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Abstract 
Tropical forests are essential for climate change mitigation. As awareness grows over the use of 

credits from reduced emissions from deforestation and forest degradation (REDD+) and other 

nature-based climate solutions within both voluntary and compliance carbon markets, key 

concerns about the long-term durability of the reductions, or their permanence, arise for 

countries, corporations, regulators and policy makers. The paper seeks to analyze an efficient 

means of distribution and application of different policy pathways to slow down and stop 

deforestation and explore the longevity of reductions via modeling. The impact of policies like 

REDD+ most likely will have a time limitation. At some point tropical nations will take more 

responsibility to protect forests. REDD+ should constitute an initial intervention that will help 

tropical nations shock to a zero-deforestation trajectory. 

To establish conditions of permanence, we conduct numerical analyses using a model based on a 

cellular automata algorithm that learns from historical deforestation patterns and other spatial 

features in the Brazilian state of Mato Grosso. The model simulates future deforestation, first 

applying policy to reduce deforestation and then relaxing the policy intervention. 

Our simulations show that policies that are successful in reducing deforestation and related 

emissions from business as usual may have long-term positive consequences on an avoided 

deforestation trajectory even after potential policy reversals. Some accumulated gains could be 

lost but sizable benefits will remain, assuring permanence of emissions reduction during the 
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policy implementation and potentially even after policies are relaxed. Hence, permanence 

depends both on the probability of policy reversals and the risk of emissions rebounding. 

Our results are important for advancing the understanding around the unsettled debate on the 

permanence of avoided emissions. Further, this paper argues that as policies to prevent 

deforestation or reduce emissions otherwise are reversible, permanence should be understood 

and discussed in a probabilistic and time-dependent framework.  
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1. Introduction 

Deforestation accounts for roughly 14% of annual global greenhouse gas emissions (Harris et al., 

2021) and reducing it is essential to any climate change mitigation strategy. Reducing emissions 

from deforestation and forest degradation (REDD+) plus the sustainable management of forests 

and the conservation and enhancement of forest carbon stocks is integral to climate change 

mitigation worldwide.  

A recently published study by Fuss et al. (2021) demonstrated significant macroeconomic value 

of REDD+ at the global level under a policy to stabilize emissions in line with the targets of the 

Paris Agreement. The paper forecasted REDD+ savings “up to 22% of the cost of the global 

climate policy, generating $30.6 to $36.4 trillion in risk-adjusted cost savings.” There are also 

significant ancillary benefits of avoiding deforestation, but all of that could be harvested only if 

the reduction of emissions is permanemt. 

In order to realize REDD+ gains, it is important to understand the driving forces behind 

deforestation. Many studies distinguish between proximate/direct causes and 

underlying/indirect causes of deforestation and forest degradation (e.g., Geist and Lambin, 

2002; Kissinger et al., 2012). Proximate causes are those resulting from human activity, such as 

agricultural expansion or livestock grazing, while underlying causes arise from the social, 

economic and political systems at work.  

Many studies have identified a variety of proximate agents of deforestation and forest 

degradation. These include livestock production (Müller-Hansen et al., 2019), agricultural 

expansion (Acheampong et al., 2019; Barbier, 2004), logging (Bowles et al., 1998; Islam and 

Sato, 2012), mining (Sonter et al., 2017), hydroelectric dams (Chen et al., 2015) and property 

rights (Mendelsohn, 1994).  

Each of these drivers can directly impact deforestation rates. They are easily identifiable and can 

thus be controlled more readily than some of the broader underlying institutional or economic 

drivers of deforestation. For instance, one study found that institutional drivers of deforestation 

in Uganda included “budgetary constraints, corruption, the frequent trading of forests for 

political capital, and the unfettered growth in the number of districts (stretching already tight 

resources)” (Tumusiime et al., 2018). Certain studies have explicitly conceded that while 

institutional factors are important, their actual influence is difficult to quantify (Meyer et al., 

2003).  
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Another important aspect of forest conservation strategy is ensuring that the mitigation 

attributed to avoided deforestation is “permanent.” The emissions reductions from an avoided 

deforestation project may not be “permanent” if those reductions are exposed to certain risk 

factors. Risk factors can be internal or external to the emissions reductions project (Verified 

Carbon Standard, 2011). If these risk factors are realized, the mitigation can be reversed, thereby 

negating the mitigation such that it offers only a temporary benefit. Such a reversal makes the 

emissions reductions associated with the project “non-permanent” as they do not exist in 

perpetuity. Since it is virtually impossible to guarantee the perpetuity of emissions reductions, 

most jurisdictional or project-based crediting programs designate a specific time period for 

which the avoided emissions must be maintained in order to be considered permanent (i.e., 40 

years, 100 years, etc.) What’s more, research has now revealed that some projects have 

overstated their baseline emissions reductions with inflated crediting baselines (West at al., 

2020).  

Internal project risks are inherent to project design and management (Verified Carbon 

Standard, 2011). These types of risks can be related to project management or financial viability. 

They can also result from opportunity cost, in which there is a profitable alternative land-use 

activity where the avoided deforestation emissions reductions project is located. External project 

risks parallel those underlying risks discussed above. They are externalities outside the control 

of the project designer or manager, and can take the form of a lack of community engagement or 

a predisposition to natural disasters, such as wildfires.  

With so many drivers of deforestation and risks of non-permanence, it is essential that the 

government designs effective policy to both combat deforestation and ensure avoided 

deforestation permanence. Policies are effective in ensuring the permanence of avoided 

deforestation if they are continually enforced. To envision the effectiveness or lack thereof of a 

policy, we imagine alternative emissions pathways after the implementation and subsequent 

rollback of a given policy (Schwartzman et al. 2021, fig. 1, p. 3). At time T0, the policy is 

implemented and emissions from deforestation begin to decline. However, after a short time the 

policy is rolled back, at which point we can envision four distinct potential paths with varying 

associated emissions. Path 1 sees deforestation and its associated emissions continue to decline. 

