Supplementary Information (SI)

SI1: To equation (2)

With $\dot{\varepsilon}(\mathrm{t})=\alpha \exp (\alpha \mathrm{t})$ and $\alpha>0, \sigma(0)=0$ and $\beta=1+\alpha \frac{\mathrm{D}}{\mathrm{K}}$:

$$
\begin{aligned}
\sigma(t) & =K \int_{0}^{t} \alpha \exp (\alpha \tau) \exp \left(\frac{K}{D}(\tau-t)\right) d \tau=K \alpha \exp \left(-\frac{K}{D} t\right) \int_{0}^{t} \exp \left(\frac{K}{D} \beta \tau\right) d \tau \\
& =\frac{D}{\beta} \alpha \exp \left(-\frac{K}{D} t\right)\left(\exp \left(\frac{K}{D} \beta t\right)-1\right)=\frac{D}{\beta} \alpha \exp (\alpha t)\left(1-\exp \left(-\frac{K}{D} \beta t\right)\right) \\
& =\frac{D}{\beta} \dot{\varepsilon}(t)\left(1-q_{\beta}^{t}\right)
\end{aligned}
$$

where $q_{\beta}^{t}=\exp \left(-\frac{K}{D} \beta t\right)$. Introducing the dimensionless time $n=\frac{t}{\Delta t}$ (where $\left.\Delta t=1 y\right)$, equation (2) takes the form

$$
\begin{equation*}
\sigma(\mathrm{n})=\frac{\mathrm{D}}{\beta} \frac{\alpha_{\mathrm{n}}}{\Delta \mathrm{t}} \exp \left(\alpha_{\mathrm{n}} \mathrm{n}\right)\left(1-q_{\beta}^{\mathrm{n}}\right)=\frac{\mathrm{D}}{\beta} \dot{\varepsilon}(\mathrm{n})\left(1-\mathrm{q}_{\beta}^{\mathrm{n}}\right) \tag{SI1-1}
\end{equation*}
$$

where $\quad \alpha_{n}:=\alpha \Delta t, \quad q_{\beta}=q_{\alpha} q, \quad q_{\alpha}=\exp (-\alpha \Delta t), \quad q=\exp \left(-\frac{K}{D} \Delta t\right), \quad$ and $q_{\beta}^{\mathrm{t}}=\left(\exp \left(-\frac{K}{D} \beta \Delta \mathrm{t}\right)\right)^{\mathrm{n}}$.

SI2: To equation (3)

We start from equation (2b) in the form $\sigma_{D}(q, n):=\frac{1}{D} \sigma(n)=\dot{\varepsilon}(n) \frac{\ln q}{\ln q-\alpha_{n}}\left(1-q_{\alpha}^{n} q^{n}\right)$ with $\frac{1}{\beta}=\frac{\ln q}{\ln q-\alpha_{n}}:$

$$
\begin{align*}
\mathrm{q} \frac{\partial}{\partial \mathrm{q}} \sigma_{D}(\mathrm{q}, \mathrm{n}) & =\dot{\varepsilon}(\mathrm{n}) \mathrm{q}\left\{\frac{\partial}{\partial \mathrm{q}}\left(\frac{\ln \mathrm{q}}{\ln \mathrm{q}-\alpha_{\mathrm{n}}}\right)\left(1-\mathrm{q}_{\beta}^{\mathrm{n}}\right)-\frac{\ln \mathrm{q}}{\ln \mathrm{q}-\alpha_{\mathrm{n}}} \mathrm{q}_{\alpha}^{\mathrm{n}} \frac{\partial}{\partial \mathrm{q}} \mathrm{q}^{n}\right\} \\
& =\dot{\varepsilon}(\mathrm{n})\left\{\mathrm{q} \frac{\partial}{\partial \mathrm{q}}\left(\frac{\ln \mathrm{q}}{\ln \mathrm{q}-\alpha_{\mathrm{n}}}\right)\left(1-\mathrm{q}_{\beta}^{\mathrm{n}}\right)-\frac{1}{\beta} q_{\beta}^{\mathrm{n}} \mathrm{n}\right\} \tag{SI2-1a}
\end{align*}
$$

where we can avoid the effort of writing out the $1^{\text {st }}$ derivative on the right side; and $q q_{\alpha}^{n} \frac{\partial}{\partial q} q^{n}=q q_{\alpha}^{n} q^{n-1} n=q_{\beta}^{n} n$.

