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Abstract
Immune checkpoint inhibitors (ICIs) have demonstrated significant clinical impact in improving overall survival of several 
malignancies associated with poor outcomes; however, only 20–40% of patients will show long-lasting survival. Further 
clarification of factors related to treatment response can support improvements in clinical outcome and guide the development 
of novel immune checkpoint therapies. In this article, we have provided an overview of the pharmacokinetic (PK) aspects 
related to current ICIs, which include target-mediated drug disposition and time-varying drug clearance. In response to the 
variation in treatment exposure of ICIs and the significant healthcare costs associated with these agents, arguments for both 
dose individualization and generalization are provided. We address important issues related to the efficacy and safety, the 
pharmacodynamics (PD), of ICIs, including exposure–response relationships related to clinical outcome. The unique PK and 
PD aspects of ICIs give rise to issues of confounding and suboptimal surrogate endpoints that complicate interpretation of 
exposure–response analysis. Biomarkers to identify patients benefiting from treatment with ICIs have been brought forward. 
However, validated biomarkers to monitor treatment response are currently lacking.
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Key Points 

The pharmacokinetics (PK) of immune checkpoint 
inhibitors (ICIs) are subject to target-mediated drug 
position and time-varying drug clearance. Moderate to 
high interindividual variability in PK can currently be 
explained, only to some extent, by differences in patient-
specific characteristics.

Surrogate clinical endpoints for ICIs lack predictive 
value for overall survival.

Novel immune activation biomarkers are of relevance to 
further optimize treatment and trial designs with respect 
to the PK and pharmacodynamics of ICIs.
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1  Introduction

Immune checkpoint inhibitors (ICIs) have greatly improved 
the prognosis of melanoma, nonsmall cell lung cancer 
(NSCLC), urothelial carcinoma and a variety of other malig-
nancies [1–4]. At present, six ICIs have been approved by 
the US Food and Drug Administration (FDA), of which five 
ICIs also received market authorization by the European 
Medicines Agency (EMA).

Immune checkpoints comprise a group of regulatory sur-
face proteins that are entrenched within the immune sys-
tem and are crucial to prevent autoimmune responses [5]. 
ICIs target these immune checkpoints in order to stimulate 
T-cell-mediated killing of tumor cells (Fig. 1) [6]. Current 
immune checkpoints targeted by ICIs include cytotoxic 
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T-lymphocyte-associated antigen 4 (CTLA-4), the pro-
grammed death 1 (PD-1) receptor and the programmed cell 
death-ligand 1 (PD-L1) [5, 7]. In addition to these proteins, 
other co-stimulatory and co-inhibitory receptors are being 
targeted in clinical trials, such as GITR, OX40, 4-1BB, 
LAG-3 and TIM-3 [8]. In the current review, we focus only 
on those ICIs that received regulatory approval.

Although ICIs play a crucial role in the treatment of vari-
ous malignancies, limited attention has been attributed to 
treatment optimization and individualization of ICIs. Vari-
ation in both exposure and individual response may allow to 

further optimize these treatments in individual patients and 
to address the significant healthcare costs associated with 
these agents [9]. To this aim, understanding the pharmacoki-
netic (PK) and pharmacokinetic-pharmacodynamic (PKPD) 
properties in terms of efficacy and safety of ICIs is essential.

Despite their different mechanisms of action, ICIs are 
mostly humanized or human immunoglobulin (Ig) G1 
antibodies (except anti PD-1, which  are IgG4) displaying 
approximately the same PK properties as other therapeu-
tic monoclonal antibodies (mAbs), which includes little or 
no impact of renal and liver function impairment, limited 
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Fig. 1   Molecular targets of ICIs. Tumor cells have the capacity to 
override the host immune system and hamper antitumor reaction. 
One means by which this occurs is by dampening T-cell response. 
Inhibition of T-cells can transpire at various stages of their antitumor 
response and arises upon activation of suppressor surface receptors 
by their respective ligands [114]. ICIs have been tailored to antago-
nize this reaction by binding to inhibitory proteins involved in the 
supression of antitumor reactions, thereby liberating the host immune 
reaction against tumor cells. Priming phase: In the priming phase, 
naïve T cells in the lymphoid organs become exposed to tumor-spe-
cific antigens, resulting in the differentiation of naïve T cells into 
effector T cells (e.g. Treg, cytotoxic T cells and helper T cells). This 
represents the initial step of an adaptive reaction against tumor cells, 
which is supported by the co-stimulatory effect of the CD28 recep-
tor with CD80/86. The effect of CD28 becomes restrained in the 
presence of the CTLA-4 receptor, which holds a much higher affin-

ity for the CD80/86 ligands. CTLA-4-blocking antibodies hamper 
this constraint and restore the formation of effector T cells to gener-
ate an antitumor response. Moreover, anti-CTLA-4 antibodies might 
be involved in the depletion of CTLA-4 expressing Treg cells in the 
tumor microenvironment. Effector phase: In the effector phase, cyto-
toxic T cells in the tumor microenvironment eliminate tumor cells by 
means of cell-to-cell communication. This reaction becomes damp-
ened by the interactions between the PD-1 receptor on T cells and 
PD-L1, or, to a lesser degree, PD-L2, proteins on the surface of tumor 
cells and host myeloid cells (i.e. macrophages) in the tumor microen-
vironment [115]. Antagonism of PD-1 or PD-L1 by ICIs maintains 
T-cell effect and reinstates T-cell response against tumor cells. APC 
antigen-presenting cell, MHC major histocompatibility complex, TCR 
T-cell receptor, CD80/86 cluster of differentiation 80/86, Treg regu-
latory T cell, ICIs immune checkpoint inhibitors, PD-1 programmed 
death 1, PD-L1 programmed death-ligand 1
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diffusion out of the vascular space, a long half-life and 
receptor-mediated clearance with a combined linear plus 
nonlinear phase [10]. Consequently, the PK and inter- and 
intrapatient variability with ICIs can be mediated through 
the synthesis of anti-mAb, tumor burden effects, changes in 
proteolytic function and genetic polymorphisms affecting 
the neonatal Fc receptor (FcRn).

As all ICIs have only recently been approved, only limited 
data are available regarding the PK/PD relationships of ICIs. 
Most knowledge is based on registration trials performed in 
selected patient cohorts. After the first mAbs (e.g. bevaci-
zumab, trastuzumab, cetuximab) were approved in oncol-
ogy, it has taken years of clinical practice to understand that 
PK considerations could be of equal relevance as somatic 
biomarkers to predict clinical outcome [11, 12]. For ICIs, 
knowledge of the exposure–response relationships and how 
they can be anticipated/predicted by available biomarkers 
can support treatment improvement and patient selection. 
In addition, characterization of the sources of difference 
between ICIs and the relevance of different surrogate end-
points in clinical trials could improve the development of 
future compounds. To this end, the current review provides 
a comprehensive overview of the clinical PK and PD of cur-
rently approved ICIs.

2 � Immune Checkpoint Inhibitors (ICIs)

2.1 � Ipilimumab

Ipilimumab (Yervoy®) is a human IgG1 mAb against 
CTLA-4 (Table 1). The compound is approved for the treat-
ment of (unresectable) metastatic melanoma and is admin-
istered as four 90-min infusions consisting of a 3 mg/kg 
dose each, once every 3 weeks. Additionally, ipilimumab is 
administered in combination with nivolumab in renal cell 
carcinoma, microsatellite instability-high (MSI-H) or mis-
match repair deficient (dMMR) colorectal cancer, as four 
30-min infusions consisting of 1 mg/kg each.

2.1.1 � Pharmacokinetics

Ipilimumab clearance is linear over the dose range of 
0.3–10 mg/kg and averages at 0.36 L/day (normalized to a 
80-kg body weight), with an interindividual variability (IIV) 
of 35.4% (Table 2) [13]. Factors that are related to clear-
ance are body weight and baseline lactate dehydrogenase 
(LDH) levels, which, on average, account for only 24% of 
the variability in clearance [13]. Of note, the actual impact 
of LDH on ipilimumab clearance can be questioned because 
high LDH levels are usually associated with poor clinical 
outcome in patients with cancer. Consequently, several con-
founding factors and comorbidities, such as cachexia and 

hypoalbuminemia, frequently observed in patients with pro-
gressive disease can impact on the clearance of therapeutic 
mAbs, as reported elsewhere [14]. The presence of antidrug 
antibodies (ADAs) was associated with an average increase 
in ipilimumab clearance of 22% [13], although only 5% of 
patients developed ADAs and their presence was often tem-
porary. The average half-life of ipilimumab is estimated at 
14.7 days, with steady state reached after 9 weeks [13]. Cur-
rently, ipilimumab is the only ICI where time-varying clear-
ance has not been observed. The central and peripheral dis-
tribution volumes were estimated at 4.15 L (IIV 14.9%) and 
3.11 L, respectively (normalized to a 80-kg body weight) 
[13]. For the central compartment, body weight accounted 
for 52% of the IIV [13].

