

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Evaluating the performance of honeycomb briquettes produced from semi-coke and corn stover char

Citation for published version:

Cong, H, Zhao, L, Mašek, O, Yao, Z, Meng, H, Huo, L, Yuan, Y, Jia, J & Wu, Y 2021, 'Evaluating the performance of honeycomb briguettes produced from semi-coke and corn stover char: Co-combustion, emission characteristics, and a value-chain model for rural China', Journal of Cleaner Production, vol. 244, 118770. https://doi.org/10.1016/j.jclepro.2019.118770

Digital Object Identifier (DOI):

10.1016/j.jclepro.2019.118770

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Journal of Cleaner Production

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

1	Evaluating the performance of honeycomb briquettes produced from
2	semi-coke and corn stover char: Co-combustion, emission
3	characteristics, and a value-chain model for rural China
4	
5	Hongbin Cong ^a , Lixin Zhao ^{a,*} , Ondřej Mašek ^b , Zonglu Yao ^a , Haibo Meng ^a , Lili Huo ^a ,
6	Yanwen Yuan ^a , Jixiu Jia ^a , Yunong Wu ^a
7	^a Center of Energy and Environmental Protection, Chinese Academy of Agricultural
8	Engineering Planning & Design, Beijing 100125, China
9	^b University of Edinburgh, School of Geosciences, UK Biochar Research Centre,
10	King's Buildings, Edinburgh EH93FF, UK
11	
12	*Corresponding author: Tel./fax: +86 010 59196810.
13	E-mail address: zhaolixin5092@163.com
14	
15	
16	
17	
18	
19	
20	
21	

22	ABSTRACT: A honeycomb briquette made from semi-coke and corn stover
23	char was developed as a possible heating fuel in rural China. In this study, the co-
24	combustion characteristics of semi-coke and corn stover char combined in different
25	proportions were tested and analyzed. It was determined that adding 20 % corn stover
26	char (BS28) effectively improved the combustion performance of semi-coke, and this
27	proportion was regarded as the ideal mixing ratio. Thus, the integrated combustion
28	characteristics of the blend improved to $15.08 \times 10^{-12} \text{ K}^{-3} \cdot \text{min}^{-2}$ compared to $5.44 \times 10^{-12} \text{ K}^{-3} \cdot \text{min}^{-2}$
29	$K^{-3} \cdot min^{-2}$ for semi-coke alone. The emission test results revealed that SO ₂ and PM _{2.5}
30	emissions decreased with corn stover char addition; however, NO_X emissions
31	increased and the combustion efficiency decreased slightly with corn stover char
32	addition. The SO ₂ concentrations resulting from the combustion of BriqCK, Briq28,
33	and Briq46 (honeycomb briquettes with ratios of char to semi-coke of 0:10, 2:8, and
34	4:6, respectively) under different experimental conditions were 24.9–26.3, 9.5–16.7,
35	and 5.2–15.4 mg/Nm ³ , respectively, and the NO _X concentrations were $63.1-149.7$,
36	54.3–175.4, and 57.7–168.4 mg/Nm ³ , respectively. A value-chain model for the new
37	heating fuel was developed and possible benefits were analyzed. If either the new
38	investment cost or raw material input costs (\$25 USD/t of straw char) were subsidized
39	by national public finance, then the project would be profitable and run sustainably.
40	This study provided an important technical basis for the development and application
41	of new heating fuels in China.

Keywords: co-combustion; air pollution emission; corn stover char; semi-coke;
 honevcomb briquette¹

45 **1. Introduction**

The amount of collectible crop straw (e.g., from corn, wheat, rice, and cotton) in 46 47 China was approximately 900 million tons during recent five years (MOA, 2016). A large amount of crop straw has been burned directly in open fields. This open field 48 49 burning has serious implications for air pollution, traffic accidents, and overall fire risk. Instead of open field burning, if these crop residues were properly utilized as 50 fuel, then China's reliance on coal as a primary energy source would be expected to 51 52 decrease (Chen, 2016; Sun, 2016). Straw char produced by slow pyrolysis consists mainly of carbon, minerals, and metals (EBC, 2018; Klinghoffer et al., 2011). There 53 are numerous beneficial possibilities for its use, including waste management, climate 54 55 change mitigation, and clean energy production (Gómez et al., 2016; Kua et al., 2019; Li et al., 2019). Owing to properties that make it a clean and renewable fuel, it is 56 feasible to explore efficient methods, such as densification, to upgrade straw char into 57 58 high value-added bioenergy (Hu et al., 2015). The widespread use of straw char requires the development of adequate utilization strategies to achieve economic and 59 environmental sustainability of bioenergy chains (Barbanera et al., 2018). 60 61 The Chinese government's 13th Five-Year Plan for Energy Development

62 proposes to replace conventional coal with clean energy sources, including natural

¹Originally a honeycomb-shaped block molded using only coal, which is the main household fuel for many residents in East Asia.

63	gas, electric power, clean coal, and renewable energy, for heating in northern China
64	(NEA, 2017). Semi-coke is an industrial product of bituminous raw coal produced by
65	low-temperature carbonization (Jie et al., 2018). It is considered a potential
66	replacement for raw coal (MEP, 2016) because it has a high fixed carbon content,
67	high calorific value, and low ash, sulfur, and phosphorus contents. Replacing
68	traditional raw coal with semi-coke briquettes could effectively improve
69	environmental outcomes (Li et al., 2016; Li et al., 2016a), as the use of semi-coke
70	briquettes has the potential to reduce emissions compared with those from current
71	coal consumption in China (Jie et al., 2018).
72	Straw char's high alkali and alkaline earth metals (AAEMs) content may cause
73	several operating problems in the combustion system (Hernández et al., 2016);
74	however, they can weaken the polymer chain and catalyze the combustion of semi-
75	coke (Peng et al., 2015). Compared with semi-coke, straw char has higher
76	hydrophobicity but lower densification performance (Hu, 2015). Despite the large
77	number of studies on the co-combustion characteristics of biomass with char, sludge,
78	and oil shale (Liu et al., 2015; Niu et al., 2017; Sarkar et al., 2014), there remains a
79	considerable knowledge gap in the development of a new fuel blended from straw
80	char and semi-coke, which are produced by similar processes using different raw
81	feedstocks. Information pertaining to the emissions from the combustion of
82	honeycomb briquettes produced from a combination of semi-coke and straw char is
83	also very limited (Li et al., 2016a; Yank, 2016), which affects the development and

84 promotion of new heating fuels.

