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h i g h l i g h t s g r a p h i c a l a b s t r a c t 

• A novel method for identification of the 

Knee-point in cell capacity degradation 

curves is developed. 
• The new concept of knee-onset , for Knee- 

point early indication, is introduced 

along with robust identification algo- 

rithms. 
• We show a strong linear relation be- 

tween knee-onset, knee-point and end- 

of-life, where predicting one yields the 

others. 
• Machine learning techniques for the 

early prediction of knee-point and -onset 

using only early-cycle data are used. 
• The uncertainty of the predictions is 

methodologically quantified, providing 

reliable risk assessment for decision 

making. 
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a b s t r a c t 

High-performance batteries greatly benefit from accurate, early predictions of future capacity loss, to advance 

the management of the battery and sustain desirable application-specific performance characteristics for as long 

as possible. Li-ion cells exhibit a slow capacity degradation up to a knee-point, after which the degradation ac- 

celerates rapidly until the cell’s End-of-Life. Using capacity degradation data, we propose a robust method to 

identify the knee-point within capacity fade curves. In a new approach to knee research, we propose the concept 

‘knee-onset’, marking the beginning of the nonlinear degradation, and provide a simple and robust identifica- 

tion mechanism for it. We link cycle life, knee-point and knee-onset, where predicting/identifying one promptly 

reveals the others. On data featuring continuous high C-rate cycling (1C–8C), we show that, on average, the 

knee-point occurs at 95% capacity under these conditions and the knee-onset at 97.1% capacity, with knee and 

its onset on average 108 cycles apart. 

After the critical identification step, we employ machine learning (ML) techniques for early prediction of the 

knee-point and knee-onset. Our models predict knee-point and knee-onset quantitatively with 9.4% error using 

only information from the first 50 cycles of the cells’ life. Our models use the knee-point predictions to classify 

the cells’ expected cycle lives as short, medium or long with 88–90% accuracy using only information from 
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owever, RUL prediction models documented in the literature define 

his remaining useful life based on the cell’s cycle life, generally defined 

s the number of cycles before the cell reaches 70–80% of its nominal ca- 

acity. Shifting the focus to the knee (-onset & -point) enables an earlier 
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 levels are on par with existing literature for End-of-Life prediction (requiring

netheless, we address the more complex problem of knee prediction. 

ith confidence/credibility metrics. The uncertainty regarding the ML model’s

 prediction intervals. These yield risk-criteria insurers and manufacturers of

se for battery warranties. Our classification model provides a tool for cell man-

ion of cell production techniques. 

etection of accelerated health degradation, leading to more effective

redictive maintenance; this is exactly what is proposed in the first part

f this manuscript. 

In the first part of this paper, a new method is proposed to identify

he knee-point, and juxtapose it against other identification algorithms

n the literature. The concept of knee-onset, and an algorithm to iden-

ify it, is also presented. To the best of our knowledge, this is the first

ime that the concept of knee-onset , or a method to identify it, appears

n the literature. The methods proposed in this work are tested on a

apid cycling dataset, using real cells subjected to high C-rates ranging

rom 1C to 8C. The detection algorithms are simple and robust against

oise without superimposing a degradation model. The identification

ethodologies used are derived from the Bacon–Watts model [14] , are

ery general and of a wider interest than just battery degradation curves.

The second part of this paper focuses on early prediction. Classical

pproaches to prediction of State-of-Health focus on physical/chemistry

odels building up from micro- to macro-scale [15] (and references),

implified macro-scale models, or semi-empirical models [16,17] ; see

he review works [18,19] . The work in this paper falls within an

lternative approach, fully focused on data discovery and its exploita-

ion. Models for predicting Remaining Useful Life (RUL) or/and cycle

ife based on machine learning and statistical methods have gained

ncreasing attention in the literature in the recent years: Support Vector

achine (SVM) and Relevance Vector Machine (RVM), are among

he most widely used machine learning techniques to approach this

roblem [20–22] . Experiments with artificial neural networks (ANNs)

ave also been conducted [23,24] . These data-driven prediction models

ave the advantage of requiring little prior knowledge or assumptions

n degradation mechanisms. 

The early prediction problem aims to predict (qualitatively or quan-

itatively) a cell’s RUL or cycle life using data from only the cell’s early

ycles, where significantly less degradation occurs. Making predictions

ithin this framework is a challenge. To the best of our knowledge,

everson et al. [25] are the first to consider the early prediction prob-

em, and their recent results for early cycle life prediction are very

ncouraging, although care is needed when interpreting their results

see Section 3 below). Drawing from domain knowledge to extract a

mall set of powerful predictors, they achieve very good results in terms

f prediction error using early-cycle data. From a statistical point of

iew, they train a logistic regression model to classify cells into low-

ifetime and high-lifetime using the first 5 cycles with an accuracy of

95%, and a linear regression model to generate point estimates of

he cycle life using data from the first 100 cycles with an accuracy

f ~ 91%. 

Access to relevant cycling data is one of the major challenges hinder-

ng the development of data-driven models. Generating a dataset cov-

ring a wide range of operating conditions and rare events is expen-

ive and time-consuming. The NASA Ames Li-ion cell dataset 1 , which

ontains data from 19 Li-ion cells, has been widely used in the litera-

ure [20,21,26–28] . Severson et al. [25] recently published one of the

argest cell cycling datasets available, describing the degradation of 124

ommercial Li-ion phosphate (LFP)/graphite cells. Other authors em-

loyed simulation or semi-empirical models to overcome the lack of rel-

vant datasets: Finegan and Cooper [29] simulate data from a battery

odel and train a machine learning algorithm to predict the occurrence

f an internal short circuit in a battery. D’Arpino et al. [30] base their

nalysis on a semi-empirical model of capacity and power fade com-
the first 3–5 cycles. Our acc

information from 100-cycle

All estimations are enri

estimations is quantified th

. Introduction 

The global market for lithium-ion cells is increasing with the uptake

f electric vehicles and energy storage systems. It is common for man-

facturers of electric vehicles and grid storage applications to provide

 battery pack State of Health (SOH) warranty of eight years, which

overs the cells dropping below 70–80% of their original capacity [1] .

owever, identical vehicles or energy storage systems may be subjected

o very different duty cycles and ambient conditions, which affects the

ate of degradation of the battery pack via its degradation mechanisms

1–4] . 