2.1.2 � Exposure–Efficacy Relationship

Three studies investigated the effect between ipili-
mumab exposure and clinical outcomes for melanoma 
(NCT00135408, NCT00289627, and NCT00289640) 
(Table 3) [15]. In these studies, a total of 419 participants 
received ipilimumab at doses of 0.3, 1, 3 or 10 mg/kg. Clini-
cal efficacy endpoints were objective response rate (ORR) 
[partial tumor response (PTR) or complete tumor response 
(CTR), according to the Response Evaluation Criteria in 
Solid Tumors version 1.1 (RECIST v1.1)], immune-related 
response criteria (irRC) and overall survival (OS). The anal-
ysis revealed that in comparison to dose, exposure is a more 
accurate predictor for OS [15]. Minimum concentration at 
steady state (Cmin,ss) was a significant predictor of all efficacy 
endpoints, as defined by ORR, irRC and OS, with a stronger 
correlation between Cmin,ss and irRC in comparison to Cmin,ss 
and ORR [15]. Ipilimumab dose was less closely, but also 
significantly, associated with OS [15].

2.1.3 � Exposure–Safety Relationship

In 14 completed ipilimumab trials (n = 1498), 25.3% of 
patients developed one form of treatment-related grade 3–4 
adverse events (AEs) [16]. Treatment-related deaths were 
reported for 0.9% of patients [16]. Another analysis includ-
ing 22 ipilimumab trials (n = 1265) reported severe grade 
of immune-related AEs (irAEs). These represent a group 
of adverse effects that arise from immune system activa-
tion, including skin inflammation (pruritis, rash), gastro-
intestinal organs (hepatitis, colitis) and endocrine tissues 
(hypophysitis, thyroiditis) [4]. IrAEs were found in 17% 
and 31% of patients at ipilimumab doses of 3 and 10 mg/kg, 
respectively [17]. The most prevalent adverse effects were 
gastrointestinal (5–14%), endocrine (1–4%), dermatological 
(1–2%) and hepatic (0–1%) irAEs (at 3 mg/kg) [17]. Death 
related to irAEs was reported for a total of 0.86% of par-
ticipants, most often due to colic bowel perforation [17]. 
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Table 1   Summary of approved immune checkpoint inhibitors (as of April 2018)

Generic name 
(receptor target)

Marketing-authori-
zation holder

Therapeutic indica-
tion

Date of authoriza-
tion (FDA/EMA)

Recommended dose 
(FDA)

Recommended dose 
(EMA)

References

Ipilimumab (CTLA-
4)

Bristol-Myers 
Squibb

Melanoma March 2011/July 
2011

Metastatic: 3 mg/
kg; 3-weekly (four 
doses)

Adjuvant: 10 mg/
kg; 3-weekly (four 
doses); followed 
by 12-weekly

3 mg/kg; 3-weekly 
(four doses)

[48]

Renal cell carci-
noma

April 2018/Novem-
ber 2018

1 mg/kg; 3-weekly 
(four doses)

[48]

Microsatellite 
instability-high or 
mismatch repair-
deficient cancer 
Colorectal cancer

November 2018/– 1 mg/kg; 3-weekly 
(four doses)

[48]

Atezolizumab (PD-
L1)

Genentech/Roche Urothelial carci-
noma

May 2016/Septem-
ber 2017

1200 mg; 3-weekly 1200 mg; 3-weekly [49]

Nonsmall cell lung 
cancer

October 2016/Sep-
tember 2017

1200 mg; 3-weekly 1200 mg; 3-weekly [49]

Avelumab (PD-L1) Merck Serono Merkel cell carci-
noma

March 2017/condi-
tional approval

10 mg/kg; 2-weekly 10 mg/kg; 2-weekly [21]

Urothelial carci-
noma

May 2017/– 10 mg/kg; 2-weekly [21]

Durvalumab (PD-
L1)

AstraZeneca Urothelial carci-
noma

May 2017/– 10 mg/kg; 2-weekly [27]

Nonsmall cell lung 
cancer

February 2018/– 10 mg/kg; 2-weekly [27]

Nivolumab (PD-1) Bristol-Myers 
Squibb

Melanoma December 2014/
June 2015

240 mg; 
2-weekly/480 mg; 
4-weekly

3 mg/kg; 2-weekly [31]

Nonsmall cell lung 
cancer

October 2015/Octo-
ber 2015

240 mg; 
2-weekly/480 mg; 
4-weekly

3 mg/kg; 2-weekly [31]

Renal cell carci-
noma

November 2015/
February 2016

240 mg; 
2-weekly/480 mg; 
4-weekly

3 mg/kg; 2-weekly [31]

Classic Hodgkin 
lymphoma

May 2016/October 
2016

240 mg; 
2-weekly/480 mg; 
4-weekly

3 mg/kg; 2-weekly [31]

Squamous cell 
cancer of the head 
and neck

November 2016/
March 2017

240 mg; 
2-weekly/480 mg; 
4-weekly

3 mg/kg; 2-weekly [31]

Urothelial carci-
noma

February 2017/– 240 mg; 
2-weekly/480 mg; 
4-weekly

[31]

Microsatellite 
instability-high or 
mismatch repair-
deficient cancer 
Colorectal Cancer

August 2017/– 240 mg; 2-weekly [31]

Hepatocellular 
carcinoma

September 2017/– 240 mg; 
2-weekly/480 mg; 
4-weekly

[31]

Pembrolizumab 
(PD-1)

Merck Melanoma September 2014/
July 2015

200 mg; 3-weekly 2 mg/kg; 3-weekly [38]
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In an exposure–safety analysis that included four studies 
(n = 498; NCT00261365, NCT00135408, NCT00289627, 
and NCT00289640) (Table 4), Cmin,ss was identified as a 
significant predictor for irAEs [15].

2.2 � Atezolizumab

Atezolizumab (Tecentriq®) is a fully humanized IgG1 mAb 
that binds to PD-L1 and is currently approved for the treat-
ment of NSCLC and urothelial carcinoma, with a PD-L1 
expression > 5% (Table 1). Atezolizumab is administered as 
a 1200 mg dose every 3 weeks, initially as a 60-min intra-
venous infusion, leading to a mean trough concentration at 
steady state (Css,trough) above the 6 μg/mL target serum con-
centration in phase I and II trials. If the infusion is tolerated, 
the drug can become administered as a 30-min infusion for 
the following treatment cycles.

2.2.1 � Pharmacokinetics

Atezolizumab clearance has been found to be linear over a 
dose range of 1–20 mg/kg (n = 428 patients), including the 
1200 mg flat dose (n = 45) (Table 2). The typical clearance 
is 0.200 L/day (normalized to a 77-kg body weight), with 
an IIV of 29% [18]. Patient-specific factors could predict up 
to 15% of the IIV [18] and included serum albumin concen-
tration, post-baseline ADA status, body weight and tumor 
burden. Interestingly, atezolizumab clearance was found to 
be decreased over time in a subgroup of patients, giving 
rise to higher exposures at later treatment. However, this 
was not investigated in PK analysis and therefore no clear 
data regarding the degree of changes in clearance, or the 
factors related to this phenomenon, are available [19]. The 
development of post-baseline ADAs increased clearance by 

16% on average, with 16.7–41.9% of patients developing 
ADAs among the reported trials [18]. The average half-life 
of atezolizumab is estimated at 27 days, with steady-state 
concentrations reached after 6–9 weeks [18]. The central and 
peripheral distribution volumes of atezolizumab have been 
estimated at 3.28 L and 3.63 L (normalized to a 77-kg body 
weight), respectively [18]. IIV was estimated at 18% for the 
central compartment, of which only 5% could be explained 
by variation in patient-specific characteristics [18].

2.2.2 � Exposure–Efficacy Relationship

The relationship between atezolizumab exposure and efficacy 
in urothelial carcinoma was evaluated for 306 participants in 
the IMvigor210 study (NCT02108652) (Table 3) [18]. Par-
ticipants received atezolizumab as a fixed dose of 1200 mg 
every 3 weeks for treatment of locally advanced or metastatic 
urothelial bladder cancer. The primary efficacy measure was 
the percentage of participants with PTR or CTR, according to 
RECIST v1.1. The analysis did not identify a significant expo-
sure–efficacy relationship, with respect to area under the con-
centration-time curve (AUC) from time zero to 21 h (AUC​21), 
AUC at steady state (AUC​ss), maximum concentration (Cmax) 
and Cmin, at various cycles of the treatment. Conversely, an 
exposure–efficacy analysis for NSCLC was evaluated for 653 
individuals in the BIRCH study (NCT02031458) and identi-
fied a positive relationship between AUC​ss and ORR [19].

