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ABSTRACT 
 
The problem of efficient, high-resolution 3-D image reconstruction from multi-frequency Electrical 
Impedance Tomography (EIT) data sequences has attracted significant attention from researchers due 
to its practical importance in process analysis of chemical or biomedical engineering. To tackle this 
challenge, we propose in this paper a novel image reconstruction algorithm exploiting the spatial-
frequency correlations of the image series, in order to perform efficient 3-D image reconstructions using 
multi-frequency EIT data. The main contribution of this paper includes the development of an extended 
joint sparsity framework. This combines the structural characters of time-difference conductivity 
distribution and the structural correlations among frequency-difference images. In addition, a dynamic 
3-D structural feature extraction method was developed to iteratively group the voxels with similarities. 
The Alternating Direction Method of Multipliers framework was employed to solve the inversion problem. 
Phantom experiments were conducted to verify the performance of this new method. The results 
suggest that the algorithm proposed is fast, stable and yields superior reconstructions when compared 
with other state-of-the-art algorithms.  
 
Keywords multi-frequency electrical impedance tomography, joint sparsity, 3-D image reconstruction 
 
Industrial Application (Recommended Sector or ‘General’): General.  
 
 

1 INTRODUCTION 
 
Electrical Impedance Tomography (EIT) is a tomographic imaging modality, which can non-intrusively 
reveal conductivity distribution in either 2-D or 3-D sensing regions by injecting currents in such regions 
and measuring induced potentials on boundary electrodes (Malone et al., 2014). In view of its high-
speed, non-radiation and non-intrusive sensing ability, EIT has been investigated extensively in 
industrial process imaging (Dong et al., 2006, Lee et al., 2014) and biomedical imaging (Yin et al., 2018) 
in recent decades. Compared with other tomography modalities, e.g. Computed Tomography (CT), the 
application scope of EIT has been boosted by its high temporal resolution, e.g. ~1000 frames per second 
(Wang et al., 2005), but limited by the low spatial resolution, e.g. ~10% of the sensor diameter (Metherall 
et al., 1996). As an extension of mono-frequency EIT, multi-frequency EIT (mfEIT) (Yang and Jia, 2017b) 
using spectroscopic current injection has emerged to acquire spectral electrical properties of sensing 
objects, which tends to be more attractive. 
 
In mfEIT, the challenge of performing effective 3-D image reconstruction from multi-frequency data 
sequences has raised significant attention because of its practical importance in process analysis of 
chemical or biomedical engineering. In order to address this issue, in this work, we propose a novel 
image reconstruction algorithm by exploiting the spatial-frequency correlations of the image series, 
which enables simultaneous, high-performance 3-D impedance spectroscopic imaging using multi-
frequency data. The key contribution of this paper lies in the development of an extended joint sparsity 
framework to combine the structural characters of time-difference (TD) conductivity variation and 
structural correlations among different frequency-difference (FD) images. Furthermore, a dynamic 3-D 
structural feature extraction method was developed to iteratively group the voxels demonstrating similar 
properties. The Alternating Direction Method of Multipliers (ADMM) framework was employed to solve 
the optimization problem. Phantom experiments were conducted to verify the performance of this new 
method. These results validate that the algorithm proposed is fast, stable and yields superior mfEIT 
reconstructions when compared with other state-of-the-art 3-D EIT image reconstruction algorithms, 
such as the one-step Gauss-Newton (GN) method with Laplacian regularizer (Yang et al., 2014). 
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2 FUNDAMENTAL OF MULTI-FREQUENCY EIT 
 
EIT reconstructs images of conductivity inside the Region of Interest (ROI) based on transfer impedance 
measurements across a number of boundary electrodes (Yang and Jia, 2017a). The relationship 
between local conductivity and voltage distribution is governed by the following Complete Electrode 
Model (CEM) (Cheng et al., 1989, Somersalo et al., 1992) at the quasi-static limit 
 

{
 
 

 
 