Li-ion cells exhibit a two-phase capacity fade behaviour: the capac-

ty initially degrades at a low rate and then, starting at a certain onset

oint, the capacity goes through an accelerated degradation, displaying

 so-called knee pattern, until the cell’s End-of-Life (EoL). The IEEE Stan-

ard 485 TM -2010 [5] relates the “knee ” with the transition to a stage

f rapid decrease in capacity. The occurrence of the knee is a crucial

actor of the cycle life of the cell. As such, the ability to detect and,

ore importantly, predict the occurrence of the knee and (if possible)

ts onset in each cell, depending on how it is cycled, is valuable to cell

nd battery manufacturers, who can adjust their specifications and war-

anties accordingly, and to the end user, who will have the option to

djust the duty cycles that the cell is subjected to in order to extend

ts useful life, and to schedule battery maintenance in a cost-effective

anner. 

Although this notion of the knee is well documented, [5–12] , the lit-

rature on knee-point identification is sparse, with only a few attempts

ocumented. Outside the battery domain, Satopaa et al. [10] define

he knee as the point of maximum curvature and develop an algorithm

ased on this definition that can be applied to a wide range of systems.

iao et al. [6] define the knee as the intersection of two tangent lines

o the capacity fade curve drawn at two significant points (an inflection

oint and the point of maximum slope changing ratio). The downside of

his and the previous approach is that they rely on gradients and cannot

andle raw data directly. To overcome this, Diao et al. [6] first charac-

erise the capacity fade using the model they introduced in [13] . More

ecently, Zhang et al. [12] defined the knee-point as the intersection

f two straight lines with different slopes and proposed an algorithm

or online knee detection based on quantile regression (some parameter

uning is required). They fit a median regressor to the State of Health

ata and they define the knee as the first point at which the SOH data

s outside a safety zone around the median regression line. They found

hat the knee-point in NMC cells appeared between 90–95% SOH. This

ethod works well when applied to incoming data streams, but for the

urposes of off-line identification in this work it is not as suitable, since

he knee-points identified vary with the amount of training data used.

astly, End-of-Life, knee-point and knee-onset are linked via linear re-

ression methodologies, such that knowing one reveals the others. 

Having access to a standard definition and methodology to deter-

ine the knees (-onset & -point) unlocks new opportunities for devel-

ping more effective battery prognosis systems, especially in the area of

emaining Useful Life (RUL) models. Accurate RUL predictions are of

reat importance for predictive maintenance, as they can reduce failure
ates, safety issues and the maintenance costs of an application. Ad-

itionally, RUL predictions are advantageous for the effective admin-

stration of cell warranties, and can provide feedback to the end user
o change the duty cycle of their application to prolong the cell’s life.

ined with an electro-thermal model. 

1 Available at http://ti.arc.nasa.gov/project/prognostic-data-repository . 

http://ti.arc.nasa.gov/project/prognostic-data-repository


P. Fermín-Cueto, E. McTurk and M. Allerhand et al. Energy and AI 1 (2020) 100006 

In the second part of this work focuses on data-driven modelling of 

complex dynamical systems. Two machine learning predictive models 

are presented with the ability to fully leverage the data from Sever- 

son et al. [25] to accurately predict/classify the knee-point and knee- 

onset of Li-ion cells using only early-cycle data. The manners in which 

this work differs in breadth and depth from [25] are described in 

Section 3 . The machine learning models are benchmarked by provid- 

ing measures of confidence for the models’ predictions. This analysis 

“grounds ” the machine learning agnostic predictions to tangible risk 

quantifiers for decision making. 

Data description. The dataset generated by Severson et al. [25] , 

denoted “A123 dataset, ” is used in this study. The dataset consists of 

124 commercial lithium iron phosphate (LFP)/graphite cells cycled un- 

der fast-charging conditions until End-of-Life. For perspective, the cells 

underwent 4C discharge followed by varied fast-charging conditions 

ranging mainly from 3C to 8C with only a small number of cells be- 

ing charged at 1C to 2C (less that 10%). The dataset contains in-cycle 

measurements of temperature, current, charge and discharge capacity, 

as well as per-cycle measurements of capacity, internal resistance and 

charge time. Data is recorded consistently from the second cycle until, 

at least, the cycle at which each cell reaches 80% of the nominal capac- 

ity. Detailed descriptions of the data and experiment can be found at 

https://data.matr.io/1 . 

2. Knee-point identification and the concept of knee-onset 

There is consensus in the industry and the literature around the 

notion of the knee-point as the transition from a slow degradation 

rate to a rapid one. However, this transition is not abrupt and can 

be considered to take place over a number of cycles. For this reason, 

determining a single point in the capacity fade curve as the knee-point 

is a subjective task. Here, a new method to identify the knee-point 

is proposed and compared against existing methodologies. This is 

followed by the proposal of the novel concept of knee-onset and 

discussion of two different algorithms to identify it. 

2.1. Knee-point identification 

For the knee-point, the concept of Zhang et al. [12] is followed: 

the knee-point is the intersection of two lines with two different slopes 

that characterise the two stages in capacity degradation. Due to the 

noise in experimental cell capacity data, it is problematic to use gra- 

dients to determine the slope of these straight lines, so additional ma- 

chinery is needed: Diao et al. [6] (slope changing ratio method) and 

Satopaa et al. [10] (maximum curvature method) as highlighted in the 

introduction. 

The Bacon and Watts [14] model is used to identify the knee-point. 

The model is a straightforward and easy-to-use statistical model which 

does not rely on gradient methodologies and is robust against noise. 