2.2.3 � Exposure–Safety Relationship

A total of 16% of participants suffered from at least one 
grade 3 or 4 treatment-related AE, with the most prevalent 
AE being fatigue (3.4%), increased alanine aminotransferase 
(3.4%), and increased aspartate aminotransferase (2.5%) [18, 

FDA Food and Drug Administration, EMA European Medicines Agency, PD-L1 programmed death-ligand 1, PD-1 programmed death-1

Table 1   (continued)

Generic name 
(receptor target)

Marketing-authori-
zation holder

Therapeutic indica-
tion

Date of authoriza-
tion (FDA/EMA)

Recommended dose 
(FDA)

Recommended dose 
(EMA)

References

Nonsmall cell lung 
cancer

October 2015/
December 2016

200 mg; 3-weekly 200 mg; 
3-weekly/2 mg/
kg; 3-weekly

[38]

Squamous cell 
cancer of the head 
and neck

August 2016/– 200 mg; 3-weekly [38]

Classical Hodgkin 
lymphoma

March 2017/March 
2017

200 mg; 3-weekly 200 mg; 3-weekly [38]

Urothelial carci-
noma

May 2017/July 2017 200 mg; 3-weekly 200 mg; 3-weekly [38]

Microsatellite 
instability-high 
cancer

May 2017/– 200 mg; 3-weekly [38]

Gastric cancer September 2017/– 200 mg; 3-weekly [38]
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20]. One treatment-related death occurred (0.84%) due to 
sepsis. An exposure–safety analysis was performed with 
pooled data (n = 513) from the IMvigor210 and PCD4989 g 
studies (NCT02108652 and NCT01375842) (Table 4) [18] 
for exposure metrics AUC​21, AUC​ss, Cmax and Cmin. Safety 
endpoints were grade 3–5 AEs, according to the Common 
Terminology Criteria for Adverse Events (CTCAE). How-
ever, no significant correlation between exposure and safety 
was identified. Additionally, an exposure–safety analysis was 
performed in 1007 individuals from the PCD4989g, BIRCH, 
FIR and POPLAR studies. The initial results demonstrated a 
positive relationship between AUC​ss and both AEs of special 
interest (AESI) and AEs of grade 3 or higher; however, as 
in the efficacy analysis, these results are likely biased [19].

2.3 � Avelumab

Avelumab (Bavencio®) is a human IgG1 mAb targeting 
PD-L1. Avelumab is approved for the treatment of Merkel 
cell and urothelial carcinoma [21]. The recommended dose 
is 10 mg/kg, administered every 3 weeks as a 60-min intra-
venous infusion, based on the ability to sustain the target 
Css,trough of ≥ 1 ug/mL associated with an ex vivo target occu-
pancy > 90%. Because of the unmodified IgG1 component, 
avelumab is capable of antibody-dependent cell cytotoxicity 
by binding to the Fcy receptor on natural killer (NK) cells.

2.3.1 � Pharmacokinetics

The typical clearance of avelumab is 0.59 L/day (IIV 25%), 
which is linear over the evaluated dose range of 1–20 mg/
kg [22]. Factors that affect variability in clearance are albu-
min concentration, body weight, sex and tumor burden. 
Avelumab exhibits time-varying clearance, i.e. change in 
clearance since the start of treatment, dependent on tumor 
type as well as response to therapy, with an average decline 
of − 3.1% over a period over 6 months [22]. Here, respond-
ers with Merkel cell carcinoma and other solid tumor types 
experience a larger decline in clearance (mean maximum 
reduction of 41.7% and 24.1%, respectively) compared with 
those with other tumor types [22]. Post-baseline ADAs were 
detected in 4.1% of patients, and were associated with an 
average increase in clearance of 10–15% [22, 23]. The half-
life of avelumab is estimated at 6 days (IIV 91.5%), with 
steady state reached after 4–6 weeks [22]. The central and 
peripheral distribution volumes of avelumab are estimated at 
2.83 L (IIV 18.3%) and 1.7 L (IIV 1.05%), respectively [22]. 
Factors that influence the volume of the central compart-
ment are body weight and sex, but these are not considered 
clinically relevant.
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2.3.2 � Exposure–Efficacy Relationship

Exposure–efficacy analysis was described for Merkel cell 
carcinoma (NCT02155647) (Table 3) [22]. Patients (n = 88) 
received avelumab at doses of 10 mg/kg once every 2 weeks. 
Clinical efficacy endpoints were progression-free survival 
(PFS), OS and ORR. ORR was defined as the best CTR or 
PTR response (RECIST v1.1).

Several significant exposure–efficacy relationships were 
identified. AUC​ss was found to be associated with PFS and 
OS [22], while Ctrough,ss was identified as a predictor for PFS, 
ORR (saturating exposure–response curve at 28 μg/mL) 
and OS. However, the potential interaction between tumor 
burden and clearance may have confounded the analysis 
with long-term steady-state PK metrics, such as AUC​ss and 
Ctrough,ss, since therapeutic response has been associated with 
a reduced clearance and higher drug exposure at later time 
points. In fact, evaluation of the relationship between the 
first-dose exposure metric Ctrough,first did not identify a cor-
relation with PFS and OS, and a relatively weak relationship 
was detected with ORR [22].

2.3.3 � Exposure–Safety Relationship

Five to 13% of individuals treated with avelumab devel-
oped grade 3–4 treatment-related AEs [24–26], including 
asthenia (2.3%), aminotransferase elevation (1–2.3%), blood 
cholesterol increase (1%), creatine phosphokinase elevation 
(1–2.3%), decreased appetite (2.3%), increased lipase level 
(2%), infusion-related reactions (2%) and lymphopenia (2%) 
[24–26]. There were no treatment-related deaths. An expo-
sure–safety analysis for avelumab was performed on pooled 
data (n = 1629 patients) of the JAVELIN Solid Tumor, 
Solid Tumor JPN, and Merkel 200 studies (NCT01772004, 
NCT01943461, and NCT02155647) (Table 4). Doses evalu-
ated ranged from 1 to 20 mg/kg [22]. The percentage of 
irAEs was used as an endpoint for clinical safety. Based 
on these criteria, a significant correlation was identified 
between Ctrough,ss and irAEs [22]. However, this might have 
been confounded by the interaction between tumor burden 
and clearance, which is further emphasized by the fact that 
no relationship was identified between Ctrough,first and irAEs 
[22].

Table 4   Exposure–safety analyses

AE adverse event, AE-D/DC adverse events leading to drug discontinuation or death, AESI adverse events of special interest, irAE immune-
related adverse events, TEAE treatment-emergent adverse events, Ctrough,ss trough concentration at steady state, Cmin,ss minimum concentration 
at steady state, AUC​21 area under the concentration–time curve from time zero to 21 h, AUC​SS area under the concentration–time curve at steady 
state, Cmax maximum concentration, Cmin minimum concentration, Ctrough,first trough plasma concentration after the first dose, Cmax,1 maximum 
plasma concentration after the first dose, Cmin,2 minimum plasma concentration after the second dose, Cavg1 time-averaged plasma concentration 
after the first dose

Generic 
name

No. of 
patients

Exposure 
measure

Dose range irAE AESI TEAE AE (grade 3 
or higher)

AE-D/DC References

Ipilimumab 498 Cmin,ss 0.3–10 mg/kg Positive 
relation-
ship

[15]

Atezoli-
zumab

513 AUC​21, 
AUC​ss, 
Cmax, Cmin

1–20 mg/
kg/1200 mg

No relation-
ship

No relation-
ship

[18]

1007 AUC​ss 15 mg/
kg/1200 mg

Positive 
relation-
ship

Positive 
relation-
ship

[19]

Avelumab 1629 AUC​ss, 
Ctrough,first, 
Ctrough,ss

1–20 mg/kg Ctrough,ss: 
positive 
relation-
ship

No relation-
ship

[22]

Durvalumab 1393 Cmax,1, 
Cmin,2, 
Cmin,ss

10 mg/kg No relation-
ship

No relation-
ship

[29]

Nivolumab 306 Dose 0.1–10.0 mg/
kg

No relation-
ship

No relation-
ship

[33]

336 Cavg1 0.1–10.0 mg/
kg

No relation-
ship

[34]

Pembroli-
zumab

544 AUC​
ss–6 weeks

2–10 mg/kg No relation-
ship

[44]

Dose 2–10 mg/kg No relation-
ship

[44]
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2.4 � Durvalumab

Durvalumab (Imfinzi®) is a human IgG1 mAb against 
PD-L1, approved as a second-line therapy for the treatment 
of NSCLC and urothelial carcinoma (Table 1) [27]. Dur-
valumab is administered every 2 weeks as a 60-min intra-
venous infusion at doses of 10 mg/kg, leading to a Css,trough 
of 50 μg/mL.

