

 Lau et al 
(2017)20

30-d graft failure 
post-liver TxK

Transplant data from Australian 
Hospital, 2010–2013 (n = 180).

ANN, tree-based models Tree based: AUROC = 0.818
ANN: AUROC = 0.835.
Outperformed SOFT, MELD, and DRI

 Khosravi et al 
(2015)109

Mortality post 
liver Tx

Patient data, Iran, 2008–2013  
(n = 1168)

Artificial Neural Network AUROC were 86.4% and 80.7% for ANN and 
CoxPH

 Cruz-Ramirez 
et al (2013)21

3-mo mortality 
and organ 
allocation

Multicentre, Spain, 2007–2008  
(n = 1003)

Artificial Neural Network Developed a rule-based system for allocating 
donors to recipients

Cardiothoracic
 Miller et al 

(2019)16
Survival post-

heart Tx (1 y)
UNOS Registry, 1987–2014  

(n = 56 477)
Multiple models: ANN, 

SVM, tree-based 
models

ANN highest C-statistic = 0.66,  
regression 0.65

 Medved et al 
(2019)17

Survival post 
heart Tx (1 y)

UNOS Registry, 1997–2011  
(n = 27 860)

Comparison of the IHSTA 
and IMPACT models

1-y survival, AUROC: IHSTA (0.654) and 
(0.608) IMPACT models

 Miller et al 
(2019)110

Survival post 
heart Tx 
(pediatric)

UNOS Registry, 2006–2015  
(n = 3502)

Multiple models compared: 
ANN, tree-based 
models

1-y survival: AUROC RF: 0.72, ANN: 0.65, 
CART: 0.67. Sensitivity poor ranged 
(7%–44%)

 Yoon et al 
(2018)8

Survival post-
heart Tx and 
waiting list 
mortality

UNOS Registry, 1985–2015  
(n = 59 820: heart transplant 
recipients) and (n = 35 455: 
listed but did not undergo  
heart Tx)

Tree-based model Performed best in predicting 3-mo survival: 
AUC: 0.66, C-statistic 0.57

Outperformed DRI, IMPACT, RSS. Just 
outperformed LR

 Dag et al 
(2016)111

Survival post 
heart Tx (9 y)

UNOS, 1987–2012 (n = 13 720) Bayesian Belief Network BBN method provides similar predictive 
performance to the best approaches in the 
literature

 Nilsson et al 
(2015)7

Survival post-
heart Tx (1 y)

International Society for Heart and 
Lung Transplantation registry 
1994–2010 (n = 56 625). 
External validation NTTD  
(n = 1285)

Artificial Neural Network 
and tree-based models.

Compared against to 
existing scoring models

IHSTA outperformed other models
AUROC: IHSTA (0.65), RSS (0.61), IMPACT 

(0.61), and DRI (0.56)
Allocation simulation proposed a 22% 

increase in suitable donors
 Osteokine et al 

(2009)18
Outcomes 

following 
heart-lung Tx

UNOS Registry (1987–2009) 
(n = 16 604)

Multiple models used for 
feature extraction: ANN, 
tree-based models

ML approaches identified novel features of 
importance that improved the performance 
of CoxPH models

 Delen et al 
(2010)112

Survival following 
lung Tx

UNOS Registry (1987–2010)  
(n = 106 394). Includes pre- and 
post-transplant features

Multiple models used for 
feature extraction: ANN, 
tree-based models, SVM

ML identified novel features. SVM mined 
features performed optimally with  
an R2 = 0.879

ANN, artificial neural network; ANZDATA, Australia and New Zealand Dialysis and Transplant Registry; AUROC, area under the receiver operating curve; BBN, Bayesian Belief Network; CoxPH, Cox 
proportional hazards models; DRI, donor risk index; GS, graft survival; IMPACT, index for mortality prediction after cardiac transplantation; LR, logistic regression; MELD, Model for End-Stage Liver 
Disease; ML, machine learning; NTTD, nordic thoracic transplantation database; RSS, risk stratification score; SPLIT, studies of pediatric liver transplantation; SVM, support vector machine; TBM, tree-
based models; Tx, transplant; UNOS, United Network for Organ Sharing.