Bacon and Watts proposed the model of Eq. (1) , concretely, two straight 

line relationships, to the left and right of some unknown transition point 

x 1 , namely: 

𝑌 = 𝛼0 + 𝛼1 ( 𝑥 − 𝑥 1 ) + 𝛼2 ( 𝑥 − 𝑥 1 ) tanh {( 𝑥 − 𝑥 1 )∕ 𝛾} + 𝑍, (1) 

where Z is a normally distributed and centred-in-zero random variable 

representing the residuals, 𝛼1 and 𝛼2 control the slopes of the intersecting 

lines, 𝛼0 is a type of intercept of the leftmost segment (at x = x 1 ), and 𝛾

controls the abruptness of the transition. Parameters 𝛼i and x 1 have been 

optimised (see Methods below) and 𝛾 fixed to a small value to obtain an 

abrupt transition around the change point x 1 . The knee-point is defined 

by x 1 . Fig. 1 shows the Bacon–Watts model applied to the degradation 

data of sample cell 2 b3c45 in the A123 dataset. 

2 Notation bXcY refers to the cell in channel Y of batch X in the A123 dataset 

(see https://data.matr.io/1 ). 

Fig. 1. Capacity degradation data for sample cell b3c45 in the A123 dataset 

and knee-point obtained applying the Bacon–Watts model. The average width 

of the 95% confidence interval (computed with the non-parametric bootstrap 

procedure) of the knee-points estimated with the Bacon–Watts model was 6.1 

cycles. 

In Fig 2 ( a), the knee-points identified in a sample of Li-ion cells 

covering a wide range of cycle lives are presented and compared with 

those proposed by Diao et al. [6] and Satopaa et al. [10] . These last 

two methods cannot be applied directly to capacity degradation data, 

so in both cases the capacity fade is first characterised using the model 

in Diao et al. [13] , adjusted to overcome some issues encountered 

when applied to the A123 dataset. Specifically, the independent vari- 

able has been scaled to resolve numerical stability issues and the point 

of maximum slope changing ratio is forced to be greater than the 

first significant point. The knee-point detection method proposed by 

Zhang et al. [12] based on quantile regression has not been included 

in this analysis; although this method works well against an incoming 

data stream, it is not as convenient for off-line identification, as the 

knee-points identified vary with the amount of training data used. 

The results displayed in Fig. 2 (b) show that the maximum curva- 

ture and Bacon–Watts algorithms identify very similar knee-points. On 

average, Bacon–Watts knee-points occur 49 cycles after the maximum 

curvature knee-point. Both methods visually capture the midpoint of 

the transition from a slow degradation rate to a rapid one ( Fig. 2 (a)). 

The slope changing ratio method is less consistent and often detects 

the knee-points arbitrarily, either too early (e.g. b1c3, b1c0) or too late 

(e.g. b1c1). It is worth pointing out the robustness of the Bacon-Watts 

method, which is applied on raw experimental data, can cope with the 

large amount of noise present in cell b1c0, and generally works well 

even when the other two methods have failed. 

2.2. Knee-onset concept and detection 

The knee-point defined above can be seen as the midpoint of the 

knee. As such, the ability to detect the knee-point does not give the 

end user advanced warning of the transition to nonlinear capacity fade, 

and merely informs them that accelerated State-of-Health degradation 

is well underway. Therefore, the ability to identify/predict the onset 

of accelerated degradation is desirable from the perspective of the end 

user. For this reason, we propose a new concept, which we call the knee- 

onset. The knee-onset is defined as the point that marks the beginning of the 

accelerated degradation rate at which the capacity fade can no longer be ap- 

proximated as a linear function . This definition is more conservative and 

might be preferred in applications where Remaining Useful Life (RUL) 

is important, as it enables an earlier warning (and response). 

Two different algorithms for knee-onset detection are explored. As 

a first method , the knee-onset is defined as the intersection between the 

first segment of the Bacon–Watts model based on Eq. (1) , with the ca- 

pacity fade curve. This method captures the intuition that the knee-onset 

marks the end of the linear degradation phase. For the second method , 

https://data.matr.io/1
https://data.matr.io/1
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Fig. 2. ( a ) Comparison of knee-points obtained with Bacon–Watts, maximum curvature and slope changing ratio methods on a sample of cells from the A123 dataset 

(from left to right b2c47, b3c3, b1c3, b1c0, b1c1). See Supplementary Fig. 1 for results of a larger cell sample. (b ) Comparison of knee-points in all cells in A123 

dataset, sorted by their cycle life. 

Fig. 3. Capacity degradation data for sample cell b3c45 in the A123 dataset and knee-onset corresponding to two different models: (a) double Bacon-Watts and (b) 

intersection of Bacon–Watts with capacity fade. The average width of the 95% confidence interval (computed with the non-parametric bootstrap procedure) of the 

knee-onsets estimated with the double Bacon–Watts was 13.8 cycles (the interval is very small that it is not depicted in the plots). 

the Bacon–Watts model is adjusted to identify two transitions in the data 

instead of one, concretely: 

𝑌 = 𝛼0 + 𝛼1 ( 𝑥 − 𝑥 0 ) + 𝛼2 ( 𝑥 − 𝑥 0 ) tanh {( 𝑥 − 𝑥 0 )∕ 𝛾} 

+ 𝛼3 ( 𝑥 − 𝑥 2 ) tanh {( 𝑥 − 𝑥 2 )∕ 𝛾} + 𝑍, (2) 

where the involved terms are in the same vein as those in Eq. (1) (with 

the parameters 𝛼i and x j to be estimated and 𝛾 fixed to a small value to 

obtain an abrupt transition around the change points x 0 , x 2 ). This algo- 

rithm is denoted as the double Bacon-Watts, and the knee-onset defined 

as the change point x 0 in the fitted results. Both methods are illustrated 

in Fig. 3 ( a) and (b). 