On the other hand, with $S_{n}=\frac{1-q_{\beta}^{n}}{1-q_{\beta}}$ and the help of equation (SI3-4a):

$$
\begin{align*}
\mathrm{q} \frac{\partial}{\partial \mathrm{q}} \sigma_{\mathrm{D}}(\mathrm{q}, \mathrm{n}) & =\dot{\varepsilon}(\mathrm{n}) \mathrm{q} \frac{\partial}{\partial \mathrm{q}}\left(\frac{\ln \mathrm{q}}{\ln \mathrm{q}^{-\alpha_{n}}}\left(1-\mathrm{q}_{\beta}\right) \mathrm{S}_{\mathrm{n}}\right) \\
& =\dot{\varepsilon}(\mathrm{n}) \mathrm{q}\left\{\frac{\partial}{\partial \mathrm{q}}\left(\frac{\ln \mathrm{q}}{\ln \mathrm{q}-\alpha_{\mathrm{n}}}\right)\left(1-\mathrm{q}_{\beta}\right) \mathrm{S}_{\mathrm{n}}-\frac{1}{\beta} \frac{\partial \mathrm{q}_{\beta}}{\partial \mathrm{q}} \mathrm{~S}_{\mathrm{n}}+\frac{1}{\beta}\left(1-\mathrm{q}_{\beta}\right) \frac{\partial \mathrm{q}_{\beta}}{\partial \mathrm{q}} \frac{\partial \mathrm{~S}_{\mathrm{n}}}{\partial \mathrm{q}_{\beta}}\right\} \\
& =\dot{\varepsilon}(\mathrm{n})\left\{\mathrm{q} \frac{\partial}{\partial \mathrm{q}}\left(\frac{\ln \mathrm{q}}{\ln \mathrm{q}-\alpha_{\mathrm{n}}}\right)\left(1-\mathrm{q}_{\beta}\right) \mathrm{S}_{\mathrm{n}}-\frac{1}{\beta} \mathrm{q}_{\beta} \mathrm{S}_{\mathrm{n}}+\frac{1}{\beta}\left(1-\mathrm{q}_{\beta}\right) \mathrm{S}_{\mathrm{n}} \frac{\mathrm{q}_{\beta}}{\mathrm{S}_{\mathrm{n}}} \frac{\partial \mathrm{~S}_{\mathrm{n}}}{\partial \mathrm{q}_{\beta}}\right\} \tag{SI2-1b}\\
& =\dot{\varepsilon}(\mathrm{n})\left\{\mathrm{q} \frac{\partial}{\partial \mathrm{q}}\left(\frac{\ln \mathrm{q}}{\ln \mathrm{q}-\alpha_{\mathrm{n}}}\right)\left(1-\mathrm{q}_{\beta}^{\mathrm{n}}\right)-\frac{1}{\beta} \mathrm{q}_{\beta} \mathrm{S}_{\mathrm{n}}+\frac{1}{\beta}\left(1-\mathrm{q}_{\beta}^{\mathrm{n}}\right) \mathrm{T}\right\}
\end{align*}
$$

Balancing equations (SI2-1a) and (SI2-1b) yields equation (3):
$\mathrm{T}=-\frac{\mathrm{q}_{\beta}^{\mathrm{n}}}{1-\mathrm{q}_{\beta}^{\mathrm{n}}} \mathrm{n}+\frac{\mathrm{q}_{\beta}}{1-\mathrm{q}_{\beta}}$.
$T=T(q, n)$ is a characteristic function of the Maxwell body (MB).

SI3: Justifying T as delay time

We can let any function f of time t (dimensionless throughout SI3 and $\in \mathbb{N}_{0}$ without restricting generality) depend increasingly on previous times by applying the approach of a simple weighted average and a weighting fading away exponentially backward in time $(\mathrm{q}<1)$:

$$
\begin{align*}
& y_{1}(t)=f\left(\frac{q^{0} t}{q^{0}}\right) \\
& y_{2}(t)=f\left(\frac{q^{0} t+q^{1}(t-1)}{q^{0}+q^{1}}\right) \\
& \ldots \tag{SI3-1}\\
& y_{k}(t)=f\left(\frac{q^{0} t+q^{1}(t-1)+q^{2}(t-2)+\ldots+q^{k-1}(t-(k-1))}{\sum_{i=0}^{k-1} q^{i}}\right)=f(t-T)
\end{align*}
$$

$\left(\mathrm{t} \geq \mathrm{k} \in \mathbb{N}_{0}\right)$ with T appearing as delay time in the argument of the function f . The denominator of the argument in the middle is given by

$$
\begin{equation*}
S_{k}=\sum_{i=0}^{k-1} q^{i}=\frac{1-q^{k}}{1-q} ; \tag{SI3-2}
\end{equation*}
$$

while the numerator can be transformed with the help of ${ }^{1}$

$$
\sum_{k=a}^{b-1} k^{m} z^{k}=\left(z \frac{d}{d z}\right)^{m} \frac{z^{b}-z^{a}}{z-1} \quad(z \neq 1)
$$

here with i instead of k , and q instead of z , and $\mathrm{a}=0, \mathrm{~b}=\mathrm{k}$, and $\mathrm{m}=1$

$$
\begin{equation*}
\sum_{i=0}^{k-1} \mathrm{i} \mathrm{q}^{\mathrm{i}}=\mathrm{q} \frac{\mathrm{~d}}{\mathrm{dq}} \frac{\mathrm{q}^{\mathrm{k}}-\mathrm{q}^{0}}{\mathrm{q}-1}=\mathrm{q} \frac{\mathrm{~d}}{\mathrm{dq}} \frac{1-\mathrm{q}^{\mathrm{k}}}{1-\mathrm{q}}=\mathrm{q} \frac{\mathrm{~d}}{\mathrm{dq}} \mathrm{~S}_{\mathrm{k}} \quad(\mathrm{q} \neq 1) \tag{SI3-3}
\end{equation*}
$$

to derive T :

$$
\begin{equation*}
\mathrm{T}=\frac{\mathrm{q}}{\mathrm{~S}_{\mathrm{k}}} \frac{\mathrm{~d}}{\mathrm{dq}} \mathrm{~S}_{\mathrm{k}} . \tag{SI3-4a}
\end{equation*}
$$

