
Security and Privacy
in Bluetooth Low Energy

Pallavi Sivakumaran
Information Security Group

Royal Holloway University of London

Thesis submitted for the degree of
Doctor of Philosophy

May 2021

Declaration

These doctoral studies were conducted under the supervision of Dr. Jorge Blasco Alis.

I declare that this thesis has been composed by myself and that the work has not been sub-

mitted for any other degree or award in any other university or educational establishment. I

confirm that the work submitted is my own, except where work which has formed part of jointly-

authored publications has been included. My contribution and those of the other authors to

this work have been explicitly indicated in the text. I confirm that appropriate credit has been

given within this thesis where reference has been made to the work of others.

Pallavi Sivakumaran

May 2021

2

Acknowledgements

My sincerest thanks to my supervisor, Jorge Blasco, without whom this thesis would not have

been possible. Thank you for your guidance, encouragement and enthusiasm (and patience!)

throughout these past four years. Thank you also to Juan Tapiador and Daniel O’Keeffe for a

positive viva experience and very useful feedback.

I am deeply grateful to the Engineering and Physical Sciences Research Council for funding my

PhD and to the Centre for Doctoral Training at Royal Holloway for giving me this opportunity.

Special thanks to Carlos for being so supportive of research-related travel, and to Claire for tak-

ing care of so many organisational aspects. Thanks also to CIM and IT, particularly Francesco,

for your quick responses to any tech issues. On a similar note, thanks to Jason/Jordy/Feargus

for handling the lab infrastructure.

A thank you to the staff and students of the Information Security Group at Royal Holloway,

for the research-friendly environment they have created. The PhD seminars, in particular, gave

me insights into so many different aspects of security. Thanks also to Mark, James(x2) and the

team at F-Secure for my placement. I learned so much in those six months.

Thanks to the folks of the S3Lab for creating such a supportive environment to work in... even

when we aren’t actually in the lab anymore. Also thanks to my fellow PhD students, especially

my cohort, for the hikes, chats and fun times. Ashley, our walk-and-talks were some of the

highlights of the past year.

Respecting that time-honoured tradition of listing the most important people in a person’s life

last, I finally thank my family and friends. My family, for being so very loving and supportive

and for inspiring in me a love of science, a strong work ethic, and respect for academic integrity.

My friends (although, this includes family as well), for the crazy times, the crosswords, the

group calls, the laughter. Most of all, for putting up with long and detailed descriptions of my

code, results and papers, most of which you probably didn’t understand or care about. You can

heave a sigh of relief now. Peace and quiet at last. For a little while, anyway.

3

Abstract

Bluetooth Low Energy (BLE) is a popular wireless technology deployed in billions of devices

within the Internet of Things (IoT). Applications for BLE increasingly handle user health and

personal data, and perform safety-critical functions. Ensuring the security and privacy of BLE

deployments is therefore becoming more and more important.

In this thesis, we seek to advance the existing body of knowledge regarding BLE security and

privacy, with the overarching goal of improving the security of real-world BLE systems. We

first present a comprehensive overview of existing BLE attacks and vulnerabilities. We define a

taxonomy for attacks according to their impact and attack mechanisms, and categorise vulnera-

bilities to reflect their source in terms of architectural layer and stakeholder(s). This immediately

allows for the identification of root causes, mitigation strategies and responsible entities.

Second, we identify and demonstrate an application-level unauthorised data access vulnerabil-

ity on BLE-enabled multi-application platforms, and develop a custom tool to estimate the

number of BLE devices that may be vulnerable to such unauthorised access. Through a prag-

matic stakeholder analysis, we propose a backward-compatible specification-level solution to this

vulnerability to ensure the security of data on the greatest proportion of BLE devices.

Third, we determine the extent of various BLE vulnerabilities and their associated impacts

through a series of measurement studies with purpose-built tools, utilising novel information

extraction techniques against multiple information sources. We implement an incremental access

algorithm in ATT-Profiler to determine minimum access requirements for BLE characteristic

data, and utilise this to analyse access restrictions applied to real-world devices. We identify

and prioritise vulnerabilities in the absence of physical devices via BLE-GUUIDE, a framework for

performing security analysis and functionality mapping using BLE Universally Unique Identifiers

(UUIDs). We also design and implement argXtract, a framework for analysing stripped ARM

Cortex-M binaries, to extract multiple security-relevant configurations from BLE firmware files,

and identify numerous vulnerabilities therein.

Through these contributions, we look towards a greater understanding of the security consider-

ations surrounding BLE and an increase in security within the BLE ecosystem.