TABLE 2. (Continued )

Author (year) Prediction Data ML model used Result
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Immunosuppression Regimen
Accurate immunosuppression dosing can be challenging 

for clinicians, as multiple drug-drug interactions and nar-
row therapeutic windows can confound predictable dose 
responses to therapy. This is an issue not only for opti-
mal graft survival but also to minimize adverse events due 
to toxicity and minimize patients’ length of stay in busy 
transplant units. In an effort to address this issue following 
transplantation, a number of groups have used ML mod-
eling to allow more accurate tacrolimus dosing post-renal 
transplant when compared to a clinician’s dosing deci-
sions.31-34 Sample sizes ranged from 80 to 1045 and each 
study took place in a single-center, in sites including China, 
India, and Norway. Importantly, none were validated on 
geographically distant cohorts. Furthermore, these stud-
ies focused on acute tacrolimus dosing, and it remains 
unknown whether such approaches would be helpful in 
longer terms of dosing decisions. A Bayesian cost-benefit 
model showed that, after a year, there was a clear benefit 
from calcineurin inhibitor-free plus basiliximab induction 
therapies, with a slight benefit from calcineurin inhibitor-
sparing protocols.35 Finally, discharge post successful liver 
transplant can be accelerated by optimized drug dosing 
using a patient-level approach: “the parabolic personalized 
dosing platform” is a mathematical surface represented by 
a second-order algebraic equation.36

In future, we may see AI increasingly utilized for drug 
discovery in transplantation. Recently an ANN has discov-
ered a highly effective novel antibiotic termed “halicin,” 
repurposed from another drug.37 Trained on molecules 
known to be effective against Escherichia coli, the ANN 
was then able to screen other drug compounds and predict 
potentially effective molecules based on patterns unseen by 
human experts. A similar approach could be utilized for 
the discovery of novel immunosuppressants.

Machine Learning for Diagnostic Image Analysis
ML and DL have huge clinical potential in the analysis 

of histopathological and radiological images for computer-
aided diagnostics. This could be particularly helpful given 
the out-of-hours nature of transplantation and could theo-
retically improve standardization of assessments across the 
world using cloud-based diagnostic systems and increase 
the size of available data for future research.

Image analysis is essentially pattern recognition and, as 
such, ML models can be trained to do this with tasks rang-
ing from automated classification of pixels for the detection 
and segmentation (eg, identification of organs) to assisting 
in complex classification (eg, grades of rejection). DL mod-
els predominantly using CNNs are the most popular con-
temporary ML approach for image analysis, as images may 
be assessed without significant pre-processing. Many studies 
will use a transfer learning approach, whereby algorithms 
trained on the classification of images will be transferred 
and re-trained onto a new classification problem (eg, organ 
size on CT).38 This is important, as clinical datasets will typ-
ically be small (eg, hundred/thousands) as compared to the 
pre-trained models (millions of natural images).39

Machine Learning in Digital Pathology
ML is now feasible in pathology with the increas-

ing adoption of digital pathology scanners, able to cap-
ture whole slide images at microscopic resolution in just 

minutes. ML-assisted analysis of pathological images has 
the potential to increase efficiency of workflow, provide a 
second opinion to a pathologist and potentially improve 
standardization of diagnoses across regions.

Within transplantation, renal transplant biopsies have 
been most extensively studied using ML models, with 
some success. Quantification of sclerotic glomeruli is a 
labor-intensive task for a pathologist and may be required 
rapidly and out of hours for pre-implantation biopsies. 
Marsh et al40 employed a CNN for this very task and 
achieved a precision score of 0.8128 and 0.6070 for the 
detection of non-sclerosed and sclerosed glomeruli respec-
tively, performing almost to the level of a certified patholo-
gist. More complex structural classification to accurately 
segment glomeruli, interstitium and tubules of renal trans-
plant biopsies slides and nephrectomy specimens stained 
has been achieved by Hermsen et al41 (Figure 3). Having 
trained the model in accurate structural segmentation, they 
assessed the ability of the CNN to perform routine exami-
nation of 82 renal transplant biopsies using the Banff clas-
sification.41 The model performed best in the detection of 
sclerotic glomeruli but struggled to identify tubular atro-
phy. In part, they felt that this limitation was due to the 
inconsistencies in the agreed diagnosis/labeling of atro-
phied tubules between the 3 pathologists,38 resulting in 
knock-on effects on the model’s performance.