Similar to and in accordance with equation (3), carrying out the derivation by q on the right side yields

$$
\begin{equation*}
T=\frac{q}{S_{k}} \frac{1}{1-q}\left(-q^{k-1} k+S_{k}\right)=-\frac{q^{k}}{1-q^{k}} k+\frac{q}{1-q} . \tag{SI3-4b}
\end{equation*}
$$

It is straightforward to show by applying l'Hospital that $\lim _{k \rightarrow \infty}\left(q^{k} k\right)=0$. Thus:

$$
\begin{equation*}
\mathrm{T}_{\mathrm{k} \rightarrow \infty}\left(=\mathrm{T}_{\infty}\right)=\frac{\mathrm{q}}{1-\mathrm{q}}=\mathrm{q} \frac{1}{1-\mathrm{q}}=\mathrm{qS}_{\mathrm{k} \rightarrow \infty} . \tag{SI3-5}
\end{equation*}
$$

To strengthen the justification of T as delay time for the exponential function $\mathrm{y}(\mathrm{t})=1-\exp (\mathrm{ct})=1-\mathrm{q}^{\mathrm{t}}$ with $\mathrm{c}=\ln (\mathrm{q})$, it is useful to consider the power-law case $y(t)=c t^{q}$. Here, the ratio $\frac{y}{\dot{y}}$ with $T=q$ functions as a linearizer such that $\frac{y-\dot{y}}{\dot{y}} b=a(t-T)$ $\Leftrightarrow \frac{\mathrm{y}-\dot{\mathrm{y}}}{\dot{\mathrm{y}}}=\frac{1}{\mathrm{~T}}(\mathrm{t}-\mathrm{T})$; where $\mathrm{b}=\mathrm{aT}$ is the intercept, $\mathrm{T}=\frac{\dot{\mathrm{y}}}{\mathrm{y}} \mathrm{t}$ is the intersection with the time axis, and the difference $t-T$ can be expressed as well as weighted (w) (or moving weighted) average $(t-T)=\sum_{i=0}^{k-1} w_{k-i}(t-i) / \sum_{i=0}^{k-1} w_{k-i}$. T being constant is in line with the finding (not shown here) that the change in memory can be considered Gaussian backward in time.

Similar for the exponential function $y(t)=1-q^{t}$. Here, q and t appear mirrored to the power-law case. Nonetheless, T (reduced by T_{∞}) in equation (SI3-5) can also be expressed, in principle (i.e., apart from additional factors), by the operation
$\mathrm{T}_{\mathrm{red}}=\mathrm{T}-\mathrm{T}_{\infty}=\frac{1}{\ln (\mathrm{q})} \frac{\dot{\mathrm{y}}}{\mathrm{y}} \mathrm{t}$.
However, despite this agreement, the change in memory here is exponential backward in time.
Equation (SI3-6) generalizes to $T-T_{\infty}=\frac{1-\beta}{\beta} \frac{\dot{\sigma}-\alpha \sigma}{\alpha \sigma} t$ in the case of equation (2a).

SI4: To equation (4) reflecting the history of the MB

Rewriting equation (4) shows that it reflects the history of the MB:

$$
\begin{align*}
\mathrm{S}_{\mathrm{n}} & =\frac{\mathrm{q}_{\beta}^{\mathrm{n}}-1}{\mathrm{q}_{\beta}-1}=\frac{1}{\mathrm{q}_{\beta}-1}\left\{\left(\mathrm{q}_{\beta}^{\mathrm{n}}-\mathrm{q}_{\beta}^{\mathrm{n}-1}\right)+\left(\mathrm{q}_{\beta}^{\mathrm{n}-1}-\mathrm{q}_{\beta}^{\mathrm{n}-2}\right)+\mathrm{q}_{\beta}^{\mathrm{n}-2}-+\ldots-\mathrm{q}_{\beta}+\left(\mathrm{q}_{\beta}-1\right)\right\} \tag{SI4-1}\\
& \left.\left.\left.=\frac{1}{\mathrm{q}_{\beta}-1}\left\{\mathrm{q}_{\beta}^{\mathrm{n}-1}\left(\mathrm{q}_{\beta}-1\right)\right)+\mathrm{q}_{\beta}^{\mathrm{n}-2}\left(\mathrm{q}_{\beta}-1\right)\right)+\ldots+\mathrm{q}_{\beta}^{0}\left(\mathrm{q}_{\beta}-1\right)\right)\right\}=\sum_{i=0}^{\mathrm{n}-1} \mathrm{q}_{\beta}^{\mathrm{i}}=\text { Past }
\end{align*}
$$