 ∇ ∙ (𝜎(𝑥, 𝑦)∇𝑢(𝑥, 𝑦)) = 0,   (𝑥, 𝑦) ∈ Ω

 𝑢 + 𝑧ℓ𝜎
𝜕𝑢

𝜕𝑛
= 𝑈ℓ, (𝑥, 𝑦) ∈ 𝑒ℓ, ℓ = 1,… , ℊ 

 ∫ 𝜎
𝜕𝑢

𝜕𝑛
𝑑𝑆 = 𝐼ℓ

 

𝑒ℓ
, ℓ = 1,… , ℊ

 𝜎
𝜕𝑢

𝜕𝑛
= 0, (𝑥, 𝑦) ∈ ∂Ω \⋃ 𝑒ℓ

ℒ
ℓ=1  

                     (1) 

 

where σ is the local conductivity in ROI, which is a 2-D or 3-D region Ω ⊂ ℝ𝑞 (𝑞 = 2, 3), and u is the 

local electric potential; n is the outward unit norm of the boundary ∂Ω; ℊ denotes the number of sensing 

electrodes and 𝑒ℓ represents the ℓ𝑡ℎ  electrode; 𝑧ℓ is the contact impedance of electrode 𝑒ℓ; 𝑈ℓ and 𝐼ℓ 
denote respectively the electrical potential and current injected on 𝑒ℓ. 
 

Based on CEM, a linearized relation between conductivity variation and the induced changes in voltage 

measurements on boundary electrodes can be derived by assuming a local conductivity perturbation 

Δ𝜎 ∈ ℝ𝑛 in the ROI (Polydorides, 2009), which can be formulated as 

 

Δ𝑉 = 𝐽Δ𝜎                                                       (2) 
 

where Δ𝑉 ∈ ℝ𝑚 , 𝐽 ∈ ℝ𝑚×𝑛  represents respectively the boundary voltage changes induced by the 

conductivity perturbation and the Jacobian matrix indicating the sensitivity distribution of each 

measurement (Polydorides and Lionheart, 2002). Here, m denotes the number of measurements while 

n is number of pixels/voxels in the tomographic image. 

 

As an emerging spectroscopic impedance imaging method, mfEIT applies multi-frequency current 

excitation to resolve frequency-dependent electrical properties of the imaging objects. In such context, 

Eq. (3) can be extended to comprise multi-frequency voltage measurements, which yields 

 

  𝐾 = 𝐽𝑄                                                                               (3) 
 

where 

 

  𝐾 = [Δ𝑉1, ⋯ , Δ𝑉𝑝] ∈ ℝ𝑚×𝑝                                                       (4) 
 

  𝑄 = [Δ𝜎1, ⋯ , Δ𝜎𝑝] ∈ ℝ𝑛×𝑝                                                        (5) 
 

and 𝐾  is the collection of p measurements; Δ𝑉𝑖 ∈ ℝ
𝑚, (𝑖 = 1,… , 𝑝) is the measured voltage change 

vector induced by the ith current frequency component; 𝑄 is a collection of p jointly spare solutions; Δ𝜎𝑖 ∈
ℝ𝑛, (𝑖 = 1,… , 𝑝) represents the conductivity change vector demonstrated under the ith current frequency 
setting. Under a 3-D sensing setup, a critical challenge is to efficiently and simultaneously estimate the 
conductivity under various frequency components, which represents a typical but large-scale inverse 
problem. 
 

3 IMAGE RECONSTRUCTIN BASED ON EXTENDED JOINT SPARSITY 
 
As an effective constraint, group sparsity has been investigated recently in solving EIT image 

reconstruction problem (Yang and Jia, 2017a). It extends the concept of sparsity by exploiting underlying 

structural information of conductivity distribution (Huang and Zhang, 2010). The former work using group 

sparsity in EIT image reconstruction generally deals with the structural characteristics of an individual 

image. Whilst in mfEIT image reconstruction, this problem has been extended with multiple 

measurement vectors and simultaneous reconstruction of images under all frequency components is 
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highly desirable.  