85	The primary objective of this study was to investigate the influence of variations
86	in corn stover char blending proportions on the combustion characteristics of semi-
87	coke, and to determine the emission characteristics of a new honeycomb briquette
88	molded from a combination of corn stover char and semi-coke. In addition, a value-
89	chain model for honeycomb briquette production and utilization was designed, and
90	the expected benefits based on the model were analyzed. This provided essential data
91	for the development and application of a new heating briquette produced from a
92	combination of straw char and semi-coke.
93	2. Materials and methods
94	2.1 Characterization of materials
95	The test materials primarily included corn stover char, semi-coke, and
95 96	The test materials primarily included corn stover char, semi-coke, and honeycomb briquettes molded from different blends of these two fuels. Corn stover
95 96 97	The test materials primarily included corn stover char, semi-coke, and honeycomb briquettes molded from different blends of these two fuels. Corn stover char was produced using a pilot-scale rotary kiln at a pyrolysis temperature of 600 °C
95 96 97 98	The test materials primarily included corn stover char, semi-coke, and honeycomb briquettes molded from different blends of these two fuels. Corn stover char was produced using a pilot-scale rotary kiln at a pyrolysis temperature of 600 °C and a residence time of 30 min (Cong et al., 2017). Semi-coke was obtained directly
95 96 97 98 99	The test materials primarily included corn stover char, semi-coke, and honeycomb briquettes molded from different blends of these two fuels. Corn stover char was produced using a pilot-scale rotary kiln at a pyrolysis temperature of 600 °C and a residence time of 30 min (Cong et al., 2017). Semi-coke was obtained directly from the market; it was produced by low-temperature carbonization of highly volatile
95 96 97 98 99 100	The test materials primarily included corn stover char, semi-coke, and honeycomb briquettes molded from different blends of these two fuels. Corn stover char was produced using a pilot-scale rotary kiln at a pyrolysis temperature of 600 °C and a residence time of 30 min (Cong et al., 2017). Semi-coke was obtained directly from the market; it was produced by low-temperature carbonization of highly volatile bituminous coal from Shenmu County, Shaanxi Province, which is the largest semi-
 95 96 97 98 99 100 101 	The test materials primarily included corn stover char, semi-coke, and honeycomb briquettes molded from different blends of these two fuels. Corn stover char was produced using a pilot-scale rotary kiln at a pyrolysis temperature of 600 °C and a residence time of 30 min (Cong et al., 2017). Semi-coke was obtained directly from the market; it was produced by low-temperature carbonization of highly volatile bituminous coal from Shenmu County, Shaanxi Province, which is the largest semi- coke production base in China. Blends of corn stover char and semi-coke for the
 95 96 97 98 99 100 101 102 	The test materials primarily included corn stover char, semi-coke, and honeycomb briquettes molded from different blends of these two fuels. Corn stover char was produced using a pilot-scale rotary kiln at a pyrolysis temperature of 600 °C and a residence time of 30 min (Cong et al., 2017). Semi-coke was obtained directly from the market; it was produced by low-temperature carbonization of highly volatile bituminous coal from Shenmu County, Shaanxi Province, which is the largest semi- coke production base in China. Blends of corn stover char and semi-coke for the combustion characteristics test were marked with BC×× (Table 1). Based on the
 95 96 97 98 99 100 101 102 103 	The test materials primarily included corn stover char, semi-coke, and honeycomb briquettes molded from different blends of these two fuels. Corn stover char was produced using a pilot-scale rotary kiln at a pyrolysis temperature of 600 °C and a residence time of 30 min (Cong et al., 2017). Semi-coke was obtained directly from the market; it was produced by low-temperature carbonization of highly volatile bituminous coal from Shenmu County, Shaanxi Province, which is the largest semi- coke production base in China. Blends of corn stover char and semi-coke for the combustion characteristics test were marked with BC×× (Table 1). Based on the results of the co-combustion characteristics analysis, the ratios of corn stover char to

105	emission study, and the blends were molded into honeycomb briquettes with a
106	pressure of 21kN; meanwhile, honeycomb briquettes molded from semi-coke alone
107	were also used for comparative analysis. The honeycomb briquettes were marked with
108	Briq×× (Table 1). Finally, 6 % kaolin and 1.5 % glutinous rice flour (by mass) were
109	added to the main ingredients to improve the densification performance when the
110	honeycomb briquettes were molded.
111	Table 1. Summary of abbreviations used for the various mixtures and honeycomb

- 112 briquettes

Abbreviations	BS28	BS46	BS64	BS82	BriqCK	Briq28	Briq46
Corn straw char: semi-coke (by mass)	2:8	4:6	6:4	8:2	0:10	2:8	4:6

114	Before compression molding, the raw materials were milled through a 4 mm
115	mesh. Table 2 presents the characteristics of the raw materials. Heating values were
116	measured using a bomb calorimeter (LECO AC-300) following the adiabatic method
117	according to the China national standard (GB T 213-2008). The ultimate analysis
118	(carbon, hydrogen, nitrogen, and sulfur) was determined using a Vario ELIII
119	Elemental Analyzer according to ASTM 5373 and ASTM 4239. The metal element
120	contents were determined by inductively coupled plasma mass spectrometry (Thermo
121	Fisher Scientific) according to AOAC Official Method 975.03.
122	
123	Table 2. Characteristics of the raw materials