SI5: To monitoring $\ln (\mathbf{M} \cdot \mathrm{P})$

According to equations (3)-(5):

$$
\begin{equation*}
\mathrm{M}_{\infty}=\frac{1}{1-\mathrm{q}_{\beta}}=\frac{\mathrm{T}_{\infty}}{\mathrm{q}_{\beta}} \text { and } \mathrm{P}_{\infty}=\frac{1}{\mathrm{~T}_{\infty}} . \tag{SI5-1,2}
\end{equation*}
$$

Hence:

$$
\frac{1}{M_{\infty} P_{\infty}}=q_{\beta}=\exp \left(-\left(\frac{K}{D}+\alpha\right) \Delta t\right)=\exp \left(-\frac{K}{D} \beta \Delta t\right) \Leftrightarrow \ln \left(M_{\infty} P_{\infty}\right)=\frac{K}{D} \beta \Delta t=\lambda_{\beta}=\lambda \beta
$$

with q_{β} and q as defined under Methods, and $\lambda_{\beta}=\lambda \beta$ with $\lambda=\frac{\mathrm{K}}{\mathrm{D}} \Delta \mathrm{t}$. Thus, the ratio $\frac{\lambda}{\ln (\mathrm{MP})}$ allows indicating how much smaller the system's natural rate of change in the numerator turns out compared to the system's rate of change in the denominator under continued increase in stress. This gradual build-up relative to λ (with K/D constant) is limited by β^{-1}.

SI6: Overview of data and conversion factors

Tab. SI6-1: Overview of the data used in the paper. All data refer to the global scale (or are assumed to be globally representative).

Data	Source	Time range	Brief description		
$\begin{array}{l}\text { Atmospheric } \mathrm{CO}_{2} \\ \text { concentration (in ppm) }\end{array}$	$\begin{array}{l}\text { 2 Degrees Institute, } \\ \text { Canada }^{2}\end{array}$	$1750-1955$	$\begin{array}{l}\text { Ice core data (75-year smoothed); } \\ \text { Law Dome, Antarctica }\end{array}$		
	$\begin{array}{l}\text { Global Monitoring } \\ \text { Laboratory, NOAA, }^{\text {USA }}\end{array}$	$1959-1979$	Atmospheric measurements		
Hawaii				$]$	USA
:---					

Tab. SI6-2: Overview of the conversion factors used in the paper.

From	To	Value	Unit	Source
C	CO_{2}	3.664	$\mathrm{gCO}_{2}(\mathrm{gC})^{-1}$	CDIAC (2012: Tab. 3) ${ }^{7}$
ppmv CO_{2}	PgC	2.120	$\mathrm{PgC} \mathrm{ppmv}{ }^{-1}$	Ciais et al. (2014: Tab. 6.1) ${ }^{8}$
ppmv CO_{2}	Pa	0.101325	$\mathrm{~Pa} \mathrm{(10}^{6} \mathrm{ppmv}^{-1}$	CDIAC (2012: Tab. 3) $)^{7}$ and Dalton's law ${ }^{9}$

SI7: Use of equation (9) to estimate the photosynthetic carbon flux ratio $\Delta \mathbf{P h}_{\mathbf{i}} / \mathbf{P h}$

The leaf-level factor L denotes the relative leaf photosynthetic response to a 1 ppmv change in the atmospheric concentration of CO_{2}. The photosynthetic limits L_{1} (photosynthesis limited by electron transport) and L_{2} (photosynthesis limited by rubisco activity) are determined by using equations (7) and (9) in Luo et al. (1996). ${ }^{10}$

We follow equation (9) to derive the photosynthetic carbon flux ratio $\Delta \mathrm{Ph}_{\mathrm{i}} / \mathrm{Ph}$ by the change in L_{i}, which we describe by means of a geometric sequence (with the common ratio $1-q_{L_{i}}$). We demonstrate the quality of this approximation by comparing our results (to the extent possible) with those cited by Luo et al. (1996). Dropping index i :

$$
\begin{align*}
\mathrm{L}_{\text {high }} & -\mathrm{L}_{\text {low }} \\
=\Delta \mathrm{L} & =\mathrm{L}_{\text {high }}+\mathrm{L}_{\text {high }}\left(1-\mathrm{q}_{\mathrm{L}}\right)+\ldots+\mathrm{L}_{\text {high }}\left(1-\mathrm{q}_{\mathrm{L}}\right)^{\left(\Delta \mathrm{CO}_{2}-1\right)} \tag{SI7-1}\\
& =\mathrm{L}_{\text {high }} \sum_{\mathrm{k}=0}^{\Delta \mathrm{CO}_{2}-1}\left(1-\mathrm{q}_{\mathrm{L}}\right)^{\mathrm{k}}=\mathrm{L}_{\text {high }} \frac{1-\left(1-\mathrm{q}_{\mathrm{L}}\right)^{\Delta \mathrm{CO}_{2}}}{1-\left(1-\mathrm{q}_{\mathrm{L}}\right)}
\end{align*}
$$