2.4.1 � Pharmacokinetics

Durvalumab displays nonlinear clearance at doses below 
3 mg/kg, and linear clearance at doses of 3 mg/kg or above 
(Table 2) [28]. The typical clearance is 0.232 L/day (IIV 
27%) [28]. Factors that affect clearance are post-baseline 
ADA status, serum albumin concentration, body weight, 
cancer type, creatinine clearance, Eastern Cooperative 
Oncology Group performance status (ECOG PS), sex and 
soluble PD-L1. Among these, albumin concentration has the 
largest impact on clearance (− 11%) [28]. In addition, clear-
ance was found to be time-dependent (maximum − 16.9%) 
over a period of 12 months [28]. The development of post-
baseline ADAs was detected in 3.3–4.4% of individuals and 
related to a maximum decrease in Ctrough,ss of 20% [28]. The 
average half-life of durvalumab is 21 days, with steady-state 
concentrations reached at approximately 16 weeks [28].

The central and peripheral volumes of distribution 
have been estimated at 3.51 L (IIV 20.9%) and 3.42 L 
(IIV 33.6%), respectively [28]. Body weight and sex were 
found to have a clinically significant effect on the volume 
of distribution.

2.4.2 � Exposure–Efficacy Relationship

The exposure–efficacy relationship of durvalumab was 
evaluated for urothelial carcinoma (n = 91 patients; 
NCT01693562) (Table 3) [29]. Clinical efficacy endpoints 
were best percentage change in target lesion and ORR 
(CTR or PTR, RECIST v1.1). No relationship was detected 
between Cmax (cycle 1), Cmin (cycle 2) and Cmin,ss, and 
efficacy.

2.4.3 � Exposure–Safety Relationship

Safety concerns related to durvalumab therapy were assessed 
in 191 patients (NCT01693562) [30]. Grade 3–4 treatment-
related AEs were reported for 6.8% of these participants 
[30]. Treatment-related death occurred in two individuals 
(1%) due to autoimmune hepatitis and pneumonitis.

The exposure–safety analysis was based on two clini-
cal trials (n = 1393) (NCT01693562 and NCT02087423) 
(Table 4) [29]. Participants received durvalumab at doses 

of 10 mg/kg. AEs (grades 3–5) and AEs leading to discon-
tinuation or death (AE-D/DC) were used as clinical safety 
endpoints. Based on these endpoints, an inverse relation-
ship was found between certain exposure metrics and AEs 
(grades 3–5). However, because of the limited dataset, and 
the potential confounding with other risk factors such as 
albumin levels and ECOG status, these results were not con-
sidered conclusive [29].

2.5 � Nivolumab

Nivolumab (Opdivo®) is a human IgG4 mAb against PD-1 
(Table 1). The drug is approved for the treatment of mela-
noma, NSCLC, renal cell carcinoma, Hodgkin lymphoma, 
squamous cell cancer of the head and neck (SCCHN), 
urothelial carcinoma, MSI-H or dMMR colorectal cancer 
and hepatocellular carcinoma [31]. The recommended dose 
is either 3 mg/kg, 240 mg or 480 mg, depending on tumor 
type and practical considerations, administered as a 30-min 
infusion once every 2 or 4 weeks (for the 480 mg flat dose). 
The initial 3 mg/kg dose led to a Css,trough that remained well 
above the ex vivo > 0.1 µg/mL target in phase I trials.

2.5.1 � Pharmacokinetics

Nivolumab clearance is linear over the evaluated dose range 
of 0.3–10 mg/kg (Table 2), with an average of 0.360 L/day 
(normalized to a 80-kg body weight) [IIV 35%] [32]. Clear-
ance is time-dependent and decreases over time (maximum 
− 24.5%) [32]. Patient-specific characteristics that influence 
clearance are baseline performance status, body weight, 
estimated glomerular filtration rate (eGFR), race and sex, 
which account for 30% of the variability in clearance [32]. 
The presence of post-baseline ADAs was found in 11.2% 
of individuals (26% in combination with ipilimumab) and 
increased clearance by 14% on average [31, 32]. The aver-
age half-life of nivolumab is 25 days (coefficient of variation 
77.5%), with steady-state reached by 12 weeks [31, 32]. The 
nivolumab central and peripheral volumes of distribution 
are 3.63 L (IIV 35%) and 2.78 L (IIV 35.1%), respectively 
(normalized to a 80-kg, White female) [32]. Population PK 
analysis found that body weight and sex account for 21% 
of the variation in volume of the central compartment [32].

2.5.2 � Exposure–Efficacy Relationship

Nivolumab dose–response and exposure–response analyses 
were performed in three distinct studies regarding melanoma 
(n = 107; n = 221), NSCLC (n = 129) and renal cell carci-
noma (n = 34) (NCT00730639 and NCT01721746) (Table 3) 
[33–35]. Participants received nivolumab at doses of 0.1, 
0.3, 1.0, 3.0, or 10.0 mg/kg. Clinical efficacy endpoints 
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were PFS, ORR (RECIST v1.1.), OS, tumor progression 
rate (TPR) and tumor shrinkage rate (TSR).

For melanoma, there was no apparent relationship 
between ORR (at 52–56 days) and dose. However, there 
was a correlation between clearance and ORR across 
dose levels [33]. With respect to the exposure metrics, 
Cmin,ss was found to correlate with ORR, with a plateau at 
doses ≥ 1 mg/kg. No relationship was established between 
the time-averaged concentration after the first dose (Cavg1) 
and ORR [34]. No apparent relationship was found between 
Cavg1 and OS, but survival was negatively associated with 
clearance [34]. Lastly, Cmin,ss was found to correlate with 
TPR, but not TSR, with a plateau at doses ≥ 3 mg/kg [33]. 
For NSCLC, ORR was higher at nivolumab doses of 3 and 
10 mg/kg compared with the 1 mg/kg dose (24.3%, 20.3% 
and 3%, respectively) [33]. Furthermore, a correlation was 
observed between Cmin,ss and ORR (at 52–56 days), which 
saturates at doses ≥ 3 mg/kg. Likewise, Cmin,ss was found to 
correlate to TPR, but not TSR, with a plateau at approxi-
mately ≥ 3 mg/kg. For renal cell carcinoma, significant 
relationships between Cmin,ss and TSR (at 52–56 days), and 
average concentration at steady state (Cavg,ss) and OS, were 
initially established [33, 35]. These correlations may have 
been overestimated due to the confounding element of time-
varying clearance giving rise to increased exposures at later 
time points [35].

2.5.3 � Exposure–Safety Relationship

Grade 3–4 treatment-related AEs were reported for 
22.4–24% of patients receiving nivolumab [36, 37], with the 
most common being lymphopenia (2.8%), diarrhea (1.9%), 
abdominal pain (1.9%), increased lipase (1%), increased 
alanine aminotransferase (1%), anemia (1%), and fatigue 
(1%) [36, 37]. Exposure–safety analysis was performed on 
data from 342 patients receiving nivolumab at doses ranging 
from 0.1 to 10 mg/kg (Table 4). AEs (grade 3–5) and AE-D/
DC were utilized as clinical safety endpoints. According to 
the analyses, dose is not a predictor for the occurrence of 
AEs (grade 3–5) [33]. In addition, time-averaged plasma 
concentration after the first dose (Cavg,1) is not related to 
AE-D/DC [34].

2.6 � Pembrolizumab

Pembrolizumab (Keytruda®) is a fully humanized IgG4 
mAb against the PD-1 antigen (Table 1). Pembrolizumab is 
approved for the treatment of melanoma, NSCLC, Hodgkin 
lymphoma, SCCHN, MSI-H or dMMR cancers, urothelial 
carcinoma and gastric cancer [38]. The recommended dose 
is either 2 mg/kg or 200 mg once every 3 weeks, adminis-
tered as a 30-min intravenous infusion.

2.6.1 � Pharmacokinetics

Pembrolizumab exhibits nonlinear clearance at doses below 
0.3 mg/kg, and linear clearance at doses of 0.3–10 mg/kg 
(Table 2) [39]. In addition, clearance displays time-depend-
ent decline (average 20–30%) over a period of 10 months, 
with a typical value of 0.168–0.249 L/day (IIV 30.7–38%) 
[39–41]. Factors that influence clearance are albumin and 
bilirubin concentration, cancer type, eGFR, ECOG-PS and 
sex, which together account for 32% of the variation [41]. 
The development of post-baseline ADAs was between 0.7 
and 2.5% among various trials [42]; however, the effect of 
ADAs on clearance was not evaluated [39–41]. The average 
half-life of pembrolizumab is in the range of 14–27.3 days, 
with steady state reached after approximately 18 weeks 
[39–41]. The typical central volume of distribution of 
pembrolizumab is estimated at a range of 2.88–3.48 L 
(IIV 19.6–21%) [39–41]. Factors that influence this value 
are albumin levels, body weight, sex and prior ipilimumab 
therapy; however, none of these factors is considered clini-
cally relevant.