Machine Learning in Radiological Imaging
High volume of image data for training, a well-devel-

oped IT infrastructure, and perhaps more clearly defined 
outcomes than pathology have positioned radiology as 
one of the earliest adopters of ML in healthcare. There are 
now FDA-approved ML models being evaluated across 
a range of settings such as segmentation of liver CT and 
mammogram analysis, with perceived benefits of increased 
efficiency, improved workflow, reduced intra-observer 
variability, and in some cases, improved performance as 
compared to radiologists cited.2,39,42

Although few studies specifically study imaging in 
transplantation, there are a large number of ML studies 
of radiological images with translational benefit. Accurate 
estimation of liver volume is important in the assessment 
for live donor liver transplantation. Normally, this task 
is manually performed by delineating the liver segments 
on each CT slice; however, CNNs have been performed 
to automate this labor-intensive process with high accu-
racy.43 In autosomal dominant polycystic kidney disease, 
total kidney volume is a biomarker for disease progres-
sion.44 ML models have been applied with success to auto-
matically calculate the kidney and liver volume of patients 
with autosomal dominant polycystic kidney disease from 
abdominal imaging such as CT and MRI (Figure  4).45-

47 This has the potential to increase the reproducibility 
and efficiency of repeated measurements which may be 
required when assessing response to treatment.

Before liver transplantation, a rapid and accurate quan-
tification of liver graft steatosis would guide the implant-
ing team as to risks of a given donor organ. At present, 
the gold standard of steatosis assessment is histopatho-
logical, however, this is not routinely available before 
implantation. Neural networks have been developed for 
the automated detection of liver steatosis and fibrosis on 
ultrasound and this may eventually allow non-radiology 
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specialists to generate these measurements with reliability, 
for example, at the time of organ retrieval.48,49

Following lung transplantation, ML models have been 
used to predict the development of bronchiolitis obliterans 
syndrome. Quantitative computed tomography metrics, 
combined with functional respiratory imaging, was analyzed 
using a SVM to predict future changes in lung capacity.50

As well as performing image analysis, ML models can 
learn from the fusion of heterogenous datasets including, 
for example, imaging data, biomarkers, and clinical vari-
ables. For the detection of AR following renal transplanta-
tion, the combination of diffusion-weighted MRI using a 
CNN, and a SVM which has been combined with meas-
ures of serum creatinine clearance for the detection of AR 
achieved an high accuracy of 92.9%.51

Overall, whilst increasingly accurate segmentation of 
structures on pathological and radiological imaging rel-
evant to transplantation can be achieved, the classification 
and diagnosis of disease lag behind. However, advances are 
being made that could make computer-assisted diagnostics 
a reality. In a landmark paper by Esteva et al,52 a CNN 
was able to perform at the level of a dermatologist in the 

detection of skin cancers. In future, this ML model employed 
in a smartphone device could be part of the assessment and 
post-operative monitoring of our transplant patients who 
are at higher risk for skin malignancy; guiding the team as 
to the urgency of dermatology referral required.

Machine Learning in Transplantation Research
Modern biomedical research involves multiple high-

throughput systems and can result in the generation of a 
vast quantity of complex data. From helping cluster single-
cell transcriptomic data, to modeling drug-receptor inter-
actions or quantifying high volumes of staining through 
microscopy, ML is now found in almost every corner of 
the modern laboratory. While beyond the scope of this 
review, it is worth noting some of the broad themes in this 
domain have obvious translational aims and impacts on 
patients and their teams.