4

Contents

I Preliminaries 15

1 Introduction 16

1.1 Motivation . 16

1.2 Research Objective and Questions . 18

1.3 Contributions . 19

1.4 Thesis Structure . 20

1.5 Publications and Manuscripts . 22

2 Background 24

2.1 Bluetooth Low Energy: Architecture and Operations 24

2.1.1 Controller . 25

2.1.2 Host Controller Interface . 28

2.1.3 Host . 29

2.1.4 Applications . 32

2.2 Security and Privacy Requirements and Features in BLE 32

2.2.1 Security and Privacy Requirements for BLE 32

2.2.2 Security and Privacy Features . 33

2.2.3 Security Modes and Levels . 35

2.2.4 (G)ATT Security . 35

2.2.5 Pairing . 36

2.3 Chapter Summary, Observations and Next Steps 39

3 BLE Attack Taxonomy 41

3.1 Introduction . 41

3.2 Methodology . 42

3.3 A Taxonomy for BLE Attacks . 43

3.4 Unauthorised Acquisition of Data . 45

3.5 Tampering . 51

3.6 Denial of Service . 52

3.7 Profiling & Tracking . 55

3.8 Spoofing . 57

3.9 Applicability of Bluetooth Classic Attacks . 59

3.9.1 Bluejacking, Bluesnarfing, Bluebugging 59

3.9.2 Bluetooth Impersonation AttackS (BIAS) 59

3.9.3 BlueBorne . 59

5

Contents

3.9.4 Pairing Vulnerabilities . 60

3.10 Chapter Summary and Next Steps . 61

4 Vulnerability Analysis 62

4.1 Vulnerabilities in BLE . 62

4.2 Architectural Analysis and Research Gaps . 63

4.3 Analysis of Vulnerabilities by Source . 72

4.4 A Brief Survey of Proposals for Security/Privacy Enhancement 73

4.4.1 Privacy in the Absence of Private Addresses 73

4.4.2 Application-Layer Security Add-on . 73

4.4.3 Identification of Spoofed BLE Devices . 73

4.4.4 Cryptography Enhancements . 74

4.5 Chapter Summary and Next Steps . 74

II BLE Application Layer Security 75

5 Unauthorised Data Access on Multi-Application BLE Platforms 76

5.1 Introduction . 76

5.2 Attack Demonstration . 77

5.3 Discussion . 81

5.3.1 Responsible Disclosure . 81

5.3.2 Contributing Factors . 81

5.3.3 Implications of Attack . 82

5.3.4 Comparison with Bluetooth Classic . 83

5.3.5 Applicability to Other Platforms . 83

5.3.6 Mitigation Strategies . 84

5.4 Chapter Summary and Next Steps . 84

6 Measuring the Prevalence of Application Layer Security 85

6.1 Introduction . 85

6.2 APK Dataset . 86

6.3 Identification of BLE Methods and Crypto-Libraries 87

6.4 BLECryptracer . 87

6.4.1 Trace Mechanisms . 89

6.4.2 Handling Obfuscation . 91

6.5 Evaluation . 92

6.5.1 Accuracy Measures . 92

6.5.2 Execution Times . 94

6.6 Results from Large-Scale APK Analysis . 94

6.6.1 Presence of App-Layer Security with BLE Data 95

6.6.2 Libraries vs. App-Specific Implementations 95

6.6.3 Cryptographic Correctness . 97

6.6.4 Trends over Time . 98

6

Contents

6.6.5 Impact Analysis . 99

6.7 Case Study: Firmware Update over BLE . 100

6.8 Limitations and Future Work . 101

6.9 Chapter Summary and Next Steps . 101

7 A Solution for the Unauthorised Data Access Vulnerability 103

7.1 Introduction . 103

7.2 Environment . 104

7.2.1 Threat Model . 104

7.2.2 Security Requirements . 105

7.2.3 System Requirements . 105

7.3 Devising a Solution Strategy . 106

7.3.1 Stakeholders within BLE . 106

7.3.2 Practical Considerations . 106

7.3.3 Discussion . 108

7.4 Solution Design . 108

7.4.1 The ATT Access Database (AAD) . 108

7.4.2 The ATT Access Manager (AAM) . 109

7.4.3 Device Mode . 111

7.4.4 Obtaining User Authorisation . 111

7.4.5 Access Revocation . 112

7.5 Requirements Analysis . 112

7.6 Additional Benefits . 113

7.7 Proof of Concept . 114

7.7.1 Implementation Details . 114

7.7.2 POC Tests . 116

7.7.3 Evaluation . 117

7.8 Discussion . 118

7.8.1 Limitations . 118

7.8.2 Potential Barriers for Adoption . 119

7.8.3 Potential for Extension . 119

7.9 Chapter Summary and Next Steps . 120

III Measurement of BLE Security and Privacy 121

8 Functionality Distribution and Impact Analysis via UUIDs 122

8.1 Introduction . 122

8.2 UUIDs as used in Bluetooth Low Energy . 123

8.3 A Framework for BLE Functionality and Security Measurement 124

8.3.1 UUID Extractor and Classifier . 124

8.3.2 Functionality Mapper . 126

8.3.3 Security Analyser . 129

8.4 Large-Scale Functionality Measurement of the BLE Ecosystem 131

7

Contents

8.4.1 Functionality Mapping with UUID Data 131

8.4.2 Functionality Mapping with SIG Data . 133

8.4.3 Functionality Mapping with Play Data . 133

8.4.4 APK Categorisation Results . 134

8.5 Observations Regarding UUID Usage . 136

8.5.1 Incorrect Use of SIG-Reserved Range . 136

8.5.2 Anomalies . 136

8.6 Security Analysis . 138

8.6.1 Security Indications from KFUs . 138

8.6.2 Security- and Functionality-Prioritised UFUs 139

8.7 Limitations . 140

8.8 Chapter Summary . 141

9 Device Security Measurements 142

9.1 Introduction . 142

9.2 Determining the Pairing Association Model . 144

9.3 Incremental Access Checking . 145

9.4 Implementation . 146

9.5 Real-World Device Testing . 147

9.5.1 Per-Device Analysis . 147

9.5.2 Observations on Low-Entropy Keys . 149

9.6 Limitations and Future Work . 149

9.7 Chapter Summary and Next Steps . 150

10 Firmware Analysis 151

10.1 Introduction . 151

10.2 Challenges Involved in the Analysis of Stripped IoT Binaries 154

10.3 argXtract . 156

10.3.1 Application Code Base Identification . 156

10.3.2 Inline Data Identification . 157

10.3.3 Function Boundary Identification . 160

10.3.4 COI Identification . 163

10.3.5 Register Tracing and Argument Processing 164

10.4 Evaluation . 166

10.4.1 Test Set and Ground Truth . 166

10.4.2 Accuracy of Function Boundary Identification 167

10.4.3 Accuracy of Function Pattern Matching 168

10.4.4 Correctness of Results . 168

10.5 Case Study I: BLE Security and Privacy (Nordic) 169

10.5.1 Security of BLE Data . 170

10.5.2 Use of Fixed Passkeys . 173

10.5.3 User Tracking due to Fixed Addresses . 173

10.5.4 Manufacturer/Device Names and Privacy 174

8

Contents

10.6 Case Study II: BLE Security and Privacy (STMicroelectronics) 175

10.6.1 BLE Address Privacy . 175

10.6.2 BLE Pairing Security . 176

10.7 Limitations and Future Work . 176

10.8 Chapter Summary and Next Steps . 177

IV Concluding Remarks 178

11 Conclusion 179

11.1 Research Objective and Questions . 179

11.2 Recommendations for Stakeholders . 181

Bibliography 183

9

List of Figures

2.1 Example consumer BLE applications . 25

2.2 The BLE stack . 26

2.3 Breakdown of BLE packet header fields . 27

2.4 Legacy BLE pairing: key generation . 38

3.1 Taxonomy for BLE attacks . 44

3.2 MitM attack by manipulating association model 50

5.1 Security requirements within Glucose Profile . 77

5.2 Unauthorised access of pairing-protected data . 79

5.3 Scope of BLE pairing . 81

6.1 Example smali code for cryptographically-processed BLE data 88

6.2 Sample smali code for BLE attribute write . 90

6.3 Sample smali code for BLE attribute read . 91

6.4 BLECryptracer vs. Amandroid execution times 94

6.5 BLECryptracer results, by confidence level . 95

6.6 Application-layer security trends over time . 98

6.7 Presence of app-layer security in different categories of applications 99

7.1 Proposed workflow for GATT requests . 110

7.2 Modified Android-x86 platform, incorporating our solution 115

7.3 User authorisation dialog in POC . 116

7.4 Interaction between entities: without and with our solution 117

8.1 Functional category database . 126

8.2 Proximity-based approach of UUID Mapper . 127

9.1 Security levels for read/write access in real-world devices 147

10.1 Differences in the disassembly of unstripped and stripped binaries 154

10.2 Identification of .data using Reset Handler . 158

10.3 Write-to-PC operation . 159

10.4 Sample table branch structure . 159

10.5 Reference ARM assembly for function estimation 161

10.6 Process used by argXtract for identifying function blocks 162

10.7 Template-based argument processing . 166

10

List of Tables

1.1 Mapping of thesis chapters to research questions 22

2.1 Format of BLE protocol data units, for advertising and data PDUs 28

2.2 Sample attribute database . 30

2.3 BLE security modes and levels . 35

2.4 Key features exchanged during Phase 1 of BLE pairing 37

4.1 Security and privacy vulnerabilities within the Physical Layer 64

4.2 Security and privacy vulnerabilities within the Link Layer 64

4.3 Security and privacy vulnerabilities within HCI 65

4.4 Security and privacy vulnerabilities within L2CAP 65

4.5 Security and privacy vulnerabilities within SMP 66

4.6 Security and privacy vulnerabilities within ATT/GATT 68

4.7 Security and privacy vulnerabilities within GAP 69

4.8 Security and privacy vulnerabilities within the Application Layer 70

4.9 Vulnerability-to-attack mapping . 71

4.10 Number of vulnerabilities per-layer, per-source 72

6.1 BLE data access methods . 87

6.2 Accuracy statistics . 93

6.3 Top ten third-party BLE libraries . 96

6.4 Number of packages with cryptographic misuse 97

8.1 Applications containing firmware update UUIDs 131

8.2 Prevalence of adopted BLE services . 132

8.3 Functional categorisation of applications within the BLE ecosystem 135

8.4 Firmware update UUIDs . 138

10.1 True Positive Rates (TPR) and Effective False Positive Rates (EFPR) for func-

tion block identification against test binaries. EFPR is computed by discounting

misidentifications that do not impact the trace. 167

10.2 Protection applied to developer-defined data . 171

10.3 Address types used in BLE peripherals . 174

11

List of Algorithms