2.6.2 � Exposure–Efficacy Relationship

Pembrolizumab exposure–response analysis was per-
formed for melanoma (n = 1366) and NSCLC (n = 496) 
[NCT01295827, NCT01704287 and NCT01866319) 
(Table 3) [43, 44]. The investigated doses were 2 and 10 mg/
kg [43, 44]. Efficacy was defined as a change from baseline 
in tumor size, of which a reduction of 30% or more was 
categorized as (complete) response according to RECIST 
v1.1. No significant relationship was established between 
pembrolizumab AUC over 6 weeks (AUC​ss–6weeks) and TSR 
or ORR, at 18 and 28 weeks [43, 44].

2.6.3 � Exposure–Safety Relationship

Grade 3–4 treatment-related AEs occurred in 0–11% of the 
individuals administered pembrolizumab at 2 mg/kg doses 
[44–46], with the most common being colitis (3.6%), pneu-
monitis (3.6%), cardiorespiratory arrest (1.8%), fatigue (1%), 
generalized oedema (1%) and myalgia (1%). In addition, one 
treatment-related death (2%) was reported, which may have 
been caused by prolonged prednisone administration after 
pembrolizumab-induced gastritis [44, 45].

The relationship between pembrolizumab exposure 
and safety was evaluated with data from 544 patients 
(NCT01295827) (Table 4) [44]. Patients received pembroli-
zumab at a dose of 2 or 10 mg/kg. Safety was defined by the 
incidence of irAEs. No statistically significant correlation 
between pembrolizumab AUC​ss–6weeks and irAEs (p = 0.57) 
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was found [44]. The incidence of irAEs was similar for the 2 
and 10 mg/kg dose, although a longer treatment duration was 
found to be a risk factor for the development of irAEs [44].

3 � Discussion

3.1 � Pharmacokinetics

3.1.1 � Linear and Nonlinear Clearance

Clearance of ICIs is governed by numerous physiological 
mechanisms, the predominant part of which is deemed to 
occur by nonspecific degradation within plasma and tissues 
(Fig. 2f) [47]. This aspecific route of degradation reduces 
the influence of age, hepatic impairment and renal failure on 

clearance, and thus minimizes the effect of these conditions 
on ICI exposure [21, 27, 31, 38, 48, 49].

Binding to the FcRn rescues mAbs from lysosomal deg-
radation and is considered the driving mechanism behind 
the extended half-lives of ICIs (t½ 6–27 days) (Fig. 2d) [47]. 
The reduced degradation of ICIs substantiates a prolonged 
tissue exposure and may therefore increase treatment effects 
without the necessity for frequent drug administration.

Target-mediated drug disposition (TMDD) provides an 
alternative route of elimination that consists of receptor-
mediated endocytosis and degradation (Fig. 2g) [10, 47]. 
TMDD encompasses the phenomena in which high-affinity 
drug–target interactions affect the PK properties of a drug, 
and is considered the main process behind nonlinear distri-
bution and elimination kinetics of mAbs. As TMDD depends 
on the number of ICI ligands, differences in target proteins 
can create differences in clearance patterns. A potential 
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Fig. 2   Pharmacokinetics of ICIs. After intravenous administration, 
ICIs are distributed and metabolized by various routes. Extensive 
binding to target antigens in the (a) plasma or on (c) tissues, reduces 
the amount of free ICIs and increases the volume of distribution. (b) 
Transvascular movement of unbound ICIs is principally governed by 
means of convection, the magnitude of which is limited by factors 
such as organ perfusion and endothelial permeability. Within tissues, 
ICIs become distributed by means of diffusion and convection. (d) 
The FcRn is responsible for the transport of ICIs back into the vascu-

lar system, preventing the intracellular degradation of these drugs and 
hence prolonging their half-life. (e) On the other hand, the generation 
of antibodies against ICIs increases clearance. (f) However, the domi-
nant mechanism of ICI clearance remains through proteolytic catabo-
lism, which occurs in both plasma and peripheral tissues. (g) Lastly, 
the high-affinity interaction between ICIs and surface receptors pre-
cipitates an additional clearance route, i.e. that of receptor-mediated 
endocytosis. ADAs antidrug antibodies,  ICIs immune checkpoint 
inhibitors, FcRn neonatal Fc receptor
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example of this concept can be witnessed between the PD-1 
receptor and PD-L1 ligand, wherein the latter target requires 
three to four times the amount of drug dosage (Table 1) 
because of differences in ligand expression. Saturation of 
TMDD occurs as the amount of mAbs exceeds the number 
of free targets, providing an explanation for nonlinear clear-
ance of durvalumab and pembrolizumab at doses of 3 and 
0.3 mg/kg, respectively. The absence of nonlinear clearance 
among other ICIs can be a result of confined dose range 
evaluation, which may not transverse the point of saturation, 
or due to the minor influence of TMDD on these compounds.

Clearance can also occur through humoral and cell-medi-
ated degradation pathways of the immune system (Fig. 2e). 
Formation of ADAs facilitates the uptake and endocytic deg-
radation of ICIs, which increases clearance. It is believed 
that the development of such ADAs is largely determined 
by mAb structure, with increasing immunogenicity seen for 
human (-umabs, 0–10%), humanized (-zumab, 0.4–18.5%) 
and chimeric (-ximab, 1–17%) antibodies in oncology [50]. 
In line with this assumption, the percentage of patients 
developing ADAs, as well as its impact on clearance, is 
considered limited in most ICIs, which are either human 
or humanized antibodies [13, 18, 29, 32]. Interestingly, 
the incidence of ADAs against nivolumab increased sub-
stantially (10–21.9%) in patients receiving concomitant 
ipilimumab therapy, which might be a reason for the 24% 
increase in nivolumab clearance witnessed under combina-
tional therapy [51]. This suggests that under combinational 
therapies, ADAs might have more significant consequences 
to the PK of ICIs in comparison to monotherapies. In addi-
tion, ADAs might influence treatment outcome outside the 
PK of their target compounds by, for instance, binding to 
their active moieties [50].

An additional route of endocytotic degradation might 
be facilitated by direct interaction between the Fc compo-
nent of ICIs and Fcγ receptors (FcγRs) on phagocytic cells 
of the immune system [47]. Recent preclinical data have 
shown that Fc isotype is an important determinant of FcγR-
mediated interaction, wherein the IgG1 subtype displays 
high affinity for FcyR in comparison to the IgG4 subtype 
[52]. However, with the exception of avelumab [22], the 
IgG1 Fc components of PD-L1 inhibitors have been tailored 
to be less vulnerable to this specific interaction. Absence of 
this modification might be the reason that avelumab displays 
a relatively short half-life when compared with other ICIs 
[53]. However, there is no substantial evidence to support 
the notion that FcyR has an effect on the PK of mAbs [54].

3.1.2 � Time‑Varying Clearance

With the exception of ipilimumab, ICIs exhibit time-varying 
clearance, i.e. a change in clearance over time after the start 
of treatment. This phenomenon has largely been attributed 

to disease status: clearance decreases when tumor burden 
declines; however, uncertainty exists as to what mechanism 
drives this interaction [32, 35, 40]. Cachexia, which marks 
a general state of catabolism, is often seen in patients with 
more invasive tumors. The condition is known to cause 
rapid degradation of proteins, including, potentially, ICIs, 
and ameliorates with improved disease status [55]. Dur-
valumab [28] and pembrolizumab [56] represent two very 
recent examples of time-varying clearance attributed to 
protein catabolism. However, cachexia-induced catabolism 
does not clarify the lack of time-varying clearance seen for 
ipilimumab.

More fitting is the explanation of TMDD, which hinges 
on the presence of cell surface targets. The availability of 
these targets, regardless of whether expressed on tumor cells 
or T cells reacting to tumor cells, is expected to correlate 
to disease status [57–60]. Improvement in tumor burden 
reduces the amount of available surface targets and hence 
limits the capacity of target-mediated degradation of ICIs. 
Ipilimumab is unique in the sense that the compound affects 
T cells within the priming phase, prior to extensive prolif-
eration, while anti-PD-1 compounds target these cells after 
proliferation (Fig. 1) [61, 62]. Moreover, ipilimumab tar-
gets a ligand that is primarily restricted to activated T cells, 
whereas PD-1 is expressed on a wide range of immune cells 
[62]. The absence of time variation in ipilimumab might 
thus be caused by the relatively low amount of target cells in 
comparison to other ICIs. In support of this supposition, no 
time-varying clearance has also been established for treme-
limumab, another mAb against CTLA-4 that is currently 
undergoing human trials for various cancers [63].