Materi	al	Corn stover char	Semi-coke
Particle size	e [mm]	≪4	≪4
Bulk density ^a	[kg/m ³]	264.79	750.28
LHV ^b [M	J/kg]	22.53	23.32
Proximate analysis [wt % ad]	Moisture	2.78	10.28
	Volatile	10.08	13.97
	Ash	31.81	19.89
	Fixed carbon	55.33	55.86
Ultimate analysis [wt % daf]	С	65.86	70.04
	Н	2.19	0.46
	Oc	30.45	28.60
	Ν	1.46	0.62
	S	0.04	0.28
Metal elements [mg/g]	Na	1.35	0.23
	К	35.23	0.12
	Ca	23.02	0.48
	Mg	11.46	0.02
	Al	2.32	0.02
	Si	0.11	0.01

124 ad: air-dry basis; daf: dry and ash-free basis

¹²⁵ ^aTested according to the methods of the dust character test (the China national

- 126 standard GB/T16913-2008)
- ¹²⁷ ^bLHV: lower heating value
- ¹²⁸ ^cCalculated by the difference
- 129 2.2 Experimental facility
- 130 An NF9C household heating stove (Laowan Biomass Technology Co., Ltd.,
- 131 China) was used in this study; raw coal briquettes are frequently used to power this
- 132 type of stove in rural areas of northern China. The stove had a hearth height of 650
- 133 mm, an outer length × width of 480×480 mm, and an inner diameter of 230 mm (Fig.
- 134 1). It had an enclosed combustion chamber, circulating water system, and an air inlet
- 135 with a diameter of 60 mm near the stove bottom. The air inlet was set up with open
- ratios of 0 %, 40 %, 70 %, and 100 % during various experiments to examine
- 137 emissions. Special honeycomb briquettes with a height of 100 mm, an outer diameter
- 138 of 220 mm, and 19 holes with a diameter of 26 mm were used in this study.

Fig. 1. Testing system based on a household heating stove from rural China using the
special honeycomb briquettes.

142

143 2.3 Analytical methods

144	In this study, a thermogravimetric analyzer (STA409PC) manufactured by
145	NETZSCH was used to analyze the combustion characteristics, and the test results
146	were smoothed using Proteus 5.3 software. The reactor had a diameter of 60 mm, and
147	the reaction atmosphere was canned air. The surface of the crucible (6 mm inner
148	diameter) was uniformly coated with 5–10 mg samples and then covered with a
149	platinum cap provided by NETZSCH. The initial temperature of the test was set at
150	30 °C; it was raised to 930 °C at a heating rate of 10 °C/min. The air flow rate was
151	100 mL/min. These settings were similar to those used in previous related studies

152 (Niu et al., 2017; Sarkar et al., 2014).

153	Total suspended particles (TSP) were collected using an electrical low-pressure
154	impactor (Dekati ELPI+) manufactured by DEKATI Ltd., which can collect particles
155	from 6 nm to about 10 μ m in 14 size fractions. The mass size distributions and the
156	number size distributions of the TSP were estimated using ELPI software V12.0. To
157	ensure that the collected particulate matter was kept below saturation, the flue gas was
158	diluted 64 times using two Dekati diluters.
159	A flue gas analyzer (ECOM-J2KN) manufactured by RBR was used to test the
160	NO_X , SO_2 , CO , and CO_2 emissions, and the flue gas was sampled three times, once
161	every 4 minutes. The results were converted from ppm to mg/Nm ³ .
162	Combustion characteristics were evaluated using several combustion parameters
163	(e.g., ignition temperature, burnout temperature, burnout characteristics, and
164	integrated combustion characteristics), as previously described (Moon et al., 2013).
165	The burnout index (C_b) (10 ⁻⁴ /min) was used to characterize the burnout characteristics
166	of the sample; large values indicated a greater burnout performance.
167	$C_b = \frac{f_1 \cdot f_2}{t_0},\tag{1}$
168	where f_1 (%) is the initial burnout rate, which characterizes the loss rate of fuel weight
169	on the ignition point of the thermogravimetry (TG) curve (a large value represents
170	greater flammability of the fuel); f_2 (%) is the late burnout rate; and t_0 (min) is the
171	burnout time, which represents the time from the initiation of combustion mass loss to
172	burnout (with a mass loss rate of 98 %).

combustion index (S_N) (10⁻¹² K⁻³·min⁻²); larger values indicated a greater burning 174175performance of the sample. $S_N = \frac{(\mathrm{d}w/\mathrm{d}t)_{max} \cdot (\mathrm{d}w/\mathrm{d}t)_{mean}}{t_i^2 t_f},$ (2) 176where $(dw/dt)_{max}$ (%/min) is the maximum burn rate, $(dw/dt)_{mean}$ (%/min) is the 177average burn rate, t_i (K) is the ignition temperature, and t_b (K) is the burnout 178temperature. 179 The China national standard GB 18484-2001 was used to calculate the CE 180 (combustion efficiency; %) based on the concentrations of CO and CO₂. 181 $CE = \frac{C_{CO2}}{C_{CO2} + C_{CO2}} \times 100 \%,$ 182 (3) where C_{CO2} and C_{CO} are the test concentrations of CO_2 and CO in the flue gas (%), 183 respectively. 184 3. Results and discussion 1853.1 Co-combustion characteristics 186 3.1.1 Combustion characteristic curves of corn stover char and semi-coke 187 188 The thermogravimetry (TG), differential thermogravimetry (DTG), and differential scanning calorimetry (DSC) curves of the semi-coke and corn stover char 189 were tested. As shown in Fig. 2, the weight loss and exothermic processes of the two 190 191 fuels were clearly different. When the samples were heated, water evaporated, which was accompanied by devolatilization, volatile flaming, and fixed carbon firing (Zhao 192 et al., 2014). Before the heating temperature reached 100 °C, the semi-coke 193

The integrated combustion characteristics of the sample were described by the

194 experienced a high reduction in weight owing to the loss of its relatively high

195 moisture content (Table 1). Corn stover char exhibited a more intense rate of weight

196 loss during the second stage; this occurred at a relatively lower temperature than that

197 for semi-coke.