9.1 Pseudocode for determining association model during pairing 144

9.2 Incremental access checking for BLE characteristics 145

10.1 Application code base identification . 156

10.2 Inline data identification (memory load) . 158

10.3 Inline data identification (table branch) . 160

10.4 Function estimation . 161

12

List of Abbreviations

AES Advanced Encryption Standard

AFH Adaptive Frequency Hopping

AOSP Android Open Source Project

API Application Programming Interface

APK Android (application) Package

ATT Attribute Protocol

BLE Bluetooth Low Energy

BR/EDR Basic Rate/Enhanced Data Rate

CCCD Client Characteristic Configuration Descriptor

CFG Control Flow Graph

CGM Continuous Glucose Monitoring

CRC Cyclic Redundancy Check

CSRK Connection Signature Resolving Key

CVE Common Vulnerabilities and Exposures

DFU Device Firmware Upgrade

DH Diffie-Hellman

DTM Direct Test Mode

ECDH Elliptic-Curve Diffie-Hellman

ETSI European Telecommunications Standards Institute

FPR False Positive Rate

GAP Generic Access Profile

GATT Generic Attribute Profile

HCI Host Controller Interface

HR Heart Rate

HID Human Interface Device

IO Input-Output

IoT Internet of Things

IP Internet Protocol

IRK Identity Resolving Key

ISM Industrial Scientific Medical

L2CAP Logical Link Control and Adaptation Protocol

LE Low Energy

LESC Low Energy Secure Connections

LL Link Layer

LSB Least Significant Bit

LTK Long Term Key

13

List of Abbreviations

MAC Message Authentication Code

MAC [address] Media Access Control [address]

MIC Message Integrity Check

MitM Man-in-the-Middle

MSB Most Significant Bit

NLP Natural Language Processing

NVRAM Non-Volatile Random Access Memory

OS Operating System

OTA Over The Air

PDU Protocol Data Unit

PHY Physical Layer

PII Personally Identifiable Information

RAM Random Access Memory

RSSI Received Signal Strength Indicator

SIG Special Interest Group

SM Security Manager

SMP Security Manager Protocol

SoC System on a Chip

STK Short Term Key

TCP Transmission Control Protocol

TK Temporary Key

TPR True Positive Rate

UUID Universally Unique Identifier

VT Vector Table

14

Part I

Preliminaries

15

1 Introduction

In this chapter, we discuss the motivation for our work, our research questions, the contributions

we have made, and the structure of the remainder of the thesis. We also provide a list of

publications and manuscripts that form the basis of this thesis.

1.1 Motivation

Bluetooth Low Energy (BLE) is a well-known and widely-used wireless communications tech-

nology, with billions of BLE-enabled devices extant in the world today [1]. Introduced in 2010

within version 4.0 of the Bluetooth specification,1 BLE shares many traits with its predecessor,

Bluetooth Classic,2 but is intended specifically for resource-constrained devices. The Bluetooth

Special Interest Group (SIG) develops and maintains the Bluetooth Classic and BLE standards

(both currently in a single specification document, which is at version 5.2).3

The focus on low energy usage has made BLE particularly suitable for the Internet of Things

(IoT), where many sensor-based devices operate for months, and even years, on coin-cell batter-

ies. Some well-known examples of BLE devices are proximity sensors, fitness trackers and smart

door locks. The potential of BLE for vehicular applications [3], home energy monitoring [4]

and home automation systems [5] has been analysed in recent years. The technology is also

increasingly being used or proposed for use in medical devices, such as heart rate and blood

glucose monitoring systems, asthma inhalers, and insulin pumps [6].

As the sensitivity and criticality of BLE applications increase, it is clear that the impact of

vulnerabilities will also be greater. In fact, vulnerabilities have been identified in many modern

BLE devices that have serious implications for user safety, security and privacy. For example, a

number of “smart” locks were found to implement weak authentication schemes or use unpro-

tected passwords [7], which means that an attacker could unlock the device and gain access to

the resource that the lock was protecting (which, in the case of smart door locks, could be a

house or office building). Research into BLE-enabled hover-boards/eScooters has identified that

several devices can be controlled remotely by unauthorised entities due to insufficient protection

for control commands sent over the BLE interface. The devices could be forced to accelerate or

be brought to a sudden halt by an attacker, both of which could cause injury to the user [8].

1We use the terms “Bluetooth specification” and “BLE specification” interchangeably, to refer to the BLE-
specific parts of the specification document.

2Bluetooth Classic refers to Bluetooth Basic Rate/Enhanced Data Rate (BR/EDR), which was the “original”
Bluetooth. Bluetooth Classic and BLE are to be considered distinct and incompatible technologies [2], despite
much overlap in their design.

3There have been five versions of the standard since the introduction of BLE within v4.0: v4.1, released Dec
2013; v4.2, released Dec 2014; v5.0, released Dec 2016; v5.1, released Jan 2019; v5.2, released Dec 2019.

16

PRELIMINARIES 〉 Introduction 〉 Motivation

We observe that the use of BLE with medical intervention devices such as insulin pumps brings

forth the possibility of a particularly dangerous attack, where an attacker could control the

insulin administered to a user, with potentially life-threatening consequences. On the privacy

side, many BLE devices have been found to be vulnerable to tracking [9, 10]. This means that,

for devices such as wearables, the user can also be tracked.

The examples above demonstrate that security and privacy aspects of BLE warrant careful

consideration and analysis. Examining the volume of research into BLE security and privacy

over the years, it becomes apparent that initially such studies were few and far between, and

that the number of research papers focusing on the technology has increased significantly in the

last five years. Specifically, from its introduction in 2010 until 2015, we were only able to identify

seven publications that discussed the security of Bluetooth Low Energy [11–17]. The studies

on BLE security and privacy that were published in the year 2016 alone [9, 10, 18–23] exceeded

the total number of publications from the preceding five years. Since then, BLE has been the

subject of numerous, varied security and privacy analyses, and in 2020 the number of papers

published on the subject was twice the number of BLE security publications from the 5-year

period 2011-2015. We observe from BLE device shipment data that the technology only started

gaining popularity from the year 2015 onward [24], which could account for the corresponding

increase in security and privacy studies.

Despite the increase in research into BLE security and privacy over the last few years, there

were still several shortcomings at the outset of our research. We discuss these below.

Misconceptions regarding the technology There are several misconceptions regarding BLE

security, primarily due to two reasons: (i) misunderstanding the design of BLE and incorrectly

assuming that certain operational features are security mechanisms, and (ii) conflating BLE

with Bluetooth Classic and assuming that Bluetooth Classic vulnerabilities are applicable to

the case of BLE as well. We have observed such erroneous assumptions in earlier works but also

in papers published as recently as 2020 [11,25–27].

Insufficient focus on BLE data security The primary asset on a BLE device is its data, which

is tightly-coupled with the BLE stack. Several earlier BLE security and privacy studies focus

on the security of the BLE pairing mechanism, which implicitly relates to the security of BLE

data. A useful extension to this is an analysis of the protection applied to individual data values

on real-world BLE systems, together with an understanding of the type of data, which then

provides insights into the actual impact of unprotected data. This type of study was notably

absent at the outset of our research.

Insufficient focus on the application layer BLE is a full-stack protocol and includes an ap-

plication layer [28]. However, initial studies on BLE security and privacy did not focus on this

layer, except in one case to propose an application-layer solution to link-layer issues [17]. That

is, vulnerabilities within the application layer were not scrutinised.

17

PRELIMINARIES 〉 Introduction 〉 Research Objective and Questions

Lack of techniques for vulnerability extent analysis In the year prior to our research, a number

of BLE security analysis tools were released for interacting with and identifying vulnerabilities

on a physical BLE device. However, to estimate the extent of a vulnerability within the BLE

ecosystem, bulk analysis techniques that do not require physical device interaction are necessary.

These again were lacking at the outset of our work.

This thesis seeks to overcome the above shortcomings and further the existing body of knowl-

edge regarding BLE security and privacy by performing critical surveys, clarification of mis-

conceptions, and vulnerability analyses at the application layer, as well as developing tools and

techniques for performing bulk measurement studies of the BLE ecosystem.