Path 2 sees emissions rise slightly but remain below the business as usual (BAU) trajectory pre-

policy intervention. In Path 3, emissions return to the BAU trajectory. Finally, in Path 4 

emissions exceed the BAU trajectory, with more emissions over time than in the absence of the 
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policy. These pathways allow us to examine the cumulative emissions reductions over time 

associated with each counterfactual scenario following the rollback of a policy.  

For numerical analysis we calibrate the model on Mato Grosso data. For the permanence 

analysis we consider two (carrots-and-sticks) jurisdictional policies. The first simulates a 

jurisdictional effort to eliminate deforestation in private and public lands. The second simulates 

full compliance with the 2012 Brazilian Forest Code — i.e., reforestation of all areas within 

private properties with native vegetation deficits, and avoiding legal deforestation in properties 

with native vegetation surplus. Both are aimed at generating REDD+ offsets with a time horizon 

out to 2050.  

This paper seeks to analyze an efficient means of distribution and application of different policy 

pathways to slow down and stop deforestation and explore the longevity of reductions via 

modeling. Further, it looks at historical deforestation data for the state of Mato Grosso from 

2001 to 2016 while controlling for covariates that affect forest clearings —including roads, 

conservation units and Iindigenous lands, among others — to establish a baseline with which we 

calibrate our model and the algorithm it uses to replicate historical deforestation. Further, we 

introduce mechanisms to break trends of historical deforestation and project the 

aforementioned scenarios. Our model investigates the spatial dependence of deforestation, or 

how deforested cells impact the behavior of their neighbors. Moreover, the model evaluates 

spatial correlation to probe for a possible unobserved factor that varies spatially, making it more 

likely that neighboring cells become deforested. We model increased law enforcement to curb 

deforestation at a jurisdictional scale to generate REDD+ credits from 2025 to 2034. From 2035 

onwards we simulate different scenarios to better understand how potential policy rollbacks 

would affect permanence of reduced deforestation and emissions. We simulate a continuation of 

tight law enforcement and different levels of law enforcement loosening by changing the 

threshold cutoff probabilities at which forest lands are cleared. However, results are applicable 

to any jurisdictional policy that is limited in time. 

The paper is organized as follows. Section 2 details the machine learning and cellular automata 

methodology employed. Section 3 describes how we applied the cellular automata algorithm to 

learn from past deforestation patterns and other spatial features (e.g., Indigenous lands), 

datasets employed, how the model was trained and calibrated, and how simulations were 

performed. Section 4 presents the simulation results. In Section 5, we discuss our main 

conclusions and, in Section 6, we discuss future research possibilities.  
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2. Methodology 

Our goal is to develop an illustrative simulation model of deforestation across a landscape that 

takes into account spatial interactions. The method we use is a particular form of cellular 

automata (CA). These are spatially and temporally discrete computational systems composed of 

cells, which evolve in parallel at time steps following dynamic transition rules: the update of a 

cell state depends on the states of cells in its local neighborhood.  

CA is widely used for modeling spatial dynamics, including interactions between neighboring 

cells. Applications include modeling wildfire spread (Trucchia et al., 2019), propagation of 

epidemics (Sirakoulis et al., 2000), land-cover change and deforestation (Soares-Filho et al., 

2002), and surface water flow (Parsons and Fonstad, 2007).  

CA can be continuous or discrete. Using continuous CA, studies model the transition of spatial 

probabilities of deforestation in the Amazon (Soares-Filho et al., 2002). These studies are based 

on detailed input datasets, including information on various land-cover classes. Discrete CA has 

been used for modeling wildfire spread dynamics (Trucchia et al., 2019).  

In CA, every cell can represent states of several variables, which in turn interact with one 

another and are simultaneously subject to the states of other cells. Interaction between cells can 

be approached in several ways, including implementation of kernels and linear and nonlinear 

functions. For instance, in modeling epidemic propagation (Sirakoulis et al., 2000) each CA cell 

represents a fraction of the total population in one of three states: infected, immunized and 

susceptible.  

A wide overview of CA approaches is provided in books by Codd (2014) and Ilachinski (2001). 

Ilachhinski describes various approaches to CA and provides many examples of CA applications 

to physical processes, includingwave propagation and diffusion process.  

In our approach, we use ideas of CA combined with the 2D convolution procedure and machine 

learning method. Specifically, we introduce a regression model in which neighborhood 

dynamics are included as a feature for model training. In addition, we define states in cells as 

probabilities (i.e., values between 0 and 1). Moreover, we modify the uniform influence of 

deforestation in neighboring cells by introducing spatial distribution (i.e., direction) of impacts 

by considering stationary features in those cells. This is achieved by the 2D convolution 

operation proposed in this study. In that way, we tailor CA for our specific modeling purposes. 

We did not find this particular formulation of CA in the literature. Further, we find an advantage 
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of our approach in that it captures the main features of the model while allowing for acceptable 

computation time.  

 

3. Modeling approach 

We introduce a spatially explicit model of the deforestation probabilities evolution, considering 

the following:  

● local drivers of deforestation 

● impact of ongoing deforestation in neighboring cells 

● cells where deforestation is made impossible 

● policy scenarios based on centralized and local thresholds for deforestation 

● random deforestation events (e.g., fires).  

Our main hypothesis is that deforestation dynamics are driven by relationships between 

deforested cells and cells that are not deforested. The assumption here is that deforestation is 

driven by deforestation itself, as this increases access to a particular site. Forested areas in the 

neighborhood of deforested areas thus have a higher chance of undergoing deforestation as well. 

