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Abstract

Since its discovery more than 25 years ago, great progress has been made
in our understanding of the unfolded protein response (UPR), a
homeostatic mechanism that adjusts endoplasmic reticulum (ER) function
to satisfy the physiological demands of the cell. However, if ER
homeostasis is unattainable, the UPR switches to drive cell death to
remove defective cells in an effort to protect the health of the organism. This
functional dichotomy places the UPR at the crossroads of the adaptation
versus apoptosis decision. Here, we focus on new developments in UPR
signaling mechanisms, in the interconnectivity among the signaling
pathways that make up the UPR in higher eukaryotes, and in the
coordination between the UPR and other fundamental cellular processes.
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Introduction

The unfolded protein response (UPR) comprises a collection of
evolutionarily conserved signaling pathways in eukaryotes that
monitor endoplasmic reticulum (ER) functions. In its most
fundamental form, the UPR maintains the health of secreted and
transmembrane proteins. Most of these proteins, which com-
prise roughly one third of the proteome, translocate into the ER
for their folding and maturation. Because these proteins establish
communication networks among cells and between cells and the
extracellular environment, the UPR is essential for normal cell
and organismal physiology. Indeed, the UPR has long been
known to be essential for the differentiation, development,
and maintenance of professional secretory cells and secretory
tissues'~’. However, UPR functions are not restricted to these
tissues, as all key metazoan UPR sensor/transducers are
ubiquitously expressed and sustain diverse processes in different
tissues™ .

ER-resident sensors that detect perturbations of ER composition
and function, commonly known as “ER stress”, initiate the UPR
(reviewed in 16). ER stress occurs when the folding or degradative
capacities of the ER are exceeded (for example, upon expression
of mutant proteins that cannot be properly folded or by incapaci-
tation of ER quality-control systems by mutations or pathogens).
The UPR transmits information about the ER status to the cell
nucleus by inducing the expression of transcription factors'’='.
The UPR also exerts post-transcriptional control by regulating
protein synthesis and mRNA stability”~*. The coordination of
transcriptional and post-transcriptional UPR mechanisms deter-
mines the cellular decision of whether to adapt or to die if ER
stress is unmitigable.

Thousands of articles published to date (a PubMed search for
“unfolded protein response” shows more than 7,800 articles,
including more than 3,800 in the past five years alone) have revealed
the inner workings of the UPR and have portrayed it as a com-
plex network of interconnected signaling pathways. In this review,
we discuss new developments in UPR signaling mechanisms,
connections among metazoan UPR signaling pathways, and UPR
signaling beyond the ER.

Signal transduction in the UPR: early models and
new insights

Three ER-transmembrane stress sensors control the UPR:
the kinase/endoribonuclease IRE1, the kinase PERK, and the
membrane-tethered transcription factor ATF6 (reviewed in 16).
Evolutionary conservation provided the first clues about spe-
cialization in UPR signal transduction, which perhaps arose with
the advent of multicellularity. IRE1 is ubiquitously found from
yeasts to metazoans, whereas PERK and ATF6 appear only in
animals®™. With regard to ER stress detection, the classic view
posits that IRE1, PERK, and ATF6 detect protein-folding
perturbations in the ER lumen. Lately, all of them have also
been suggested to sense imbalances in lipid composition of the
ER membrane”'. It has increasingly been recognized that ER
deficits leading to proteo- or lipo-toxicity are dealt with by the
UPR through different regulatory mechanisms (reviewed in 32).
These findings coalesce into a model in which UPR sensors work
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together holistically by integrating information about distinct/
diverse ER deficiencies to launch homeostatic or apoptotic
programs.