1.2 Research Objective and Questions

In this section, we define our overarching research objective and describe research questions that

stem from it. For each research question, we provide a brief overview in italics regarding how

this thesis approaches the problem.

The objective of this thesis is to advance the understanding of the existing state of security

and privacy within real-world BLE systems, with the overarching goal of improving the security

of the BLE ecosystem. As we mentioned in §1.1, the primary asset on a BLE device is its

data. Despite this, BLE data security had not undergone sufficient scrutiny at the time that

we embarked on our research. In our work, we address this gap by placing particular focus on

protections applied to and impacts arising from BLE data.

When considering BLE security and privacy, the BLE specification contains a number of proto-

cols and procedures intended to protect the confidentiality and/or the integrity of BLE data, as

well as to preserve device privacy. However, previous studies have shown that real-world devices

may not implement such mechanisms. Or they may implement the weakest possible security

that is provided by the specification. In addition, protocols defined within the specification may

themselves contain weaknesses. This gives rise to the question:

RQ01: Are existing BLE deployments secure?

This thesis comprehensively surveys existing studies to identify vulnerabilities that affect real-

world systems. It also presents purpose-built tools for identifying insufficient security or privacy

in real-world BLE deployments via device, firmware and application analyses.

Even though the BLE specification does provide protocols and procedures to protect security

and privacy, application-layer protection is not fully defined within the specification, despite

BLE being a full-stack protocol. This prompts the following research question:

RQ02: Does the lack of clearly-defined application-layer security mech-

anisms result in a lack of protection for BLE data?

This thesis examines application layer data security in the context of current BLE usage scenar-

ios, which feature interactions between a BLE device and an app on a mobile phone or computer.

18

PRELIMINARIES 〉 Introduction 〉 Contributions

It demonstrates an unauthorised data access vulnerability for multi-application platforms. It also

estimates the proportion of real-world devices that do not implement custom protection at the

application layer, thereby leaving BLE data vulnerable to unauthorised access.

When a vulnerability has been identified for BLE, the next natural step is to identify its extent,

i.e., the proportion of real-world systems that may be affected, and its impact, i.e., either at a

high level in terms of the types of attack that can be conducted, or at a more detailed level in

terms of the specific impact (taking into consideration knowledge regarding the functionality of

the system). This links to the question:

RQ03: If vulnerabilities exist, what is their extent and impact?

Several measurement studies presented in this thesis automatically enable an estimation of the

extent of a vulnerability via bulk analysis. The thesis also demonstrates impact analysis by

obtaining markers regarding device functionality from various sources of information.

Vulnerabilities in real-world BLE systems are not always related to weaknesses within the spec-

ification. Some are due to coding bugs or end products not incorporating security features.

Therefore, when discussing mitigation strategies, the following question is pertinent:

RQ04: How should vulnerabilities be mitigated and who is responsible

for mitigation?

This thesis, within the vulnerability survey, examines the root cause for existing vulnerabilities

and identifies possible mitigation options as well as the relevant, responsible stakeholders. For

the application-layer vulnerability mentioned previously, it describes a pragmatic stakeholder

analysis, which leads to a suitable solution strategy.

1.3 Contributions

We can see that answering the research questions in §1.2 will involve identifying vulnerabilities

that are applicable to BLE, measuring their extent and impact, and determining mitigation

strategies. Concretely, the contributions within this thesis can be described under those three

categories: Identification, Measurement, and Mitigation.

• Identification: We present a comprehensive survey of attacks on BLE security and pri-

vacy, and identify the underlying vulnerabilities that give rise to the attacks. Within this

category, we also include an application-level unauthorised data access vulnerability that

we have discovered for BLE-enabled multi-application platforms.

• Measurement: We measure the BLE security and privacy landscape by estimating the

extent and potential impact of vulnerabilities that are present in current BLE systems. We

utilise several sources of information for this purpose: BLE devices, firmware binaries and

mobile applications. For each analysis, we present purpose-built tools and frameworks, all

of which are available as open-source repositories for the benefit of the research community.

These measurement studies not only provide insights as to the current state of BLE security

19

PRELIMINARIES 〉 Introduction 〉 Thesis Structure

and privacy, but can also aid in focusing future research by identifying the most widespread

or impactful vulnerabilities.

• Mitigation: We propose a practical specification-level solution, based on a pragmatic

stakeholder analysis, for the application-level unauthorised data access vulnerability that

we have identified. Our proposed solution enables security by default, while maintaining

backward compatibility with existing BLE systems.

We describe these contributions in greater detail in §1.4.

1.4 Thesis Structure

This thesis is organised into four parts, with each part grouping together related chapters. We

describe the structure and content of each part and its integrant chapters below. Table 1.1, at

the end of this section, maps the thesis chapters to the research questions presented in §1.2.

Part I: Preliminaries, of which this chapter is a constituent, describes the motivation for our

work and presents details regarding BLE that are referenced in the remainder of the thesis. It

also presents a comprehensive survey of existing BLE attacks and vulnerabilities.

Chapter 2 provides an overview of BLE, its architectural layers and their operations. It also sets

out security and privacy requirements for BLE based on the adversarial model we consider, and

describes the features that are available in the BLE specification to fulfil these requirements.

Chapters 3 and 4 collectively present our comprehensive survey on BLE security and privacy,

sourcing information from academic studies, industry whitepapers and CVE reports. Chapter 3

presents our taxonomy for classifying BLE attacks, focusing on the impact or outcome of the

attacks. It provides details about each attack and the mechanisms for effecting it. In Chapter 4,

we present the vulnerabilities that give rise to the attacks. For each vulnerability, we identify

applicability and source, and outline proposed solutions and related tools and frameworks. We

also briefly survey proposals for increasing the security or privacy within BLE deployments in

the presence of one or more vulnerabilities.

Part II: BLE Application Layer Security pertains to an application-level unauthorised

data access vulnerability that we have identified for multi-application platforms.

Chapter 5 details our findings regarding unauthorised data access at the application layer. We

describe a vulnerability by which a malicious application on a multi-application platform (such as

Android or iOS) can read and write data on BLE devices, often without the user’s knowledge. We

analyse possibilities for mitigating the vulnerability and arrive at the conclusion that, at present,

the only available mechanism for preventing application-layer attacks is the implementation of

end-to-end security by developers.

Given that developer-defined application-layer security is the only means (for the time being) by

which the unauthorised data access vulnerability can be mitigated, a pertinent question is “What

proportion of BLE devices actually do implement such application-layer security?” Chapter 6

20

PRELIMINARIES 〉 Introduction 〉 Thesis Structure

presents a purpose-built open-source taint analysis tool, BLECryptracer [29], for analysing BLE-

enabled Android applications to identify the presence of cryptographically-protected BLE data

at the application layer. It also describes the results from applying this tool to a large dataset of

several thousand BLE-enabled Android APKs, and demonstrates that a significant proportion

of real-world BLE systems do not protect their data at the application layer.

In Chapter 7, we describe a specification-level modification as our proposed solution to the

unauthorised data access vulnerability. We arrive at our solution based on defined security and

system requirements, and following a pragmatic, multi-faceted stakeholder analysis. We show

that our solution ensures protection by default while maintaining backward compatibility with

existing BLE devices. We implement a proof-of-concept [30] for the Android-x86 platform and

demonstrate the viability and efficacy of our solution via tests against real-world devices and

their associated mobile applications.

Part III: Measurement of BLE Security and Privacy describes a set of tools and tech-

niques that we have developed to perform security- and privacy-related measurements of BLE

devices and the BLE ecosystem. We perform analyses and measurement studies against physical

devices, firmware binaries, and mobile applications that interface with BLE devices.