In addition, there are local drivers of deforestation that increase its probability depending on the 

closeness of the area to roads, rivers and socioeconomic and other factors characterizing the 

area. Therefore, the probability of deforestation is predicated on interactions between two main 

components: (1) the current and historical status and probabilities of deforestation in the 

neighborhood; and (2) local drivers of deforestation. Once we assess the probability of 

deforestation, we can simulate the event of deforestation that is determined by a threshold value 

in terms of probability. Then, we consider threshold values as policy variables, allowing us to 

model various scenarios of future development depending on concrete threshold values set for 

the entire study area or its local subareas. Random deforestation is considered by introducing 

the Monte Carlo scheme to generate probabilistic thresholds.  

In this section, we describe initial datasets, algorithms and model assumptions. The structure of 

this section is as follows. First, we describe the study area, data and preprocessing. Second, we 

include the main parameters of the algorithm. Third, we provide details about model training. 

Finally, we describe assumptions for simulating scenarios. 
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3.1 Study area and time horizon 

We consider the Brazilian state of Mato Grosso, located in the center of Brazil, for our analyses. 

Figure 1 shows the location of Mato Grosso in Brazil, as well as a detailed state map and its 

biomes.  

FIGURE 1 

Study area: Mato Grosso and its biomes 

 

  
 

Technically, the area consists of 1,298 × 1,194 grid cells, where each grid covers 1 km2. Our 

sample uses deforestation data from the Secretary of Environment of the state of Mato Gross 

(SEMA-MT) from 2001 to 2016. These data are used for model training using the approach 

described below. We use the 2010–19 time period for model warm-up, and the 2020–50 time 

period for future projections.  

Mato Grosso has an area of 90.3 million ha, equivalent to the combines areas of France and 

Germany. In 2017, 53.5 million ha were covered by native vegetation, spanning three biomes — 

equivalent to approximately 59% of the state, or an area larger than Spain. Mato Grosso was 

able to reduce deforestation from 1.278 million ha in 2004 to 0.155 million ha in 2010, a drop of 

more than 85% in deforestation over six years across all biomes. It is also an agricultural 

powerhouse, being the top producer of a handful of agricultural commodities in the country. Yet 

from 2006 to 2017, the state was responsible for the bulk of deforestation reductions in Brazil, 

or 40,938 km2  out of 62,321 km2, compared to the 1996–2005 baseline (West et al., 2019). In 
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the meantime, both soybean production and head of cattle increased in the state. In addition, 

Mato Grosso is home to 125,000 smallholder farmers and 43 Indigenous ethnicities spread 

across 79 indigenous lands (International Policy Centre for Inclusive Growth et al., 2019). 

For these reasons we chose the state as our area of study, as it is a crucial region for 

understanding the permanence of deforestation reduction policies in the presence of large 

agricultural production and Indigenous lands. 

3.2 Data and preprocessing 

In Table 1, we list variables used in our modeling, including their name, description and type. 

Our outcome variable is yearly deforestation in Mato Grosso. In our model, past deforestation 

reinforces future deforestation. Other variables control for the spatial patterns of deforestation.  

First, we account for the state and municipal political boundaries. We then locate each pixel in 

an ecological zone according to the area’s biomes to account for different regulations in the 2012 

Brazilian Forest Code. Part of the forest land in Mato Grosso is located in private rural 

properties, which are mandated to preserve 80% of their native vegetation in the Amazon 

(forest), 35% in the Cerrado (savanna) and 20% in the Pantanal (wetland). We also include 

protected areas (i.e., conservation units and Indigenous lands) where deforestation is unlawful. 

These act as strong, although not perfect, barriers against deforestation. Rural settlements have 

been identified as hotspots of deforestation (Assunção and Rocha, 2016). 
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TABLE 1  

Features and variables used in the model 

N Feature name Description Type Source 

0  target  Deforestation for Mato Grosso from 

2001 to 2016 for each year 

Binary 

(target) 

SEMA-MT  

(Secretary of 

Environment of the 

State of Mato Grosso) 

1  pasture_yield  Potential yield for grass in kg/ha Numerical  Food and Agriculture 

Organization of the 

United Nations/Global 

Agro-ecological Zones 

(FAO/GAEZ) 

2  soy_yield  Potential yield in kg/ha Numerical  FAO/GAEZ  

3  altitude  In meters  Numerical  Brazilian Ministry of 

Environment (MMA) 

4  rivers  Distance to rivers in meters  Numerical  Brazilian National 

Water Agency (ANA) 

5  rodo10  Distance to roads in meters Numerical  Brazilian Ministry of 

Transportation (MT) 

6  terrain slope  In degrees  Numerical  Federal University of 

Minas Gerais — 

Remote Sensing  

Center 

7  biomes  This splits the state into three 

biomes: 

• Amazon (forest) 

• Cerrado (savanna) 

• Pantanal (wetland) 

Categorical  Brazilian Ministry of 

Environment (MMA) 

8  islands  Rural settlements  Categorical  National Institute for 

Settlements and 

Agrarian Reform 

(INCRA) 

9  indigenous_lands Indigenous lands Categorical  MMA 

10  uc_todas_mt  Conservation units in Mato Grosso Categorical  MMA 

11  mue  The municipality boundaries of Mato 

Grosso 

Categorical  Brazilian Institute of 

Geography and 

Statistics (IBGE) 

3.3 Decay of deforestation events 

In the historical data, the target variable — deforestation — is represented by binary variables, 

indicating the year in which the deforestation occurred. We also assume that once a cell is 

deforested it stays that way forever. If we kept that assumption, deforested cells would stay at 

value 1 in all years of simulation runs, which would make it hard to distinguish their influence 

over time. As our model deals with influence of neighbors and probabilities (values between 0 
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and 1), we proposed the following transformation of binary values to take into account dynamic 

effects of deforestation.  