where $\mathrm{q}_{\mathrm{L}}=\Delta \mathrm{L} /\left(\mathrm{L}_{\text {high }} \Delta \mathrm{CO}_{2}\right)$. (We follow the authors and express L_{i} in units of \% [and not in $\% \mathrm{ppmv}^{-1}$]. To express q_{L} in units of 1 , we consider $\Delta \mathrm{CO}_{2}$ dimensionless [equivalent to multiplying $\Delta \mathrm{CO}_{2}$ with $\left.\mathrm{ppmv}^{-1}\right]$.) The term $\mathrm{L}_{\text {high }}$ has to be replaced by the term $\mathrm{L}_{\text {high }} \mathrm{f}_{\mathrm{ppm}}$ if $\Delta \mathrm{L}$ is not calculated per 1-ppmv step but per 1-year step (when the change in ppmv is not necessarily 1 ppmv; see also SD1). With the values in Table SI7-1, equation (SI7-1) allows accumulated $\Delta \mathrm{L}_{\mathrm{i}}$ values to be derived which can be compared with the $\Delta \mathrm{Ph}_{\mathrm{i}} / \mathrm{Ph}$ values reported by Luo et al. (1996) in their Table $1 .{ }^{10}$ The agreement is sufficient for our purposes (Tab. SI7-2).

Tab. SI7-1: Limits of the relative leaf photosynthetic response to a 1 ppm change in the atmospheric concentration of CO_{2} using equations (7) and (9) in Luo et al. (1996).

Time	$\mathbf{C O}_{\mathbf{2}}$	$\mathbf{L}_{\mathbf{1}}$	$\mathbf{L}_{\mathbf{2}}$
y	ppmv	$\%$	$\%$
preindustrial	280	0.1827	0.3520
1958	315	0.1457	0.2969
1992	355.5	0.1155	0.2495
1993	357	0.1146	0.2479

Tab. SI7-2: Comparison of $\Delta \mathrm{L}_{\mathrm{i}}$ (accumulated) derived with equation (SI7-1) with $\Delta \mathrm{Ph}_{\mathrm{i}} / \mathrm{Ph}$ as listed in Table 1 in Luo et al. (1996).

Period	$\Delta \mathbf{C O}_{\mathbf{2}}$	$\mathbf{q L}_{1}$	$\mathbf{q L}_{\mathbf{2}}$	$\Delta \mathbf{L}_{\mathbf{1}}$	$\Delta \mathbf{L}_{\mathbf{2}}$	$\Delta \mathbf{P h} / \mathbf{P h}$
y	ppmv	1	1	$\%$	$\%$	$\%$
$1992-1993$	1.5	0.005358	0.004031	0.17	0.37	$0.17-0.37$
$1958-1993$	42	0.005080	0.003929	5.6	11.5	$5.6-12.1$
preindustrial -1993	77	0.004839	0.003840	11.8	23.5	$11.8-25.5$

SI8: The compression module referring to a tropospheric expansion of $\mathbf{2 0} \mathbf{m}$ (standard atmosphere)

The standard atmosphere assigns a temperature gradient of $-6.5^{\circ} \mathrm{C} / 1000 \mathrm{~m}$ up to the tropopause at 11 km . The isentropic coefficient of expansion γ varies with temperature and atmospheric CO_{2} concentration: γ increases with decreasing T and decreases with increasing atmospheric $\mathrm{CO}_{2}{ }^{11}$ However, in the case of dry air and no change in its chemical composition, the compression module K_{ad} can be expected to stay constant. Here we provide an overview of
the altitudes different isentropic coefficients of expansion refer to assuming a tropospheric expansion of $20 \mathrm{~m} ;{ }^{12,13}$ and, thereupon, determine K_{ad}.

Combining equations (19) and (20b):

$$
\begin{equation*}
\mathrm{K}_{\mathrm{ad}}=\gamma \mathrm{p}=-\frac{\Delta \mathrm{p}}{\Delta \mathrm{~V} / \mathrm{V}} \tag{SI8-1}
\end{equation*}
$$

where the difference in pressure for a difference in altitude $\Delta \mathrm{h}=\mathrm{h}_{2}-\mathrm{h}_{1}$ is given by
$\Delta \mathrm{p}=\mathrm{p}_{2}-\mathrm{p}_{1}=\mathrm{p}_{0}\left[\left(1-\mathrm{a}\left(\mathrm{h}_{1}+\Delta \mathrm{h}\right)\right)^{\mathrm{b}}-\left(1-\mathrm{ah}_{1}\right)^{\mathrm{b}}\right]$
according to equation (7) in Cavcar (2000) ${ }^{14}$ with $\mathrm{p}_{0}=1013.25 \mathrm{hPa}, \mathrm{a}=0.0065 / \mathrm{T}_{0}$, $\mathrm{T}_{0}=288.15 \mathrm{~K}, \mathrm{~b}=5.2561$, and h the altitude in units of meter;
and the difference in volume by
$\frac{\Delta \mathrm{V}}{\mathrm{V}}=\frac{\mathrm{V}_{2}-\mathrm{V}_{1}}{\mathrm{~V}_{1}-\mathrm{V}_{\text {Earth }}}=\frac{\left(\mathrm{r}_{\text {Earth }}+\left(\mathrm{h}_{1}+\Delta \mathrm{h}\right) / 1000\right)^{3}-\left(\mathrm{r}_{\text {Earth }}+\mathrm{h}_{1} / 1000\right)^{3}}{\left(\mathrm{r}_{\text {Earth }}+\mathrm{h}_{1} / 1000\right)^{3}-\mathrm{r}_{\text {Earth }}^{3}}$
with $\mathrm{r}_{\text {Earth }}=6371 \mathrm{~km}$.
Letting p refer to p_{1} in equation (SI8-1) and solving for γ :