The measurement study conducted in Chapter 6 revealed that a significant proportion of BLE-

enabled APKs do not implement application-layer security, which implies that data on the

associated BLE devices will be vulnerable to unauthorised access. However, the presence of a

vulnerability in a BLE device does not immediately reveal its impact. For example, unauthorised

access to a thermostat’s readings cannot be considered to be of the same level of importance

as unauthorised access to a glucometer’s readings. The impact of a BLE vulnerability therefore

depends in large part on the type of device, i.e., the device’s functionality. Chapter 8 describes

a framework, BLE-GUUIDE [31], for BLE vulnerability and impact measurement using a novel

source of information: Universally Unique Identifiers (UUIDs), which are used in the structuring

of BLE data.

Chapter 9 describes our technique for testing physical BLE devices, to gauge the lowest level of

security at which BLE data can be accessed. We accomplish this via a Node.js analysis tool,

ATT-Profiler [32]. The results from executing this tool against real-world devices show that

many devices apply little to no protection for most of their BLE data. We analyse possible

reasons for this finding and discuss our results in the light of subsequent findings as well as later

research on key downgrade attacks.

In Chapter 10, we discuss measuring BLE security and privacy via the device firmware, which

has the potential to divulge rich information regarding a BLE device’s security configuration. We

detail the challenges inherent to the analysis of stripped binaries (which is the format in which

most BLE binaries are available in the wild), and the mechanisms by which we have overcome

them in our binary analysis framework, argXtract [33]. In fact, argXtract is not confined to

the analysis of only BLE binaries, but can generally be applied to IoT peripheral binaries that

target ARM Cortex-M processors, which is the processor family of choice for many resource-

21

PRELIMINARIES 〉 Introduction 〉 Publications and Manuscripts

Table 1.1: Mapping of thesis chapters to research questions.

Chapter

Research Question 1∗ 2∗ 3 4† 5 6 7 9 10 8 11∗

RQ01 ü ÿ ÿ ÿ ÿ

RQ02 ü

RQ03 ü ü ÿ ÿ ÿ ÿ

RQ04 ü r

Contribution category: ü- Identification, ÿ- Measurement, r- Mitigation.

∗Chapters 1, 2, 11 are introductory, background and concluding chapters, and do not map to
the research questions. †Chapter 4 does describe the applicability (which in some cases denotes
extent) and mitigation options for several of the vulnerabilities. However, we obtain this
information via a survey, rather than through measurement studies or design. Therefore, the
contributions of this chapter are classified only as Identification.

constrained devices. We describe and analyse the results from the extraction of security-relevant

configuration information from stripped real-world Cortex-M BLE binaries.

Part IV Conclusion summarises our contributions with respect to our research questions, and

presents recommendations for various BLE stakeholders based on observations we have made

throughout this work.

1.5 Publications and Manuscripts

This thesis is based on the following papers. All papers were the result of discussion between

my supervisor and myself (also in one instance with other collaborators), and my supervisor

provided significant guidance and feedback for each manuscript. The iOS attack validation

discussed in PM2 (§5.3.5), the UUID extraction, NLP processing and overall result tabulation

described in PM4 (§8.3.1.1, §8.3.2.2-§8.3.2.3, §8.4.2-§8.4.4), as well as the device emulation at

the end of §8.5.2, were conducted by co-authors. All other development, testing, analysis and

writing tasks were undertaken by myself.

PM1 Pallavi Sivakumaran and Jorge Blasco. “An Attack Taxonomy and Vulnerability Anal-

ysis for Bluetooth Low Energy.” This work corresponds to Chapters 2 through 4

of this thesis.

PM2 Pallavi Sivakumaran and Jorge Blasco. “A Study of the Feasibility of Co-located App

Attacks against BLE and a Large-Scale Analysis of the Current Application-Layer Se-

curity Landscape.” In Proceedings of the 28th USENIX Security Symposium (USENIX

Security ’19), pp. 1-18. 2019 [34]. This paper is discussed in Chapters 5, 6.

PM3 Pallavi Sivakumaran and Jorge Blasco. “Who’s Accessing My Data? Application-

Level Access Control for Bluetooth Low Energy.” To appear in Proceedings of the 17th

EAI International Conference on Security and Privacy in Communication Networks

(SecureComm ’21). 2021. This work is discussed in Chapter 7.

22

PRELIMINARIES 〉 Introduction 〉 Publications and Manuscripts

PM4 Pallavi Sivakumaran, Jorge Blasco, Chaoshun Zuo, Zhiqiang Lin. “A Large-Scale Anal-

ysis of Bluetooth Low Energy Enabled IoT: Measurement, Assessment, and Implica-

tions.” This work is discussed in Chapter 8.

PM5 Pallavi Sivakumaran and Jorge Blasco. “A Low Energy Profile: Analysing Character-

istic Security on BLE Peripherals.” In Proceedings of the Eighth ACM Conference on

Data and Application Security and Privacy (CODASPY ’18), pp. 152-154. 2018 [35].

A modified version of this paper is presented in Chapter 9, with some code

fixes and new test results.

PM6 Pallavi Sivakumaran and Jorge Blasco. “argXtract: Deriving IoT Security Configura-

tions via Automated Static Analysis of Stripped ARM Binaries.” To appear in Pro-

ceedings of the 37th Annual Computer Security Applications Conference (ACSAC ’21).

2021. This paper is discussed in Chapter 10.

23

2 Background

In this chapter, we present details regarding Bluetooth Low Energy that will be referenced in

the remainder of the thesis. We describe the architecture and operation of BLE in §2.1. We

describe our adversarial model, set out security and privacy requirements for a BLE system, and

describe the available security and privacy features within the BLE specification in §2.2. We

present some observations and discuss next steps in §2.3.

2.1 Bluetooth Low Energy: Architecture and Operations

This section provides an overview of the Bluetooth Low Energy stack and of the functions of

the various layers and protocols within the stack. It primarily focuses on aspects that will be

referenced in subsequent chapters when discussing BLE security and privacy concerns.

Figure 2.1 depicts a typical usage scenario for BLE in the consumer context. A user may have

multiple BLE-enabled devices, each with its own companion mobile application (or perhaps

a single application communicating with multiple devices). The user may also utilise mobile

applications that provide proximity-based services via BLE beacons.1

In this section, we will use a well-known application of BLE to illustrate the basic operations of

the technology: that of a wearable fitness tracker. The tracker uses multiple sensors to measure

parameters such as the user’s heart rate, steps taken, quality of sleep, etc., and communicates the

readings to a companion application on a mobile phone. The tracker is resource-constrained and

is ideally expected to operate for several days on a single charge, whereas the mobile phone will

typically have greater memory, power and computing capabilities. For this reason, BLE assigns

asymmetric workloads to the two devices, and it is the mobile phone that typically initiates

connections, issues commands to the fitness tracker, and performs the bulk of the processing.

The Bluetooth specification uses the roles “Master” and “Slave” for the initiating and respond-

ing devices, respectively. In our example, the mobile phone will be the Master device and the

fitness tracker will be the Slave. These roles are introduced formally in §2.1.1.3. The Blue-

tooth specification also defines several other roles, depending on the architectural layer and

functionality.

The Bluetooth Low Energy stack is made up of three main subsystems: the Controller, the Host

and the Applications. An interfacing layer known as the Host Controller Interface (HCI) also

1Beacons are special types of BLE devices that broadcast an identifier over the radio interface. They enable
location-based services, such as push notifications for proximity-based advertising or content delivery, and social
media “check-in” functionality.

24

PRELIMINARIES 〉 Background 〉 Bluetooth Low Energy: Architecture and Operations

Figure 2.1: Example consumer BLE applications.

exists. Figure 2.2 depicts the BLE stack in terms of these subsystems and the layers within

them. The remainder of this section describes the functionality of each component within the

stack.