Our decay approach reduces historical deforestation impacts based on the idea that 

deforestation that happened farther back in time has less impact compared to the most recent 

deforestation events (Fearnside, 1982). Considerthat  deforestation in pixel (𝑖, 𝑗), 𝑖 = 1, . . , 𝑄, 𝑗 =

1, . . , 𝑃, took place 𝑛 years ago. Here, 𝑄 and 𝑃 are the number of rows and columns, respectively, 

of a matrix corresponding to the study area map. At current time, 𝑡, we decay deforestation 

events in each pixel according to the equation:  

                     𝑑𝑖𝑗 (𝑡) = 𝛿𝑛𝑑𝑖𝑗 (𝑡 − 𝑛), 𝑑𝑖𝑗 ∈ [0,1], 𝑡 ∈ [𝑡0 , 𝑇], 𝑛 ∈ [0, 𝑡 − 𝑡0]  Eq. 1 

where 𝛿  is the decay factor. We set the decay factor as 𝛿  =0.85. The corresponding matrix of 

decayed deforestation at time 𝑡 is denoted by 𝐷(𝑡) = (𝑑𝑖𝑗 (𝑡)) ∈ ℝ𝑄 ×𝑃 . 

FIGURE 2 

Decayed deforestation in relation to the year 2000, with a decay factor of 

𝜹 =0.85 

 
 

Application of decay to the deforestation data is illustrated in Figure 2. The earliest information 

about deforestation dates back to 2000, therefore in this year all pixels deforested as of that date 

have values equal to 1. After five years, those pixels deforested in 2000 decay and their values 

equal 0.44 (colored orange in the figure) in 2005. At the same time, more recent deforestation 

events have happened and are happening in 2005, and the values at these locations are higher 

(red and magenta colors). In 2010, pixels deforested in 2000 decay to 0.197 (colored green) and 

pixels deforested in 2005  decay to 0.44 (colored orange). 
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3.4 Model training 

For model training, we apply a method based on gradient boosting from machine learning 

techniques. The scheme of feature collection is shown in Figure 3. We use stationary data from 

Table 1 and combine it with deforestation dynamics in the neighborhood to predict the target 

variable. The target is decayed deforestation, as explained in the preceding section, represented 

by a value between 0 and 1. The reason for predicting decayed values is because this is the only 

target the model “knows.” A lower value means that deforestation could potentially happen long 

ago, while a higher value indicates that deforestation might happen recently. As deforestation 

has not yet happened, the latter indicates the higher probability that it will. Thus, the “time” is 

reflected in the model when we predict future deforestation will take place — i.e., the higher the 

predicted decayed value, the sooner deforestation is likely to happen. 

The regression model takes the following form:  

𝑑𝑖𝑗 (𝑡 + 1) = 𝑀𝑂𝐷𝐸𝐿 [𝑊𝑖𝑗
𝑘 , ∑ 𝐻𝑖𝑗(𝑡),  ∑ 𝐻𝑖𝑗 (𝑡 − 1), ∑ 𝑊𝑖𝑗

𝑙 (𝑡), ∑ 𝑊𝑖𝑗
𝑙 (𝑡 − 1)], 

                                                   𝑘 = 1, . . , 𝐾, 𝑙 = 1, . . , 𝐿, 𝐿 ≤ 𝐾  Eq. 2 

where 𝑑𝑖𝑗 (𝑡) is decayed deforestation in the cell (𝑖, 𝑗) at time 𝑡, 𝑑𝑖𝑗 ∈ [0,1]. Here, 𝑊𝑖𝑗
𝑘 , 𝑘 = 1, . . , 𝐾, 

are stationary features in cell (𝑖, 𝑗); they are components of 𝐾 matrices 𝑊𝑘 = (𝑊𝑖𝑗
𝑘 ) ∈ ℝ𝑄×𝑃. 

Variables corresponding to stationary features are provided in Table 2, where 𝐾 = 11. 
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FIGURE 3 

Scheme of feature collection 

 

 
 
 

TABLE 2 

Stationary features in the regression model (see Eq. 2) 

 

Symbol Name 

𝑊1  pasture 

𝑊2  soy 

𝑊3  altitude 

𝑊4  rivers 

𝑊5  rodo10 

𝑊6  slope 

𝑊7  biomes 

𝑊8  islands 

𝑊9  indigenous_lands 

𝑊10  uc_todas_mt 

𝑊11  mue 
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∑ 𝐻𝑖𝑗(𝑡) is the sum of targets in the neighborhood of cell (𝑖, 𝑗) at time 𝑡 and has the form: 

                                                 ∑ 𝐻𝑖𝑗(𝑡) = ∑ ∑ 𝑑𝑖+𝑟 𝑗+𝑠(𝑡)1
𝑠=−1

1
𝑟=−1   Eq. 3 

∑ 𝑊𝑖𝑗
𝑙 (𝑡), 𝑙 = 1, . . , 𝐿, is a convolution of selected features 𝑊𝑖𝑗

𝑙  at cell (𝑖, 𝑗) at time 𝑡, described by 

the formula: 

                                ∑ 𝑊𝑖𝑗
𝑙 (𝑡) = ∑ ∑ (𝑑𝑖 +𝑟 𝑗+𝑠 (𝑡) − 0.5) ∙ 𝑊𝑖 +𝑟 𝑗+𝑠

𝑙1
𝑠=−1

1
𝑟=−1 .   Eq. 4 

Convolution ∑ 𝑊𝑖𝑗
𝑙 (𝑡), 𝑙 = 1, . . , 𝐿, determines the direction of deforestation spread and shows 

interaction between adjacent cells in neighborhood of grid cell (𝑖, 𝑗). 𝑊𝑖𝑗
𝑙  are 𝐿 selected features 

from 𝐾 ≥ 𝐿 stationary features 𝑊𝑖𝑗
𝑘 . We considered only numerical features. The sum of 

neighboring cells in Eq. 3 is symmetrical by default. However, in Eq. 4 we couple it with other 

features. This helps us make the influence asymmetrical because it is adjusted to additional 

factors, which in general vary around each cell. Those features complement the actual impact of 

deforestation as defined in Eq. 3.  