3.1.3 � Distribution

ICIs are largely confined to the vascular compart-
ment, as reflected by their limited volumes of distribu-
tion (Vss ≈ 4–7 L). Gradual distribution to the periphery 
(Q = 0.38–1.2 L/day) is presumptively capacitated by the 
process of convection (Fig. 2b), which is considered the 
dominant mechanism behind the distribution of mAbs from 
the blood to the interstitial compartment, and the occurrence 
of TMDD [10, 47]. Factors that influence target availability, 
such as cancer type and disease burden, can thus shape the 
PK of these compounds (Fig. 2a, c). Although this manifes-
tation is largely theoretical at this point, the distribution of 
avelumab is found to differ among cancer types [22].

3.1.4 � Therapeutic Drug Monitoring

Therapeutic drug monitoring (TDM) conveys the surveil-
lance of drug exposure and is advantageous for compounds 
that satisfy certain criteria. Among these criteria are (1) 
large IIV in exposure, with relatively low intraindividual 
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variation; (2) significant exposure–response relationship; 
(3) a narrow therapeutic window; and (4) availability of a 
validated bioanalytical assay [64].

Most PK studies performed during clinical trials are 
conducted in drastically selected patients. Consequently, 
the range of plasma exposures of ICIs in real-life patients 
treated with standard dosing may exceed that observed from 
registration trials and may therefore be underestimated. Esti-
mates of residual error reported for the six ICIs reviewed 
ranged from 16 to 27% [13, 18, 22, 29, 32, 41], indicating 
that the magnitude of intraindividual variability will unlikely 
represent a limitation in TDM. A better understanding and 
characterization of time-varying PK parameters will improve 
the outcome of TDM programs applied to ICIs.

Although some concentration–efficacy relationships 
have been identified, as discussed in this review, currently 
insufficient clinical evidence generally exists to define spe-
cific concentration or exposure targets. Ex vivo or in vitro 
concentration targets might be problematic to use given the 
complexity of translating these concentration targets to an 
in vivo context. Based on current data, TDM strategies are 
particularly relevant for ipilimumab, which is already char-
acterized by clear exposure–efficacy and exposure–safety 
relationships. The use of weight-based dosing has proven 
insufficient as body weight only accounts for a subset of 
IIV in exposure (Table 2). As a consequence, TDM can 
thus be of particular importance for ipilimumab in order to 
homogenize plasma levels between individuals and hence 
optimize clinical outcome by means of dose and/or sched-
ule alternations. A potential target concentration might be 
at a Ctrough,ss between 57 and 155 µg/mL [13], but requires 
further confirmation.

Although little to no dose-limiting toxicities have been 
reported for ICIs, the establishment of a therapeutic window 
within the efficacy range can avert dispensable expenses. 
A potential candidate for this application is nivolumab, for 
which the exposure–response curve reaches saturation below 
marketed doses [33]. This saturation theoretically permits 
dose minimization, or prolongation of the dose interval, thus 
potentiating the role of TDM in cost reduction [65]. Future 
work should focus on determining if the measurement of 
plasma levels is truly cost effective, as in silico studies sug-
gest [9]. Importantly, according to phase I trials, nivolumab 
dosing as low as 0.1 mg/kg, leading to simulated trough con-
centrations of 2.5 µg/mL, was sufficient to ensure optimal 
PD-1 inhibition [1, 2]. However, in a pilot study in NSCLC 
patients, it was shown that a target trough level of > 34 µg/
mL was associated with a higher response rate [66]. This 
discrepancy could come from some flaws in the very way 
target engagement was initially measured in circulating T 
lymphocytes, and not at the tumor level, during early phase 
I studies (see the Exposure–Efficacy Relationships para-
graph below). Durvalumab is an anti-PD-L1 ICI for which 

a minimum concentration of 50 µg/mL has been proposed to 
saturate both soluble and membrane-bound PD-L1 in serum 
[28]. However no clinical data have yet been made available 
to support this value as being a cut-off associated with better 
clinical outcome with durvalumab.

3.1.5 � Serum Assays for ICIs

One of the prerequisites for TDM is access to a validated 
and standardized bioanalytical assay [64]. Measuring the 
functionally active ICI concentration represents a challenge 
since mAbs in serum or plasma can be in complex with 
either the target antigen or ADAs. Serum measurements of 
ICIs have to date been largely performed by means of elec-
trochemiluminescence immunoassays (ECLIAs) or enzyme-
linked immunosorbent assays (ELISAs) [13, 18, 22, 29, 32, 
39–41]. ELISAs only quantify unbound ICIs and do not meet 
the requirements for future routine application. For mAbs, 
the division between unbound and target-bound drug can 
strongly depend on plasma concentration, resulting in dose-
dependent distribution [67]. Measurement of both values 
can therefore ameliorate current estimations of distribu-
tion kinetics. Recent advances in proteomics research has 
shown that liquid chromatography–tandem mass spectrom-
etry (LC–MS/MS) methods are capable of analyzing peptide 
and protein in biological matrix without compromising the 
exceptional selectivity and specificity that are a feature of 
absolute chromatographic quantification. A major advan-
tage is the absence of interference from ADAs and target 
proteins, enabling an accurate assessment of the total drug 
concentration in samples [68].

3.2 � Exposure–Efficacy Relationships

3.2.1 � Target Engagement

Whereas ICIs were originally considered to act in a purely 
antagonistic manner, more recent advances have demon-
strated that several compounds might directly give rise to 
cytotoxic reactions [69]. Antibody-dependent cellular cyto-
toxicity (ADCC) and complement-dependent cytotoxicity 
(CDC) arise by the interaction between the Fc region of ICIs 
and components of the immune system, which might cause 
depletion of target cells [52]. As discussed earlier, the capac-
ity to evoke such an immune response is highly dependent 
on the isotype involved, where members of the IgG1 group 
are able to induce ADCC and CDC [52, 69].

Within such context, IgG1 ICIs serve as ‘classical 
deleters’ of intratumoral regulatory T cells (Treg cells) 
because of the capacity to induce cellular and humoral 
cytotoxicity, while IgG4 ICIs function as true receptor 
blockers that antagonize the inhibition of T cells [69]. In 
clinical practice, unmodified IgG1 compounds give rise 
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to a higher degree of infusion-related reactions, as seen in 
avelumab [70]. With respect to the antitumor effect, ave-
lumab has demonstrated augmented tumor killing through 
ADCC in vitro and ex vivo [71]; however, the degree of 
clinical benefit that might be related to this mechanism of 
action has not been clearly shown in clinical studies.

Next to avelumab, anti-CLTA-4 compounds might be 
responsible for ADCC of Treg cells in the tumor micro-
environment [72]. This mechanism of action was also 
hypothesized to be the reason for the steep dose–response 
relationship that is seen in ipilimumab (IgG1) [73]. In 
murine studies, ipilimumab was found to induce ADCC 
of Treg cells by both NK cells and myeloid cells, whereas 
for tremelimumab, this was solely by means of the myeloid 
lineages [74]. Despite this difference on a cellular level, 
clinical efficacy demonstrates no discrepancies and OS 
appears similar between compounds [75]. In addition, Treg 
depletion did not occur in the tumor microenvironments 
of patients treated with ipilimumab or tremelimumab [76], 
indicating that on a clinical level, ADCC might not be as 
relevant as preclinical studies suggest.

Another important issue related to target engagement 
relates to the relative contribution of PD-L2. As previously 
explained, PD-1 becomes activated by binding to either 
PD-L1 or PD-L2 (Fig. 1). Blockage of the PD-1 receptor is 
therefore considered capable of antagonizing the interac-
tion with both ligands, while PD-L1 blockade allows bind-
ing of PD-L2 to PD-1. Based on this assumption, it seems 
reasonable to believe that PD-1 blockage generates more 
antitumor and autoimmune responses in comparison to 
PD-L1. However, in patients with NSCLC, the efficacy and 
toxicity profiles of PD-1 and PD-L1 therapies appeared to 
be similar [77]. Similarly in other cancers, the expression 
of PD-L2 in the tumor microenvironment was not related 
to treatment response to PD-1 blockage, independently of 
PD-L1 [78]. For SCCHN only, the expression of PD-L2 
has been related to treatment response with PD-1, suggest-
ing that blockage of both PD-L1 and PD-L2 might support 
additional clinical benefit for this group of patients.

