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Abstract: Gene regulation through DNA methylation is a well described phenomenon that has a
prominent role in physiological and pathological cell-states. This epigenetic modification is usually
grouped in regions denominated CpG islands, which frequently co-localize with gene promoters,
silencing the transcription of those genes. Recent genome-wide DNA methylation studies have
challenged this paradigm, demonstrating that DNA methylation of regulatory regions outside
promoters is able to influence cell-type specific gene expression programs under physiologic or
pathologic conditions. Coupling genome-wide DNA methylation assays with histone mark annotation
has allowed for the identification of specific epigenomic changes that affect enhancer regulatory
regions, revealing an additional layer of complexity to the epigenetic regulation of gene expression.
In this review, we summarize the novel evidence for the molecular and biological regulation of
DNA methylation in enhancer regions and the dynamism of these changes contributing to the
fine-tuning of gene expression. We also analyze the contribution of enhancer DNA methylation on the
expression of relevant genes in acute myeloid leukemia and chronic myeloproliferative neoplasms.
The characterization of the aberrant enhancer DNA methylation provides not only a novel pathogenic
mechanism for different tumors but also highlights novel potential therapeutic targets for myeloid
derived neoplasms.

Keywords: DNA methylation; Enhancer regions; myeloid neoplasms; acute myeloid leukemia (AML);
myeloproliferative neoplasms

1. Enhancer Definition

Differentiation of the wide range of existing cell types requires the establishment of spatiotemporal
patterns of gene expression during embryogenesis, but also during processes involving continuous
differentiation through adulthood, such as hematopoietic differentiation [1]. Since their discovery in
1981 [2], enhancer elements have been demonstrated to play a key role in the regulation of transcriptional
programs both under physiological and pathological conditions [3]. Enhancer regulatory elements
function as integrated binding platforms for a variety of transcription factors [4], regulating the
transcription of their target genes independently of orientation and at various distances from their
target promoter [5]. The flexible nature of DNA allows enhancers to come into close spatial proximity
to their target promoters through chromatin looping [6]. Remarkably, whereas promoter activation is
largely invariant across cell types, enhancer regions have been demonstrated to be highly dynamic
and correlate with cell-specific gene expression profiles [7-10]. Genome-wide studies have suggested
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that enhancers are likely to be the most dynamic elements in the genome, revealing more than 400,000
putative enhancer elements, pointing out to a key role in the spatiotemporal regulation of transcriptional
programs [3].

Until recently, the identification and functional annotation of enhancer elements had proved
challenging, owing to the intrinsic dynamic nature of enhancers across cell types, their highly
variable location, and the lack of a well-defined consensus sequence. The advances in epigenomic
profiling technologies such as ChIP-seq (chromatin immunoprecipitation followed by high-throughput
sequencing) have been effectively used to correctly annotate them, associating putative enhancer
regions with the presence of monomethylation of lysine 4 in histone 3 (H3K4mel) and acetylation
of lysine 27 in histone 3 (H3K27ac) (Figure 1). These two modifications, often in combination with
chromatin accessibility data provided by DNase-seq (sequencing of DNase I hypersensitive sites)
or ATAC-seq (assay for transposable-accessible chromatin-sequencing), provide a robust readout
of genome-wide location of active enhancers, and have been utilized for enhancer annotation in a
myriad of studies [8,11-14]. These chromatin marks are not simply passive modifications, for instance,
in primed or poised enhancers associated with H3K4mel modification, addition of the methyl group
to the histone tail can prevent DNA methylation, facilitate nucleosome repositioning, and promote the
binding of the so called “pioneer” factors responsible for enhancer activation [15,16]. Additionally, these
marks can provide further functional information about the enhancer activation status, as presence of
H3K27ac in adjacent nucleosomes distinguishes active enhancer states from those poised for activation,
which are bivalently marked by H3K4mel and H3K27me3 (trimethylation of histone 3 lysine 27) in
specific cell types (Figure 1). Such poised enhancers have been defined to be at a “pre-activated” state,
which allows rapid and temporal switch on/off, a feature of high relevance for complex differentiation
programs, such as hematopoiesis [17].
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Figure 1. Chromatin landscape for heterochromatin, poised and active enhancer regions. (A) The
inactive DNA is tightly packed around histone proteins marked with H3K27me3 modification, in the
form of heterochromatin. This structure prevents any interactions of transcription factors (TF) with the
DNA sequence. (B) When the enhancer region is pre-activated or poised, addition of H3K4mel to the
histone tails make the nucleosomes mobile, allowing their displacement to form highly accessible DNA
regions, which get frequently demethylated. (C) Upon activation of enhancer region, nucleosomes
flanking this region acquire H3K27ac, losing the repressing H3K27me3 mark, which subsequently
recruits the corresponding transcription factors.
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2. Enhancer DNA Methylation