In the case of the knee-onset, both methods yield very similar results 

across the A123 dataset ( Fig. 4 ( a) and (b)). However, the intersection 

method can fail if there is noise in the experimental data around the 

knee, as is the case for cell b1c1. For completeness, it is noted that, in 

the data analysis, the knee-point x 1 found via Eq. (1) always lies in 

between points x 0 and x 2 found via Eq. (2) (Supplementary Fig. 3). 

These experimental tests lead to the selection of the standard 

Bacon–Watts and the double Bacon–Watts models for knee-point and 

knee-onset identification, respectively. The methods are robust, they 

provide visually acceptable results and they do not require a model of 

capacity degradation to be superimposed on the data. Computationally, 

the methods take less than 1 second to run. The double Bacon–Watts 

model for knee-onset identification provided a warning of accelerated 

degradation an average of 108 cycles before the single Bacon–Watts 

knee-point identification model, thus providing the end user with a 

valuable new metric for cell SOH that gives them more time to adjust 

the duty cycle of the cell or plan the maintenance of the battery pack. 

2.3. Relations between knee-point, knee-onset, cycle life and capacity 

As mentioned previously, for automotive applications, when a cell 

reaches 80% of its original capacity, the cell is considered as having 

reached its End-of-Life or cycle life. For the A123 dataset, it is found 

that, on average, the knee occurs at 95% capacity with its onset at 97.1% 

capacity. On average, the knee and its onset differ by 107.9 cycles (stan- 

dard deviation of 66.4 cycles), and on average the knee-point and the 

cycle life differ by 187.8 cycles (standard deviation of 90.8 cycles). 

Fig 5 (a) shows that, for the Li-ion cells in this dataset, the knee-point 

and knee-onset points determined with the Bacon–Watts models display 

a strong linear correlation with the cycle life. 

This observation makes it possible to estimate the cycle life when the 

knee-point is known (or a prediction of it is available) and vice versa, 

using the linear regression model of Eq. (3) : 

𝑌 = 𝛽0 + 𝛽1 𝑋 + 𝑍, (3) 

where Y is the cycle life, X is either the knee-onset or the knee-point, 

Z is a normally distributed and centred-in-zero random variable repre- 

senting the residuals, and 𝛽0 and 𝛽1 are the intercept and the slope, 

respectively, of this linear regression model. The coefficients’ estimates 

and their confidence intervals are presented in Table 1 . 

The results of applying this model to extrapolate the cycle life when 

the knee-onset/point is available are displayed in Fig. 5 (b). The cycle 

life can be forecast with an expected error of 31.4 cycles (MAPE = 

4.0%) when the knee-point is known. Similarly, in the case of the knee- 

onset, the cycle life can be predicted with an average error of 49.3 cycles 

(6.1%). 
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Fig. 4. ( a ) Comparison of knee-onsets obtained with double Bacon–Watts and the intersection between the standard Bacon–Watts and the capacity fade on the same 

sample of cells as in Fig. 2 (a). See Supplementary Fig. 1 for results of a larger cell sample. (b) Comparison of knee-onsets in all cells in A123 dataset, sorted by their 

cycle life. 

Fig. 5. ( a ) Linear regression models linking the knee-point to cycle life and and knee-onset to cycle life, both linear with 95% confidence intervals/bands around 

them. (b) Box-plot showing the distribution of prediction errors when the linear regression model is used to go from known knee-onset to prediction of cycle life 

(left) and from known knee-point to prediction of cycle life (right). The box-plots display the errors’ distributions through their quartiles (P25, median and P75); 

outliers are plotted individually. 

Table 1 

Coefficients of two linear regression models relating the knee-onset ( a ) and 

the knee-point ( b ) to the cycle life, respectively. The small p -values for 

coefficients 𝛽1 , computed using the Wald test, allow the rejection of the 

null hypothesis that a linear relationship does not exist between the cycle 

life and the knee-point or knee-onset, with a significance level 𝛼 = 0 . 05 . 
The confidence intervals capture the uncertainty around the estimated co- 

efficients. The coefficient of determination, R 2 , of these linear regression 

models is 0.961 for the knee-onset and 0.983 for the knee-point, both very 

close to 1, showing a very strong agreement between the experimental data 

and the fitted values. 

(a) Cycle life vs. knee-onset 

Coefficient Estimate p -value Confidence interval ( 𝛼 = 0 . 05 ) 

Intercept ( 𝛽0 ) 72.13 3 . 4 × 10 −6 [42.80, 101.47] 

Slope ( 𝛽1 ) 1.44 8 . 6 × 10 −88 [1.39, 1.49] 

Model: cycle life = 72 . 13 + 1 . 44 × Knee-onset 

(b) Cycle life vs. knee-point 

Coefficient Estimate p -value Confidence interval ( 𝛼 = 0 . 05 ) 

Intercept ( 𝛽0 ) 25.57 1 . 3 × 10 −2 [5.47, 45.67] 

Slope ( 𝛽1 ) 1.26 5 . 2 × 10 −110 [1.23, 1.29] 

Model: cycle life = 25 . 57 + 1 . 26 × Knee-point 

There is a further advantage to these linear relations, namely, as 

the majority of literature on the State-of-Health focuses on the End-of- 

Life for either identification or prediction, the results of this study mean 

that those methodologies can, in principle, also be used to predict knee- 

point and knee-onset. Unfortunately, such analysis has not yet been con- 

ducted, but the path is now open to do so. 

