
DADAGP: A DATASET OF TOKENIZED GUITARPRO SONGS FOR
SEQUENCE MODELS

Pedro Sarmento1 Adarsh Kumar2,3 CJ Carr4
Zack Zukowski4 Mathieu Barthet1 Yi-Hsuan Yang2,5

1 Queen Mary University of London , UK 2 Academia Sinica, Taiwan
3 Indian Institute of Technology Kharagpur, India 4 Dadabots 5 Taiwan AI Labs
{p.p.sarmento, m.barthet}@qmul.ac.uk, emperorcj@gmail.com, yhyang@ailabs.tw

ABSTRACT

Originating in the Renaissance and burgeoning in the dig-
ital era, tablatures are a commonly used music notation
system which provides explicit representations of instru-
ment fingerings rather than pitches. GuitarPro has estab-
lished itself as a widely used tablature format and soft-
ware enabling musicians to edit and share songs for mu-
sical practice, learning, and composition. In this work,
we present DadaGP, a new symbolic music dataset com-
prising 26,181 song scores in the GuitarPro format cover-
ing 739 musical genres, along with an accompanying tok-
enized format well-suited for generative sequence models
such as the Transformer. The tokenized format is inspired
by event-based MIDI encodings, often used in symbolic
music generation models. The dataset is released with
an encoder/decoder which converts GuitarPro files to to-
kens and back. We present results of a use case in which
DadaGP is used to train a Transformer-based model to gen-
erate new songs in GuitarPro format. We discuss other rel-
evant use cases for the dataset (guitar-bass transcription,
music style transfer and artist/genre classification) as well
as ethical implications. DadaGP opens up the possibility to
train GuitarPro score generators, fine-tune models on cus-
tom data, create new styles of music, AI-powered song-
writing apps, and human-AI improvisation.

1. INTRODUCTION

Historically, tablatures’ proliferation is closely linked to
the lute repertoire, compositions that roughly span from
the 16th century onwards, and are still available today [1].
In opposition to standard notational practices (usually re-
ferred to as staff notation), in a tablature system for string
instruments each staff line on the score represents a string
of the instrument, substituting a representation of pitch by
a given location on said instrument (i.e. a fingering) [2].
Tablatures are a prescriptive type of notation, where the

© P. Sarmento, A.Kumar, CJ Carr, Z. Zukowski, M. Barthet
and Y. Yang. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: P. Sarmento, A.Kumar, CJ
Carr, Z. Zukowski, M. Barthet and Y. Yang, “DadaGP: A Dataset of Tok-
enized GuitarPro Songs for Sequence Models”, in Proc. of the 22nd Int.
Society for Music Information Retrieval Conf., Online, 2021.

Figure 1. An excerpt from a GuitarPro song notation using
tablatures and score for two guitars, bass and drums.

emphasis is on the action (symbol-to-action), contrary to
descriptive forms of notation, which establishes a symbol-
to-pitch relationship. This characteristic makes tablatures
an intuitive and inclusive device for music reading and
learning, which can explain their large prevalence for mu-
sic score sharing over the Internet [3,4]. Often represented
as non-standardised text files that require no specific soft-
ware to read or write, tablatures’ online dissemination has
surpassed more sophisticated music notation formats, such
as Music XML or MIDI [3]. However, tablature represen-
tations that rely solely on text have limitations from a user
perspective. For example, it is common that rhythm indica-
tions are discarded, preventing a comprehensive transcrip-
tion of the music and automatic playback. Tablature edi-
tion software (e.g. GuitarPro 1 , PowerTab 2 , TuxGuitar 3 )
can be regarded as a solution for this problem, keeping
the prescriptive approach, and supporting rhythm notations
and playback. By supporting the annotation of multiple in-
struments, as observable in Figure 1, these tools account
for an interactive music experience, either for songwriting
or music learning purposes.

The release of this dataset intends to leverage the
GuitarPro format used by the before-mentioned software
to support guitar and bands/ensembles’ related research
within the MIR community, focusing specifically on the

1 https://www.guitar-pro.com/
2 http://www.power-tab.net/guitar.php
3 https://sourceforge.net/projects/tuxguitar/

https://www.guitar-pro.com/
http://www.power-tab.net/guitar.php
https://sourceforge.net/projects/tuxguitar/


task of symbolic music generation. The contributions of
this paper are: (1) a dataset of over 25,000 songs in Gui-
tarPro and token format, together with statistics on its fea-
tures and metadata, (2) an algorithm and Python software
to convert between any GuitarPro file and a dedicated to-
ken format suitable for sequence models 4 , (3) results from
its main use case, the task of symbolic music generation,
and (4) a discussion about further applications for DadaGP
and its ethical implications.