The char exhibited a faster rate of weight loss and a narrower exothermic duration. The combustion performance of corn stover char was better than that of semi-coke. The burnout characteristic index and the integrated combustion index of the char were 100.17×10^{-4} /min and 35.73×10^{-12} K⁻³·min⁻², respectively, while the two indexes of the semi-coke were 48.28×10^{-4} /min and 5.44×10^{-12} K⁻³·min⁻², respectively.

204

205

(a)

- Fig. 2. Combustion characteristic curves (The thermogravimetry (TG), differential
- 209 thermogravimetry (DTG), and differential scanning calorimetry (DSC) curves) of
- 210 corn stover char (a) and semi-coke (b).
- 211 3.1.2 Co-combustion curves and their interaction
- 212 The theoretical thermogravimetry (TG_{cal}) curves, theoretical differential
- 213 thermogravimetry (DTG_{cal}) curves, and theoretical differential scanning calorimetry
- 214 (DSC_{cal}) curves were calculated using the proportional superposition method based on
- the ratio of corn stover char to semi-coke and test results presented in Fig. 2 (Xing et
- al., 2019), and were compared with the test-derived curves (TG_{exp}, DTG_{exp}, and

218

219

(a)

- 227 combustion characteristic curves (thermogravimetry (TG), differential
- 228 thermogravimetry (DTG), and differential scanning calorimetry (DSC) curves) of

229 blends BS28 (a), BS46 (b), BS64 (c), and BS82 (d).

230	All test-derived TG curves were smoother than the theoretical TG curves, thereby
231	indicating that there was an interaction between the two fuels during their co-firing.
232	Furthermore, the test-derived TG_{exp} curve of BS28 shifted distinctly to the left of the
233	TG _{cal} curve, and this phenomenon was also reflected in the DSC and DTG curves.
234	The peaks of the DSC_{exp} and DTG_{exp} curves were distinctly larger than those of the
235	DSC_{cal} and DTG_{cal} curves for BS28. As the proportion of corn stover char increased,
236	the extent of the left shift of the curve decreased. Consequently, the TG_{exp} curves of
237	BS46 and BS64 were similar to the TG_{cal} curves. By contrast, the TG_{exp} curve of
238	BS82 showed a distinct shift to the right, and this phenomenon was also reflected in
239	the DSC and DTG curves. The peaks of the DSC_{exp} and DTG_{exp} curves were smaller
240	than those of the DSC_{cal} and DTG_{cal} curves for BS82, respectively.
241	According to the above analysis, it was apparent that when the proportion of char
242	was less than 40 % of the total, the combustion performance of the semi-coke
243	improved. However, a small amount of semi-coke added to char (20 % in the test)
244	resulted in a strong inhibition of char combustion. This might have been due to the
245	fact that some AAEMs (e.g., potassium, sodium, calcium, and magnesium) in the
246	straw char weakened the polymer chain and catalyzed the combustion of semi-coke
247	(Mourant et al., 2011; Peng et al., 2015), while a small amount of semi-coke hindered
248	the diffusion of the flame during char combustion, thereby exhibiting a distinct flame
249	retardant effect (Sarkar et al., 2014).

250 3.1.3 Co-combustion characteristic indexes

251	Table 3 shows the combustion characteristic indexes of different samples. The
252	ignition temperature decreased from 429.1 °C (BS28) to 404.9 °C (BS82) as the
253	proportion of char increased, which was consistent with the theoretical trend.
254	However, the burnout characteristic indexes decreased as the proportion of char
255	increased, and ranged from 54.78×10^{-4} /min for BS28 to 48.49×10^{-4} /min for BS82.
256	The maximum and average reaction rates also showed similar trends. In addition, the
257	integrated combustion indexes of BS28, BS46, BS64, and BS82 were 15.08, 13.53,
258	12.27, and 10.31×10^{-12} K ⁻³ ·min ⁻² , respectively, which indicated a contradictory
259	tendency when compared with the theoretical values. The quantitative study also
260	demonstrated that a small amount of char addition (≤ 40 %) was more effective at
261	improving the combustion characteristics of semi-coke than the addition of a large
262	amount of char (\geq 60 %), even though the combustion characteristics of corn stover
263	char were distinctly better than those of semi-coke.

Table 3. Combustion indexes of the samples

Sample	Ignition temperature (°C)	Burnout temperature (°C)	Burnout characteristics (<i>C</i> _b) (10 ⁻⁴ /min)	Maximum reaction rate (dw/dt) _{max} (%/min)	Average reaction rate (dw/dt)mean (%/min)	Integrated combustion characteristics (<i>SN</i>) (10 ⁻¹² K ⁻³ ·min ⁻²)
Semi-coke	459.1	693.1	48.28	-3.27	-2.43	5.44
BS28	429.1	601.4	54.78	-4.42	-3.78	15.08
BS46	414.0	593.8	50.00	-3.97	-3.47	13.53
BS64	410.8	595.5	52.76	-3.79	-3.25	12.27
BS82	404.9	603.1	48.49	-3.48	-2.93	10.31
Biochar	401.6	518.1	100.17	-6.35	-4.70	35.73