DNA methylation is a key mechanism for gene expression regulation. It consists in the addition
of a methyl group (-CH3) to the 5-carbon position of cytosine bases in CpG dinucleotides by DNA
methyltransferase enzymes (DNMTs), yielding 5-methyl-citosine (5mC). These enzymes are involved in
both establishing de novo DNA methylation patterns (DNMT3A and DNMT3B) and their maintenance
during cell division (DNMT1) [18]. Whereas DNA methylation mechanisms are well characterized,
the DNA demethylation process is still controversial. On one hand, DNA methylation can be passively
lost due to an inefficient maintenance during cell division. On the other hand, active DNA demethylation
can occur by deamination of 5mC to thymine, catalyzed by Activation-induced Cytidine Deaminase
(AID) enzyme; or by hydroxylation to 5-hydroxymethylcytosine (5hmC), catalyzed by the Ten-Eleven
Translocation protein family (TET1, TET2 and TET3) [19]. Some recent studies have revealed preferential
activity of TET protein family on enhancer regions during embryonic or other physiological processes
such as Forkhead Box P3 (FOXP3) expression in T-lymphocytes [20-23] or the DNA demethylation of
super-enhancer activity of AID by TET proteins during the B cell differentiation [24].

Cytosine methylation to 5mC involving CpG dinucleotides has been predominantly implicated
in transcriptional silencing, particularly when located in promoter regions. Remarkably, DNA
methylation can also take place outside promoters (i.e. gene bodies or intergenic regions) [25].
Although the mechanisms are not fully characterized, non-promoter DNA methylation has also
been demonstrated to control gene expression through regulation of transcriptional elongation [26],
determination of alternative promoters [27], regulation of mRNA splicing [28] or by interfering
with binding of transcription factors to enhancer regions [29-31]. Such DNA methylation outside
promoter elements has been shown to be more dynamic and more tissue-specific than canonical
promoter methylation, largely overlapping with enhancer functionality [25,32,33]. In fact, inactive
enhancers display higher levels of DNA methylation, whereas hypomethylation of enhancer DNA
is associated with transcription factor binding and subsequent transcriptional activation [34,35]
(Figure 1). However, it is worth noting that epigenetic regulation of enhancer activation does
not rely only on DNA methylation, as histone modifications cooperate with DNA methylation to
control accessibility of chromatin to key transcription factors in a cell-specific and time-dependent
manner [36]. Epigenetic-mediated enhancer activation/inactivation has been observed throughout
embryonic development [37], influencing, for example, primordial embryonic stem cells differentiation
or neural-glial specification [38,39]. Enhancer DNA methylation also influences terminal differentiation
processes in mature individuals, such as T-cell lineage specification or granulopoiesis [29,40].
Accordingly, deregulation of DNA enhancer methylation translates into pathological states, such
as neoplastic transformation, where aberrant enhancer methylation contributes to the malignant
phenotype inducing cellular de-differentiation in both solid and hematological tumor cells [41-45].