With respect to PD-1 blockers, PD-1 occupancy of 
peripheral cells has been repeatedly evaluated as part of 
early phase I trials with nivolumab [1, 2]. Rather remarkably, 
target engagement was found to be independent of dosing 
over a 0.1–10 mg/kg range, i.e. 60–70% of receptor occu-
pancy. In addition, single dosing achieved sustained inhibi-
tion of the target over weeks because of the pure antagonist 
nature of anti-PD-1 drugs. Such data strongly suggest that 
PK/PD relationships are ‘flat’ with this kind of ICI because 
the PD endpoint does not seem to be related to dosing.

3.2.2 � Overall Survival

OS provides the most valid information in the interest of 
dose optimization, and to date has been utilized for three 
ICI exposure–response analyses. For several of these com-
pounds, decreasing time-dependent clearance might create 
the deceitful semblance that higher drug exposure is the 
cause, rather than the consequence, of greater efficacy [22, 
35]. As previously discussed, time-variant clearance can 
potentially be caused by both disease-specific factors (i.e. 
disease burden, tumor type) and patient characteristics (i.e. 
cachectic status). This risk for confounding urges for adapta-
tion of early-phase exposure metrics, as opposed to steady-
state exposure metrics, to isolate the influence of exposure 
to OS in compounds with time-dependent clearance. For 
the two compounds in which this holds true, avelumab and 
nivolumab, early exposure metrics are not predictive of OS. 
The absence of an exposure–OS relationship suggests that 
dose reduction may be warranted in these compounds. On 
the other hand, the correlation between exposure and OS 
indicates that individualized dose escalations might be justi-
fied for ipilimumab [15].

3.2.3 � Surrogate Clinical Endpoints

Since OS data are not available for several ICIs, expo-
sure–response analyses have been largely based on early 
clinical endpoints, such as PFS and ORR [79], which may 
not correlate well to OS (Table 5) [80–83] due to the PD 

Table 5   Summary of studies that investigated the correlation between OS and surrogate endpoints

ORR overall response rate, OS overall survival, PD progressive disease, PFS progression-free survival, RD responders (complete/partial 
response), SD stable disease, PD-1 programmed death 1, PD-L1 programmed death-ligand 1, ICIs immune checkpoint inhibitors

Cancer type Investigated therapies Correlation ORR/OS Correlation PFS/OS References

All Anti-PD-1/PD-L1 R2 = 0.066 (p = 0.251) R2 = 0.432 (p = 0.032) [80]
Melanoma ICIs R2 = 0.028 (p = 0.279) R2 = 0.192 (p = 0.154) [80]
Nonsmall cell lung cancer ICIs R = 0.452 (p = 0.141) R = 0.473 (p = 0.120) [81]
Renal cell carcinoma ICIs and other drugs 89–96% for RD, 81–91% for 

SD, and 50–70% for PD
– [82]

Urothelial carcinoma ICIs and other anticancer drugs R = 0.37 (p = 0.30) – [83]
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mechanism of action, which is not aimed directly against 
tumor cells but rather eventuates by means of the immune 
system [84]. This indirect effect gives rise to unusual 
response kinetics, such as delayed clinical response, mixed 
responses preceding general response, and even tumor pro-
gression prior to response [85]. Since both ORR and PFS 
lack the capacity to perceive tumor lesion progression as 
an early marker of tumor regression, there is a need for an 
alternative endpoint to predict OS.

A set of irRCs have been designated to comprehensively 
characterize the response kinetics of immune-oncologic 
drugs [86]. Compared with RECIST, irRCs account for the 
delayed response that is seen with ICIs, and classify the ini-
tial development of novel lesions under tumor burden (elec-
tronic supplementary Table S1). Among studies that have 
investigated ICIs, correlation between exposure and tumor 
response appears more significant when evaluated according 
to irRCs (4.3–25.6%) compared with ORR (0.6–11.6%) [15]. 
In addition, the criteria bear an obvious advantage over OS 
by providing an instrument for early efficacy assessments 
[87]. These observations underline the potential value of 
irRCs as an early clinical endpoint tool to characterize ICI 
efficacy. However, in order to determine the best surrogate 
endpoint with certainty, additional studies need to verify the 
correlation between irRCs, ORR and PFS to OS, for each ICI 
and cancer type individually.

3.2.4 � Biomarkers

Despite their impressive clinical outcomes, response rates 
for all ICIs administered as monotherapy fall below 50% 
regardless of tumor type. The current challenge either in 
drug development and clinical patient care, is first to iden-
tify as early as possible non-responders, and then select the 
best candidates in a drug combination strategy including 
co-administering different ICIs, including chemotherapeutic 
and targeted agents, and others immune-modulators as vac-
cines and toll-like receptors agonists.

Studies with melanoma, NSCLC, renal cancer, SCCHN, 
and urothelial carcinoma found that intratumoral PD-L1 
expression prior to treatment provides a higher likelihood for 
treatment response, even though absence of PD-L1 expres-
sion does not rule out treatment response in all patients [88]. 
At the moment, a PD-L1 immunohistochemistry (IHC) test 
accompanies patient selection for atezolizumab and pem-
brolizumab treatment for locally advanced or metastatic 
urothelial carcinoma [38, 49]. Similarly, a PD-L1 IHC (28-8 
pharmDx) test was approved as a complementary diagnostic 
test of nivolumab for patients with NSLCL and melanoma 
[88]. In May 2017, the US FDA approved Roche’s VEN-
TANA PD-L1 (SP263) assay as a diagnostic for the qualita-
tive detection of PD-L1 expression in patients with locally 
advanced or metastatic urothelial carcinoma who are being 

considered for treatment with durvalumab [89]. Neverthe-
less, the application of PD-L1 testing contains many pitfalls, 
including deviations in PD-L1 expression in time and loca-
tion, concomitant PD-L1 expression in the tumor cytoplasm 
or microenvironment, and inaccuracies of needle biopsies 
and histological strategies, not to mention discrepancies 
between diagnostic kits [88].

An alternative biomarker for ICI efficacy is total muta-
tional load, which relies on the notion that the number of 
mutations correlates to tumor immunogenicity and therefore 
therapeutic response [88]. However, since not all mutations 
give rise to immune-stimulating neoepitopes, this approach 
requires algorithms that can predict the immunogenicity 
of mutational profiles. Currently, microsatellite instability 
(MSI) status in colorectal patients has been the most con-
sistent predictive biomarker for treatment efficacy with anti-
PD1, but only relates to 4% of patients [90].

In addition, quantification of absolute rise in lymphocyte 
count in peripheral blood may act as a biomarker for anti-
CLTA-4 therapies [88]. Future studies should further explore 
this biomarker and determine which subset of lymphocytes 
hold the most predictive potential.

All these studies have addressed the issue of receptor 
occupancy in circulating lymphocytes collected from periph-
eral blood mononuclear cells, and no data on PD-1 inhibition 
at the tumor level has yet been made available. Therefore, 
it is speculated that the drug level achieving a correct target 
engagement in the vascular space will be sufficient to inhibit 
the target in the tumor microenvironment. The long-lasting 
inhibition of PD-1 and the fact that circulating T lympho-
cytes are likely to infiltrate the tumor next supports this 
hypothesis; however, with respect to the poor tissue/blood 
ratio (i.e. 0.5–0.1) of most therapeutic mAbs [14], to what 
extent desired exposure level in the bloodstream will lead to 
correct PD1 inhibition at the tumor level remains to be fully 
elucidated, making the monitoring of receptor occupancy 
in circulating lymphocytes, and not in tumor lymphocytes, 
a speculative PD endpoint .

3.2.5 � Biomarker Exposure–Response Relationships

The use of PKPD modeling of biomarker exposure–response 
(biomarker)-clinical outcome relationships has developed as 
an important tool in drug development; however, for ICIs, 
these approaches may need to be at least reconsidered. The 
study regarding the role of biomarkers reflecting tumor 
microenvironment-related mechanisms, as is the case for 
myeloid suppressor cells, is warranted and is the object of 
enormous pre- and clinical research activity. If a low immu-
nogenic (cold) tumor needs to be converted to a warm, hot 
tumor sensitive to ICIs with the help of immune-modulator 
therapies, the playing field goes beyond the T-cell perimeter 
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and expands to the full cancer immunity cycle, considering 
presentation, recognition, activation, and expansion as key 
factors for an efficacious tumor response [94].

Systemic drug exposure is mostly used to study variability 
in the PK of any type of drug, however more and more physio-
logical-based PK (PBPK) is being used to understand PK vari-
ability and project drug concentrations in the tissues of interest. 
Recent works suggest the need to study drug kinetics in the 
tumor, potentially to optimize drug schedules [95–97]. Several 
PBPK models have been established for different mAbs and, 
it is expected, applications to different ICIs in the near future.