IRE1 and PERK detect ER stress by direct binding of unfolded
protein ligands in the ER lumen, and the reversible dissociation
of IRE1 and PERK from the ER lumenal chaperone BiP regu-
lates their activation/deactivation dynamics*~*'. Even though the
interaction of BiP with the UPR sensors is long known, other
interactions between UPR sensors and ER chaperones have only
recently been revealed. For example, the co-chaperone ERDJ4
specifically facilitates BiP’s interaction with IRE1*, and the
activities of both IRE1 and PERK are fine-tuned by various ER
chaperones, providing tissue- and context-specific UPR regulation.
The protein disulfide isomerase PDIA6 modulates the deactivation
of IREl and PERK**, and the ER chaperone HSP47 associates
with IRE1 but not PERK to regulate its activity*’. By contrast,
the ER lumenal protein canopy homolog 2 (CNPY2) binds
only to PERK during ER stress to regulate downstream
signaling”. Moreover, in skeletal muscle cells, the ER
oxidoreductase calsequestrin binds IRE1 to inhibit its activity®.
These findings support a view wherein the signaling capacity of
UPR sensors can be refined to accommodate specific outputs
according to the specific needs of cells and tissues. Most likely,
the aforementioned interactions of UPR sensors with chaper-
ones also influence the temporal dynamics of UPR signaling
activation and deactivation, thereby providing an additional level
of regulatory control leading to the life versus death decision
in cells*’~". In this way, modulation of the UPR at the level of
UPR sensor—chaperone interactions serves as an initial point
for information integration to regulate complex downstream UPR
outputs.

How ATF6, by comparison with IRE1 and PERK, detects ER
stress is less well understood. The established model posits that
ER stress leads to ATF6 export to the Golgi apparatus, where
resident proteases cleave it to liberate a soluble transcription
factor, ATF6N""?. Accumulating evidence suggests that ATF6
may act as a redox sensor or that it is coupled to one, as the
reduction of intra- and inter-molecular disulfide bonds in its ER
lumenal domain appears to be required for trafficking to the Golgi
apparatus™. The recent observation of aberrant and attenuated ATF6
signaling in cells deficient in the oxidoreductase ERp18, which
associates with ATF6 during ER stress, supports this view*.

Self-association/dissociation of UPR sensors is another canonical
feature of the UPR. ER stress—induced oligomerization of IRE1
and PERK in the plane of the ER membrane drives the frans-
autophosphorylation of their respective cytosolic kinase domains
(reviewed in 16). Active PERK phosphorylates elF2¢. (the alpha
subunit the eukaryotic translation initiation factor 2), causing a
decrease in global protein synthesis*. Paradoxically, a subset of
mRNAs bearing small upstream open reading frames (uORFs)
on their 5’ untranslated regions (5’ UTRs) are preferentially
translated in these conditions, including those encoding the tran-
scription factors ATF4 and CHOP?'“"~!. By increasing the cellu-
lar metabolic capacity, ATF4 effects are mostly cytoprotective™
whereas CHOP is largely regarded as pro-apoptotic® . Tt
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has recently been shown that, in addition to translational
control by uORFs, N6-methyladenosine (m6A) methylation of
the ATF4 mRNA also contributes to the control of its translation.
Demethylation of the 5" UTR of the ATF4 mRNA by the demethy-
lase ALKBHS enhances its translational re-initiation, promoting
the synthesis of ATF4 during ER stress®. This mechanism high-
lights the exquisite fine-tuning of protein synthesis re-programing
during stress.

Unlike PERK, IRE1 has no known kinase substrates besides itself,
and its active kinase domain licenses the allosteric activation of
its C-terminal RNase domain®. Active IREl excises a small
unconventional intron from the mRNA encoding the transcrip-
tion factor XBP1'%'?. The resulting exons are joined by the tRNA
ligase RTCB to produce a new mRNA encoding the transcription
factor XBPIS (“S”, for spliced)’*’. Even though XBP! mRNA
splicing was discovered almost 20 years ago, some of the salient
features of this mechanism have been elucidated recently. Five
years ago, RTCB was independently identified by three groups
as the XBP] mRNA splicing ligase®. A conformational change
in the XBPI mRNA, dubbed an RNA “zipper”, which is required
to eject the intron and hold the exons together after cleavage, was
described shortly after’’. Additional recent work has shown that an
intact 2-3” cyclic phosphate—long known to be left on the RNA
ends after cleavage by IREl’'—is essential for completion of
the XBPI mRNA splicing reaction’”. The opposing activities
of the cyclic phosphodiesterase CNP and the RNA cyclase
RTCA control the availability of the cyclic phosphate’”. Targeted
quantitative proteomics analyses revealed that IRE1 is found in
complex with RTCB in cells”, suggesting that the XBPI mRNA
splicing can be completed immediately after mRNA cleavage.
This newly described multi-step regulation of XBPI mRNA
splicing could also provide regulatory layers controlling a tunable
UPR output.