2.1.1 Controller

The Controller contains the radio frequency components to enable a BLE device to transmit and

receive data over the 2.4 GHz frequency band. In addition, it may also be capable of performing

cryptographic functions. If this is the case, it will have access to physical sources of randomness,

and contain an encryption engine to enable the transmission of encrypted or authenticated

data [2]. Architecture-wise, the Controller comprises the Physical Layer (sometimes denoted as

PHY) and the Link Layer (LL), as well as a test layer known as Direct Test Mode (DTM).

2.1.1.1 Physical Layer

The Physical Layer contains the components that perform signal modulation, frequency hopping,

and other functions, all of which collectively are responsible for the actual transmission and

reception of data over radio frequencies.

Frequency hopping is often mentioned when discussing Bluetooth security. Bluetooth devices

(both Classic and Low Energy) transmit data over the 2.4 GHz Industrial Scientific Medical

(ISM) frequency band. This is a “crowded” part of the frequency spectrum, because the same

unlicensed band is used by other wireless technologies such as Wi-Fi and Zigbee. In addition,

devices such as microwave ovens also operate within this range. For this reason, interference is

an issue that must be actively dealt with. Bluetooth has adopted Adaptive Frequency Hopping

(AFH) techniques to effectively combat wireless interference. With AFH, the 2.4 GHz band

25

PRELIMINARIES 〉 Background 〉 Bluetooth Low Energy: Architecture and Operations

Application Application APPLICATIONS

Generic Ac-
cess Profile

Security
Manager

Generic Attribute Profile

Attribute Protocol

Logical Link Control and Adaptation Protocol

HOST

Host Controller Interface

Link Layer

Direct Test ModePhysical Layer

CONTROLLER

Figure 2.2: The BLE stack.

is subdivided into channels. BLE uses 40 channels, each 2 MHz wide. Within a connection

between two BLE peers, communications “hop” over channels, following what is known as a

hopping pattern. If interference is observed in a particular region within the band, then the

hopping pattern will exclude the channels within that region.

2.1.1.2 Direct Test Mode

Direct Test Mode offers a standard method by which to test a BLE device’s Physical Layer. It is

not an essential component as far as functionality is concerned, but aims to make testing easier

even after a device has been packaged into another product [2].

2.1.1.3 Link Layer

The Link Layer performs a number of essential tasks to enable Bluetooth Low Energy functional-

ity. Some of the responsibilities of the Link Layer include defining packet structure, advertising,

device discovery, connection initiation and management, data transmission and reception to and

from a connected device, and data encryption [2]. The most important functions of the Link

Layer, as required for this thesis, have been explained below.

Advertising and scanning Taking the example of the fitness tracker, we have already mentioned

that it is a resource-constrained device. It is therefore not desirable for the tracker to remain

connected to the phone for extended periods of time, as this can result in quicker draining of

the battery. For this reason, the tracker and mobile phone will remain disconnected most of the

time, and will connect and exchange data as and when needed.

Such being the case, when they are disconnected and wish to connect, the devices need to know

that they are in the vicinity of each other. In the case of Bluetooth Low Energy, this is achieved

by advertising and scanning. That is, the fitness tracker sends out advertisements to let other

BLE devices in the area know of its presence. These advertisements are sent on fixed advertising

26

PRELIMINARIES 〉 Background 〉 Bluetooth Low Energy: Architecture and Operations

PDU Type
(4 bits)

RFU
(2 bits)

TxAdd
(1 bit)

RxAdd
(1 bit)

Length
(6 bits)

RFU
(2 bits)

(a) Advertising PDU header.

LLID
(2 bits)

NESN
(1 bit)

SN
(1 bit)

MD
(1 bit)

CP
(1 bit)

RFU
(2 bits)

Length
(8 bits)

(b) Data PDU header.

Figure 2.3: Breakdown of BLE packet header fields.

channels,2 and contain various pieces of information, most notably the device’s address. The

mobile phone scans the advertising channels. The first time the fitness tracker is used, the user

will be presented with a list of devices that are advertising in the immediate vicinity, and will

be able to choose the tracker from the list. The mobile phone will save the tracker’s details

and thereafter, when the mobile application wants to connect to the tracker, it will scan the

advertising channels and look out for an advertisement matching the tracker’s details.

Initiating and connecting When the mobile phone/application has identified the tracker that

it wants to connect to, it initiates a connection by sending a Connection Request over the link

layer. The mobile phone in this case is the Initiator and the tracker is the Advertiser. The

initiating device will take on the role of Master, and the advertising device will take on the role

of Slave within the connection.

Once the tracker and phone have connected, the tracker will stop advertising until they dis-

connect. Upon connection, data transfer can occur. The protocol for requesting data and for

responding to such requests is the Attribute Protocol, which is covered in §2.1.3.3.

Defining packet structure A BLE packet3 has four main fields:

1. Preamble: A sequence of alternating 1s and 0s, which allows the receiver to identify the

frequencies that are used for the two bit values [2].

2. Access Address: For most advertising packets, this is a fixed value of 0x8e89bed6. With

data packets, the value differs and is used for identifying a connection. Note that the

access address is not the same as the device’s address.

3. Protocol Data Unit (PDU): Consists of a Header and Payload. Discussed in detail below.

4. Cyclic Redundancy Check (CRC): Provides a mechanism by which transmission bit errors

can be identified.

This generic packet format is used for both advertising and data packets. However, the sub-fields

within the Header and Payload fields will differ based on whether a packet is an advertising

packet or a data packet. The structure of advertising and data PDU Headers is depicted in

Figures 2.3a and 2.3b, respectively. A detailed description of PDU fields is provided in Table 2.1

2Prior to v5.0 of the BLE specification, advertisements were sent out on channels 37, 38, 39 (and data packets
were sent on the remaining channels). In v5.0, Extended Advertising was introduced, in which these three
channels are referred to as primary advertising channels and the data channels are also able to be used as
secondary advertising channels.

3From v5.0, the specification defines two packet formats. We consider the one that is most commonly used in
this thesis.

27

PRELIMINARIES 〉 Background 〉 Bluetooth Low Energy: Architecture and Operations

Table 2.1: Format of BLE protocol data units, for advertising and data PDUs.

Advertising PDU Data PDU

Header PDU Type: Specifies the type of packet. LLID: Logical Link Identifier.

RFU: Reserved for Future Use in specifica-
tion versions <5.0 and one bit used as ChSel
in v5.0+.

NESN: Next Expected Sequence Number,
used to either acknowledge or to request re-
sending of the last PDU sent by peer.

ChSel: Specifies the Channel Selection Algo-
rithm to use [NDF∗].

SN: Sequence Number, used for packet iden-
tification.

TxAdd: Dependant on PDU Type. Nor-
mally, 0 indicates public address and 1 de-
notes random address (see §2.2.2.1).

MD: Indicates that More Data is available.

RxAdd: As for TxAdd. CP: CTEInfo Present [NDF].

Length: Number of octets in payload. RFU: Reserved for Future Use.

RFU: Used as part of Length field (to form
an 8-bit Length field) in v5.0+.

Length: Number of octets in payload.

Payload Depends on PDU Type. Prior to specifica-
tion v5.0, payload could be upto 37 bytes.
Version 5.0 introduced Extended Advertising
Payloads, where advertising packets were of-
floaded to traditionally data-only channels.

Can contain control information or data.
Payload could be upto 27 bytes in v4.0; in-
creased to 251 bytes in v4.2.

Other MIC: (Optional) Message Integrity Check.

∗NDF = Not discussed further

for advertising and data PDUs separately. The table also shows that the format for a specific

type of packet (i.e., advertising or data) between different versions of the specification can also

differ slightly.