$$
\begin{equation*}
\gamma=\frac{1-\left\{\left(1-\mathrm{a}\left(\mathrm{~h}_{1}+\Delta \mathrm{h}\right)\right) /\left(1-\mathrm{a} \mathrm{~h}_{1}\right)\right\}^{\mathrm{b}}}{\Delta \mathrm{~V} / \mathrm{V}} . \tag{SI8-2}
\end{equation*}
$$

Setting $\Delta \mathrm{h}=20 \mathrm{~m}$ in agreement with observations, equation (SI8-2) allows calculating γ in dependence of h_{1} (see Tab. SI8-1). As can also be seen from the table, the value of $K_{a d}$ ranges between 400 and 412 hPa .

Tab. SI8-1: \quad Standard atmosphere: isentropic coefficient of expansion γ and compression module $K_{a d}$ for a tropospheric expansion of 20 m at different altitudes.

$\mathbf{h}_{\mathbf{1}}$	$\boldsymbol{\gamma}$	$\mathbf{p}_{\mathbf{1}}$	$\mathbf{K}_{\mathbf{a d}}$
m	1	hPa	hPa
Input	Eq. (SI8-2)	Eq. (7) in Cavcar (2000)	Eq. (SI8-1)
7,100	1.000	404.8	404.8
7,685	1.100	372.5	409.6
8,255	1.200	343.0	411.6
8,810	1.300	316.2	411.1
8,865	1.310	313.6	411.0
9,345	1.400	292	408.8
9,360	1.403	291.3	408.7
9,865	1.500	269.9	404.9
10,370	1.600	249.7	399.6

SI9: Equation (1a) with strain given by a second-order polynomial

We start from $\varepsilon(t)=\mathrm{c}_{2} \mathrm{t}^{2}+\mathrm{c}_{1} \mathrm{t}$. Inserting $\dot{\varepsilon}(\mathrm{t})=2 \mathrm{c}_{2} \mathrm{t}$ into equation (1a) with $\sigma(0)=0$ and

$$
\begin{aligned}
& \int x e^{c x} d x=e^{c x} \frac{c x-1}{c^{2}}:^{15} \\
& \sigma(t)=K \int_{0}^{t} \dot{\varepsilon}(\tau) \exp \left(\frac{K}{D}(\tau-t)\right) d \tau=2 c_{2} K \exp \left(-\frac{K}{D} t\right)_{0}^{t} \tau \exp \left(\frac{K}{D} \tau\right) d \tau \\
& \\
& =2 c_{2} K \exp \left(-\frac{K}{D} t\right)\left\{\exp \left(\frac{K}{D} \tau\right) \frac{\frac{K}{D} \tau-1}{\left(\frac{K}{D}\right)^{2}}\right\}_{0}^{t}=2 c_{2} K \exp \left(-\frac{K}{D} t\right)\left\{\exp \left(\frac{K}{D} t\right) \frac{\frac{K}{D} t-1}{\left(\frac{K}{D}\right)^{2}}+\frac{1}{\left(\frac{K}{D}\right)^{2}}\right\} \\
& \\
& =2 c_{2} \frac{D^{2}}{K}\left\{\frac{K}{D} t-1+\exp \left(-\frac{K}{D} t\right)\right\} \xrightarrow[t \rightarrow \infty]{\longrightarrow} 2 c_{2} D\left(t-\frac{D}{K}\right)
\end{aligned}
$$

SI10: Overview of parameters in experiments B and C

Table SI10-1 provides an overview of the parameters which result from the set of stress and strain explicit experiments B and C. They can be understood as a repetition of the 1959-2015 Case 0 experiment (see A. 1 in the Results section), but with the difference that now upstream emissions as of 1900 (B) or 1850 (C), respectively, are considered; thus allowing initial conditions for 1959 other than zero as in the Case 0 experiment to be taken into account:

Case 0: 1959-2015
B: 1900-1958 (upstream emissions), 1959-2015
C: \quad 1850-1958 (upstream emissions), 1959-2015.
The experiments are ordered consecutively in term of time. By way of contrast, Table SI10-2 comprises the parameters of the three 1959-2015 periods in the form of min-max intervals. Except for the exponential growth factor α, these intervals are dominated by Case 0 and B (1959-2015) parameters (as shown by the background color of the cells); mirroring the fact that we had difficulties with describing the entire upstream period 1850-1958 by means of a single exponential growth factor $\left(0.0151 \mathrm{y}^{-1}\right)$.