In this paper, we first present some relevant background
concerning previously released music datasets in symbolic
format. In Section 3, we discuss advantages of tab-based
datasets for MIR research. We then describe, in Section 4,
the details of the DadaGP dataset, its encoder/decoder sup-
port tool, the features it encompasses and the ones it lacks.
Within Section 5 we present a use case of symbolic music
generation using our proposed dataset, supported by previ-
ous approaches concerning databases of symbolic music.
Section 6 proposes additional applications for the dataset.
Finally, in Section 7 we explain the steps needed in order to
acquire the dataset, further pointing out some ethical con-
siderations in Section 8.

2. BACKGROUND

Since its release in 1983, the MIDI (Music Instrument Dig-
ital Inferfaces) standard has remained highly ubiquitous.
Unsurprisingly, MIDI has been the most recurrent option
in terms of musical notation formats, concerning datasets
released within the MIR community, either targeting music
generation purposes, that lately have boomed by leverag-
ing deep learning approaches, or aiming for musical anal-
ysis, musicology or purely information retrieval ends. A
comprehensive overview of previously released datasets in
symbolic format is presented in [5]. The authors present
MusPy, a toolkit for symbolic music generation, that na-
tively supports a total of eleven datasets. Considering cu-
mulative song duration, the top five datasets are the Lakh
MIDI dataset [6], the MAESTRO dataset [7], the Wikifo-
nia Lead Sheet dataset 5 , the Essen Folk Song database [8],
and the NES Music database [9]. With respect to music no-
tation formats, these datasets employ MIDI, MusicXML
and ABC. Recently, the GiantMIDI-Piano dataset [10],
comprising 10,854 unique piano solo pieces, the POP909
dataset [11] and the Ailabs.tw Pop1K7 dataset [12], con-
taining respectively piano arrangements of 909 and 1,748
popular songs, were also released, all relying on MIDI for-
mat. This standardisation around MIDI is useful for there
are several Python libraries to work with this format, such
as music21 [13], mido [14], pretty_midi [15], and jSym-
bolic [16].

Regarding guitar-oriented research, previous dataset re-
leases have not particularly targeted automatic music gen-
eration goals, instead focusing on guitar transcription or
playing technique detection. The GuitarSet consists of
360 excerpts of acoustic guitar along with annotations for

4 Available at: https://github.com/dada-bots/dadaGP
5 No longer available.

string and fret positions, chords and beats [17]. Further-
more, the Guitar Playing Techniques dataset [18] contains
6,580 clips of notes together with playing technique an-
notations. Likewise, the IDMT-SMT-Guitar dataset [19]
also comprises short excerpts that include annotations of
single notes, playing techniques, note clusters, and chords.
Lately, Chen et al. compiled a dataset of 333 tablatures
of fingerstyle guitar, created specifically for the purpose of
music generation [20].

To the authors best knowledge, there exists no multi-
instrument dataset that is able to combine the ease of use of
symbolic formats whilst providing guitar (and bass) play-
ing technique information. Such expressive information is
lacking in other formats, and GuitarPro appears as a viable
resource for music analysis and generation.

3. MOTIVATIONS: WHY GUITARPRO?

GuitarPro is both a software and a file format, widely used
by guitar and bass players, but also by bands. It is mostly
utilized for tasks such as music learning and practicing,
where musicians simply read or play along a given song,
and for music notation, in which composers/bands use the
software to either support the songwriting process, or sim-
ply as a means for ease of distribution once compositions
are done. As an example of the software’s widespread
dissemination, the tablature site Ultimate Guitar 6 hosts a
catalogue of over 200,000 user-submitted GuitarPro files,
containing notations of commercial music, mostly from the
genres of rock and metal. One of the main motivations
for the creation of DadaGP is to engage the MIR com-
munity into research that leverages the expressive infor-
mation, instrumental parts and song diversity in formats
such as GuitarPro. Although GuitarPro is a paid software,
free alternatives such as TuxGuitar are capable of edit-
ing/exporting into GuitarPro format. Moreover, GuitarPro
files can be easily imported into MuseScore 7 , a free soft-
ware notoriously known for music notation, which also
possesses tablature features. However, using MuseScore
might present some occasional incompatibilities, specif-
ically those regarding the selection of instruments (e.g.
drums are often imported as piano, and the correspond-
ing MIDI instruments need to be manually switched). An-
other important motivation for the release of this dataset is
that it is possible to make conversions between GuitarPro
and MIDI files. This can be done inside any of the afore-
mentioned software, by simply exporting into MIDI, or by
scripting. Thus, by converting the dataset’s GuitarPro files
into MIDI, MIDI-based music feature extraction functions
available (e.g. Python libraries referenced in Section 2)
can be applied. Finally, we believe that our dataset is able
to provide researchers with the information present in stan-
dard MIDI datasets, while including at the same time pre-
scriptive information useful for guitar-oriented research.