We must note that since 𝑑𝑖𝑗(𝑡) can often be zero, we lose information about features in such 

neighbouring cells during the convolution operation (Eq. 4). To eliminate this, we rescaled it by 

subtracting 0.5 from 𝑑𝑖𝑗(𝑡) (see Eq. 4). As the result, we construct 𝐿 matrices ∑ 𝑊𝑙(𝑡) =

(∑ 𝑊𝑖𝑗
𝑙 (𝑡)) ∈ ℝ𝑄×𝑃  containing additional time-dependent features.  

Table 3 provides variable names for new features ∑ 𝑊𝑙(𝑡) , ∑ 𝐻(𝑡) , where 𝐿 = 6. 

In our model, we account for both the current and previous time steps. We consider an iterative 

process of feature formation. After each iteration 𝑑𝑖𝑗 (𝑡 + 1) = 𝑀𝑂𝐷𝐸𝐿[∙], we obtain matrix 

𝐷(𝑡 + 1) = (𝑑𝑖𝑗 (𝑡 + 1)) ∈ ℝ𝑄×𝑃 of decayed deforestation, which is used for the feature 

formation: ∑ 𝑊𝑙 (𝑡 + 1) = (∑ 𝑊𝑖𝑗
𝑙 (𝑡 + 1)) ∈ ℝ𝑄×𝑃 , ∑ 𝐻(𝑡 + 1) = (∑ 𝐻𝑖𝑗 (𝑡 + 1)) ∈ ℝ𝑄 ×𝑃  . 
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TABLE 3 

Time-dependent features and their names 

Symbol Name of variable 

∑ 𝐻(𝑡 − 𝑔)  
target_sum_g 

∑ 𝑊1(𝑡 − 𝑔)  
pasture_Wg 

∑ 𝑊2(𝑡 − 𝑔)  
soy_Wg 

∑ 𝑊3(𝑡 − 𝑔)  
altitude_Wg 

∑ 𝑊4(𝑡 − 𝑔)  
rivers_Wg 

∑ 𝑊5(𝑡 − 𝑔)  
rodo10_Wg 

∑ 𝑊6(𝑡 − 𝑔)  
slope_Wg 

Note: The name of each variable has the form feature_Wg. This means that we apply the convolution operation to matrix 𝑊 of a 

feature; g is the number of time steps backwards, g∈ {0,1}. 1, previous step; 0, current step. 

Mato Grosso boundaries are used as spatial constraints, assuming that deforestation beyond the 

state boundaries is equal to zero. Hence, 𝑑(𝑡) = 0 is fixed for grid cells on the border and outside 

of Mato Grosso for all 𝑡. 

For model training, we created a dataset with target variable 𝐷(𝑡), 𝑡 ∈ [𝑡0 , 𝑇] and the 

corresponding variables from Tables 2 and 3. First, we created a dataset for the entire area and 

all time steps. This dataset contains all features used in the model (see Eq. 2). Second, we split 

this dataset randomly into the train and test sets in the proportion of 70% to 30%. We solved the 

regression problem in Eq. 2 using the LGBMRegressor method from the LightGBM gradient 

boosting framework (Ke et al., 2017). For tuning model parameters, we used the train set. We 

applied K-fold cross validation with five folds and a randomized search of parameters through 

the grid of fixed range. To assess model quality, we considered coefficient of determination R 2. 

This represents the proportion of variance of decay deforestation that is explained by 
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independent variables in the model. After validation on the test set, we obtained an R2 score of 

0.455. The features, sorted by their importance in the model, are given in Table 4. The most 

important features are those dealing with neighboring cells. Therefore, this outcome confirms 

our hypothesis about deforestation drivers. 

TABLE 4 

The importance of features used in the model 

N Feature Importance of feature 

1 target_sum_0 0.167 

2 target_sum_1 0.081 

3 soy_W0 0.059 

4 soy 0.053 

5 islands 0.047 

6 altitude 0.046 

7 pasture_W1 0.046 

8 mue 0.044 

9 soy_W1 0.039 

10 rodo10 0.038 

11 pasture_W0 0.035 

12 altitude_W1 0.032 

13 slope_W0 0.031 

14 rivers_W1 0.030 

15 altitude_W0 0.030 

16 rivers_W0 0.029 

17 biomes 0.027 

18 pasture 0.027 

19 rodo10_W1 0.026 

20 rodo10_W0 0.026 

21 slope_W1 0.025 

22 rivers 0.019 
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23 indigenous_lands 0.018 

24 slope 0.015 

25 uc_todas_mt 0.008 

Note: See Tables 2 and 3 for notations. 

A predictable initial reaction to some of the relatively small R2  scores is that perhaps the 

correlation is not as expansive as we might have predicted. However, taking into account the 

presence of random deforestation in the historical data that is explained neither by internal 

factors nor interaction with neighboring cells provides helpful context. The appearance of a 

correlation, however slight, indicates that there is a relationship between the two variables that 

is statistically significant despite the preponderance of seemingly random deforestation. In the 

simulation portion of this paper, we propose a Monte Carlo approach to allow such random 

deforestation events to be taken into account. 