Accurate estimates of when the capacity of cells or battery packs 

is expected to switch from decreasing linearly to decreasing at a much 

higher rate are valuable to end users, since this allows the pack cycling 

parameters, servicing and replacement schedules to be adjusted accord- 

ingly. This ensures that lifespan is maximised and cell(s) approaching 

End of Life are replaced at a convenient time, which minimises the 

downtime of the system. The knee-onset prediction also gives advanced 

warning of reduced State of Available Power and therefore reduced 

ability to meet performance criteria of the application, since decreasing 

capacity usually occurs in tandem with increased internal resistance and 

therefore reduced State of Available Power (SOAP). Cell manufacturers 

will find the ability to rapidly and reliably grade cells into cycle life 

categories useful since this ensures that customers will receive cells that 

are best suited to their applications, thus improving the grouping within 

battery packs of cells with the closest performance characteristics and 

further extending the lifespan of the pack. 
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3. Improved machine learning for early knee prediction 

The identification of knee-onset and knee-point was a critical step 

towards enabling the development of predictive models for those quan- 

tities. Two problems are focused upon: Problem 1: early classification and 

Problem 2: early quantitative prediction of lifespan . Information on the 

early behaviour of the cell is used for both problems. For Problem 1, the 

data is used to classify a cell into one of three categories which indicate 

when the knee-midpoint is predicted to take place (short-life, medium- 

life or long-life) and, for Problem 2, the data is used to predict the cycle 

number at which the knee-point and knee-onset will occur. The closest 

related literature is the work of Severson et al. [25] , which addresses 

variants of Problems 1 and 2 but for the End-of-Life problem (cycle in 

which the cell reaches 80% of its nominal capacity). The early predic- 

tion of knee-point and its onset is a more involved problem requiring 

deeper exploitation of the available data. 

For completeness, the work of Severson et al. is juxtaposed with the 

work in this study. Severson et al. [25] used lasso logistic regression 

to address Problem 1 (classifying cells in two classes: low- and high- 

lifetime) and elastic net, a variation of linear regression, for Problem 

2. Both problems targeted prediction/classification of End-of-Life and 

their choice of features or predictors was guided by domain expertise. 

In this study : (i) the much less tractable knee-point and knee-onset are 

targeted (instead of End-of-Life) to make predictions – the direct appli- 

cation of Severson et al.’s methodologies and feature choices fails to pre- 

dict the knee-quantities satisfactorily; (ii) machine learning algorithms 

are employed with stronger predictive performance and which are less 

prone to overfitting to the training data while maintaining low complex- 

ity ( Support Vector Machine (SVM) is used for Problem 1 and Relevance 

Vector Machine (RVM) is used for Problem 2); (iii) a feature genera- 

tion pipeline is proposed that makes fewer assumptions on indicators of 

capacity degradation and, imperatively, can better leverage the infor- 

mation available in the data; (iv) lastly, and with a view to real-world 

market applications (insurance/warranties, predictive maintenance and 

manufacturing), uncertainty quantification is presented for the quality 

of the predictions from the machine learning algorithms (see next sec- 

tion) providing reliable risk assessment criteria for decision making. 

There are two aspects of Severson et al.’s methodology that con- 

tributed to the high accuracy that they achieved in Problem 1 (92.7% 

and 97.5% in their primary and secondary test sets, respectively [25, Ta- 

ble 2] ): (1) their definition of low-lifetime and high-lifetime cells and (2) 

the class imbalance in the secondary test dataset. In our view, choosing 

550 cycles as the cycle life threshold is debatable: with such a thresh- 

old, 97.6% of the cells in the “low-lifetime ” class correspond to cells 

in the second batch of the A123 dataset and 95.2% of the cells in the 

“high-lifetime ” class correspond to batch 1. Cells in the second batch 

were subject to significantly higher C-rates (5 or 6C up to 80% SOC), 

which resulted in a substantially faster degradation compared to cells in 

batch 1. We therefore think that it is possible that their logistic regres- 

sion model learned patterns that separate batch 1 from batch 2, instead 

of learning early indicators of future degradation. Regarding the sec- 

ondary test set, which corresponds to the third batch of cells, it suffers 

from severe class imbalance, since only 1 of the 40 cells in this batch 

belongs to the low-lifetime class. As a consequence, it is hypothetically 

trivial to build a model that achieves 97.5% accuracy, by simply predict- 

ing “high-lifetime ” for all cells. Therefore, using the accuracy metric to 

present the performance of the predictive model on the secondary test 

set is misleading. 

Notwithstanding these observations, Severson et al.’s contribution sets 

an inspirational baseline within data-driven prediction of End-of-Life . Their 

machine learning models achieve an outstanding performance in the 

very hard task of predicting the long-term performance of a cell from 

early cycles, employing light interpretable models. 

In the development of our methodology, different techniques were 

employed to obtain models with a good generalisation performance and 

to present the robustness of the results. The knee-point threshold was set 

at 500 cycles (notice that this would correspond to a higher cycle life 

threshold), which ensures a higher presence of cells in batches 1 and 

3 in the “short-lived ” class (21%). A third class of very long-life cells 

( ≥ 1100 cycles) is defined, which contains a balanced distribution of 

batches 1 and 3. Moreover, the accuracy metric is complemented with 

a confusion matrix to give additional insight on the model errors. All 

of the performance metrics, for both Problems 1 and 2, are presented 

with confidence intervals, a crucial good-practice step when working 

with small datasets. Lastly, by using leave-one-out validation to create 

training and test sets (see Methods section), it is ensured that all cells are 

used for testing, thus avoiding the class imbalance issue and maximising 

the data used in training. This makes our model more generalisable to 

unseen data. 