Although the defining features of enhancer regions are common (high levels of H3K4mel and
H3K27ac histone marks as well as DNA hypomethylation), their cell-type specific function should
be determined by the binding of additional factors that may further alter the chromatin structure
or influence transcription. Moreover, these epigenetic modifications are deposited in a cell-type
dependent context by distinct histone chaperones or chromatin modifying enzymes, subsequently
recruited to the enhancer regions by sequence-specific DNA binding proteins or other factors [46].
The coordinated recruitment of multiple transcription factors and chromatin modifiers to enhancer
regions involves complex regulatory machinery, which will be summarized in the following section.

3. Epigenetic Machinery Associated with Enhancer Regulation

Most genome-wide studies show and inverse correlation between histone H3K4 methylation and
DNA methylation, in putative enhancer regions. The interaction between both epigenetic modifications
is regulated by a cross-talk among: (1) histone methyltransferases (HMTs), which can recognize
hypomethylated DNA through methyl binding domains (MBDs) and zinc finger CXXC domains, and
(2) DNMTs, which contain domains recognizing methylated histones [15]. Six different lysine-specific
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HMT have been shown to catalyze H3K4 methylation in mammal cells: four Mixed Lineage Leukemia
enzymes (MLL1-4) and two SET domain containing proteins (SET1A and SET1B). Specifically, MLL3 and
MLL4 are recognized examples of enzymes responsible for organizing genome-wide H3K4mel levels
at enhancer elements [47]; this event frequently occurs upon DNA demethylation [48,49], rendering
enhancer structures accessible for activation. MLL proteins have been reported to interact with
cell-type specific and signaling-dependent transcription factors [38,50,51], suggesting that enhancer
activation can be orchestrated by specific transcription factors. Transcription factor binding can
directly activate gene transcription of enhancer regions; however, this event requires recruitment of
different co-activator proteins. CREB binding protein (CREBBP or CBP) and p300 are two examples
of ubiquitously expressed histone acetyltransferases (HATs) constituting a co-activation complex
that targets enhancer regions [52]. In fact, p300/CBP complexes have been successfully used for
genome-wide enhancer mapping in different cell types and tissues [7,53,54]. An additional layer of
complexity comes from the bivalent state of enhancers, which is marked by the presence of acetylated
residues in neighbor histones, such as H3K27ac [14,17,55] (Figure 1). It remains to be demonstrated
if the acetylation is directly responsible for the transition from poised to active enhancer, or on the
contrary is only a passive marker of enhancer activation.

Deposition of enhancer-related histone marks is closely co-regulated with enhancer DNA
methylation. However, the hierarchy of these enhancer epigenetic modifications remains unclear.
On the one hand, there is evidence of regulation of DNA methylation through specific histone mark
deposition, as demonstrated by the recruitment DNMTs to sites of unmethylated histones (H3K4me0)
and the activity of chromatin-interacting complexes, such as the ATRX-DNMT3-DNMT3L [56,57].
This later complex specifically recognizes H3K4 methylation and guides DNA methylation activity
of DNMT3A towards enhancer elements [57-59]. In contrast, some recent studies define DNA
methylation as the leading epigenetic modification, instructing histone mark deposition through
recruitment of methyl-CpG binding proteins (MBD) [60] and exclusion of the PRC2 complex from
demethylated enhancers and promoters [61]. As an example, mouse embryonic stem cells devoid
of DNA methylation by DNMT3A knockout, show H3K4me3 and H3K27ac chromatin marks as
the fundamental modifications regulating gene transcription. However, these histone marks were
reversed upon reconstitution of DNMT3A expression resulting in downregulation of gene expression.
Therefore, although it is plausible that the regulation between DNA methylation and histone mark
deposition would also be cell-type specific, further research is required to expand our knowledge of
the chromatin/DNA methylation co-regulation, specifically in hematopoiesis [62].