Encryption If the data that is being sent between the tracker and phone is sensitive, it may be

encrypted before being sent over the radio interface. Devices in a connection can transmit packets

with encrypted payloads and Message Integrity Checks (MIC). For this, keys must be exchanged,

and possibly stored, by the communicating devices. The Security Manager is responsible for key

exchange and derivation. However, it is the Link Layer that performs encryption/decryption

and MIC computation. The Security Manager is discussed in §2.1.3.2, and further details about

authentication and encryption options in BLE are given in §2.2.

It is important to note here that it is not a requirement in BLE for the tracker and phone to

exchange keys in order to transfer data. It may be that simply forming a connection is sufficient.

Key exchange is only required if the data or the device has a security requirement [36].

2.1.2 Host Controller Interface

Not, strictly speaking, a complete subsystem in itself, the Host Controller Interface (HCI) is

nevertheless an important part of the BLE stack. It sits between the Host and Controller, and

enables standardised communication between the two subsystems.

28

PRELIMINARIES 〉 Background 〉 Bluetooth Low Energy: Architecture and Operations

2.1.3 Host

The Host is responsible for multiplexing, security, and exposing a device’s state data. It consists

of three protocols: the Logical Link Control and Adaptation Protocol (L2CAP), Attribute

Protocol (ATT), and Security Manager Protocol (SMP). It also contains two profiles: the Generic

Attribute Profile (GATT) and the Generic Access Profile (GAP).

2.1.3.1 Logical Link Control and Adaptation Protocol

The Logical Link Control and Adaptation Protocol (L2CAP) sits on top of the Host Controller

Interface and performs channel multiplexing. An L2CAP channel is a logical link between two

endpoints on BLE peer devices. More specifically, it is a sequence of packets between a service on

one BLE device and a service on its BLE peer [2], and is represented using a Channel Identifier.

Certain channels, referred to as fixed channels, are reserved for specific functions. In BLE, there

are 3 such channels: one for signalling, one for the Security Manager Protocol (§2.1.3.2), and

one for the Attribute Protocol (§2.1.3.3).

2.1.3.2 Security Manager

As mentioned before, BLE devices that wish to access protected data must first exchange keys.

To do this, they must perform a process known as pairing. The Security Manager describes the

processes and algorithms used for pairing, and defines the cryptographic toolbox that is utilised.

The pairing process is described in detail in §2.2.5.

2.1.3.3 Attribute Protocol and Generic Attribute Profile

In Bluetooth Low Energy, all data are stored as discrete values called attributes, and accessed

via the Attribute Protocol (ATT). For example, a fitness tracker measures and stores certain

parameters, such as the user’s heart rate or step count. A glucose monitor may obtain and store

periodic measurements of the user’s blood glucose levels. A smart lock may contain a value that

controls the lock state (i.e., open or locked). All these values (heart rate, step count, glucose

levels, lock control) are stored as attributes on the respective devices. A mobile phone can then

use the Attribute Protocol to read or write this information.

The Attribute Protocol operates on a client-server model, where the client accesses attributes

from the server. Both the Master and the Slave can act as both client and server. That is, in our

example it is not only the phone that is able to read from or write to the tracker. The tracker

may also access some information from the phone.

An attribute has four main components: (i) a handle, which serves as an address and is unique

per device, (ii) a type, which is defined by a Universally Unique Identifier (UUID) and which

should be unique across devices for a certain type of attribute, (iii) a value, which is the actual

value held by the attribute and which differs according to the attribute type, and (iv) a set

of permissions, which control how the attribute can be accessed. Attribute permissions are

discussed in detail in §2.2.4.

29

PRELIMINARIES 〉 Background 〉 Bluetooth Low Energy: Architecture and Operations

Table 2.2: Sample attribute database.

Handle Type∗ Value Permissions

0x0001 Primary Service GAP Service Read Only, No Authentication, No Authorisation

0x0002 Characteristic Device Name Read Only, No Authentication, No Authorisation

0x0003 Device Name “FitBand101” Read/Write, No Authentication, No Authorisation

0x0004 Characteristic Appearance Read Only, No Authentication, No Authorisation

0x0005 Appearance “Generic Watch” Read Only, No Authentication, No Authorisation

0x0006 Primary Service GATT Service Read Only, No Authentication, No Authorisation

0x0007 Characteristic Service Changed Read Only, No Authentication, No Authorisation

0x0008 Service Changed <Handles> None

0x0009 CCCD† 0x0000 Read/Write, No Authentication, No Authorisation

0x000A Primary Service HR‡ Service Read Only, No Authentication, No Authorisation

0x000B Characteristic HR Measurement Read Only, No Authentication, No Authorisation

0x000C HR Measurement 80bpm None

0x000D CCCD 0x0000 Read/Write, Authenticated encryption required,

No Authorisation

0x000E Characteristic HR Control Point Read Only, No Authentication, No Authorisation

0x000F HR Control Point Write Only, Authenticated encryption required,

No Authorisation

∗Each entry under the Type column will actually be denoted using a UUID. Textual descriptions have
been provided here for clarity. †CCCD = Client Characteristic Configuration Descriptor. ‡HR = Heart
Rate.

The Generic Attribute Profile builds on top of ATT and defines different types of attributes,

as well as procedures for accessing them. The three main types of attributes are services,

characteristics and descriptors. Characteristics hold the actual data values of interest (e.g.,

heart rate or glucose measurements). A characteristic can have zero or more descriptors, which

define characteristic properties or format. One or more (usually related) characteristics are

grouped into a service. A service may also contain other services.

A device stores its attributes in an attribute database. As an example, a fitness tracker’s (partial)

attribute database may look something similar to that in Table 2.2. In the table, the attribute

with the type Primary Service is a service declaration. All attributes following this and ending

at the next service declaration belong to this service [2]. For example, in Table 2.2, the Heart

Rate Service declaration is at handle 0x000A, and all attributes up to and including handle

0x000F belong to the Heart Rate Service. Similarly, the attribute with the type Characteristic

is called a characteristic declaration. A characteristic declaration is followed immediately by the

characteristic value attribute, which contains the actual value of interest (e.g., the Heart Rate

Measurement value at handle 0x000C). If a characteristic has associated descriptors, they will

be included in the database after the value attribute. There are different types of descriptors,

but we only discuss the Client Characteristic Configuration Descriptor (CCCD) in this thesis.

The CCCD enables data to be obtained from a BLE device in a manner different to the tradi-

tional request-response. That is, normally when a client wants to obtain a value from a server,

it issues a read request and obtains the value as the response. If we consider a scenario where

30

PRELIMINARIES 〉 Background 〉 Bluetooth Low Energy: Architecture and Operations

a mobile phone wants to obtain a heart rate measurement from a fitness tracker, the mobile

phone (as the client) will issue a read request to the server on the fitness tracker. However, for

frequently changing values such as heart rates, the mobile phone would have to continually poll

the tracker to obtain the latest value. BLE instead allows a client to enable notifications or in-

dications on the server. Notifications and indications allow the server to send the client updated

values as and when the value changes, thereby eliminating the need for constant polling. Noti-

fications expect no response, but an indication expects an acknowledgement that the message

was received. Both notifications and indications are enabled by writing to the characteristic’s

CCCD. Note that if a characteristic supports notifications or indications, it will have a property

of notify or indicate, respectively. If a characteristic supports traditional reads and writes,

it will have read and write properties. There are additional characteristic properties that are

outside the scope of this thesis.

SIG and vendor-defined UUIDs As mentioned previously, an attribute is identified using a

UUID. There are some attributes (services, characteristics and descriptors) defined by the Blue-

tooth SIG, which have specific meanings and functionality. Examples include the Heart Rate

Service, Continuous Glucose Monitoring Service, Insulin Delivery Service, and their associated

characteristics. Each of these services and characteristics has been assigned a specific UUID,

taken from a reserved range of UUIDs. When a BLE device contains one of these SIG-defined

UUIDs, the associated data type and behaviour will be known. However, developers are not

confined to using only SIG-defined services. They can define custom services and characteristics

as well, which will require UUIDs outside the SIG-reserved range.