Machine Learning in Multiomics
High-throughput technologies such as genomics, tran-

scriptomics, and proteomics are driving biomedical dis-
coveries in modern medical research and have required 

AQ3

FIGURE 3. Segmentation of structures on a transplant renal biopsy is achieved by a deep learning model. This convolutional neural 
network developed by Hermsen et al41 was trained in the detection of glomeruli, interstitium, and tubules performed on whole slide 
images. The correctly identified glomeruli are depicted in the high magnification panel below. The model was unable to differentiate 
between the two adjacent glomeruli in the top left image. The detected sclerotic glomerulus is shown in the bottom right image in blue. 
This image has been adapted with permission from the publisher.
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multiple advances in computational biology and bioin-
formatics. Almost all work using these technologies will 
rely on some degree of ML for the analysis of the data 
generated, from the moment it is downloaded from the 
sequencer, through clustering methods, statistical compari-
sons, and more advanced analyses.

As an example applied to transplantation research, 
single nucleotide polymorphisms associated with long‐
term clinical outcome in renal transplant patients have 
been identified using genome-wide association studies. 
The authors employed multiple ML approaches in the 
Plink package before using multivariable Cox regression 
analyses to explore their single nucleotide polymorphism 
associations.53,54

In transcriptomics, ML can be applied to bulk RNASEQ, 
and has allowed deconvolution of the lymphocyte com-
partment of the peripheral whole blood transcriptome in 
the context of acute kidney allograft rejection in an effort 
to predict outcomes.55 In the realm of single-cell transcrip-
tomics, ML approaches are fundamental to the workflow. 
For example, in exploring the Human Kidney Allograft 
inflammatory response at a single cell level, authors used 
ML at every stage of the analysis, from aligning the raw 
reads to a transcriptome, through to clustering (k-mean 
shared nearest neighbor approach), dimensionality 
reduction (T-distributed stochastic neighbor embedding) 
and trajectory analysis (reversed graph embedding and 
DDRTree).56

Finally, linear discriminant analyses and SVMs have 
been used successfully to classify renal biopsy samples as 
having T-cell mediated rejection. Based on the top differen-
tially expressed genes in paraffin-embedded sections, this 
represents a novel advancement on traditional methods 
that relied upon pathological analysis of the biopsy itself.25 
Ongoing work in transplantation to create a “molecular 
microscope”—that is, to identify molecular signatures of 
specific histological diagnosis such as graft rejection in 
both biopsy samples and peripheral blood samples—rely 

heavily on a number of ML methods to analyze the high 
volumes of microarray and RNA-sequencing required.56-63

In future, ML may be able to incorporate omics data 
with electronic health record data, with the promise that 
this will provide a path to a precision approach in our 
transplant patients. There are steps towards this, for exam-
ple, with the Electronic Medical Records and Genomics 
Network consortium is now established which aims to 
leverage electronic health records as a tool for genomic 
research.64

In Silico Trials
In silico trials are computer simulations that allow 

modeling of biological systems to support clinical trial 
design and interpretation. Modeling simulated diseases in 
a thousand clinical trials allowed researchers to compare 
multiple trial methodologies using an in silico approach, 
including important characteristics such as power, preci-
sion, duration, and number of patients needed to recruit.65 
Such an approach would have obvious benefits in optimiz-
ing trials in solid organ transplantation, where recruiting 
patients can be challenging due to small populations to 
draw from, thus requiring trials to run for longer and at 
greater expense to achieve endpoints and required power. 
Trial safety could be enhanced in this way: routine and 
novel markers can be modeled in silico to allow more sen-
sitive and specific detection of important safety endpoints 
in trials, thus increasing the detection of important adverse 
events and reducing their impact with earlier detection, as 
has been the case in drug-induced liver injury.66,67

CHALLENGES IN CLINICAL TRANSLATION  
OF ML MODELS

Despite the growth of ML tools in transplantation, few 
have made the transition into real-world clinical applica-
tion.68 A clinically useful ML model needs to be accurate, 
transparent, generalizable, regulated, and must crucially 

AQ4

FIGURE 4. Application of a Convolutional Neural Network (CNN) in autosomal dominant polycystic kidney disease (ADPKD). A, This 
schematic is used as an example of the architecture of a CNN. In this study by Sharma et al, 10 fully convolutional layers were used to 
progressively modify and compress the spatial size of the pixels from the original image. Pixelwise segmentation was then employed to 
deconvolute the data and generate the final prediction heatmaps. B, Predicted kidney segmentation contour (red color) based on the 
adjacent CT scans from 2 patients with ADPKD. Images used with permission from the journal.46
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result in improved clinical outcomes. There are both lim-
itations inherent to ML models and human factors that 
must be addressed.