During model training we did not force barriers (e.g., Indigenous lands and conservation units) 

to be unavailable for deforestation. However, based on the historical data the model learned to 

consider those areas as having very low probability for deforestation. 

3.5 Simulation of scenarios 

The trained model allows assessment of the spatial dynamics of deforestation probabilities. 

After passing to decays, we predict probabilities as target variables, represented by values from 

0 to 1, in the cells where no deforestation has previously occurred. We call these “probabilities of 

deforestation.” 

In order to identify an event of deforestation, we set a threshold value N. As soon as this 

threshold is reached, the pixel is marked as 1 and is considered to be deforested, and the decay 

factor is applied in all next steps from probability equal to 1 at the year of deforestation. Once a 

pixel is deforested, we don’t apply any other operations except decaying. Thresholds are applied 

to deforestation probabilities only in pixels marked as 0, i.e. standing forest land. Therefore, we 

track two maps in parallel: 

● a map of probabilities, including both deforested and forested pixels 

● a map of 0’s and 1’s (e.g., the status of each pixel). 

We use the second type of maps for model output and the first type for modeling. 
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In modeling thresholds, we apply both deterministic and probabilistic approaches. In a 

deterministic case, we deal with prescribed deforestation thresholds. In a probabilistic 

approach, we use Monte Carlo to identify deforestation events at each step. For this purpose, we 

add random deforestation by the following rule: 𝑢̃ = 𝑎 ∙ 𝑢𝑏 , where 𝑢 ∈ Uniform(0,1), where 𝑎, 𝑏 

are parameters. We set 𝑎 = 1 and 𝑏 = 0.5.  

Considering probabilistic and deterministic thresholds, a current threshold is defined by 

formula: 𝑁𝑓 = min {N, 𝑢̃}, where N is the prescribed threshold. Therefore, the deforestation takes 

place either when a fixed threshold N is reached or there is a random event that indicates it 

could happen at the lower threshold 𝑢̃. 

For this reason, we chose a random threshold from a transformation of a uniform distribution, 

as illustrated in Figure 4. This helps to reduce the chances of obtaining very low values for 

probabilistic thresholds that would mean an immediate deforestation in many grid cells. For 

example, if the random generator gives the value u = 0.2 it is transformed to 𝑢̃ = 0.447. 

FIGURE 4 

Transformation of random threshold u from uniform distribution test into 

threshold 𝒖̃ 

 
The simulation runs through 2050. We used the interval 2010–19 for model initialization, and 

then, from 2020 onwards, we introduced thresholds. During the initialization interval, only 
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probabilistic thresholds are implemented. Initialization is necessary for the model to reach a 

stable mode of operation. During this interval, the nearest-neighbor mechanism manifests itself 

sharply and some time is needed for saturation of this mechanism to normal mode. This 

happens because we do not have any fixed time interval during the training period, as we take 

arbitrary subsets of data for learning and testing, which differs from the time-series approach. 

Figure 5 shows how the threshold part of our model works. For illustration, we set a 

deterministic threshold to N = 1, meaning that deforestation never happens. Therefore, the only 

active threshold is probabilistic — i.e., a random test can set a value below 1 in some cells, thus 

potentially leading to deforestation due to accidental exogenous factors, such as fire. One can 

see that deforestation rates are declining in this case, but are still positive. Five simulations are 

shown in this figure in addition to the average values. It can be seen that randomization is 

reasonable and does not produce any explosive effects — i.e., the spread of stochastic runs 

around the mean is bounded. In all simulations deforestation falls from about 1,500 km2 per 

year to about 700 km2 per year.  
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FIGURE 5 

Deforestation scenario with threshold 𝐍 = 𝟏 

 

Note: Deforestation rates are the number of deforested cells per year. The green line represents the mean of stochastic simulations. 

The dashed blue line represents a stochastic simulation used in the Results section. Other lines are representative of individual 

model runs. The spread of stochastic runs around the mean is bounded 

A more realistic situation is when the threshold is set to N = 0.35 for the entire area. The 

dynamics of deforestation rates in this case are shown in Figure 6. We consider this scenario as 

a baseline for our future runs. One can see that in terms of deforestation rates the model shows 

U-shaped behavior. At first, the number of deforested cells grows at an increasing rate until the 

growth rate reaches its maximum. After its peak, growth starts to saturate. This behavior would 

result in the S-shaped curves in cumulative values shown in Figure 8. We also present several 

Monte Carlo runs, showing that deviation from the mean is less than 10%. The concave shape in 

Figure 6 is explained by the decreasing number of cells available for deforestation, because we 

do not model any afforestation in this study. This pattern of deforestation dynamics is found in 

other studies. The falling rate of deforestation during the period 2035–50 illustrates a rather 

catastrophic situation: at this stage the number of deforested cells is so high that the spread 

slows down because of this. 
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FIGURE 6 

Deforestation scenario with threshold 𝐍 = 𝟎. 𝟑𝟓 

Note: Deforestation rates are th number of deforested cells per year. The green line represents the mean of stochastic simulations. 

The dashed blue line represents a stochastic simulation used in the Results section. Other lines are representative of individual 

model runs. The spread of stochastic runs around the mean is bounded. 

4. Results 

In this section we present results of our simulated policy intervention at the jurisdictional scale.  

First, we modeled a jurisdictional command-and-control policy affecting the state of Mato 

Grosso. We simulate a tightening of law enforcement to curb deforestation during the period 

2025–34 by increasing the threshold at which cells are deforested compared to BAU, 

implemented by shifting from N = 0.35 to N = 0.4. 