266 3.2 Air pollution emissions of honeycomb briquettes

267 3.2.1 Conventional gaseous pollutant emissions

268 NO_X and SO₂ emissions are generally regarded as the main conventional gaseous pollutants. As the opening ratio of the air inlet increased, the NO_X concentrations of 269 all briquettes increased (Fig. 4a). The NO_X concentrations of BriqCK, Briq28, and 270 Briq46 were 63.1–149.7, 54.3–175.4, and 57.7–168.4 mg/Nm³, respectively, as the 271 272 opening ratio increased from 0 % to 100 %. This trend could be explained as follows. First, at temperatures below 1300 °C, only fuel-NO_X was expected (De Soete, 1990; 273 Werther, 2000) and the correlation between fuel nitrogen and NO_X emissions was 274 275 significant (Roy, 2012). The nitrogen content in corn stover char was more than 276 double that found in semi-coke. With the increasing proportion of corn stover char, the fuel nitrogen content of the honeycomb briquettes increased, thereby causing 277 278 increased NO_X concentrations (Jin et al., 2016). The NO_X emissions from biomass 279 may be lower or higher than those from coal owing to the fact that the nitrogen content of different biomasses varies widely (Ren et al., 2017). Second, the stove 280 281 temperature increased with the increasing opening ratio of the air inlet, and the higher flame temperature resulted in more NO_X being generated (Courtemanche and 282 Levendis, 1998). However, the NO_X concentrations for the new fuels were always 283 lower than the limiting value of 200 mg/Nm³ of the China national standard (GB 284 2014-4365) under all experimental conditions. 285 The SO₂ concentrations of BriqCK, Briq28, and Briq46 under different 286

287	experimental conditions were 24.9–26.3, 9.5–16.7, and 5.2–15.4 mg/Nm ³ ,
288	respectively (Fig. 4b). Overall, the SO ₂ emissions were highest from BriqCK and
289	lowest from Briq46. With the increasing proportion of corn stover char, the SO ₂
290	concentration decreased. The sulfur content in the char was approximately 15 % of
291	that in the semi-coke. The SO ₂ emissions varied as a function of fuel-bound sulfur,
292	and the AAEMs in corn stover char were potent absorbers of SO_2 (Tarelho et al.,
293	2005; Werther, 2000; Zhang et al., 2019). The SO ₂ emissions of Briq28 and Briq46
294	exhibited a weak downward trend as the opening ratio of the air inlet increased; the
295	higher flame temperature enhanced the SO ₂ capture ability of the AAEMs (Zhang et
296	al., 2019). For BriqCK, as the opening ratio of the air inlet increased, the SO_2
297	concentration tended to slightly increase. The relatively higher flame temperature
298	caused by the larger air inlet opening ratio resulted in a higher conversion rate of fuel
299	sulfur to gaseous SO ₂ , as has been previously observed (Zhang et al., 2016; Zheng et
300	al., 2013).

304

Fig. 4. Concentrations of NO_X (a) and SO_2 (b) and the combustion efficiencies (c) for different honeycomb briquettes.

et al., 2015; Toscano et al., 2014). 315

3.2.2 Total suspended particles emissions 316

317	Emissions of total suspended particles (TSP), as well as their mass size
318	concentrations and number size concentrations versus different honeycomb briquettes
319	and different operating conditions (the air inlet open ratios of 0 %, 40 %, 70 %, and
320	100 %, respectively), are shown in Fig. 5. The TSP concentrations were 13.45–18.96
321	mg/Nm ³ for BriqCK, and these increased linearly with the increasing opening ratio of
322	the air inlet. This might have been related to the rate of burning of the honeycomb
323	briquettes and airflow speed, as it has been previously revealed that the $PM_{2.5}$
324	concentration increases under intense flaming conditions for clean-burning stoves
325	(Wang et al., 2016). The TSP concentrations of Briq28 and Briq46 were 8.82–11.80
326	mg/Nm ³ and 8.71–11.63 mg/Nm ³ , respectively. As a whole, with the addition of char,
327	the TSP concentrations decreased; this might have been caused by the lower TSP
328	emissions of the char compared with those of the semi-coke and the presence of
329	aluminosilicates in the semi-coke, which were responsible for capturing gaseous
330	species from the char (Wang et al., 2019).
331	All briquette samples generally presented a similar distribution of mass and
332	number concentrations at various particle sizes as a function of experimental

conditions, and all the peaks of the number size concentrations occurred at <0.156 333

 μ m. PM₁₀ (<10 μ m) mainly consisted of PM_{2.5} (<2.5 μ m) for all samples, thereby 334

representing more than 99 % of the total number of particles. A similar distribution 335

336	was also previously observed by another researcher using wood pellets (Schmidt et
337	al., 2018). The peak values of Briq28 and Briq46 were smaller than that for BriqCK.
338	Taking the operation conditions with an air inlet opening ratio of 100 % as an
339	example, the particle numbers of Briq28 at <0.156 μm and <2.47 μm decreased by
340	72.4 % and 73.1 %, respectively, compared with those of BriqCK, while those of
341	Briq46 decreased by 80.0 % and 80.3 %, respectively. The addition of corn stover
342	char reduced the emissions of fine particles (PM _{2.5}), which are known to adversely
343	affect human health. The mass size concentration data revealed that most particles
344	were larger than 1.63 μ m; when the air inlet opening ratio was 100 %, these particles
345	accounted for 95.89 %, 96.51 %, and 96.30 % of the total mass for BriqCK, Briq28,
346	and Briq46, respectively. The emission characteristics were distinctly better than
347	those of fluid-bed burners owing to the fact that the heating stove was a static
348	combustion burner without an air-blast system and the fuels were briquetted (Wang et
349	al., 2016).

Fig. 5. Total suspended particles (TSP), number size, and mass size distribution of BriqCK (a), Briq28 (b), and Briq46 (c) under different operation conditions (the air inlet open ratios of 0 %, 40 %, 70 %, and 100 %, respectively).

362 3.3 Value-chain model design and benefit evaluation

357

358

363 To promote the new heating fuels, which displayed favourable combustion and emission performance, a typical value-chain model that was mainly composed of 364 straw slow pyrolysis, co-densification of char and semi-coke, and utilization of the 365 366 heating fuels, was designed (Fig. 6). First, crop straws were converted to char, 367 pyrolytic gas, and by-products, e.g., tar and a vinegar-like fraction, using pyrolysis poly-generation technology. Most of the pyrolytic gas was directly burned in a gas 368 369 burner to produce hot water or hot air for co-densification of the chars and semi-coke, and the surplus was purified and delivered to residents as a clean fuel for cooking or 370 371 washing. Most of the chars were blended with semi-coke and molded into honeycomb 372 briquettes, which were mainly used for heating via household stoves or boilers. These household stoves were widely used in traditional villages, and the boilers were 373 suitable for new communities with modern facilities and high population densities in 374

- rural China. The remaining fraction of the chars could be used locally as a fertilizer to
- improve soil structure and fertility. The value-chain model was recyclable, highly

377 efficient, and clean.