3.2.6 � Dose Optimization

Approved dosing regimens may not necessarily be optimal, 
and bedside practice can sometimes lead to alternate, more 
efficacious and/or better tolerated ways to administer drugs. 
For instance, it took nearly one decade to deconstruct suni-
tinib scheduling and to establish a new paradigm [98]. With 
ICIs, dose– or exposure–response analyses have been per-
formed, however several studies are limited by narrow dose 
ranges, suboptimal endpoints and issues of confounding fac-
tors (Tables 3, 4). Based on these limitations, only minimal 
inferences can be made with respect to dose adjustment [99].

The flat relationship between nivolumab exposure and OS 
in melanoma suggests that current exposure values are not 
essential for drug efficacy, and dose reduction is permitted 
for this compound [34]. The same applies for the adaptation 
of nivolumab for the treatment of renal cell carcinoma [35].

For ipilimumab, dose adjustment can be considered 
for two separate reasons. In the first place, the correlation 
between exposure and efficacy advocates for adaptive dosing 
strategies in order to increase OS. Furthermore, the correla-
tion underlines the necessity to reduce the current between-
patient variability in exposure (Table 2). For now, ipilimumab 
is administered based on body weight as this significantly 
affects both clearance and volume of distribution [13]. 
However, body weight merely accounts for a subset of the 
between-patient variability (24% and 52%, respectively) and 
additional measure may be required. TDM provides a means 
to homogenize exposure across individuals at a value that 
is expected to produce the best clinical efficacy outcomes.

Finally, the rational identification and optimization of 
combinations of ICIs with chemotherapeutic agents or other 
ICIs is currently or great interest [91, 92]. Here, the use of 
systems pharmacology modeling approaches in this context 
can be highly relevant to support the selection of rational 
combination therapies [93].

3.3 � Exposure–Safety Relationships

Treatment with ICIs gives rise to a novel spectrum of AEs, 
the irAEs, that emanate through erroneous activation of the 

immune response and can be considered an undesirable 
result of their PD mechanism of action [100]. Several of 
these irAEs include dermatological, gastrointestinal and a 
number of endocrine inflammatory responses, which dif-
fer from ‘traditional’ AEs by their nature, but also by their 
delayed onset, fluctuating course and unclear relationship 
to drug exposure. Although the occurrence of severe irAEs 
is rare, especially in terms of fatalities, these AEs can tre-
mendously affect quality of life and tarnish treatment con-
tinuation [100]. As a consequence, potential correlations to 
drug exposure should become established and be considered 
during the process of drug optimization.

The unique kinetics of safety in ICI therapy demand an 
adapted evaluation process of AEs [99]. Safety parameters 
such as maximum tolerated dose and dose-limiting toxici-
ties are not relevant for ICIs, or, conversely, may appear 
meaningful outside the typical 4-week observation period.

Exposure–AE relationships have been described for ipili-
mumab and pave the way for more accurate and tailored 
doses for this compound [15]. Given the large between-
patient variability in exposure of ipilimumab, dose adjust-
ment may be beneficial. Approaches to optimize dos-
ing of these compounds have been discussed in previous 
paragraphs.

Because PD-1 and PD-L1 govern immune resistance fur-
ther down the inflammatory cascade, PD-1/PD-L1 inhibi-
tors give rise to relatively less irAEs than CTLA-4 blockers 
[101]. In fact, the CTLA-4 blocker ipilimumab was associ-
ated with both an increased and broader range of irAEs com-
pared with PD-1 antagonists [101, 102]. Out of the spectrum 
of irAEs, colitis and hypophytis occur more frequently under 
the CTLA-4 blocker ipilimumab, whereas pneumonitis and 
thyroiditis appear more often under PD-1 blockers. Although 
the reason for these discrepancies remains obscure, it has 
been hypothesized to reside in the different mechanism of 
action, which can ensue through cytokines, T cells, comple-
ment factors and endogenous antibodies [102].

Regardless of the mechanism of action, differences in 
clinical toxicity might represent a base for drug selection in 
those cases where efficacy appears similar. For ipilimumab, 
human trials have been performed together with nivolumab 
and pembrolizumab to compare clinical safety and efficacy 
profiles of these compounds in melanoma [103, 104]. Strik-
ingly, both trials found that PD-1 blockers prolonged PFS 
and induced less AEs compared with ipilimumab. Further 
comparison of the PD-1 blockers suggests that pembroli-
zumab induces more irAEs compared with nivolumab [101]; 
however, the interpretation here should be cautious as the 
comparison was made between studies.

Because of the limited availability of comparative trials 
involving PD-L1 blockers, the relative benefit and disad-
vantages of these ICIs remains obscure. However, it is pos-
sible that PD-L1 blockers are associated with relatively less 
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irAEs due to PD-L2 exclusion. In patients with NSCLC, 
PD-1 blockers provided similar ORR and OS compared 
with atezolizumab; however, the degree of irAEs was lower 
for the latter [77]. For urothelial carcinoma, the differences 
between PD-1 and PD-L1 blockers appears more difficult 
to define [105].

3.4 � Pharmacoeconomic Considerations

Since the year 2000, the costs of cancer therapy have more 
than doubled and, with the prospective approval of novel 
(immuno)therapies for a myriad of cancer types, these costs 
are expected to rise even further [106]. Among many factors, 
such as therapeutic costs and cancer prevalence, dosing regi-
men is one of the driving forces behind these developments. 
Along these lines, the connections between dose, exposure, 
and clinical outcome can be used as a base to optimize the 
benefit–cost balance and avoid unnecessary expenses.

Most exposure–response analyses do not currently pro-
vide sufficient information to pinpoint candidates for dose 
reduction. Lower doses might be warranted for nivolumab 
in the treatment of melanoma and renal cell carcinoma, 
for which the exposure–efficacy curves saturate at doses 
between 1 and 3 mg/kg (Table 3). Future efforts should elu-
cidate whether dose reduction is permitted for additional 
compounds. This is of particular relevance for atezolizumab 
and durvalumab, for which no exposure–response relation-
ships were found in an analysis, but wherein only a single 
dose was evaluated. Moreover, as most ICIs display progres-
sive decrease in clearance, the possibility for dose reduction 
in relation to this phenomenon should be explored.

An alternative approach to cost reduction is that of fixed 
dosing, as discussed in a recent review [107]. Fixed doses 
are of particular interest for compounds with flat expo-
sure–response relationships, for which variations in expo-
sure do not affect clinical outcome, as well as for compounds 
whose PK are not significantly affected by body weight. 
Despite the fact that all ICIs meet these prerequisites, with 
the exception of ipilimumab, only about half of the recom-
mended dosing regimens are based on fixed doses (Table 1). 
In support of this theory, comparison of weight-based to 
fixed doses for avelumab, nivolumab and pembrolizumab 
demonstrate that exposure, safety and efficacy are compara-
ble between these dosing regimens [22, 51, 108]. Based on 
these findings, wider application of fixed doses is justified 
and should become pursued in the near future.

4 � Conclusion

Cancer immunotherapy with ICIs is still associated with sub-
optimal efficacy, as < 50% of patients show a significant 
increase in survival in solid tumors. Among the possible 

strategies to improve clinical outcome while sparing public 
expense, the optimization of exposure levels as a means to 
predict efficacy or to reduce toxicities has not yet been fully 
considered with ICIs. For now, monitoring Css,trough appears 
a reasonable option that, given the time-dependent clear-
ance of some ICIs, should be repeated over multiple cycles 
to ensure dose adjustments to possible changes in exposure. 
Comprehensive studies are warranted to determine to what 
extent TDM with adaptive dosing strategies could help 
improve clinical outcome with immunotherapy. With respect 
to exposure–response analysis, early exposure parameters 
such as Ctrough,first should be used in order to avert confound-
ing related to time-variant clearance. The PK properties of 
ICIs are determined by a wide variety of factors, including 
TMDD and physicochemical-based constraint to the vascular 
compartment. ICIs have a unique and challenging safety pro-
file, but an unconfounded exposure–response relationship has 
only been shown for ipilimumab. The use of surrogate clinical 
endpoints for ICIs to perform exposure–efficacy analyses is 
a concern because of their lack of predictive value for OS. 
Novel immune activation biomarkers would be of relevance to 
further optimize treatment and trial designs with respect to the 
PK and PD of ICIs. Finally, to enable PK and PD biomarker-
guided dose individualization and optimization of ICIs, the 
use of population PKPD modeling and simulation to support 
rationalized individualization, including special patient popu-
lations, will be crucial to enable selection of dose regimens 
that optimize efficacy, toxicity and cost [109–113].
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