Feature generation and extraction pipelines . Crucial to our two machine 

learning algorithms are the pipelines for generation and selection of de- 

scriptive variables. The variables available on a per-cycle basis (internal 

resistance, charge time and discharge capacity) are utilised in addition 

to different combinations of variables described in the in-cycle data: 

Q ( V ), dQ / dV ( V ), dV / dQ ( Q ), Δ𝑄 𝑐 𝑦𝑐 𝑙𝑒 − 𝑐 𝑦𝑐 𝑙𝑒 0 ( 𝑉 ) , Δ𝑉 𝑐 𝑦𝑐 𝑙𝑒 − 𝑐 𝑦𝑐 𝑙𝑒 0 ( 𝑄 ) , T ( V ) and 

I ( t ), where Q ( V ) is the discharge voltage curve as a function of voltage, 

T ( V ) is the temperature curve during discharge as a function of voltage 

and I ( t ) is the current as a function of time. Δ𝑄 𝑐 𝑦𝑐 𝑙𝑒 − 𝑐 𝑦𝑐 𝑙𝑒 0 ( 𝑉 ) variables, 

proposed by Severson et al. [25] , represent the change in discharge volt- 

age curves between a given cycle and a reference cycle cycle 0 . The first 

cycle available in the data, cycle 2, is used for the classification prob- 

lem and the cycle 10 for quantitative prediction. Δ𝑉 𝑐 𝑦𝑐 𝑙𝑒 − 𝑐 𝑦𝑐 𝑙𝑒 0 ( 𝑄 ) follow 

the same notation. The cycle-to-cycle evolution of these variables for a 

sample cell is illustrated in Supplementary Fig. 3 . Time series analysis 

is used to extract predictors from these different variables in two steps: 

first, the high dimensional in-cycle data is aggregated at a cycle level by 

applying different summary metrics, to finally extract predictors from 

the cycle-to-cycle evolution of the resulting variables, using similar time 

series metrics – Supplementary Fig. 4 illustrates this process. Lastly, dif- 

ferent feature selection and transformation techniques are applied to 

select around 100 predictors to train the machine learning models (Sup- 

plementary Figs. 6 and 7). 

Problem 1: Early classification of cells by knee-point occurrence 

The classification problem is about predictive categorisation of cells 

by the cycle-range in which the knee-point takes place, concretely, into 

short-range (knee-point in < 500 cycles), medium-range (500–1100 cy- 

cles) or long-range ( > 1100 cycles), using only information from a cell’s 

early life. This information is relevant for predictive maintenance of bat- 

teries in grid-storage applications and for manufacturers. The latter can 

use the output of such models to grade cells during manufacturing after 

running as few as three charge-discharge cycles (see below), which in 

turn ensures that customers will receive cells that will meet and sustain 

the performance criteria of their applications. 

The machine learning algorithm selected for this task is a Support 

Vector Machine (SVM) [31] , a powerful yet simple classifier. The 

classifier, trained with data from just the first 3 cycles, categorises cells 

into ‘short’, ‘medium’ and ‘long-range’ with an accuracy of 88%. The 

confusion matrix in Fig. 6 ( a) provides additional insight on the type of 

the errors made by the model. The most common errors are those that 

underestimate the lifespan of the cell: there may be long-range cells 

classified as medium-range and medium classified as short, and there 

are no instances of short-range cells classified as long-range or vice 

versa. This is preferable from a business perspective, as it means that 

the likelihood of a cell failing to meet its categorised cycle life, and 

thus being subject to a warranty claim, is negligible. 

For a comparative study of how much information is sufficient for 

the model to produce quality predictions, the model is trained using 

information from the first 3 up to the first 40 cycles (16 SVM models are 

built for this study) and compare the impact of the amount of training 
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Fig. 6. ( a) Confusion matrix of predictions made at 3 cycles for the classification model. Each row of the matrix represents the percentage of each group of cells 

that were classified as ‘short’, ‘medium’ or ‘long-range’; overall accuracy of 88%. (b) Classification accuracy for increasing amounts of cycling data used to make 

predictions/train the algorithms. The Wilson score interval was used to compute the binomial proportion confidence interval with 𝛼 = 0 . 1 . c , Mean error (MAE) and 

mean absolute percentage error (MAPE) of regression models to predict knee-point and knee-onset and impact of the number of cycles used to make predictions. The 

confidence intervals were implemented using the non-parametric bootstrap procedure, with significance level 𝛼 = 0 . 1 . 

Fig. 7. ( a) Probability of the cell belonging to each class (based on the knee-point) for a sample of 31 cells in the A123 dataset, using the first 3 cycles to make 

predictions. (b) Knee-point prediction intervals for 80% and 95% probability of including the true values, using conformal prediction, for a sample of 31 cells from 

the A123 dataset, using the first 50 cycles to make predictions. 

data in the predictive performance. The sensitivity analysis displayed in 

Fig. 6 (b) shows that, for less than 20 cycles, increasing the amount of 

cycling data does not bring an improvement in performance. Only after 

25 cycles is it observed that more data results in higher classification 

accuracy. This model can deliver 88%-accurate predictions after running 

as few as 3 charge-discharge cycles. This would allow cell manufacturers 

to grade their cells during manufacturing in noticeably shorter time (2–

3 h instead of the 3–5 h required to run 5 cycles for the model in [25] ) 

and with greater confidence than with today’s processes, then assign 

appropriate prices and warranty terms more accurately reflecting the 

cycle life of the cell. 

It is well-known in classifier literature that reducing the number of 

classes (in this case from 3 to 2) would increase the accuracy level, 

so our classifier (with its 88%-accuracy) can only improve by reduc- 

ing classes. In fact, the larger inaccuracies in our classifier happen in 

cross miss-classification between short- and medium-lived (see the 2- 

by-2 submatrix in the top-left corner of the confusion matrix, Fig. 6 (a)). 

Mathematically speaking, merging the short and medium classes would 

strongly improve the classifier’s accuracy. This latter classifier, would 

classify cells as ‘long-knee’ and ‘not long-knee’ which is of interest for 

battery manufacturers. 

Both this classification model and the quantitative prediction model 

described below require little computational effort; both were trained 

and evaluated in approximately 0.1 seconds with the 124 cells in the 

A123 dataset. 

Problem 2: Quantitative prediction of knee-point and knee-onset 

This problem focuses on giving quantitative predictions of the cycle 

numbers in which the knee-point and the knee-onset occur, respectively, 

based only on information from the early life of the cell. Accurate esti- 

mations of knee (point & onset) occurrence from early-cycle data have 

a clear advantage for insurance and maintenance and, importantly, 

can accelerate the design of fast-charging policies and the validation 

of new technologies by eliminating the need to run long cycling 

experiments. 