4. Enhancer DNA Methylation in Myeloid Diseases

Hematopoiesis is a well-defined differentiation process that involves widespread chromatin
remodeling. Recent studies demonstrate that the establishment, activation or decommission of
enhancer regions through different lineage commitment steps is crucial for proper cell differentiation [9].
A clear example of this phenomenon occurs in normal granulopoiesis, where enhancers seem to suffer
an increase of DNA methylation in the initial stages of differentiation (from the common myeloid
progenitor to granulocyte-monocyte progenitor), followed by the loss of enhancer DNA methylation in
mature granulocytes, which correlates with gene expression patterns in these cells [32,55]. Monocyte
differentiation is also dependent on the expression of a specific enhancers repertoire, tightly regulated by
epigenetics [63,64]. Evidence of such a prominent role of enhancer DNA methylation in hematopoiesis
leads us to assume that the aberrant DNA methylation of cancer cells can potentially affect enhancer
regions, thereby deregulating the cell transcriptome in hematological neoplasms (Figure 2).
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Figure 2. Aberrant DNA methylation of enhancer regions deregulates the transcriptional program
of myeloid neoplasms. (A) In DNTM3A/FLT3 mutated AML, DNA demethylation activates new and
poised enhancers, making accessible binding sites for transcription factors implicated in myeloid
differentiation, such as RUNX family transcription factor 1 (RUNX1) or Spi-1 proto-oncogene (SPI1 or
PU.1). Such aberrant regulatory landscape induces a leukemic transcriptome, altering for example the
expression of the HOXB gene cluster. (B) DNA methylome of myelofibrosis patients is characterized by
an aberrant enhancer DNA methylation signature, which alters the gene expression pattern of relevant
genes for neoplastic transformation, such as tumor-suppressor gene ZFP36L1, silenced in patients
after aberrant DNA enhancer hypermethylation. (C) TET2 mutated chronic myelomonocytic leukemia
(CMML) cells shows an aberrant methylated DNA landscape, overlapping with regulatory enhancer
regions in normal cells. Such DNA hypermethylation prevents binding of key regulators for myeloid
differentiation, such as p300 or PU.1, altering the transcriptional program of these cells.

4.1. Aberrant Enhancer DNA Methylation in Acute Myeloid Leukemia

Acute myeloid leukemia (AML) is a hematologic neoplasm characterized by an impaired
differentiation process, leading to an accumulation of immature blasts in the blood [65]. Recent
studies have demonstrated that AML clones feature abnormal DNA methylation preferentially in CpG
sites mapped to enhancer regions, with a striking predominance of hypomethylation [66]. AML with
specific cytogenetic and mutational profiles shows differential DNA methylation profiles, in particular,
DNMT3A and IDH gene mutations have been shown to have antagonistic patterns of enhancer DNA
methylation, suggesting that epigenetic consequences of these mutations could be largely contributing
to their malignant phenotype. Interestingly, AML with CEBPA silencing represents an exception to
this, featuring hypermethylation of promoter regions and little changes in enhancer DNA methylation,
in line with the distinct clinical and biological characteristic of this AML subtype [66].
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Additional studies published by Qu Y et al, have shown that not only AML patients with gene
mutations but also unmutated AML harbor an aberrant DNA methylome compared to healthy CD34+
cells, which is significantly altered at enhancer regulatory regions [67]. Genome wide profiling of these
cells have linked such changes in DNA methylation to chromatin mark deposition in enhancer regions,
showing significant correlation between DNA hypomethylation and active chromatin marks (DNAse
sensitivity, H3K4mel, H3K4me3 and H3K27ac). Consequently, DNA demethylation activates new and
poised enhancers in AML, causing a leukemia-associated transcriptome in these cells [67] (Figure 2A).
Importantly, aberrant enhancer DNA methylation in AML has been shown to be independent of the
expected differentiation-induced changes at these sites, suggesting that this aberrant DNA methylation
profile is unique to the pathological state in AML and could be a central event in leukemogenesis [68].
Moreover, DNA methylation levels at specific enhancer regulatory regions could be used to predict
overall survival of AML patients [68].