IRE1 signaling is not confined to XBP/ mRNA splicing. IRE1
also cleaves ER-bound mRNAs in a process known as regulated
IRE1-dependent decay (RIDD)”**’. When first discovered, RIDD
was thought to protect the ER by lowering ER load through
the selective cleavage of mRNAs>; however, a recent finding
challenges this view. RIDD of a single mRNA encoding the
lysosome trafficking factor BLOS1 has been shown to protect
cells from proteotoxicity by enhancing their capacity to degrade
protein aggregates by microautophagy’*. The precise molecular
mechanism that determines the fate of an mRNA encountering
IRE1—splicing or RIDD—appears to hinge on the aforementioned
XBPI mRNA zipper, which is absent in RIDD targets studied to
date; implanting this mRNA zipper structure into RIDD target
mRNAs results in their splicing’”.

Our understanding of IRE1 signaling mechanisms has also
expanded lately. Several lines of evidence support the notion that
IRE1 is an integrating node linking the UPR and the ER protein
co-translational targeting machinery. IRE1 has been shown to bind
to the Sec61 translocon’®, and impairing this interaction resulted in
dysregulated IRE1 activity’’. The recently developed Perturb-seq
method, which combines single-cell RNA-seq with CRISPR-
based genetic screens, further substantiated these observations
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by showing that depletion of translocon subunits resulted in
exclusive IRE1 activation without impact on other UPR signaling
pathways’®. More recently, RNA—protein cross-linking and mass
spectrometry—based approaches revealed that IRE1 associates
with the signal recognition particle, tRNAs, mRNAs, and ribos-
omes in living cells’”. All of these observations converge on a
model in which IREl oversees the health and availability of
translocons while it monitors the co-translational targeting
machinery at the ER surface.

Cross-talk between UPR signaling pathways controls
adaptation and death

A basic level of pathway interconnectivity in the UPR comprises
the coordinated actions of transcription factors. In the adaptive
phase of the UPR, ATF6N and XBP1S increase the synthesis of
chaperones, protein-folding enzymes, and proteins that take part
in ER protein turnover mechanisms, and they physically enlarge
the ER by upregulating endomembrane biosynthesis”’***. In par-
allel, ATF4 upregulates the biosynthetic capacity of the cell by
controlling genes required for antioxidant responses and amino
acid import™. Adaptive transcriptional signals further integrate
at the level of combinatorial regulation. For example, ATFON
and XBPI1S can form heterodimers®, thereby expanding the
repertoire  of UPR cis-regulatory elements™***%  Post-
transcriptional regulatory control by XBP1U (“U” for unspliced),
encoded by the XBPI precursor mRNA, adjusts the transcriptional
responses; XBP1U regulates the turnover of XBP1S and ATF6N,
setting a molecular timer for the duration of the adaptive phase
of the UPR"#%.

Not all UPR transcriptional outputs are adaptive. ATF4,
ATF6N, and XBPIS converge on the induction of CHOP**"##,
which negatively impacts the ER protein-folding capacity,
downregulates the anti-apoptotic protein BCL2, and upreg-
ulates the pro-apoptotic signaling protein death receptor
5 (DR5)0164890  However, recent data showing that genetic
depletion of ATF6—but not IRE1 or PERK-—significantly
impaired the growth of HeLa cells engineered to adopt a plasma
cell-like secretory phenotype that predisposes them to ER
stress suggest that ATF6 is mostly cytoprotective’'. The homeo-
static role of the IRE1-XBP1 axis has recently been challenged
by the discovery of cytotoxic XBP1-driven responses’. These
data show that surpassing a critical ER stress threshold allows
XBPIS to indirectly induce the expression of the ER calcium
channels TMEM38B and ITPRI1, leading to depletion of ER
calcium stores, thereby providing a positive feedback loop to
aggravate ER stress”. In this model, cellular demise arises from
collateral damage caused by the transcription factor KLF9
downstream of XBP1S and not by the direct control of bona fide
pro-apoptotic genes by XBP1S.