Next, in order to understand the permanence of avoided deforestation and related carbon 

emissions for this command-and-control policy intervention, we modeled four different 

scenarios. First, the tighter law enforcement policy (N = 0.4) is maintained throughout 2050.  
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We modelled three alternative levels of loosening law enforcement by decreasing the threshold 

of deforestation for all cells across the jurisdiction to N = 0.38, N = 0.35 (BAU value) and N =

0.33. This captures the possibility of a policy rollback triggered in 2035. 

Our simulations allow us to understand the intertemporal effects of such a command-and-

control policy and analyze changes in deforestation and emissions patterns in the absence or 

presence of future policy reversals.  

4.1 Centralized scenarios with variable thresholds 

In this subsection we consider scenarios applied to all the cells, i.e. centralized policies. 

FIGURE 7 

Deforestation scenarios under centralized policies 

 

 

Figure 7 shows the dynamics of deforested cells in each year during the period 2020–50. The 

orange, blue and green lines show the dynamics for thresholds 0.4, 0.35 and 0.3, 

correspondingly. Our simulations show that the range for thresholds is between 0.3 and 0.4 — 

i.e., the model is quite sensitive to the changes in thresholds. This is connected with other 
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parameters of the model as well as the chosen decay rates and timescale. We set threshold 0.35 

as a baseline threshold; 0.4 corresponds to tighter law enforcement and low deforestation 

pressure, and threshold 0.3 is a rather extreme scenario of loose law enforcement and 

deforestation boom.  

In the first scenario we introduce a policy intervention from 2025 to 2034 to slow down the BAU 

deforestation by increasing the threshold to 0.4. One can see the positive effect of this policy in 

Figure 7: the blue trajectory is switched to the black dashed line. If this policy were to be kept, 

deforestation would decline until 2050. However, if from 2035 to 2050 we change the threshold 

value of 0.4 to lower values, we see that deforestation rises again depending on the chosen 

threshold. Although the period of tight deforestation control has its positive effects, 

deforestation rates reach the BAU levels at 2050 (magenta dashed line) or can go even higher 

(red dashed line) if the threshold is lower than the BAU threshold. The purpose of 

experimentation with different thresholds is to detect a critical level after which avoided 

deforestation could be treated as permanent. 

FIGURE 8 

Cumulative number of deforested cells 
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Figure 8 illustrates the cumulative deforestation values corresponding to the annual 

deforestation in Figure 7. Here, we observe that temporary deforestation control (2025–34) has 

positive permanent effects even if the policy is temporary: in cumulative values all the dashed 

curves are below the BAU curve by 2050.  

Nevertheless, because of the high deforestation rates at threshold N = 0.33 following the end of 

deforestation control in 2034 shown in Figure 7, there is a possible negative outlook after 2050 

in that scenario. The model exhibits permanent effects for N = 0.4 and higher. 

4.2 Spatial dynamics and barriers 

The illustration of spatial dynamics of deforestation corresponding to the BAU scenario 

(Figure 7) is shown in Figure 9 for years 2035 and 2050. We see that in 2035 the deforestation 

process is still in an active stage. The hotspots are shown in magenta and red colors. The 

spreading process is well illustrated in particular by comparing two spreading areas in 2035 and 

2050 in the panhandle at the top of the maps. We also show by hatched shading the Indigenous 

lands where the probability of deforestation is low. However, we see that deforestation is active 

at the boundaries of those lands and, in particular, that it will be concentrated in 2050, because 

it is basically the only direction for deforestation left by that time. We also see that there are 

some deforested pixels inside those areas, mostly due to the random events simulated in the 

model. However, they are not spreading due to their location. Although we do not force 

probabilities to be zero, the model learned to keep them very low in those lands, thus making 

these areas barriers. 
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FIGURE 9 

Spatial dynamics of deforestation under the BAU scenario for 2035 and 

2050, with Indigenous lands acting as barriers for deforestation 

 

4.3 Jurisdictional policy impacts 

Here we consider how jurisdictional policies would impact deforestation dynamics in the region 

according to our model following the legal native vegetation preservation requirements from the 

2012 Brazilian Forest Code. We use the following maps as a basis for modeling scenarios: a map 

containing pixels of 1 km2 size with native vegetation surplus, and a map representing pixels 

with native vegetation deficit. Both maps are shown in Figure 10. These maps are based on 

data from Instituto de Pesquisa Ambiental da Amazônia (2021). The total area of surplus is 

7.21 million ha while the total area of deficit is 8.76 million ha. 
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FIGURE 10 

Maps with a native vegetation surplus (left) and deficit (right) used in the 

study 

 

We use such maps to simulate two policies concurrently. The first policy simulates an incentive-

based jurisdictional program where payments would be made to landowners with native 

vegetation surplus, thus blocking those parcels from deforestation. The second policy simulates 

a command-and-control approach to bring properties back to compliance with the Brazilian 

Forest Code by reforesting their deficits. 