380 Fig. 6. Value-chain model based on honeycomb briquette and straw slow pyrolysis. 381 The benefits evaluation in this study was based on a demonstration project using the above value-chain model in Tangshan City, Hebei Province, which went into 382 operation in 2017. This plant was mainly comprised of an internal heating straw 383 pyrolysis production line, pyrolysis gas purification system, honeycomb briquette 384 molding production line, gas burner for hot water or hot air, and two 500 m³ gas 385 storage tanks. A gas pipeline was laid to a nearby village of about 140 households. 386 387 The honeycomb briquette molding production line ran for several years before 2017 388 mainly using semi-coke or anthracite as raw materials. In order to add approximately 15-20 % straw char to the honeycomb briquettes of 389

390	semi-coke, the new investment and running costs for producing straw char are shown
391	in Table 4. The new investment costs were approximately \$341,000 USD, and the
392	running costs and income per year were \$220,200 USD and \$67,100 USD,
393	respectively. The utilization amount of crop-straw was about 4,200 t/y; thus,
394	approximately 1,260 t of straw char was produced annually. Most pyrolytic gas was
395	directly burned in a gas burner to produce hot water or hot air, and only about 110,000
396	m ³ of purified gas was piped to residences for cooking. When the equipment
397	depreciation period was 10 y, the production cost of straw char was \$134 USD/t, and
398	the cost would decrease to \$109 USD/t excluding the equipment depreciation costs.
399	The market prices of semi-coke are about \$121–130 USD/t; therefore, if the new
400	investment cost of \$341,000 USD or a subsidy of \$25 USD/t of straw char were
401	supported by national public finance, then the project would be profitable and run
402	sustainably. The project could increase the income of local farmers by approximately
403	\$130,200 USD/y through the sale of crop-straws. Complete utilization of the straw
404	could be achieved, and the rural energy structure and environment would be improved
405	across the project's region. Thus, the social benefits of the project are considerable.
406	
407	Table 4. Estimation of project investment and running costs for straw char production

Items	Details	Income and expenditure	Remarks
New investment	Straw pyrolysis production line	63,000	The gas pipeline was laid to a nearby
(USD)	Gas purification system Gas boiler for hot water	12,000 11,000	village with about 140 households, and the costs of auxiliary equipment (such as

		Gas storage	37,000	stoves) were borne by the residents
		Gas pipeline	210,000	
_		Civil engineering	8,000	
		Materials	130,200	
Running co	ost	Labor	12,000	
(USD/t)		Electricity	63,000	
		Others	15,000	
		Fuel gas	5,100	Hot water and hot air were used in the
Income (USD/y)				plant, which allowed cost saving
		Hot water and hot air	62,000	compared with the original briquette
_				production system
Production cos		af stroug abor (USD/t)	109	Excluding equipment depreciation costs
		of straw char (USD/t)	134	Including equipment depreciation costs

409 Note: The equipment depreciation period is 10 y. The sale price of gas is approximately \$0.05 USD/m³.

411 **4. Conclusions**

412 The co-combustion characteristics of semi-coke and corn stover char combined in different proportions were tested and analyzed in this study. The results showed 413 414 that adding 20 % corn stover char (BS28) effectively improved the combustion performance of semi-coke, and this proportion was the ideal mixing ratio. Thus, the 415 integrated combustion characteristics of the blend increased from 5.44×10⁻¹² K⁻³·min⁻² 416 to $15.08 \times 10^{-12} \text{ K}^{-3} \cdot \text{min}^{-2}$ for semi-coke. 417 A honeycomb briquette was developed from a combination of semi-coke and 418 corn stover char for use as a heating fuel in rural China. The emission test results 419 420 revealed that SO₂ and PM_{2.5} emissions decreased with the addition of corn stover char; however, NO_X emissions increased and the CE decreased slightly with corn 421 stover char addition. The SO₂ concentrations of BriqCK, Briq28, and Briq46 under 422 different experimental conditions were 24.9-26.3, 9.5-16.7, and 5.2-15.4 mg/Nm³, 423

respectively, and the NO_X concentrations were 63.1–149.7, 54.3–175.4, and 57.7–

425 168.4 mg/Nm³, respectively.

426	A value-chain model for the new heating fuel was developed, and benefits based
427	on a demonstration project in Tangshan City were analyzed. If the new investment
428	cost of \$341,000 USD or a subsidy of \$25 US/t of straw char were borne by national
429	public finance, then the project would be profitable and run sustainably. This study
430	provided an important technical basis for the development and application of new
431	heating fuels in China.
432	
433	Acknowledgments
434	The study benefitted from the technical support provided by the Key Laboratory
435	of Energy Resource Utilization from Agriculture Residue of the Ministry of
436	Agriculture and Rural Affairs, China. The authors would like to thank the
437	laboratory' s staff for their support in the successful completion of this work.
438	Funding: This work was supported by the China Agriculture Research System [grant
439	number: CARS-02].

440

441 **References**

442	Barbanera, M., Cotana, F., Di Matteo, U., 2018. Co-combustion performance and kinetic
443	study of solid digestate with gasification biochar. Renew. Energy. 121, 597-605.

Chen, X., 2016. Economic potential of biomass supply from crop residues in China. Appl.
Energy. 166, 141–149. <u>https://doi.org/10.1016/j.apenergy.2016.01.034</u>.