The studies conducted by Yang L et al, provide further evidence supporting the key role of
enhancer DNA methylation in AML development and its association to DNMT3A activity, known to
be frequently altered in myeloid neoplasms and particularly in AML [69-71]. Their experiments with
DNMT3A knockout mice demonstrate that loss of DNA methylation, in the context of a heterozygous
DNMT3A knockout, coupled with FLT3-ITD mutation are capable of developing de novo AML in
affected mice [72]. Furthermore, DNMT3A knockdown was associated with predominant changes in
DNA methylation at enhancer sites, whose functional analysis revealed potential binding sites for many
of the transcription factors known to drive myeloid differentiation (e.g., RUNX1, PU.1) [72] (Figure 2A).
These observations have also been confirmed in patient samples with DNMT3A R882 mutation,
which displayed enrichment of DNA hypomethylation at enhancer sites, similar to those observed
in the DNMT3A knockout model. Gene expression pathway analysis of the gene signatures related
to these hypomethylated enhancers also revealed enrichment of functions related to hematopoietic
development, among which HOXB gene cluster was prominent [72] (Figure 2A). This gene cluster
has been previously recognized as an important player of hematopoiesis [73] and shows significant
overexpression in AML patients [74].

Further evidence pointing towards the importance of enhancer regulatory regions in AML
pathogenesis comes from a phenomenon called enhancer hijacking [75], which consists of recurrent
translocations involving enhancer elements in the myeloid compartment. AML patients with inv(3) or
t(3;3) are characterized by repositioning of GATA2 enhancer into the EVII locus. This result in a double
effect of inappropriate EVI1 upregulation coupled with downregulation of GATA2, proven drivers of
AML development [76,77].

Overall, it is now accepted that enhancer deregulation is a frequent and predominant alteration
of AML cells. The consequences of these alterations still remain to be fully investigated, however,
it seems clear that enhancer DNA methylation couples with chromatin mark deposition to govern
enhancer functionality, ultimately affecting transcription factor binding to the enhancer regions and
shaping the transcriptomic profile of AML cells.

4.2. Deregulation of the DNA Methylation Signature in Philadelphia Chromosome-Negative Myeloproliferative Neoplasms

Philadelphia chromosome-negative myeloproliferative neoplasms (MPN), including polycythemia
vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (MF), are characterized by
a clonal transformation of hematopoietic progenitors leading to expansion of fully differentiated
myeloid cells [78]. Primary MF carries the worst prognosis of all MPN, in which recent reports
have associated the phenotypic characteristics of MF patients with an aberrant DNA methylation
profile [79]. Initial studies focused on promoter DNA methylation identified a limited number
of differentially methylated CpG sites in MPN when compared to healthy donors, being unable
to find specific DNA methylation profiles for each different malignancy (i.e., MF, PV or, ET) [80].
The findings on promoter DNA methylation indirectly indicate that aberrant DNA methylation could
be targeting CpG sites outside of the canonical promoter region, as it has been later demonstrated.
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Work by Martinez-Calle et al, has indeed shown that the DNA methylome in MF is characterized
by a pathological enhancer DNA methylation signature, independent of JAK2V617F mutation status.
This aberrant enhancer DNA methylation correlated with changes in expression of relevant genes
for hematopoietic differentiation revealing a gene expression profile that is likely to contribute to
the malignant phenotype [43]. One representative example of this phenomenon is the silencing of
ZFP36L1 transcriptional regulator mediated by DNA hypermethylation of its associated enhancer in
MF patients (Figure 2B). This gene behaves as a tumor suppressor gene in MF, highlighting the crucial
role of aberrant enhancer DNA methylation in deregulating the expression of key genes for neoplastic
transformation. Additional genome-wide studies have also confirmed differential DNA methylation
profile of MF samples, showing an enrichment of differentially methylated CpGs in regions marked by
the enhancer-related H3K4me1l histone mark [79].

Overall, DNA methylation landscape of chronic MPN is significantly altered, deregulating
its transcriptional profile and affecting a significant number of relevant signaling pathways.
More importantly, the enhancer signature of these patients is largely affected by changes in DNA
methylation patterns, as demonstrated also for AML cells, suggesting that enhancer DNA methylation
is indeed common to myeloid malignant transformation in both cases. The specific role of enhancer
DNA methylation in the early transforming events and the maintenance of the malignant phenotype
continues to be actively investigated.