6 https://www.ultimate-guitar.com/
7 https://musescore.com/

https://github.com/dada-bots/dadaGP
https://www.ultimate-guitar.com/
https://musescore.com/


4. DADAGP DATASET

Leveraging the proliferation of music transcriptions avail-
able online as GuitarPro files, we compiled DadaGP, a
dataset containing 26,181 songs. We also devised an en-
conding/decoding tool to convert GuitarPro files into to-
kens, which is described in Section 4.1. In total, it con-
tains 116M tokens, which is about the size of WikiText-
103 [21]. In terms of duration, the dataset amounts to over
than 1,200 hours (average song length of 2:45 minutes).

4.1 Encoding/Decoding Tool

4.1.1 Feature Extraction with PyGuitarPro

PyGuitarPro [22] is a Python library which reads, writes
and manipulates GuitarPro files 8 . Our encoding/decoding
tool explores its feature extraction functions, in order to
convert much of the information into a tokenized text for-
mat. With PyGuitarPro it is possible to acquire informa-
tion regarding music-theoretic features (e.g. pitch, rhythm,
measure, instrument) and playing technique information.

4.1.2 Tokenization

The token format takes inspiration from event-based MIDI
encodings used in previous music generation works, such
as MuseNet [23], REMI [24] and CP [12]. The tool con-
sists of a Python script that utilizes PyGuitarPro to pro-
cess GuitarPro files into/from token format. Syntactically,
every song begins with artist, downtune, tempo
and start tokens. A depiction of the conversion pro-
cess can be seen in Figure 2. Notes from pitched in-
struments are represented by a combination of tokens in
the format of instrument:note:string:fret and
rests by instrument:note:rest. For the drum-
set, the representation is done by drums:note:type,
leveraging GuitarPro 5 percussion MIDI maps (e.g.
drums:note:36 for a kick drum, drums:note:40
for a snare). Every note or rest is separated in time by
wait tokens. This is sufficient for the decoder to figure
out note durations. There is no need to use note-off to-
kens, because new notes silence old notes, unless a ghost
note or let ring effect is used. Every new measure, note ef-
fect, beat effect, and tempo change is registered as a token.
Effect tokens are applied to the preceding note token. A
histogram containing the most common tokens in DadaGP
is available in Figure 4(g).

Furthermore, the DadaGP token format is resilient to
syntax errors, such that random token sequences will still
produce decodable music. We believe this is helpful when
creatively pushing generators to make out-of-distribution
sequences using high temperatures, early epochs, extreme
latent dimension values, interpolated style conditioning,
and other experimental practices.

4.2 Repertoire

Each song is labelled with artist and genre information,
although genre tags are absent within original GuitarPro

8 Currently, it supports GP3, GP4 and GP5 files.

Figure 2. A measure with a distorted guitar, bass and
drums in GuitarPro’s graphical user interface (left), and its
conversion into token format (right).

files. To this end, we compiled a genre list, with infor-
mation acquired from the Spotify Web API 9 , querying by
artist and song title, resulting in genre metadata for each
composition. It is worth mentioning that a given song can
have more than one genre attached to it. Information about
the most prevalent genres within DadaGP can be seen in
Figure 3. While its emphasis is on genres and sub-genres
from rock and metal, its corpus is diverse, also including
stylistically distinct genres such as jazz, classical, pop and
EDM. From Figure 4(a) we observe that most of the songs
in DadaGP contain four instrumental parts, usually two
guitars, a bass and drums.

Figure 3. Word cloud representation of the musical genres
in DadaGP. Tag size increases with amount of songs.

4.3 Instruments

Regarding instrumentation, for DadaGP a maximum of
nine instruments were chosen: three distorted or over-
driven guitars, two clean or acoustic guitars, one bass, one
drumset, one lead (for instruments with sharp attacks, e.g.
piano), and one pad (for instruments used more ambiently,
like a choir or a string ensemble). Multiple drum tracks are
combined into one. Rare instruments are combined into

9 Available at: https://developer.spotify.com/
documentation/web-api/

https://developer.spotify.com/documentation/web-api/
https://developer.spotify.com/documentation/web-api/


Figure 4. Statistical information about the DadaGP dataset. Histograms of tracks per song (a), initial tempos (b), most
common note durations in token and staff notation format (c), time signatures (d), note effects (e), amount of tempo changes
(f), most frequent tokens (g) and instruments (h).

the lead and pad tracks. In Figure 4(h) we can notice a pre-
dominance of distorted guitars in the dataset. Intuitively
this is justified by the presence of two distorted guitars (of-
ten one rhythmic and one lead) on most of the songs in
DadaGP, due to the predominance of the rock/metal genre.
Concerning guitar and bass, 7 string guitars are supported,
as are 5 and 6 string basses. Downtuning is supported only
if all instruments downtune the same amount, and common
tunings such as Drop D 10 and Drop AD are also included.
Rare tunings were dropped from the dataset as the encoder
does not support them.