- 446 Cong, H., Yao, Z., Zhao, L., Jia, J., Lan, S., 2017. Development of carbon, gas and oil
- 447 polygeneration pilot system based on biomass continuous pyrolysis. Trans. Chin. Soc. Agric.
- 448 Eng. 33, 173–179.
- 449 Courtemanche, B., Levendis, Y., 1998. A laboratory study on the NO, NO₂, SO₂, CO and CO₂
- 450 emissions from the combustion of pulverized coal, municipal waste plastics and tires. Fuel.
- 451 **77**, 183–196.
- 452 De Soete, G.G., 1991. Heterogeneous N2O and NO formation from bound nitrogen atoms
- 453 during coal char combustion. Symp. Combust. Proceedings of the 23rd International
- 454 Symposium on Combustion. The Combustion Institute. https://doi.org/10.1016/S0082-
- 455 0784(06)80388-7
- 456 European Biochar Foundation (EBC), 2018. European Biochar Certificate Guidelines for a
- 457 sustainable production of biochar. http://www.european-biochar.org/en/download (accessed
 458 30 August 2018).
- 459 Gómez, N., Rosas, J.G., Cara, J., Martínez, O., Alburquerque, J.A., Sánchez, M.E., 2016.
- 460 Slow pyrolysis of relevant biomasses in the Mediterranean Basin. Part 1. Effect of
- temperature on process performance on a pilot scale. J. Clean. Prod. 120, 181–190.
- Hu, Q., Shao, J., Yang, H., Yao, D., Wang, X., Chen, H., 2015. Effects of binders on the
- 463 properties of bio-char pellets. Appl. Energy. 157, 508–516.
- 464 https://doi.org/10.1016/j.apenergy.2015.05.019.
- Jie, T., Haiyan, N., Yongming, H., Zhenxing, S., Qiyuan, W., Xin, L., 2018. Primary PM_{2.5}
 and trace gas emissions from residential coal combustion: Assessing semi-coke briquette for
- 467 emission reduction in the Beijing-Tianjin-Hebei region, China. Atmos. Environ. 191, 378–
 468 386.
- Jin, Y., Li, Y., Liu, F., 2016. Combustion effects and emission characteristics of SO₂, CO,
- 470 NO_X and heavy metals during co-combustion of coal and dewatered sludge. Front. Environ.
- 471 Sci. Eng. 10, 201–210.
- 472 Klinghoffer, N., Castaldi, M.J., Nzihou, A., 2011. Beneficial Use of ash and char from
- biomass gasification. 14 Proceedings of the 19th Annual North American Waste-to-Energy
 Conference. https://doi.org/10.1115/nawtec19-5421
- 475 Kua, H.W., Pedapati, C., Lee, R.V., Kawi, S., 2019. Effect of indoor contamination on carbon
- 476 dioxide adsorption of wood-based biochar Lessons for direct air capture. J. Clean. Prod.
- 477 210, 860–871.

- 478 Li, H.J., Zhi, S.W., Li, L.J., Lu, H.E., Yue, M.A., Yuan, L.S., 2016. Comparison of emission
- 479 from lantan (semi-coke) instead of raw coal for clean and efficient combustion. Coal Technol.
- 480 35, 287–289. https://doi:1.13301/j.cnki.ct.2016.08.118.
- 481 Li, L., Zou, D., Xiao, Z., Zeng, X., Zhang, L., Jiang, L., Wang, A., Ge, D., Zhang, G., Liu, F.,
- 482 2019. Biochar as a sorbent for emerging contaminants enables improvements in waste
- 483 management and sustainable resource use. J. Clean. Prod. 210, 1324–1342.
- 484 <u>https://doi.org/10.1016/j.jclepro.2018.11.087.</u>
- 485 Li, Q., Li, X., Jiang, J., Duan, L., Ge, S., Zhang, Q., Deng, J., Wang, S., Hao, J., 2016. Semi-
- 486 coke briquettes: Towards reducing emissions of primary PM_{2.5}, particulate carbon, and carbon
- 487 monoxide from household coal combustion in China. Sci. Rep. 1, 19306
- 488 https://doi.org/10.1038/srep19306.
- 489 Liu, X., Chen, M.Q., Wei, Y.H., 2015. Kinetics based on two-stage scheme for co-
- 490 combustion of herbaceous biomass and bituminous coal. Fuel. 143, 577–585.
- 491 Ministry of Agriculture of the People's Republic of China (MOA), 2016. China's main crop
- 492 straw comprehensive utilization rate exceeds 80 % (in Chinese).
- 493 <u>http://jiuban.moa.gov.cn/zwllm/zwdt/201605/t20160526_5151375.htm</u> (accessed 26 May
- 494 2016).
- 495 Ministry of Environmental Protection of the People's Republic of China (MEP), 2016.
- 496 Pollution comprehensive management for residential coal combustion (in Chinese).
- 497 <u>http://www.mep.gov.cn/gkml/hbb/bgg/201610/t20161031_366528.htm</u> (accessed 21 May
 498 2016).
- 499 Moon, C., Sung, Y., Ahn, S., Kim, T., Choi, G., Kim, D., 2013. Effect of blending ratio on
- combustion performance in blends of biomass and coals of different ranks. Exp. Therm. Fluid
 Sci. 47, 232–240.
- 502 Mourant, D., Wang, Z., He, M., Wang, X.S., Garcia-Perez, M., Ling, K., Li, C.Z., 2011.
- 503 Mallee wood fast pyrolysis: Effects of alkali and alkaline earth metallic species on the yield 504 and composition of bio-oil. Fuel. 90, 2915–2922.
- 505 National Energy Administration (NEA), 2016. Notice on printing and distributing the 13th
- 506 Five-Year Plan for Energy Development (in Chinese).
- 507 <u>http://www.ndrc.gov.cn/zcfb/zcfbtz/201701/t20170117_835278.html</u> (accessed 26 December
 508 2016).
- 509 National Energy Administration (NEA), 2017. Notice on printing and distributing guidance
- 510 on promoting biomass energy heating development (in Chinese).
- 511 <u>http://zfxxgk.nea.gov.cn/auto87/201712/t20171228_3085.htm</u> (accessed 06 December 2017).