Limitations of ML Models: Bias, Brittleness,  
and the Black Box

Bias
To achieve accurate predictions, training on large, high-

quality datasets is required. ML models will use any aspect 
of the data to achieve the best possible predictions and this 
can result in unintended biases. When Amazon deployed an 
AI model trained to screen resumés of potential job appli-
cants based on the features of previous successful appli-
cants, who were predominantly male, the model had learned 
to discriminate against female applicants. Another deep 
model appeared able to accurately discriminate the differ-
ence between pictures of dogs and wolves, only to discover 
the way it did this was by noting that wolves usually were 
standing on snow rather than grass in the photographs.69

Representative biases can occur in genetic databases, 
clinical databases, and social databases, and are poten-
tial pitfalls regardless of the ML approach used.70-74 In 
transplantation, we must be mindful that ethnic minority 
groups are appropriately represented, as imbalances in the 
donor and recipient pools and organ outcomes are known 
to exist.75 Models may be biased towards the detection 
of more common conditions, potentially to the detriment 
of rarer conditions, particularly in the training of ANNs 
for image analysis that require huge datasets. Additionally, 
most ML models are trained on retrospective/historical 
datasets that may not reflect current practice. Changes 
in clinical practice—for example, organ allocation, left 
ventricular assist device introduction, and immunosup-
pression—may result in “data shift,” which could result 
in unintended bias or a reduction in model performance 
when applied prospectively.

Brittleness
Generalisability remains a key barrier to the clinical 

translation of most ML models and results in reduced 
performance of the ML model when applied to exter-
nal data. As models become increasingly complex, they 
also become “brittle” to variations in input data that are 
inherent between centers, for example, variance in cod-
ing definitions, laboratory ranges, image acquisition, and 
diagnostic classification. In the context of image analysis, 
the performance of many models in study conditions can 
outperform diagnostician performance, but when general-
ized to real-world data the performance of these models is 
likely to drop or, occasionally, to fail spectacularly.76,77 To 
avoid errors, a CNN must be trained in the accurate analy-
sis of “sub-optimal” images. In pathology, this would be 
the ability to account for artefactual differences including 
tissue orientation, staining quality, staining type and speci-
men folding, photographic quality, and microscope focus. 
Concerningly, few of the studies reviewed here performed 
any validation on external datasets. This is not unusual; in 
a systematic review of AI for diagnostic medical imaging, 
just 6% performed external validation.68,78

However, this is not insurmountable. Testing and recali-
brating a model using previously unseen data from exter-
nal sources will help counter overfitting to a particular 

dataset and may mitigate certain biases by increasing the 
diversity of the patient demographic studied. Identification 
of “input outliers” before analysis is another strategy to 
reduce potential errors. International collaboration to pro-
vide the necessarily large and diverse datasets needed to 
mitigate the risks of bias and brittleness will be key for the 
future of ML in transplantation.

The Black Box
In many circumstances, there remains a trade-off 

between the performance capabilities of an ML model and 
the model’s transparency, or lack thereof. Deep models 
often have high predictive capabilities with poor transpar-
ency as compared to models that are inherently explain-
able (eg, random forests, stochastic gradient boosting) but 
which may have poorer predictive capabilities. Intense 
research is focused on providing explicability of such mod-
els—for example, working backwards to determine the 
relative weighting given to variables within a model—but 
it is often extremely difficult to rationalize a decision that 
was made in the “black box.” Given the unintended biases 
and brittleness that can occur, such transparency would 
be essential before a ML model could be implemented 
for the high-stakes’ decision-making common in clinical 
transplantation.79

Assuming the correct diagnosis is achieved by the ML 
model, clinicians must have confidence in its output for it 
to have value in decision making. Providing a window into 
the “black box” is one way to garner trust. To illustrate, in 
the context of palliative care, until the intermediate steps 
of a neural network were visible and interpretable to clini-
cians, they were reticent to be influenced by the predictions 
and recommendations produced by the model.80 Whilst in 
digital pathology, rather than simply providing a binary 
disease output (eg, cancer, no cancer), ML can now furnish 
textual descriptions (eg, “nucleic pleomorphisms”) for the 
images of perceived abnormal areas that contributed to its 
diagnoses in bladder cancer cases.81 Such steps are likely to 
improve the relationship between man and machine, and 
to achieve this we must work closely with data scientists to 
achieve models that may be adopted clinically.