4.3. DNA Methylation in TET2 Mutated Chronic Myelomonocytic Leukemia

Enhancer DNA methylation is also relevant for other myeloid neoplasms such as chronic
myelomonocytic leukemia (CMML). This rare clonal hematological disorder is characterized by the
aberrant transformation of the hematopoietic stem cell compartment, displaying overlapping features
of myelodysplastic syndromes (due to defective hematopoiesis), and myeloproliferative neoplasms
(due to aberrant hyperactivated hematopoiesis) [81]. Pérez et al demonstrated that changes in DNA
methylation in CMML patients seem to be associated with TET2 mutations [82]. TET2 is an epigenetic
regulator that has been shown to catalyze the conversion of 5mC to 5-hydroxymethyl-cytosine (5hmC),
leading to active DNA demethylation of the modified CpG sites. It plays important roles in normal
hematopoiesis, including stem cell self-renewal, lineage commitment and terminal differentiation of
monocytes [83-85]. TET2 has been recognized as a tumor-suppressor gene, which is frequently mutated
in human hematopoietic malignancies. TET2 mutations can lead to frame-shift, new stop-codons,
in-frame deletions, or highly conserved amino acid substitutions [85]. Such mutations have been
demonstrated to impair TET2 catalytic activity, resulting in reduced 5hmC levels in affected cells.
Interestingly, such aberrant DNA methylation profile detected in TET2-mutated CMML patient samples
was significantly enriched outside CpG islands, which overlap with enhancer regulatory regions
enriched for PU.1 transcription factor and p300 regulatory complex (Figure 2C), as was further validated
in different studies [86-88]. However, these studies have also revealed a heterogeneous behavior of
5mC and 5hmC profiles in CMML patients, suggesting that epigenetic changes in this neoplasm are
driven by additional mechanisms beyond the inactivation of TET2 protein.

Homozygous and heterozygous mutations in TET2 gene are recurrent in hematopoietic
malignancies besides CMML (frequency ranging from 30 to 60%), including myelodysplastic syndromes
(20-35%), AML (12-34%) or lymphoid malignancies (2-33%) [85]. Moreover, TET2 deletion has been
demonstrated to be sufficient to cause both myeloid and lymphoid malignancies in mice [89]. Biological
consequences of TET2 mutations are thought to extend beyond DNA demethylation, as TET2 might
also participate in the regulation of the immune system, processes of the DNA repair response and
may even cooperate with other gene mutations to promote neoplastic transformation [85]. Additional
studies are required to shed light on the implications of TET2 mutations in regulation of the DNA
methylation landscape of normal and malignant hematopoietic cells.
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5. Diagnostic and Therapeutic Implications

In spite of the quickly accumulating evidence of enhancer-specific DNA methylation changes and
its potential relevance for myeloid malignancies, the therapeutic restoration of physiological DNA
methylation status remains utopic, although some advancements have been made. Hypomethylating
agents (i.e., DNMT3A inhibitors) are a clinical reality in the treatment of myelodysplastic syndromes
and AML [90,91] providing modest but meaningful improvement in response rates and survival of
patients. However, linking the DNA hypomethylating effect to efficacy of these agents has remained
elusive, in fact, the precise mechanism of action responsible for the control of leukemic clones is still
largely unknown. These agents have a broad specificity for DNA methylated sites of the genome and
many off-target effects. Therefore, this is unlikely to represent a solution for the precise and temporary
manipulation of DNA methylation that is required for a targeted epigenetic therapy.