- 512 Niu, S., Chen, M., Li, Y., Song, J., 2017. Co-combustion characteristics of municipal sewage
- 513 sludge and bituminous coal. J. Therm. Anal. Calorim. 1, 1–14.
- 514 Peng, X.W., Ma, X.Q., Xu, Z.B., 2015. Thermogravimetric analysis of co-combustion
- 515 between microalgae and textile dyeing sludge. Bioresour. Technol. 180, 288–295.
- 516 Phusrimuang, J., Wongwuttanasatian, T., 2016. Improvements on thermal efficiency of a
- 517 biomass stove for a steaming process in Thailand. Appl. Therm. Eng. 98, 196–202.
- 518 Ren, X., Sun, R., Meng, X., Vorobiev, N., Schiemann, M., Levendis, Y.A., 2017. Carbon,
- sulfur and nitrogen oxide emissions from combustion of pulverized raw and torrefied
- 520 biomass. Fuel. 188, 310–323. https://doi.org/10.1016/j.fuel.2016.10.017.
- 521 Roy, M.M., Corscadden, K.W., 2012. An experimental study of combustion and emissions of
- 522 biomass briquettes in a domestic wood stove. Appl. Energy. 99, 206–212.
- 523 https://doi.org/10.1016/j.apenergy.2012.05.003.
- 524 Sarkar, P., Sahu, S.G., Mukherjee, A., Kumar, M., Adak, A.K., Chakraborty, N., Biswas, S.,
- 525 2014. Co-combustion studies for potential application of sawdust or its low temperature char
- 526 as co-fuel with coal. Appl. Therm. Eng. 63, 616–623.
- 527 Schmidt, G., Trouvé, G., Leyssens, G., Schönnenbeck, C., Genevray, P., Cazier, F., Dewaele,
- 528 D., Vandenbilcke, C., Faivre, E., Denance, Y., Le Dreff-Lorimier, C., 2018. Wood washing:
- 529 Influence on gaseous and particulate emissions during wood combustion in a domestic pellet
- 530 stove. Fuel Process. Technol. 120, 15–27. https://doi.org/10.1016/j.fuproc.2018.02.020.
- 531 Sun, J., Peng, H., Chen, J., Wang, X., Wei, M., Li, W., Yang, L., Zhang, Q., Wang, W.,
- 532 Mellouki, A., 2016. An estimation of CO₂ emission via agricultural crop residue open field
- 533 burning in China from 1996 to 2013. J. Clean. Prod. 112, 2625–2631.
- 534 https://doi.org/10.1016/j.jclepro.2015.09.112.
- 535 Tarelho, L.A.C., Matos, M.A.A., Pereira, F.J.M.A., 2005. The influence of operational
- parameters on SO₂ removal by limestone during fluidized bed coal combustion. Fuel Process.
 Technol. 86, 1385, 1401
- 537 Technol. 86, 1385–1401.
- 538 The State Council the People's Republic of China (SCP), 2017. Notice on printing winter
- heating plan for the northern region (2017–2021) (in Chinese).
- 540 <u>http://www.gov.cn/xinwen/2017-12/20/content_5248855.htm</u> (accessed 20 December 2017).
- 541 Toscano, G., Duca, D., Amato, A., Pizzi, A., 2014. Emission from realistic utilization of
- 542 wood pellet stove. Energy. 68, 466–650. <u>https://doi.org/10.1016/j.energy.2014.01.108.</u>
- 543 Wang, J., Lou, H.H., Yang, F., Cheng, F., 2016. Development and performance evaluation of
- a clean-burning stove. J. Clean. Prod. 134(Part B), 447–455.

- 545 Wang, W., Wena, C., Li, C., Wang, M., Li, X., Zhou, Y., Gong, X., 2019. Emission reduction
- of particulate matter from the combustion of biochar via thermal pre-treatment of torrefaction,
- slow pyrolysis or hydrothermal carbonization and its co-combustion with pulverized coal.
- 548 Fuel. 240, 278–288.
- Werther, J., Saenger, M., Hartge, E.U., Ogada, T., Siagi, Z., 2000. Combustion of agricultural
 residues. Prog. Energy Combust. Sci. 26, 1–27.
- 551 Xing, X., Cheng, Z., Li, Y., Zhu, C., Zhang, X., 2019. Co-combustion characteristics and
- kinetic analyses of rice straw and pulverized coal. Chin. J. Process Eng. 19, 637–643.
- 553 https://doi.org/10.12034/j.issn.1009-606X.218277.
- 554 Yank, A., Ngadi, M., Kok, R., 2016. Physical properties of rice husk and bran briquettes
- under low pressure densification for rural applications. Biomass Bioenergy. 64, 22–30.
- 556 https://doi.org/10.1016/j.biombioe.2015.09.015.
- 557 Zhang, S., Jiang, X., Lv, G., 2019. Co-combustion of Shenmu coal and pickling sludge in a
- pilot scale drop-tube furnace: Pollutants emissions in flue gas and fly ash. Fuel Process.
- 559 Technol. 184, 57–64.
- 560 Zhang, S., Jiang, X., Lv, G., Liu, B., Jin, Y., Yan, J., 2016. SO₂, NO_X, HF, HCl and PCDD/Fs
- emissions during co-combustion of bituminous coal and pickling sludge in a drop tube
 furnace. Fuel. 186, 91–99.
- Zhao, P., Shen, Y., Ge, S., Chen, Z., Yoshikawa, K., 2014. Clean solid biofuel production
 from high moisture content waste biomass employing hydrothermal treatment. Appl. Energy.
 131, 345–367.
- ⁵⁶⁶ Zheng, D., Lu, H., Sun, X., Liu, X., Han, W., Wang, L., 2013. Reaction mechanism of
- reductive decomposition of FGD gypsum with anthracite. Thermochim. Acta. 559, 23–31.
- 568 Declarations of interest: none.
- 569