First, deforestation was blocked in all areas with a forest deficit from 2010 until 2050. We 

considered all those pixels as reforested and protected during the entire time interval. At the 

same time we considered the following cases for areas with surplus, which were considered 

reforested in 2010:  

● Case 1 — block deforestation from 2010 until 2050 

● Case 2 — block deforestation from 2010 until 2030, and allow deforestation afterwards 

● Case 3 — block deforestation from 2010 until 2030, allow deforestation in the period 2030–

34, and allow block deforestation afterwards 

● Case 4 — block deforestation from 2010 until 2030, allow deforestation in the period 2030–

39, and allow block deforestation afterwards. 
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Modeling results are presented in Figure 11, where annual numbers of newly deforested pixels 

are shown for various scenarios. The difference between BAU and jurisdiction policy cases in 

2020 is explained by the fact that areas with deficit and surplus were removed at the start of 

simulations in 2010. The difference between policy scenarios begins in 2030. The most positive 

effect is achieved in Case 1, where all selected areas are protected by policy until 2050. In that 

case the rate of deforestation in the study area is consistently low. In Case 2, when policies are 

relaxed in surplus areas until 2050 we see a relatively fast increase of deforestation rates with a 

qualitative behavior similar to BAU scenario; the maximum deforestation rate happens around 

2042. Quite interesting effects are observed when the relaxation of policy in 2030 is reversed in 

2035 (Case 3) and 2040 (Case 4). The return to protected areas allows to slow down 

deforestation rates and gradually converge them to the level of Case 1 by 2050. This shows that 

due to the high number of pixels where policies are applied, the neighboring effect is one of the 

key factors for spreading deforestation. 
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FIGURE 11 

Jurisdictional policy impacts compared to BAU scenario (as in Figure 7) 

 

 Note: Cumulative deforested areas corresponding to policy scenarios are given in Figure 12. The figure clearly illustrates the impact 

of policy reversals — i.e., Cases 3 and 4 allow deforestation to be reduced to the levels close to Case 1. This has some analogy 

with epidemic models, where policies could be considered as quarantine measures that can be forced and relaxed by governments 

at various time periods. 
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FIGURE 12 

Cumulative number of deforested cells in jurisdictional policy scenarios 

 

Finally, in Figure 13 we present maps that compare results of the BAU scenario and the Case 1 

scenario of jurisdictional policy for 2050. We see that due to the dynamics of neighboring pixels 

that are in the core of the model, the difference in deforested cells is considerable. This is a 

positive signal for policy options. 
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FIGURE 13 

Comparison of the BAU scenario (left) and Case 1 scenario for 2050 (right) 

 

 

5. Discussions and conclusions 

In this section we analyze the permanence of avoided emissions by applying a probabilistic 

model of endogenous deforestation. The CA modeling algorithm considers positive feedback of 

deforestation of a neighboring land area as well as a threshold effect. Our results suggest a 

strong path dependence and partial irreversibility of changes in a deforestation pathway. In 

other words, once it deviates from the BAU trajectory, a deforestation pathway is unlikely to 

rebound back to BAU. The longer the initial intervention, the less likely the deforestation 

pathway rebounds. Over time, the economy — previously dependent on deforestation — 

converges to a new steady state not associated with deforestation. The more extended the period 

of active intervention, the better the chance a tropical nation (jurisdiction) will rebalance natural 

and manmade capital to support alternative development pathways that do not require 

deforestation. Additionally, a higher threshold value implies a lower probability that 

deforestation will rebound back to BAU. This observation leads to an important policy 

conclusion: prolonged intervention yields better results.  

The permanence of a policy depends on its success to reduce cumulative deforestation and 

emissions compared to the BAU trajectory, and the probability that policy rollbacks and the 

resulting trajectory of deforestation and emissions do not overshoot the BAU trajectory and 

outpace previously accumulated deforestation or emissions reductions in the long run. Hence, 



EDF Economics Discussion Paper 21–08 
 

 

 
34 

permanence depends both on the probability of policy reversals and their potential 

overshooting, and the relevant time horizon to be considered (e.g., 2050, 2100, etc.).  

Given limited initial resources to support avoided deforestation, we began this study by looking 

for strategic positioning of the restricted area (subjurisdictional programs and large projects). 

Deforestation spreads from outside the box. It seems that several boxes are needed to create a 

stronger effect. The logical next step for this analysis is the application of optimization in the 

organization of protected areas to study the dynamics of clusters of avoided deforestation. 

Further, experiments with embedded optimization may answer the questions: If we can 

spatialize interventions, do they affect deforestation in an outsized fashion? If we reduce 

deforestation in certain parcels of land, do they affect deforestation distribution in different 

ways? 

 

6. Future research 

Future research will address the impacts of market-based policies, namely REDD+ payment 

programs, on curbing deforestation and permanence of avoided emissions. In our future work, 

we will analyze the effects of a REDD+ payment program by applying different deforestation 

restrictions to the model — i.e., size and location constraints to protect certain areas, reflected 

by boxed areas in the model.  

Figures 14 and 15 illustrate how we propose to set up these modeled boxes to investigate the 

impacts of box location and size on deforestation and permanence. For example, a future 

scenario might consider making it very difficult to deforest cells within a certain box by setting 

𝑁 = 1 for those cells, while deforestation of cells outside the box would follow the BAU 

threshold (𝑁 = 0.35). 

Moreover, we plan to investigate the results of increasing a REDD+ program from project level 

(small box) to jurisdictional level (the whole state). This will contribute to another heated debate 

on project versus jurisdictional approaches regarding reducing deforestation. 
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FIGURE 14 

Proposed scenarios with different box locations (shape 200 × 200) 

 

 

FIGURE 15 

Proposed scenarios with different box sizes: Scenario 5 (100 × 100), 

Scenario 4 (200 × 200), Scenario 6 (300 × 300), Scenario 7 (400 × 400) 
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Another direction for further research is to check for spatial synergies among different small 

boxes. A REDD+ payment program targeted at rural properties may be scattered across the 

jurisdiction, where each property could be treated as a separate small box. Yet, using an 

optimization algorithm we may be able to compare alternative results of conducting localized 

REDD+ payment interventions versus optimizing deforestation reductions over the landscape, 

given the same budget. This analysis would help to establish a strategy for scaling up 

jurisdictional REDD+ programs by maximizing environmental benefits at the minimum cost.  
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