The Bromodomain and Extra-Terminal Domain (BET) proteins constitute a family of epigenetic
readers that can recognize acetylated lysine residues in histones, recruiting specific effector proteins to
active chromatin regions, such as promoters and specially enhancers of active genes. BET proteins
have been reported to play a crucial role in regulating gene transcription during cell proliferation
and cell differentiation [92], such as the mechanistic studies conducted by Dey et al, revealing that
BET protein BRD4 binds preferentially to super-enhancer structures contributing to the expression of
lineage specific genes in the myeloid compartment [93]. Besides their role in physiological cellular
processes, BET proteins have been also identified as key players in the maintenance of the neoplastic
phenotype [94]. Indeed, several lines of evidence point towards targeting BET proteins as a new
strategy for cancer treatment. For these reasons, BET protein inhibitors (BETi) are a novel class of
epigenetic drugs that have experienced an exponential development over the last decade. The first
published clinical results of a BETi resulted in cell growth inhibition, cell-cycle arrest and apoptosis
of AML cell lines, driven by the decreased expression of BRD2 and BRD4 BET genes and relevant
oncogenes, such as c-MYC [95,96] or NF-kappa {3 complex genes [97,98]. Mivebresib and OTX015 are
examples of BETi tested in AML patients [97,98], showing an acceptable safety profile. BETi in fact
constitute the first class of enhancer-directed epigenetic therapy reaching clinical development and
have the potential to become part of the therapeutic armamentarium for AML and other hematological
malignancies, such as B-cell lymphomas [87,88].

The main obstacle for epigenetic therapy is the unselective activity of DNMT inhibitors and BET],
potentially affecting the expression of genes that could result in unpredictable biologic consequences.
To overcome these obstacles several alternatives have been explored, including TALEN or Zinc-finger
proteins coupled with TET2 demethylase [99] as well as methyltransferase domains [100]. Preliminary
experiments with these engineered proteins have successfully altered the DNA methylation status and
the expression of a single locus [101]. These techniques hold promise for a tailored epigenetic therapy
that can be applied to the diseased hematologic precursors; however, they remain in their infancy.

Enhancer DNA methylation can also serve as a biomarker for treatment response. Genome-wide
DNA methylation studies in CMML have revealed a signature of differentially DNA methylated regions
that associate with responders to DNA hypomethylating agent Decitabine [102], that is now widely
used in clinical practice for myelodysplastic syndromes and AML. The enhancer DNA methylation
profile associated with response to Decitabine leads to downregulation of specific cytokines in CMML
patients; indeed, exogenous administration of these cytokines to responders reduced Decitabine
efficacy. This implies that the enhancer DNA methylome may constitute a promising biomarker to
predict response to therapeutic agents. Moreover, such a resistant phenotype could be at least partially
and temporarily reversed to enhance therapeutic response [103].

Finally, apart from therapeutic manipulation of enhancer DNA methylation, this epigenetic mark
could also be envisioned as diagnostic tool. Some epigenetic programs are sufficiently conserved
in cancer cells, as has been widely demonstrated in genome-wide studies [104,105], allowing for
early detection of tumoral cells based on DNA methylation abnormalities in routine clinical samples.
This is already a reality for colorectal and breast cancer: the identification of vimentin gene DNA
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methylation [106] in blood samples and the PTIX2 gene in breast cancer are two representative
examples [32]. In AML, CEBPA gene DNA methylation has also been proposed as a favorable
prognostic biomarker at diagnosis [107,108]. None of these biomarkers are specific for enhancer
regions, but given the predominant role of enhancers in cancer-specific gene expression, identification
of key aberrantly DNA methylated enhancers in tumoral samples can potentially turn them into useful
clinical biomarkers.

6. Conclusions

Deranged enhancer DNA methylation is emerging as a prominent feature of myeloid neoplasms,
adding an additional layer of complexity to the already entangled epigenetic landscape of these
diseases. As has been described above, enhancer regulation is also crucial for hematopoietic and
myeloid differentiation; hence, it is of no surprise that they also play an important role in neoplastic
transformation. Much remains to be learnt from the dynamic and complex regulation of the DNA
methylation status of enhancer regions before it can be translated into the diagnostic and therapeutic
fields. Enhancer regulation is certainly a nascent and promising topic in epigenetic research that is
expected to yield significant advancements in the next decades.
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