XBPIl-independent roles with regard to cytoprotection or
apoptosis have also been proposed for IRE1. One model sug-
gests that IRE1 promotes cell death by degrading microRNAs
(miRNAs) targeting mRNAs encoding the pro-apoptotic proteins
TXNIP and caspase-2°***. This model is somewhat disputed, as
caspase-2 appears to be dispensable for eliciting cell death in
response to ER stress””. Another view posits that RIDD could
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lead to cell death through pervasive RNA cleavage™. The notion
of antagonistic IRE1 roles has been further substantiated by a
recent finding showing that XBP1S promotes glioblastoma tumor
progression while RIDD obstructs it”’.

Antagonism among UPR sensors also provides a model for
UPR-dependent cell fate control. This model considers a dynamic
cross-talk between cytoprotective and pro-apoptotic signals ema-
nating from different UPR sensors. IRE1 promotes cytoprotection
through XBPI mRNA splicing and RIDD, while PERK pro-
motes apoptosis by inducing the ATF4-CHOP axis and the gene
encoding DR5 downstream of it"’. DRS signaling instructs the
cells to die in response to unmitigable ER stress through the
extrinsic (caspase-8—dependent) apoptotic pathway; IRE1 combats
the apoptotic signal by degrading the DR5 mRNA™. Concomi-
tantly, the phosphatase RPAP2, downstream of PERK, dephos-
phorylates IRE1 attenuating IRE1 signaling”™. Along with RPAP2,
caspase-mediated IRE1 turnover can also play a role in terminating
signaling and enforcing the apoptotic program™. Surpris-
ingly, cleavage of IRE1 by caspases also generates a proteolytic
fragment that antagonizes BAX-driven pro-apoptotic signal-
ing from the mitochondria”, further substantiating the notion of
extensive functional cross-talk between the UPR and other
fundamental cellular processes.

PERK also stimulates the production of GADD34, a regulatory
subunit of PP1 (protein phosphatase 1), which dephosphorylates
elF2a, thereby establishing a negative feedback loop control-
ling responses downstream of PERK'"'?!. The cross-connectivity
between UPR signaling pathways has been further substanti-
ated by recent RNA-seq and ribosome profiling experiments that
show that PERK has the potential to repress—both transcription-
ally and post-transcriptionally—the expression of a subset of
cytoprotective genes induced by XBP1S and ATF6N'*, Together,
these observations support a model in which a molecular timer,
set off by opposing signals downstream of IRE1 and PERK,
coordinates the survival versus death decision. In this model, the
activities of IRE1 and PERK are coordinated, ensuring that
specific responses kick in as the response to ER stress progresses.
At the beginning of the response, homeostatic mechanisms are
enforced while apoptotic ones are suppressed (for example,
induction of XBPI mRNA splicing, RIDD of the DR5 mRNA).
If stress persists, apoptosis mechanisms take over (for example,
shutdown of IRE1 signaling, suppression of cytoprotective genes
downstream of XBP1S and ATF6).

Apart from the mechanisms discussed above, protein quality-
control mechanisms of UPR sensors have been implicated in
UPR signaling; the protein levels of IRE1, PERK, and ATF6 are
controlled by ER-associated degradation (ERAD)'”*-'>. These
observations suggest that ERAD engages negative feedback loops
that could enforce the survival versus death decision. Moreover,
recent data suggest that post-translational modification of IRE1
and PERK by ufmylation, which regulates their stability, plays
an important role in regulating apoptosis and plasma cell
development'®*!"’. Importantly, post-transcriptional mechanisms
operate alongside protein turnover devices to regulate the UPR. It
has increasingly been recognized that non-coding RNAs—mostly
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miRNAs but also long non-coding RNAs—act as important
regulators of the UPR (reviewed in 108). This type of regulatory
control adds a layer of complexity to the homeostatic or apoptotic
programs controlled by the UPR.

Beyond the ER: non-canonical UPR mechanisms and
interorganellar communication

As we move forward in our understanding of the UPR, we have
come to recognize that UPR signaling extends beyond protecting
ER physiology. Recent observations support an integral role of
the UPR as a hub for interorganelle communication. At ER—
mitochondria membrane contact sites, IREl coordinates
mitochondrial physiological bioenergetics by engaging the
calcium channel ITPR'”. IREl regulation at ER-mitochondria
junctions also tunes biomedically relevant processes, such as the
regulation of T-cell responses''’. In parallel, PERK stimulates the
assembly of respiratory chain supercomplexes in a nutritional
and ER stress—dependent manner'''"”. The UPR-mitochondria
interplay is bidirectional: a genomic high-content screen in yeast
demonstrated that mitochondrial heme biosynthesis enables
optimal UPR signaling'”*. More recently, the mitochondrial
ubiquitin ligase MITOL was shown to ubiquitylate IRE1 at ER—
mitochondria contact sites to suppress its activity and prevent
apoptosis''*. These studies showcase the conserved role of the
UPR as an integration node for interorganelle communication.