Guitar playing technique notations are represented by
note effect tokens (nfx), although this family of to-
kens also holds information about other instruments (e.g.
nfx:tie, which acts as a link between two adjacent
notes). On Figure 4(e) we present a histogram of the most
frequent occurrences of these in our dataset, namely palm
mute (a technique often used with distortion guitars where
the guitar player dampens the strings with the right hand
palm), bends and vibratos, slides, hammer-ons and pull-
offs (both under nfx:hammer).

4.4 Meter

As clarified before, each note/rest event is followed by a
wait token which specifies the number of ticks between
it and the succeeding event. In DadaGP, tick resolution
uniformly corresponds to 960 ticks per quarter note. For a
tempo of 100 bpm, a tick corresponds to 60/(100∗960) =
0.000625 seconds. Referring to the excerpt in Figure 2,
eighth note events are separated by wait:480 tokens,
and sixteenth note ones by wait:240. A histogram with
the most common durations in DadaGP is presented in Fig-
ure 4(c), in both token and standard staff notation formats,
to ease visualization.

10 A tuning in which only the lowest string is downtuned by one whole
step, usually from E to D.

Usually, in a GuitarPro file a default tempo is speci-
fied for the entire song, although it supports the inclu-
sion of tempo changes throughout the piece. This is ad-
dressed by our encoder/decoder with the tokens tempo
and bfx:tempo_change respectively, which affects
note/rest duration. In Figure 4(b) and Figure 4(f) are pre-
sented plots corresponding to the most frequent tempos
and tempo changes.

The encoder/decoder also supports the representation of
measure repetitions with the measure:repeat token.
Although time signatures are not tokenized, they are in-
ferred by summing the wait tokens between the occur-
rences of new_measure. However, this method is in-
sufficient to distinguish between 3/4 and 6/8 measures,
for example. To circumvent this, for the plot presented in
Figure 4(d) we leveraged PyGuitarPro functions to extract
accurate information about the most prevalent time signa-
tures for each measure in our dataset.

4.5 What is Missing?

Information regarding key signature is not provided as part
of the dataset. Although key signature can be represented
in GuitarPro format, it is rarely present within files. Sim-
ilarly to the results presented in [6] for the Lakh MIDI
dataset, 93.7% of the songs in DadaGP were automatically
assigned the key of C Major, rendering these statistics in-
accurate.

GuitarPro does not include note velocity informa-
tion as in MIDI. However, in GuitarPro loudness be-
tween notes and musical phrases is notated using tra-
ditional dynamic instructions (e.g. forte, pianissimo,
mezzo-forte). In its token format, DadaGP does not yet
support this, but there is a possibility of accentuating
notes at two levels with nfx:accentuated_note and
nfx:heavy_accentuated_note.

Concerning vocals, a common practice with GuitarPro
files is to select MIDI wind instruments to notate singing



Figure 5. Training loss of the rock subset model, per
epoch.

melodies. Currently, our dataset is not well-suited to han-
dle vocals, for these get converted into the leads instru-
ment, which may also contain information about other in-
struments, such as the piano. Lyrics are also possible to
include in GuitarPro, but that feature is currently not sup-
ported by our encoder/decoder tool.

5. USE CASE: SYMBOLIC MUSIC GENERATION

Recently, the field of symbolic music generation has wit-
nessed consistent progress. Considering works that target
symbolic music generation with Transformer-based mod-
els, MusicTransformer [25] is a MIDI generator trained
on piano performances with improved long-term coher-
ence over vanilla RNNs due to the use of the Transformer
[26]. Similarly, MuseNet [23] is a generative Sparse Trans-
former [27] trained on a larger dataset of MIDI includ-
ing over 600 styles. An API for the model was launched
by OpenAI, which powers the songwriting app MuseTree
[28]. However, the model was not released, so it cannot
be fine-tuned on custom data. In [29] the author trained
a charRNN generator on dozens of GuitarPro songs en-
coded as a sequence of ASCII characters. It only supported
one instrument, and its verbose character-sequence format
opened up the possibility for syntax errors.

We tested the DadaGP dataset for a symbolic music
generation use case by using the Pop Music Transformer
model [24], in which the authors devised a Transformer-
XL [30] architecture to generate pop piano compositions
in MIDI format. The reason for the choice of this architec-
ture is because this work considers metrical structure in the
input data, allowing for an increased awareness in terms
of beat-measure structure. We chose the Transformer-XL
model as it is able to learn dependencies that are 450%
longer than vanilla Transformers, thus well-suited for our
task. As per the settings, similarly to the original paper,
we used M = 8 attention heads and N = 12 self-attention
layers.