 

In this work, an extended joint sparsity constrained image reconstruction algorithm is developed to fulfill 

this requirement. The basic idea is illustrated in Figure 1. A coarse mesh with 40 layers of voxels along 

the vertical direction is utilized in solving the inverse problem, where each layer is consisted of 812 

voxels in the cylindrical area. For multi-frequency current excitations with frequencies ranging from 𝑓0 to 

𝑓𝑝, where 𝑓0 is the basic frequency or reference frequency, the local structural information of an individual 

image at 𝑓0  is firstly extracted by using TD imaging method (Yang and Jia, 2017b). The structural 

characteristics are represented by grouping voxels with similar conductivity variations. Compared with 

FD imaging, TD imaging can reveal more accurately the structural information due to its ability of 

eliminating the common errors from the sensor, model, etc. Next, the correlation of conductivity variation 

along frequencies are considered by grouping each row of the matrix [Δ𝜎1, ⋯ , Δ𝜎𝑝] (see Figure 1, 

voxel i as an example), by considering the fact that the same voxel in Δ𝜎𝑖 ∈ ℝ
𝑛, (𝑖 = 1,… , 𝑝) always 

tends to show similar conductivity variation trend under multi-frequency scanning. 

 

 
 

Figure 1. Schematic illustration of the idea of extended joint sparsity. 

 

Based on the idea of extended joint sparsity, which not only considers the local structural information of 

an individual image but also takes into account the correlations of voxels under different frequency 

excitations, the mfEIT image reconstruction problem can be formulated as 

 

{
min
𝑄
 ‖𝑄‖𝜔,2,1 ∶= ∑ 𝜔𝑖‖𝑄𝑆𝑖‖2

𝑞
𝑖=1

𝑠. 𝑡.   𝐽𝑄 = 𝐾
                                          (6) 

 

where  ‖∙‖𝜔,2,1  denotes the weighted 𝑙2,1  norm, which has been proved to promote group sparsity 

structure (Huang and Zhang, 2010). 𝜔𝑖 is the weight of the ith voxel group. 𝑆𝑖 (𝑖 = 1,… , 𝑞, 𝑞 ≤ 𝑛) denotes 

the set of voxel indices for the ith voxel group, which is calculated based on the idea of extended joint 

sparsity. This optimization problem can be solved by using the ADMM method following the steps given 

in our former work (Yang and Jia, 2017a), and its primal-based updating scheme has the following form: 

 

{
 
 

 
 
𝑄 ← (𝛼1𝐼 + 𝛼2𝐽

𝑇𝐽)−1(𝛼1𝑍 + 𝛼2𝐽
𝑇𝐾 − ℒ1 + 𝐽

𝑇ℒ2)

𝑍 ← ℱ (𝑄 +
1

𝛼1
ℒ1,

1

𝛼1
𝜔)

ℒ1 ← ℒ1 − ℎ1𝛼1(𝑍 − 𝑄)

ℒ2 ← ℒ2 − ℎ2𝛼2(𝐽𝑄 − 𝐾)

            (7) 

 

where 𝛼1, 𝛼2  are penalty parameters; 𝑍 ∈ ℝ𝑛×𝑝  denotes the auxiliary matrix when applying ADMM; 
ℒ1, ℒ2 ∈ ℝ

𝑛×𝑝 are multipliers. ℱ represents shrinkage operator which definition can be referred to the 

work (Yang and Jia, 2017a). ℎ1, ℎ2 are step lengths when updating the multipliers. Based on (7), the 
problem depicted in (6) could be solved iteratively.  
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4 EXPERIMENT RESULTS AND DISCUSSION 
 
Simultaneous impedance spectroscopic imaging experiment was conducted to verify the algorithm’s 
performance. Figure 2(a) shows the mfEIT system and Visual Tomography 3-D imaging software used 
in the 3-D multi-frequency imaging experiments. Figure 2(b) presents the multi-layer EIT sensor with 16 
electrodes in each layer. The inner diameter of the sensor is 287 mm and the depth of saline is 206 mm. 
The conductivity of saline is 0.07 S  m–1. Note that in this work, only the lower two layers of electrodes 
as illustrated in the figure were utilized to perform 3-D imaging. 
 