Nonetheless, Table SI10-2 allows drawing a number of robust results:

- The compression modulus K increased between 1850 and 1959-2015 from ~ 2 to $10-13 \mathrm{~Pa}$ (the atmosphere became less compressible);
- while the damping constant D decreased between 1850 and 1959-2015 from ~468 to 459-462 Pa y (the uptake of carbon by land and oceans became less viscous);
- with the consequence that the ratio $\lambda=\mathrm{K} / \mathrm{D}$ increased between 1850 and 1959-2015 from $\sim 0.004-0.005 \mathrm{y}^{-1}$ to $0.021-0.028 \mathrm{y}^{-1}$ (i.e., by a factor of 4 to 6).
- Delay time T_{∞} decreased (hence persistence P_{∞} increased) between 1850 and 19592015 from $\sim 51(\sim 0.02)$ to $18-21(0.047-0.055)$ on the dimensionless timescale;
- while memory M_{∞} decreased between 1850 and 1959-2015 from ~ 52 to 19-22 on the dimensionless timescale.

Tab. SI10-1: Overview of parameters in experiments B and C.

Parameters		Case 0	B		C	
		1959-2015	1900-1958	1959-2015	1850-1958	1959-2015
		stress explicit				
$\sigma(0)$	Pa	0	0	5.8	0	7.8
K	Pa	9.9	2.4	12.7	2.1	11.6
D	Pa y	461.5	467.7	459.2	467.9	460.1
$\lambda^{\text {a,b }}$	y^{-1}	0.0214	0.0051	0.0276	0.0045	0.0253
λ^{-1}	y	46.8	196.3	36.3	223.5	39.6
$\alpha^{\text {a }}$	y^{-1}	0.0247	0.0228	0.0262	0.0151	0.0281
β	1	2.158	5.475	1.951	4.371	2.112
$\lambda_{\beta}{ }^{\text {a }}$	y^{-1}	0.0461	0.0279	0.0538	0.0196	0.0533
$\lambda_{\beta}{ }^{-1}$	y	21.7	35.9	18.6	51.1	18.7
q_{β}	1	0.9549	0.9725	0.9476	0.9806	0.9481
T_{∞}	1	21.2	35.4	18.1	50.6	18.3
$\begin{aligned} & \mathbf{M}_{\infty} \\ & =\mathbf{T}_{\infty} / \mathbf{q}_{\beta} \end{aligned}$	1	22.2	36.4	19.1	51.6	19.3
$\begin{aligned} & P_{\infty} \\ & =1 / T_{\infty} \end{aligned}$	1	0.0472	0.0283	0.0553	0.0197	0.0548
$\lambda / \lambda_{\beta}=1 / \beta$	\%	46.3	18.3	51.3	22.9	47.3
SUMXMY2	Pa^{2}	1.400	1.399	21.000	1.100	60.902
		strain explicit				
$\varepsilon(0)$	1	0	0	2.5	0	4.3
$\alpha^{\text {a }}$	y^{-1}	0.0247	0.0214	0.0257	0.0162	0.0270

[^0]Tab. SI10-2: Like Table SI10-1; with the difference that Table SI10-2 comprises the parameters of the three 1959-2015 periods in terms of min-max intervals. The background colors of the cells in Table SI10-1 are preserved.

Acronyms and Nomenclature (used in Ms No. esd-2021-27 and in this SI)

ad adiabatic

C carbon
comb combined
CO_{2} carbon dioxide (chemical formula)
CO_{2} atmospheric CO_{2} concentration (in ppmv; parameter)
D damping constant (in Pay)
DIC dissolved inorganic carbon (in $\mu \mathrm{mol} \mathrm{kg}^{-1}$)
E Young's modulus (in Pa)
GHG greenhouse gas
$\mathrm{h} \quad$ altitude (in m)
it isothermal
K compression modulus (in Pa)
L land (index)
L leaf-level factor (in ppmv ${ }^{-1}$; parameter)
M memory (in units of 1)
MB Maxwell body
n.a. not assessable

NPP net primary productivity (in $\operatorname{PgC} \mathrm{y}^{-1}$)
O oceans
$\mathrm{p} \quad$ atmospheric pressure (in hPa)
pCO_{2} partial pressure of atmospheric CO_{2} (in $\mu \mathrm{atm}$)
$\mathrm{P} \quad$ persistence (in units of 1)
$\mathrm{Ph} \quad$ global photosynthetic carbon influx (in $\mathrm{PgC} \mathrm{y}^{-1}$)
$\mathrm{q} \quad$ auxiliary quantity (in units of 1)
red reduced
R Revelle (buffer) factor (in units of 1)
SD supplementary data
SE sensitivity experiment
SI supplementary information
$\mathrm{t} \quad$ time (in y)
T delay time (in units of 1)
TOA top of the atmosphere
w weight(ed)
$\alpha \quad$ exponential growth factor of the strain (in y^{-1})
$\alpha_{\mathrm{ppm}} \quad$ exponential growth factor of the atmospheric CO_{2} concentration (in y^{-1})
$\beta \quad$ auxiliary quantity (in units of 1)
$\beta_{\mathrm{b}} \quad$ biotic growth factor (in units of 1)
$\beta_{\mathrm{Ph}} \quad$ photosynthetic beta factor (in units of 1)
$\varepsilon \quad$ strain (referring to atmospheric expansion by volume and CO_{2} uptake by sinks; in units of 1)
$\gamma \quad$ isentropic coefficient of expansion (in units of 1)
$\kappa \quad$ compressibility (in Pa^{-1})
$\sigma \quad$ stress (atmospheric CO_{2} emissions from fossil fuel burning and land use; in Pa)