As a proof-of-concept, we collected a subset from our
dataset, retrieving 6,910 songs labelled as genre:rock.
We generated a list of all the unique tokens in this subset,
creating a vocabulary with 2,104 entries.

Training was set to run for 50 epochs. With around 43M
parameters, this model took around 10 days to perform this
task on a Tesla K80 GPU. We consider this to be impracti-
cal in terms of reproducibility, so we intend to release pre-
trained models from epochs 40 and 50, for which losses
can be seen in Figure 5.

Figure 6. Violin plot of number of errors per song at dif-
ferent epochs.

Regarding inference, we conditioned the model by
prompting it with an initial list of tokens comprising
artist, downtune, tempo and start, necessary for
the DadaGP decoder. Furthermore, in an attempt to guide
the model towards the generation of music comprising spe-
cific instruments, we included tokens for a single note of
a distorted guitar, bass guitar and drums. Through experi-
mentation, we set on a limit of 1,024 tokens for each gener-
ated song, using 1.2 as temperature parameter. Finally, we
manually appended an end token in order for the decoder
to be able to convert it to GuitarPro format, as this is the
instruction which tells the decoder when the song finishes.

As a simple evaluation metric, we focused on the no-
tion of grammar errors, namely repetitions of the tokens
that should only occur once (artist:, downtune:,
tempo:, start and end), or adjacent repetitions of the
same token. Using this, we estimated the number of errors
per song, for a corpus of 1,000 generated songs from the
model at epochs 10, 20, 30, 40 and 50. As observable in
Figure 6, not only the median of the number of errors per
song is smaller in later epochs, but also the occurrence of
outliers is diminished, as expected.

Despite the limitations of the current evaluation, it al-
lowed us to notice a predominance of a specific error,
namely the repetition of the token end. This is problem-
atic, because the decoder immediately stops the conversion
when an end token appears, ultimately shortening songs
when in GuitarPro format. To counter this effect, we de-
vised a condition that, during inference, would force the
model to sample a different token in the event that an end
token is selected. Results of generated songs without any
curation or post-processing have been made available 11 .

6. PROSPECTIVE APPLICATIONS

Although primarily tailored for symbolic music genera-
tion, below we describe further applications for DadaGP.

11 Available at: https://drive.google.com/drive/
folders/1USNH8olG9uy6vodslM3iXInBT725zult?usp=
sharing

https://drive.google.com/drive/folders/1USNH8olG9uy6vodslM3iXInBT725zult?usp=sharing
https://drive.google.com/drive/folders/1USNH8olG9uy6vodslM3iXInBT725zult?usp=sharing
https://drive.google.com/drive/folders/1USNH8olG9uy6vodslM3iXInBT725zult?usp=sharing


6.1 Guitar-Bass Transcription

The task of guitar-bass transcription from audio recordings
is still mostly done manually by musicians, requiring ex-
pertise and being both effort and time consuming. In order
to automate this, previous research has focused on both
solo bass guitar [31, 32] and solo guitar [33–35] transcrip-
tion. As a contribution to solve this problem, we anticipate
that DadaGP can be used to create a synthetic dataset for
training guitar-bass transcription models, by rendering its
corpus from tablatures into audio, using a DAW and appro-
priate sound fonts. Such a synthetic dataset can be used to
pre-train a model, which can then be fine-tuned afterwards
using realistic sounds with aligned scores. This argument
is supported by the promising results shown by the Slakh
dataset, a synthesized version of the Lakh MIDI dataset,
on the task of music source separation [36].

6.2 Music Style Transfer

Recently, the task of style transfer, the process of changing
the style of an image, video, audio clip or musical piece
so as to match the style of a given example, has been the
subject of much attention. First investigated in applica-
tions that target computer vision, music style transfer has
recently shown promising results in both the audio [37]
and symbolic domains [38–40]. As a prospective applica-
tion of DadaGP, we envisage that genre information can be
leveraged in segregating the dataset across different gen-
res, rendering it suitable for the task of musical genre style
transfer, as proposed in [41] for the specific morphing be-
tween Bach chorales and Western folk tunes. Furthermore,
besides musical genre, artistic information can also be used
towards the task of composer style transfer, once again by
filtering DadaGP across distinct artists.

6.3 Artist/Genre Classification

Another task for which artistic and musical genre infor-
mation present in DadaGP is useful is artist/genre classi-
fication. We hypothesize that these features can be used
to train classification models, in order to predict composer
style and genre related information from the symbolic rep-
resentation of the songs itself, similarly to what has been
implemented in [42–44]. A thorough survey of the most
important approaches regarding music genre classification
in the symbolic domain can be consulted in [45]. Fur-
thermore, there is a symbiosis between this task and the
one present in the previous subsection, since the models
trained for artist/genre classification can be prospectively
used in composer style-based feature extractions, which
can be further utilized in tasks like composer style con-
ditioned generation and music style transfer.