The machine learning model used here stems from Relevance Vec- 

tor Machine (RVM) [31] . The predictive results using information on 

the first 50 cycles are summarised in Table 2 – 50 cycle information is 

a substantial advancement regarding Severson et al. [25] who require 

data from the first 100 cycles. 

Fig. 6 (c) displays a sensitivity analysis of the model performance 

using different amounts of data (from 25 to 100 cycles, i.e. we train 7 

RVM models and compare). It can be seen that increasing the number 

of cycles generally brings a significant reduction in prediction error. 

The largest improvements are obtained when increasing the number of 

cycles used from 25 to 50, whereas the error stays almost flat thereafter. 

This model would allow an end user to accurately predict the knee-point 

and knee-onset after running only 50 charge–discharge cycles. With the 

charging policies designed to generate the A123 dataset, each charge- 

discharge cycle takes between 40 and 60 min. Therefore, a reduction of 

50 cycles (from 100 cycles in Severson et al. [25] ) translates to reducing 



P. Fermín-Cueto, E. McTurk and M. Allerhand et al. Energy and AI 1 (2020) 100006 

Table 2 

Result of RVM regressor for knee-point ( a ) and knee-onset ( b ) when predictions 

are made using the first 50 cycles: MAE and MAPE scores with 90% Bootstrap 

confidence intervals. 

(a) Knee-onset prediction 

Metric Score Confidence interval ( 𝛼 = 0 . 1) 
MAE (cycles) 55.8 [47.3, 64.9] 

MAPE (%) 12.0 [10.2, 13.9] 

(b) Knee-point prediction 

Metric Score Confidence interval ( 𝛼 = 0 . 1) 

MAE (cycles) 57.8 [49.6, 66.7] 

MAPE (%) 9.4 [8.2, 10.7] 

the length of lab-based cycling experiments by between 35 and 50 h, 

which in turn brings associated cost savings. 

Based on these results, the knee-point seems to be easier to pre- 

dict than the knee-onset. Their mean absolute error (MAE) is similar 

throughout the sensitivity analysis, but the mean absolute percentage 

error (MAPE) is consistently higher for the knee-onset. 

Quantifying uncertainty 

Providing a measure of uncertainty with each prediction gives 

insight into how confident the model is in its predictions and allows the 

end user to control the level of risk they are willing to take in subsequent 

decision-making processes. Contrary to more standard statistical meth- 

ods, most machine learning algorithms do not naturally provide uncer- 

tainty quantifiers for the predictions they make. The goal of this section 

is to address this issue in the context of the findings of this study. Such 

results are necessary for actuarial approaches to warranties/insurance. 

In the case of the classification model (Problem 1), an SVM can be ad- 

justed to provide the probability of a cell belonging to each class (short, 

medium or long), along with the model’s decision [32] . This is illustrated 

in Fig 7 (a). If the end user deems that there is a high cost associated with 

classifying a short-range cell as medium or long, they could decide to 

tune the model to categorise a cell as short-range whenever the model 

outputs a probability of the cell belonging to this group of e.g. 20%. 

For the quantitative prediction of the knee-point and/or the knee- 

onset (Problem 2), Conformal prediction [33] intervals are used to quan- 

tify model uncertainty. Conformal prediction uses past experience to 

determine prediction intervals, and can be tuned to include the true 

values with probability p , where p is fixed by the user. Conformal pre- 

dictions intervals differ from the standard confidence intervals, as the 

intervals are not centred around the predicted value. As can be seen in 

Fig. 7 (b), the higher the parameter p the more frequently the interval 

includes the true knee-point, at the expense of having wider, less precise 

intervals. The end user can use this information to decide when to stop 

an experiment. The model can output predictions every few cycles and 

the user could continue cycling only those cells for which the prediction 

intervals are too broad, until these are reduced to an acceptable level, 

thus resulting in a more efficient use of laboratory resources and more 

reliable predictions. 

4. Conclusions 

Accurate estimates of a cell’s lifespan from early-cycle data are of 

crucial importance for advancing the development of battery technol- 

ogy, improving and fast-tracking manufacturing processes, optimising 

fast-charging policies and securing a more robust insurance market for 

batteries. On the other hand, the knee-point of the capacity degradation 

of a cell provides a more meaningful measure of its lifespan than the 

cycle life, as it allows one to optimise the use of the battery. 

The concept of knee-point is further refined with the novel concept 

of “knee-onset ” to define the point at which the cell shows the first signs 

of the transition to the accelerated degradation phase. This provides an 

earlier warning than the “knee-point ”, where the rapid degradation is 

already well underway. The knee-onset thus has significant commercial 

value regarding warranty provision. It leads to more effective predic- 

tive maintenance, since the ability to predict the occurrence of the 

knee-onset gives the end user enough time to schedule a replacement 

before the cell fails to meet performance requirements (108 cycles in 

advance on average). This is critical for energy grids, where batteries 

are used intensively and where replacements on-the-fly are costly. 

Novel methods are proposed to identify the knee-point and knee-onset, 

which are shown to provide consistent and visually accurate results, 

and can be applied directly without superimposing a degradation 

model, as they are robust against noise. Moreover, this methodology 

works even in scenarios where other known methodologies fail. 

A side aspect of the “knee ” concepts is that the analysis of the data 

in combination with the results of this study reveal a strong linear rela- 

tion between cycle life, knee-point and knee-onset. The relation can be 

used to seamlessly pass from one quantity to the other – predicting one 

quantity promptly yields the remaining ones. 

The “knee ” prediction from early-cycle data is also addressed by em- 

ploying machine learning models with methodologies to systematically 

extract relevant predictors from cycling data. The resulting models clas- 

sify cells as short, medium or long-range with 87.9% accuracy and min- 

imal overestimation of knee-point using as few as 3 cycles, and also 

provide estimates of the occurrence of knee-onset and knee-point with 

a 12.0% and 9.4% error, respectively, after 50 cycles. Considering that 

each charge-discharge cycle in the dataset used requires between 40 and 

60 min, this means substantial cost and time savings in manufacturing 

and lab-based experiments with respect to current baselines. 