IRE1 and PERK are also found at ER-plasma membrane
(ER-PM) contact sites through their association with the
cytoskeletal scaffold filamin A (FLNA). PERK-driven FLNA
recruitment expands ER-PM contacts and replenishes ER
calcium stores''”, while IRE1 engages FLNA to facilitate cell
motility''°. These UPR mechanisms are independent of the
enzymatic activities of IRE1 or PERK, relying instead on
dynamic UPR sensor clustering. Unexpectedly, the role of
UPR-organelle cross-talk in modulating UPR signaling was
further illustrated by the observation that ceapins, recently dis-
covered ATF6 signaling inhibitors''”'"*, work by providing a
neomorphic artificial tether between the ER and peroxisomes'"”.

In spite of the compelling evidence supporting non-canonical
roles for IRE1 signaling, a recent report demonstrated that XBP1
mRNA splicing is the only IRE1 activity required for medaka fish
development and growth'”’. However, this observation does not
negate the relevance of cross-connectivity between the UPR and
other cellular processes in maintaining organismal homeostasis.
Far from behaving as a self-contained transcriptional program, the
UPR drives the expression of distinct sets of genes in a cell type-
and stimulus-dependent manner that involves metabolic, inflam-
matory, or developmental cues”'”"'*>. Moreover, out of hundreds
of UPR regulated genes, many have no direct functions in
maintaining ER homeostasis. For example, some UPR target genes
coordinate the DNA damage and repair response, hinting at a
key role for UPR in maintaining genome integrity”'*>'*. Together,
canonical and non-canonical mechanisms emerging from differ-
ent UPR sensors—at least for IRE1 and PERK—assemble into a
multipronged signaling relay that most likely determines the
robustness of the UPR while coordinating the activities of other
organelles and functions within the cell.
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UPR signal integration at the organism level

The interconnected nature of UPR signaling is not restricted to
single cells, as it has been increasingly clear that a cell non-
autonomous UPR plays a role in maintaining organismal health.
Work in Caenorhabditis elegans showed that IRE1 regulates
stress resistance and longevity through an unidentified diffus-
ible factor, which is a downstream target of XBP1'**. Moreover,
ectopic expression of XBP1S in mouse neurons leads to stress
responses in liver and improves hepatic insulin sensitivity'>.
More recently, a role for UPR in the maintenance (or disruption)
of circadian rhythms in animals has been elucidated. Through the
combined action of transcriptional and translational mechanisms,
the UPR regulates the expression of circadian factors to ensure
the oscillatory control of metabolic rhythms'**'’. On the flip
side, under ER stress conditions, PERK inhibits the circadian
heterodimeric components BMAL1 and CLOCK, abrogating
cellular rhythms in cells and animals'**'>.

The fundamental roles of the UPR in coordinating organism-
level homeostasis are further accentuated by the potential for
therapeutic utility of recently discovered small-molecule
modulators of the UPR. In some instances, it may be desirable
to suppress UPR signaling for a favorable outcome, as has been
recently demonstrated for pharmacologic inhibition of IRE1 in
orthotopic models of multiple myeloma'"" and atherosclerosis'’!
or by blocking IREl functions as a promising strategy for
pain management'*. In other instances, it may be desirable to
enhance UPR signaling to increase the protein processing
capacity of the ER. Recently discovered selective activators
of ATF6 show promise in this regard as they alleviate amyloidog-
enic protein aggregation and proteotoxicity in various disease
models, including myocardial ischemia'**-'"**. The positive effects
of the small-molecule ISRIB, which renders cells insensitive to
the effects of e[F2o. phosphorylation'*“, on models of neurological
disorders and brain injury further substantiate this notion. For
example, ISRIB rescues the effects of genetic mutations observed
in vanishing white matter disease'’’, reverses cognitive deficits
in mouse models of traumatic brain injury'*®, alleviates social
behavioral defects and anxiety-like symptoms in a genetic mouse
model'”, and protects neural cells in mouse models of prion
disease'*’. Importantly, a small molecule called Sephinl, which
has been proposed to obstruct elF2a. dephosphorylation, also
provides therapeutic benefit in mouse models of protein misfold-
ing neuropathologies'*'~'**. These findings highlight the potential
for controlling elF2o. phosphorylation in different pathologies.
All of these observations underscore the notion that the pharma-
cological manipulation of the UPR is an attractive opportunity for
targeted therapeutic intervention in multiple diseases.