7. DISTRIBUTION

To ensure reproducibility and facilitate the usage of the
dataset, we allow researchers to access DadaGP from a
Zenodo repository 12 , on application by request. Here

12 https://zenodo.org

we include the token format versions of the songs, the
encoder/decoder Python script in order to convert them
into/from GuitarPro format, and the statistical data pre-
sented on this paper.

8. ETHICAL CONSIDERATIONS

Training large models has a carbon footprint. Some cloud
services are carbon neutral, others are not. This should be
considered when training large models on this data. Re-
leasing pre-trained models reduces impact, and we intend
to do so with the models present in this paper.

Many questions regarding production and consumption
of music created with AI are still unanswered. For exam-
ple: Is it wrong to train machine learning models on copy-
righted music? Should this be protected by fair use for
artists and scientists? What about commercial use? How
to acknowledge, reward and remunerate artists whose mu-
sic has been used to train models? What if an artist does
not want to be part of a dataset? Should creators have
a monopoly on their style and exclude others from using
their style? Or is style communal? Some of these ques-
tions were also raised upon the release of Jukebox [46], an
audio model trained on more than 7,000 artists. However,
OpenAI made the case that "Under current law, training
AI systems constitutes fair use (...)" and that "Legal uncer-
tainty on the copyright implications of training AI systems
imposes substantial costs on AI developers and so should
be authoritatively resolved" [47].

9. CONCLUSION AND FUTURE WORK

In this paper we presented DadaGP, a dataset of songs
in GuitarPro and token formats, together with its encod-
ing/decoding tool. We discussed the features, strengths and
weaknesses of the dataset. Moreover, we presented a sym-
bolic music generation use case entailing a novel approach
for multi-instrument music generation in tablature format.
Finally, we pointed out additional research applications for
DadaGP and discussed some ethical implications. We in-
tend to improve the DadaGP dataset, namely the possibility
of removing measure:repeat tokens. During genera-
tion, we discovered that these tokens were often hard for
the model to interpret, sometimes leading to disproportion-
ate measure repetitions. Also, we plan to include note and
phrase dynamics information, and the support for vocal in-
strumental parts. Regarding music generation, we envision
to (1) release a pre-trained model which can be fine-tuned
on new music, (2) collaborate with artists that use Gui-
tarPro, (3) explore genre/style transfer, (4) and attempt to
play the generated songs in social performances.

10. ACKNOWLEDGMENTS

This work is supported by the EPSRC UKRI Centre for
Doctoral Training in Artificial Intelligence and Music
(Grant no. EP/S022694/1). Thanks to Colin Raffel, Brian
McFee, and Sviatoslav Abakumov for discussions and ad-
vice.

https://zenodo.org


11. REFERENCES

[1] R. De Valk, R. Ahmed, and T. Crawford, “JosquIntab:
A Dataset for Content-based Computational Analysis
of Music in Lute Tablature,” in Proc. of the 20th Inter-
national Society for Music Information Retrieval Con-
ference, 2019.

[2] T. Magnusson, Sonic Writing: Technologies of Mate-
rial, Symbolic & Signal Inscriptions. Bloomsbury
Academic, 2019.

[3] R. Macrae and S. Dixon, “Guitar Tab Mining, Analysis
and Ranking,” in Proc. of the 12th International Soci-
ety for Music Information Retrieval Conference, 2011.

[4] M. Barthet, A. Anglade, G. Fazekas, S. Kolozali, and
R. Macrae, “Music Recommendation for Music Learn-
ing: Hotttabs, a Multimedia Guitar Tutor,” in Workshop
on Music Recommendation and Discovery, 2011, pp.
7–13.

[5] H. W. Dong, K. Chen, J. McAuley, and T. Berg-
Kirkpatrick, “MusPY: A Toolkit for Symbolic Music
Generation,” in Proc. of the 21st International Society
for Music Information Retrieval, ISMIR, 2020.

[6] C. Raffel and D. P. W. Ellis, “Extracting Ground Truth
Information from MIDI Files: A MIDIfesto,” in Proc.
of the 17th International Society for Music Information
Retrieval Conference, 2016.

[7] C. Hawthorne, A. Stasyuk, A. Roberts, I. Simon, C.-
Z. Anna Huang, S. Dieleman, E. Elsen, J. Engel,
and D. Eck Google Brain, “Enabling Factorized Piano
Music Modeling and Generation with the MAESTRO
Dataset,” 2019.

[8] “Essen Folk Song Database.” [Online]. Available:
http://www.esac-data.org/

[9] C. Donahue, H. H. Mao, and J. Mcauley, “The NES
music database: A Multi-Instrumental Dataset with
Expressive Performance Attributes,” in Proc. of the
19th International Society for Music Information Re-
trieval Conference, 2018.