References

1. Wikibooks. Formelsammlung Mathematik: Endliche Reihen. Sektion 10: Partialsummen der geometrischen Reihe. https://de.wikibooks.org/wiki/Formelsammlung_Mathematik:_Endliche_Reihen\#Partialsummen_der _geometrischen_Reihe (last edit 24 November 2019; last access 6 November 2020)
2. 2 Degrees Institute. Sechelt BC, Canada. Data sources: https://www.co2levels.org/\#sources; global atmospheric concentrations of carbon dioxide over time: https://www.epa.gov/sites/production/ files/2016-08/ghg-concentrations_fig-1.csv (last web update April 2016)
3. National Oceanic and Atmospheric Administration. Silver Springs MD, United States of America. Global Monitoring Laboratory: https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html; Mouna Loa CO_{2} annual mean data: $\mathrm{ftp}: / / a \mathrm{ftp} . \mathrm{cmdl}$. noaa.gov/products/trends/co2/co2_gr_mlo.txt (file creation 5 February 2020)
4. Global Carbon Project. Carbon budget and trends 2019. (Published on 4 December 2019, along with other original peer-reviewed papers and data sources). Data: http://www.globalcarbonproject.org/ carbonbudget/archive/2016/Global_Carbon_Budget_2016v1.0.xlsx (see Worksheet Historical Budget for data prior to 1958; Worksheet Fossil Emissions by Fuel Type, and Worksheet Land-Use Change Emissions for data from 1959 to 2015)
5. O’Sullivan, M., Spracklen, D. V., Batterman, S. A., Arnold, S. R., Gloor, M. \& Buermann, W. Have synergies between nitrogen deposition and atmospheric CO_{2} driven the recent enhancement of the terrestrial carbon sink? Global Biogeochem. Cycles 33, 163-180 (2019). https://doi.org/10.1029/2018GB005922; research data repository: http://archive.researchdata.leeds.ac.uk/482/
6. Bates, N. R., Astor, Y. M., Church, M. J., Currie, K., Dore, J. E., González-Dávila, M., Lorenzoni, L., MullerKarger, F., Olafsson, J. \& Santana-Casiano, J. M. A Time-series view of changing ocean chemistry due to ocean uptake of anthropogenic CO_{2} and ocean acidification. Oceanography 27, 126-141 (2014). https://doi.org/10.5670/oceanog.2014.16; supporting online material: https://tos.org/oceanography/assets/ images/content/27-1_bates_supplement.pdf
7. CDIAC. Carbon Dioxide Information Analysis Center - Conversion Tables. https://cdiac.essdive.lbl.gov/pns/convert.html (last edit 26 September 2012; last access 10 November 2020)
8. Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R. B., Piao, S. \& Thornton, P. Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis. (eds Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. \& Midgley, P. M.) 465570 (Cambridge University Press, 2013). http://www.climatechange2013.org/images/report/WG1AR5 Chapter06_FINAL.pdf
9. Silberberg, Martin S. (2009). Chemistry: The Molecular Nature of Matter and Change (McGraw-Hill, 2009). (Background source to https://en.wikipedia.org/wiki/Dalton\'s law)
10. Luo, Y. \& Mooney, H. A. Stimulation of global photosynthetic carbon influx by an increase in atmospheric carbon dioxide concentration. In: Carbon Dioxide and Terrestrial Ecosystems. (eds Koch, G. W. \& Mooney, H. A.) 381-397 (Academic Press, 1996).
11. Wark, K. Thermodynamics (McGraw2Hill, 1983) (Background source to http://homepages.wmich.edu/ ~cho/ME432/Appendix1_SIunits.pdf; cf. also https://en.wikipedia.org/wiki/Heat_capacity_ratio)
12. Lackner, B. C., Steiner, A. K., Hegerl. G. C. \& Kirchengast, G. Atmospheric climate change detection by radio occultation using a fingerprinting method. J. Climate 24, 5275-5291 (2011). https://doi.org/10.1175/ 2011JCLI3966.1
13. Steiner, A. K., Lackner, B. C., Ladstädter, F., Scherllin-Pirscher, B., Foelsche, U. \& Kirchengast, G. GPS radio occultation for climate monitoring and change detection. Radio Sci. 46, RS0D24 (17pp) (2011). https://doi.org/10.1029/2010RS004614
14. Cavcar, M. The international standard atmosphere (ISA). Anadolu University, Turkey (7pp) (2000). http://fisicaatmo.at.fcen.uba.ar/practicas/ISAweb.pdf
15. Wikipedia. List of integrals of exponential functions. https://en.wikipedia.org/wiki/List of integrals of exponential_functions (last edit 14 Octber 2020; last access 07 December 2020)

[^0]: ${ }^{\text {a }}$ Given in y^{-1}.
 ${ }^{\mathrm{b}}$ Derived for K and D deviating from their respective mean values equally in relative terms.