Taken together, the aforementioned findings portray a bottom-
up view of the UPR homeostat that extends beyond the scope of
maintaining ER homeostasis. In the UPR hierarchy, at its most
basic level, the UPR maintains ER physiology. In the next level,
the UPR interdigitates with cellular physiology through dynamic
connections between the ER and other cellular components and
processes. In a higher plane, the UPR integrates signals at the
multicellular level, facilitating communication about specific
states between cells and tissues and modulating the oscillatory
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dynamics of organismal rhythms. By interlocking fundamental
biological processes at multiple levels, the UPR emerges as a main
regulatory hub that maintains the health of the whole organism.

What does the future hold for the UPR signaling
mechanisms?

The past five years have seen great progress in our understanding
of the UPR. These developments raise new questions. For exam-
ple, although we know that clustering is essential for UPR sensor
activation, we do not understand the mechanisms that would drive
their spatiotemporal organization in specific domains of the ER
membrane. We also know very little about the mechanistic details
that underlie the functional partitioning of each UPR signaling
pathway. Is the main function of IRE1 to survey translocon integ-
rity and availability while other homeostatic functions are delegated
to ATF6? Are pro-apoptotic functions limited mostly to PERK?
The significance of other molecular mechanisms also remains
obscure. Are there other RIDD substrates that, akin to BLOSI,
control specific cytoprotective or pro-apoptotic responses? Is the
ribosome a signaling hub for IRE1 or PERK? Do non-canonical
UPR mechanisms impact the differentiation of cells and tissues,
or do they exist simply to fine-tune cellular responses to specific
physiological states? These questions will provide fertile ground
for research for years to come.

Another recent observation that begets new questions is the find-
ing that not every cell in a population responds in the same
way to the same ER stress input’. Is it possible that, akin to
the innate antiviral type-I interferon response, alerting neigh-
boring cells about a potential threat to ER functions allows
coordinated responses that maintain tissue and organism
homeostasis? Is it possible that cells exhibit different UPR types
depending on whether they are actively cycling, have exited
the cell cycle irreversibly in preparation for terminal differen-
tiation, or are terminally differentiated? Future work address-
ing these questions could reveal new UPR signaling paradigms
in multicellular organisms.

The differences in the response to ER stress of individual cells
in an asynchronous population strongly hint at a fundamen-
tal connection between UPR signaling and the cell cycle. Sub-
stantiating this notion, the yeast XBP1 homolog Hacl has
been implicated in cytokinesis'*, and blocking IRE1 signaling
delayed cell cycle progression in helper T-cells'*. In addition,
PERK signaling has been proposed to negatively impact cell
cycle progression'*®'*’. A putative role of XBPI1U in control-
ling cell proliferation has recently been discovered: XBP1U acts
as a negative regulator of the p53/p21 tumor suppressor axis,
revealing a potential oncogenic role for this protein'**. Even
though this role is independent of IREI, it is possible that it
remains linked to the UPR since both ATF6N and XBPIS induce
XBPI mRNA expression™". Future work is required to uncover
the mechanistic details behind a putative “ER health checkpoint”
in the metazoan cell cycle.

The developments discussed here highlight that the UPR

story is far from complete. They portray a far more complex
molecular circuitry for the UPR than previously anticipated.
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This new knowledge on basic UPR mechanisms has the poten-
tial to dramatically change our outlook on how to manipulate
the UPR for therapeutic intervention. It is becoming clear that
the UPR is much more than the sum of its parts and that this
Rube Goldberg stress signaling device will continue to gift
significant discoveries for years to come.
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brane protein 38B; TXNIP, thioredoxin-interacting protein;
uORF, upstream open reading frame; UPR, unfolded protein
response; XBP1, X-box binding protein
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