[10] Q. Kong, B. Li, J. Chen, and Y. Wang, “GiantMIDI-
Piano: A Large-Scale MIDI Dataset for Classical Pi-
ano music,” in Transactions of the International Soci-
ety for Music Information Retrieval, 2020.

[11] Z. Wang, K. Chen, J. Jiang, Y. Zhang, M. Xu, S. Dai,
X. Gu, and G. Xia, “POP909: A Pop-Song Dataset for
Music Arrangement Generation,” in Proc. of 21st Inter-
national Conference on Music Information Retrieval,
2020.

[12] W.-Y. Hsiao, J.-Y. Liu, Y.-C. Yeh, and Y.-H. Yang,
“Compound Word Transformer: Learning to Com-
pose Full-Song Music Over Dynamic Directed Hyper-
graphs,” in Proc. of the AAAI Conference on Artificial
Intelligence, 2021.

[13] M. S. Cuthbert and C. Ariza, “music21: A Toolkit
for Computer-Aided Musicology and Symbolic Mu-
sic Data,” in Proc. of the 11th International Society for
Music Information Retrieval Conference, 2010.

[14] O. M. Bjørndalen, “Mido: Midi objects for python.”
[Online]. Available: https://github.com/mido/mido

[15] C. Raffel and D. P. W. Ellis, “Intuitive Analy-
sis, Creation and Manipulation of MIDI Data with
pretty_midi,” in Late-Breaking Demos of the 15th In-
ternational Society for Music Information Retrieval
Conference, 2014.

[16] C. Mckay and I. Fujinaga, “jSymbolic: A Feature Ex-
tractor for MIDI Files,” in Proc. of the International
Computer Music Conference, 2006.

[17] Q. Xi, R. M. Bittner, J. Pauwels, X. Ye, and J. P. Bello,
“GuitarSet: A Dataset for Guitar Transcription,” in
Proc. of the 19th International Society for Music In-
formation Retrieval Conference, 2018.

[18] L. Su, L.-F. Yu, and Y.-H. Yang, “Sparse Cepstral,
Phase Codes for Guitar Playing Technique Classifica-
tion.” in Proc. of the 15th International Society for Mu-
sic Information Retrieval Conference, 2014.

[19] C. Kehling, J. Abeßer, C. Dittmar, and G. Schuller,
“Automatic Tablature Transcription of Electric Guitar
Recordings by Estimation of Score and Instrument-
related Parameters,” in Proc. of the 17th Int. Confer-
ence on Digital Audio Effects, 2014.

[20] Y.-H. Chen, Y.-H. Huang, W.-Y. Hsiao, and Y.-H.
Yang, “Automatic Composition of Guitar Tabs by
Transformers and Groove Modelling,” in Proc. of the
21st International Society for Music Information Re-
trieval Conference, 2020.

[21] S. Merity, C. Xiong, J. Bradbury, and R. Socher,
“Pointer Sentinel Mixture Models,” Proc. of the 5th In-
ternational Conference on Learning Representations,
2016.

[22] S. Abalumov, “PyGuitarPro.” [Online]. Available:
https://github.com/Perlence/PyGuitarPro

[23] C. Payne, “Musenet,” 2019. [Online]. Available:
openai.com/blog/musenet

[24] Y.-S. Huang and Y.-H. Yang, “Pop Music Transformer:
Beat-based Modeling and Generation of Expressive
Pop Piano Compositions,” in Proc. of the 28th ACM
International Conference on Multimedia, 2020.

[25] C.-Z. Anna Huang and A. M. Vaswani Jakob Uszkoreit
Noam Shazeer Ian Simon Curtis Hawthorne Andrew
Dai Matthew D Hoffman Monica Dinculescu Dou-
glas Eck Google Brain, “Music Transformer: Gener-
ating Music with Long-term Structure,” in Proc. of the
7th International Conference on Learning Representa-
tions, 2019.

http://www.esac-data.org/
https://github.com/ mido/mido
https://github.com/Perlence/PyGuitarPro
openai.com/blog/musenet


[26] A. Vaswani, G. Brain, N. Shazeer, N. Parmar, J. Uszko-
reit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
sukhin, “Attention Is All You Need,” in Proc. of the
31st Conference on Neural Information Processing
Systems, 2017.

[27] R. Child, S. Gray, A. Radford, and I. Sutskever, “Gen-
erating Long Sequences with Sparse Transformers,”
arXiv preprint arXiv:1904.10509, 2019.

[28] S. Waterman, “Musetree,” 2019. [Online]. Available:
https://stevenwaterman.uk/musetree/

[29] M. Moocarme, “Deep learning metallica with recurrent
neural networks,” 2016. [Online]. Available: https:
//www.mattmoocar.me/blog/tabPlayer/

[30] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and
R. Salakhutdinov, “Transformer-XL: Attentive Lan-
guage Models Beyond a Fixed-Length Context,” in
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, 2019.