      

                                                                (a)                                                                                         (b) 

Figure 2. Picture of the Edinburgh mfEIT system and Visual Tomography Software in (a) and the 3-D EIT sensor in (b). 

 
Figure 3(a) and (b) gives the experiment phantom, where a potato was selected as sensing object since 
it demonstrates explicit conductivity variation over frequency. This conductivity variation is illustrated in 
Figure 3(c) by using Electrochemical Impedance Spectroscopy (EIS) (K'Owino and Sadik, 2005) 
measurement. The EIS measurement result of potato shows an increasing conductivity value over 
frequency. 

            

 
                               (a)                                                         

 

(c)  
 (b)                                                         

 
Figure 3. Experiment phantoms in top view in (a) and side view in (b) and EIS result of the potato in (c). 

 
Three multi-frequency image reconstructions, i.e TD image reconstruction at the basic frequency 20 
kHz, FD image reconstructions using 80kHz-20kHz and 40kHz-20kHz, were performed separately 
based on the one-step GN method firstly. The results in the format of sliced images are shown in Figure 
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4. Note that in these images, layer 1 corresponds to the bottom layer of the sensing region and layer 40 
corresponds to the top layer of the region. In this work, the regularization parameter was set as 0.01.  

 

 
 

(a)                                                         

 
 

(b)                                                         
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(c)                                                         

Figure 4. Multi-frequency 3-D image reconstruction results by using the one-step GN algorithm. (a) TD imaging result at 
20kHz. (b) FD imaging result using 40kHz-20kHz. (c) FD imaging result using 80kHz-20kHz. 

 
Figure 5 presents the simultaneous multi-frequency imaging results based on the proposed method. In 
implementing the algorithm, the maximum iteration number is set as 300 and the stopping tolerance is 
selected as 1e-5. The penalty parameters 𝛼1, 𝛼2 were set as 140 and 14, respectively. In initial guess, 
we assume there is no pixel grouping and problem (6) was solved first. Based on the result, the pixel 
grouping which is related to the structural information and frequency correlation is calculated by using 
the method proposed by the authors (Yang and Jia, 2017a). Thereafter, problem (6) is solved again 
using the updated pixel grouping results. 

            
(a)                                                         
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(b)                                               

 

(c)                                                         

Figure 5. Multi-frequency 3-D image reconstruction results by using the proposed algorithm. (a) TD imaging result at 
20kHz. (b) FD imaging result using 40kHz-20kHz. (c) FD imaging result using 80kHz-20kHz. 

 
The experiment results demonstrated in Figure 4 and Figure 5 suggest that the proposed algorithm: a) 
yields higher image quality with clearer boundary and noise reduction compared with the one-step GN 
method; b) shows better image correlation over frequencies, which is consistent with the common 
knowledge and c) has the ability of simultaneous reconstructing multi-frequency 3-D images. In addition, 
the proposed algorithm requires lower computation cost, i.e. the elapsed time is 5.87s on a PC with 
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MATLAB 2017b, 24GB RAM memory and an Intel Xeon X5650 CPU. Whilst the one-step GN method 
takes 162.98s to calculate one image. 
 

5 CONCLUSION 
 
This work presents a simultaneous, fast 3-D image reconstruction algorithm for mfEIT based on 
extended joint sparsity. The structural prior and spatial-frequency correlations of multi-frequency 3-D 
image series were simultaneously exploited by extending the existing joint sparsity framework, and the 
resulting optimization problem was efficiently solved by employing alternating direction method of 
multipliers. We evaluated the performance of the method using phantom experiment, through the results 
of which we could confirm that the new method yields high-performance 3-D impedance spectroscopic 
images at a low computational cost, suggesting its great potential for future deployment in real-time 3-
D impedance spectroscopic imaging applications. 
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