Human Barriers to Clinical Adoption
If an ML model is to be applied to our patients, it must 

be ethically sound, clinically effective and quality assured 
by regulation.

Given the propagated biases and brittleness that can 
occur, there are concerns as to whether complex ML 
models have the necessary transparency to allow rigorous 
evaluation, regulation, and to be explicable to multiple 
stakeholders.82 Such transparency is essential to prove that 
models are fair, particularly if they are ever to be applied 
to high-stakes’ decisions such as organ allocation. In lower 
stakes’ decisions, that is, the clustering of molecular data 
or in CT analysis in which a second independent assess-
ment will be performed, the need for transparency may 
be lower.

Our understanding of the ethical complexities of adopt-
ing AI models into healthcare currently lags behind the 
capabilities of these models. There are pertinent concerns 
around data ownership, security, consent, and confidenti-
ality in data used to train ML models.83 Furthermore, as 
roles of the machine and the physician become intertwined, 
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we must ensure that patient preference is taken into con-
sideration. Can a physician or patient be sure that the AI 
model was trained on a patient population in which they 
would be adequately represented? Are patients comforta-
ble with the potential opacity of AI models? What happens 
when things go wrong? Physicians must have sufficient 
understanding of AI to be able to engage in this ethical 
dialogue. The development of ethical frameworks is under-
way to help address these issues.84-86

In assessing the clinical effectiveness of AI models, the 
first step is to ensure that studies published are of high 
quality. Education in medical school and familiarization 
of reviewers in the critical appraisal of ML studies is a 
key step and we would recommend the following articles 
for further reading.80,87,88 The recent development of the 
transparent reporting of a multivariable prediction model 
for individual prognosis or diagnosis in ML framework 
should help by standardizing the reporting of prognostic 
ML models in future.89 In addition, diagnostic predictive 
models should be tested in randomized controlled trials 
before clinical implementation, as high model accuracy 
does not necessarily equate to clinical benefit.68,90

To safeguard clinical efficacy and safety, regulation is 
required. Models influencing disease diagnosis, preven-
tion, or treatment are categorized as “software as a medi-
cal devices.”91 As medical devices, they require the FDA 
approval or CE marking in the US and Europe, respec-
tively. The degree of regulation required is graded accord-
ing to a number of factors, including the potential clinical 
impact of the model output.

One particular challenge specific to the ML models is 
that, as the data naturally changes over time or is applied 
to different populations, recalibration is required to ensure 
optimum performance. This would be key in transplanta-
tion, where clinical practice rapidly evolves and significant 
international differences in practice exist. However, these 
recalibrated models will be subtly different from the model 
initially validated and this poses regulatory and ethical 
challenges. Specific guidance is still being developed with 
such challenges in mind.91,92

CONCLUSION
Over the last 10 years, we have witnessed astonish-

ing advances in ML models, which are now driving these 
approaches to the brink of clinical translation in trans-
plantation. Already, ML models are tackling complex pre-
dictions with at least comparable accuracy to traditional 
models, assisting in everything from organ allocation to 
immunosuppression outcomes. The ability to analyze 
more heterogenous, longitudinal, and/or fused datasets 
(eg, genomics plus, electronic health records, and imag-
ing) is likely to be where ML provides clear advantages 
over traditional approaches. In image analysis, automated 
segmentation for generation of metrics for tasks that are 
otherwise labor-intensive appears promising.

There are key technical and ethical challenges that must 
be addressed before ML enters the clinical realm, but these 
are not insurmountable. Engagement of the transplant 
community with data scientists and engineers to ensure 
that the data provided to train these AI algorithms will 
enhance the accuracy of AI in clinical decision support to 
ultimately improve transplant outcomes.
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