[31] J. Abeßer and G. Schuller, “Instrument-centered mu-
sic transcription of solo bass guitar recordings,” in
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 25, no. 9, 2017, pp. 1741–1750.

[32] J. Abeßer, S. Balke, K. Frieler, M. Pfleiderer, and
M. Müller, “Deep Learning for Jazz Walking Bass
Transcription,” in Proc. of the AES International Con-
ference on Semantic Audio, 2017.

[33] A. Wiggins and Y. E. Kim, “Guitar Tablature Estima-
tion with a Convolutional Neural Network,” in Proc.
International Conference on Music Information Re-
trieval, 2019, pp. 284–291.

[34] S. Rodríguez, E. Gómez, and H. Cuesta, “Automatic
transcription of Flamenco guitar falsetas,” in Proc. In-
ternational Workshop on Folk Music Analysis, 2018.

[35] T.-W. Su, Y.-P. Chen, L. Su, and Y.-H. Yang, “TENT:
Technique-embedded Note Tracking for Real-World
Guitar Solo Recordings,” in Transactions of the In-
ternational Society for Music Information Retrieval,
vol. 2, no. 1, 2019, p. 15–28.

[36] E. Manilow, G. Wichern, P. Seetharaman, and
J. Le Roux, “Cutting Music Source Separation Some
Slakh: A Dataset to Study the Impact of Training Data
Quality and Quantity,” in Proc. of the IEEE Work-
shop on Applications of Signal Processing to Audio
and Acoustics, 2019.

[37] Y.-N. Hung, I.-T. Chiang, Y.-A. Chen, and Y.-H. Yang,
“Musical Composition Style Transfer via Disentangled
Timbre Representations,” in Proc. of the 28th Interna-
tional Joint Conference on Artificial Intelligence, 2019,
pp. 4697–4703.

[38] G. Brunner, Y. Wang, R. Wattenhofer, and S. Zhao,
“Symbolic Music Genre Transfer with CycleGAN,” in
Proc. of the IEEE 30th International Conference on
Tools with Artificial Intelligence (ICTAI), 2018, pp.
786–793.

[39] O. Cífka, U. Şimşekli, and G. Richard,
“Groove2Groove: One-Shot Music Style Trans-
fer With Supervision From Synthetic Data,” in
IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 28, 2020, pp. 2638–2650.

[40] S.-L. Wu and Y.-H. Yang, “MuseMorphose: Full-song
and fine-grained music style transfer with just one
Transformer VAE,” arXiv preprint arXiv:2105.04090,
2021.

[41] Y.-Q. Lim, C. S. Chan, and F. Y. Loo, “Style-
Conditioned Music Generation,” in 2020 IEEE Inter-
national Conference on Multimedia and Expo (ICME),
2020, pp. 1–6.

[42] T. J. Tsai and K. Ji, “Composer Style Classification of
Piano Sheet Music Images Using Language Model Pre-
training,” in Proc. of the 21st International Society for
Music Information Retrieval Conference, 2020.

[43] S. Kim, H. Lee, S. Park, J. Lee, and K. Choi, “Deep
Composer Classification Using Symbolic Representa-
tion,” in Late-Breaking Demo Session of the 21st Inter-
national Society for Music Information Retrieval Con-
ference, 2020.

[44] A. Kotsifakos, E. E. Kotsifakos, P. Papapetrou, and
V. Athitsos, “Genre Classification of Symbolic Music
with SMBGT,” in Proc. of the 6th International Con-
ference on PErvasive Technologies Related to Assistive
Environments. New York, NY, USA: Association for
Computing Machinery, 2013.

[45] D. C. Corrêa and F. A. Rodrigues, “A Survey on Sym-
bolic Data-based Music Genre Classification,” Expert
Systems with Applications, vol. 60, pp. 190–210, 2016.

[46] P. Dhariwal, H. Jun, C. Payne, J. W. Kim,
A. Radford, and I. Sutskever, “Jukebox: A Generative
Model for Music,” 2020. [Online]. Available: https:
//github.com/openai/jukebox.

[47] OpenAI, “USPTO Comment Regarding Request for
Comments on Intellectual Property Protection for
Artificial Intelligence Innovation,” 2019. [Online].
Available: https://www.uspto.gov/sites/default/files/
documents/OpenAI_RFC-84-FR-58141.pdf

https://stevenwaterman.uk/musetree/
https://www.mattmoocar.me/blog/tabPlayer/
https://www.mattmoocar.me/blog/tabPlayer/
https://github.com/openai/jukebox.
https://github.com/openai/jukebox.
https://www.uspto.gov/sites/default/files/documents/OpenAI_RFC-84-FR-58141.pdf
https://www.uspto.gov/sites/default/files/documents/OpenAI_RFC-84-FR-58141.pdf