The models’ outputs are further enhanced with prediction uncer- 

tainty tools which help the end user to control the risk associated with 

making decisions based on the models’ predictions. In other words, a 

benchmarking analysis tool is provided, which quantifies the reliabil- 

ity of the machine learning models. These error assessments are vital 

to give this modelling methodology credibility for its use for insur- 

ance/warranties, predictive maintenance and manufacturing. 

The last point we comment on regards the robustness of the model’s 

extrapolation power to other datasets,. We mention that (1) we have 

taken steps in our methodology to reduce overfitting and achieve good 

generalisation performance, and (2) despite this, it is possible that our 

machine learning models, as they are, would not have the same good 

performance on unseen data that is massively different from the datasets 

we used (e.g. different temperatures, chemistry, etc.), nonetheless, the 

crucial novelty is the design of the machine learning pipeline, which 

can (and should be) retrained whenever new data is available. It is very 

common for Machine Learning models to become live models that get 

updated every time the distribution of the input data changes. 

Methods 

Bacon-Watts models . For both the Bacon-Watts and the double 

Bacon-Watts models, 𝛾 was set to a low value ( 𝛾 = 10 −5 ) to obtain an 

abrupt transition. To learn parameters 𝛼0 , 𝛼1 , 𝛼2 (as well as 𝛼3 in the 

double Bacon-Watts) and x 0 , the Levenberg–Marquardt nonlinear least 

squares algorithm is used to fit the model in Eq. (1) to the capacity 

degradation data. The optimal value of x 0 represents the identified knee- 

point of a given cell. The same methodology is used for Eq. (2) . 

Machine learning methods . The machine learning pipeline out- 

lined in this document involves feature extraction and selection, and 

model fitting and validation. For the classification problem, features are 

extracted from the raw data using time series analysis and various fea- 

ture reduction techniques described in Supplementary Figs. 6 and 7. The 

dimensionality of the resulting dataset is then reduced using recursive 

feature elimination to select the 100 most relevant features. Lastly, the 

selected features are standardised by removing the mean and scaling 

to zero variance, a common feature transformation applied when using 

linear models. 
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SVM, selected for the classification model, is a supervised machine 

learning model that uses the model in (4) to build a decision boundary 

between two classes by maximising the distance between the closest 

data points (the support vectors) and the decision boundary, 

𝑦 ( 𝒙 ) = 𝒘 

𝑇 
𝒙 + 𝑏. (4) 

SVMs are effective in high-dimensional spaces, they are fast both in 

training and testing time, they are robust against outliers and they can 

be adjusted to work in multi-class tasks, like the one at hand. 

Although SVMs are inherently linear models, they can learn nonlin- 

ear relations by applying kernel functions which map the inputs to a 

different feature space. A Gaussian RBF (Radial Basis Function) was se- 

lected, a popular Kernel method that uses the euclidean distance in the 

original space to calculate the similarity between dimensions x and x ′ : 

𝑘 ( 𝒙 , 𝒙 ′) = 𝑒 − 𝛾‖𝒙 − 𝒙 ′‖2 , 𝛾 > 0 . (5) 

The main evaluation metric used to analyse the performance of the re- 

sulting model is the accuracy score: 

accuracy ( 𝒚 , ̂𝒚 ) = 

1 
𝑛 samples 

𝑛 samples ∑
𝑖 =1 

1 ( 𝑦 𝑖 = 𝑦 𝑖 ) , (6) 

where y i is the true class (short, medium or long-range) of sample (cell) 

i and 𝑦 𝑖 is the predicted class. 

Due to the limited number of samples available, leave-one-out [34] is 

used both for feature selection and model fitting: multiple training sets 

are created, leaving a different cell out each time. Each model is trained 

on the remaining samples and the performance is evaluated on the hid- 

den cell. This facilitates the generation of predictions for all the samples 

available, leading to more statistically robust results whilst minimising 

the sacrificing of data in development. This ensures that the training 

sets are as large as possible and that the model is evaluated on all the 

samples, leading to better predictive performance and more statistically 

robust results. 

For the quantitative prediction problem, a similar feature extraction 

pipeline is applied, described in Supplementary Fig. 6 . This task uses 

RVM, a Bayesian sparse model suitable for regression tasks that is based 

on the same principles as SVM, with some enhancements: (i) the output 

of RVM is a probability distribution of possible outcomes, rather than a 

point estimate; (ii) it results in more sparse models, making RVM faster 

than SVM in testing; (iii) it can be less prone to overfitting. RVM model 

uses 

𝑝 ( 𝑦 |𝒙 , 𝒘 , 𝛽) =  ( 𝑡 |𝒘 

𝑇 
𝒙 , 𝜎2 ) (7) 

to determine the conditional distribution of a target variable y given a 

vector of inputs x . The noise variance is represented by 𝜎2 and w are 

the model coefficients that have to be learned. 

This regression model is evaluated using a leave-one-out framework 

and the chosen performance scores are the mean absolute error (MAE) 

and the mean absolute percentage error (MAPE): 

MAE ( 𝒚 , ̂𝒚 ) = 

1 
𝑛 samples 

𝑛 samples ∑
𝑖 =1 

|𝑦 𝑖 − 𝑦 𝑖 |, (8) 

MAPE ( 𝒚 , ̂𝒚 ) = 

100% 

𝑛 samples 

𝑛 samples ∑
𝑖 =1 

|𝑦 𝑖 − 𝑦 𝑖 |
𝑦 𝑖 

, (9) 

where y is the vector of true knee-points expressed in number of cycles 

and �̂� is the vector of predicted values. 

Code availability 
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Code for classification and quantitative prediction is available upon 

request. 
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