2.1.3.4 Generic Access Profile

In §2.1.1.3, we saw that the Link Layer performs advertising, device discovery, etc. It is the

Generic Access Profile (GAP) that defines how devices discover other devices, find out the

services that are offered, and reconnect to each other without user intervention after the initial

connection [2]. GAP also provides options for security and privacy.

GAP roles GAP defines four roles: Broadcaster, which is a device that transmits advertise-

ments; Observer, a device that listens for advertisements; Peripheral, a device that advertises

and becomes a Slave once connected to a BLE peer; and Central, a device that scans for and

initiates connections to Peripherals, and which is a Master upon connection. In our example,

the fitness tracker would be a Peripheral and the mobile phone would be a Central. An example

for a Broadcaster would be a BLE beacon, while a device that listens for beacon advertisements

would be an Observer.

Discovery and connection GAP defines different modes for device discoverability, and sets out

various policies and procedures for advertising and performing device discovery. It also defines

different modes and procedures for establishing and terminating connections.

Bonding Bonding is the storage of keys generated or exchanged during pairing, such that they

can be used when devices reconnect without the need for repeating the pairing process. In

31

PRELIMINARIES 〉 Background 〉 Security and Privacy Requirements and Features in BLE

essence, bonding allows for the creation of a trust relationship between two BLE peers.

Security and privacy GAP defines various security modes and levels, each of which offer differ-

ent levels of security. A detailed description of the possible security options has been provided in

§2.2.3. GAP also provides a mechanism for device privacy, which is discussed further in §2.2.2.1.

2.1.4 Applications

The Application Layer defines characteristic, service and profile specifications, built on top of

GATT. Profiles describe possible interactions between two communicating BLE devices, where

the two devices implement specific services, which in turn contain specific characteristics. An

example of such a profile could be the Continuous Glucose Monitoring (CGM) Profile. This

profile specifies two roles: Sensor and Collector (where the Sensor is the device that takes

glucose measurements from the user and the Collector is the device that reads data from the

Sensor and issues commands to it). The CGM Profile describes the services and characteristics

that the two roles must implement or support, and how they interact with each other. For

example, the profile specifies that the CGM Sensor must implement the CGM Service, which

contains the CGM Measurement Characteristic, CGM Feature Characteristic and many others.

The CGM Profile also specifies security requirements for the various characteristics.

2.2 Security and Privacy Requirements and Features in BLE

We describe our adversarial model and the security and privacy requirements we have identified

for BLE in §2.2.1. The security and privacy features defined within the BLE specification

are described in §2.2.2. Security- and privacy-relevant protocols and configurations that are

employed to realise the security features are discussed in §2.2.3 through §2.2.5.

2.2.1 Security and Privacy Requirements for BLE

We outline here the requirements with regard to security and privacy for Bluetooth Low Energy

devices. The adversarial model we consider is as follows. A legitimate user owns a BLE-

enabled device operating in one of three configurations: (i) disconnected, (ii) involved in BLE

communications with a peer device, or (iii) about to be connected or paired to a peer BLE

device (by the user). The attacker is in one of two possible configurations: (i) in proximity

to the user (within BLE operating range, with or without range extension), or (ii) conducting

attacks via an application on the user’s device. In the case of the former, the attacker is able

to scan BLE channels, perform signal jamming attacks, connect to and interact with BLE

devices, perform cryptographic functions (including reasonable brute-forcing), and manipulate

data over the wireless interface. In the latter case, the attacker is able to install a malicious

application (with suitable permissions) onto the user’s mobile phone or computer. The attacker

does not have physical access to the user’s BLE devices or mobile phone/computer. The attacker

also does not have infinite computing capabilities, i.e., computationally hard problems (e.g., in

cryptography) cannot be solved by the attacker.

32

PRELIMINARIES 〉 Background 〉 Security and Privacy Requirements and Features in BLE

With this adversarial model, the security triad of confidentiality, integrity and availability are

applicable to BLE as with other communication technologies. Additionally, taking into consid-

eration the wireless nature of communications and the advertising behaviour of BLE Peripherals

and Broadcasters, we include two other essential requirements: device authentication and pri-

vacy. We describe these requirements in §2.2.1.1 through §2.2.1.5.

2.2.1.1 Confidentiality

BLE devices exchange attribute data with each other. This data should not be accessible by

unauthorised entities, particularly if the data is sensitive (e.g., pertaining to a user’s health or

lifestyle, or relating to safety or security).

2.2.1.2 Integrity

It should not be possible for BLE data to be tampered with, either in transit or storage, without

some evidence being generated regarding the tampering. Note that we do not consider random

bit flipping or the effects of a noisy channel here, since those will be detected by the CRC in

every packet (see §2.1.1.3). It should also not be possible for BLE vulnerabilities to be exploited

in order to attack the integrity of the device.

2.2.1.3 Availability

Many BLE devices have health- or security-critical functionality, such as in the case of continuous

glucose monitoring devices or smart door locks. Such devices must be available to the user and

be able to communicate with peer devices at any time, subject to battery and normal operating

considerations.

2.2.1.4 Device Authentication

If an attack device was able to masquerade as a legitimate device, it may be possible for the

attacker to read sensitive information from BLE devices or modify the functionality of a BLE

device by writing data to it. To prevent this, it should be possible for BLE devices or applications

to ascertain that the peer devices that they communicate with are the intended devices, i.e., as

expected by the user.

2.2.1.5 Privacy

Many BLE-enabled devices are designed to always be in proximity to the user, e.g., fitness

trackers, continuous glucose monitors or contact tracing apps [37]. A BLE device should not

leak information that could make the device or its user vulnerable to tracking. In addition, data

regarding the type of BLE device (which can reveal information about the user, such as in the

case of medical devices) or the user’s activities should also not be leaked.

2.2.2 Security and Privacy Features

We describe the security and privacy features that are defined within the BLE specification in

§2.2.2.1 through §2.2.2.4.

33

PRELIMINARIES 〉 Background 〉 Security and Privacy Requirements and Features in BLE

2.2.2.1 Device Privacy

Device privacy is a feature that was included in the very first version of BLE, i.e., in v4.0

of the Bluetooth specification. As mentioned in §2.1.1.3, BLE Peripherals and Broadcasters

periodically transmit advertising messages containing the device address. If a fixed advertising

address is used, then the device (and by extension, possibly also the user) will be vulnerable to

tracking. For this reason, BLE introduced the concept of private addresses, whereby the BLE

device has a fixed identity address that is only revealed to bonded peers, but advertises using

private addresses that should change periodically.

There are two different types of private addresses: resolvable and non-resolvable. Resolvable

private addresses should be used when reconnection without re-pairing is required. In this

scenario, the device that employs private addresses transmits a 128-bit Identity Resolving Key

(IRK) and its identity address to its peer during the bonding process. The device periodically

changes the (private) address within its advertisements. However, a bonded peer in possession

of the IRK will be able to resolve the private address to obtain the identity address. With

non-resolvable addresses, the private addresses cannot be resolved to an identity address.

2.2.2.2 Data Confidentiality

BLE allows for protecting data on the link layer via encryption. It uses AES-CCM cryptography

with a key of up to 128 bits for this purpose, and has done so since the first version of the

technology. Encryption keys are derived from keys generated/exchanged during the pairing

process, which is described in §2.2.5. Note that it is not a requirement for data to be encrypted

on BLE devices.

2.2.2.3 Data Signing

It is possible to optionally sign data on the Link Layer for integrity verification without encryp-

tion. The signature consists of a Message Authentication Code (MAC) and a replay-protection

counter. A 128-bit Connection Signature Resolving Key (CSRK) is used for generating the

MAC. The CSRK is transmitted to a peer during the bonding process.

2.2.2.4 Link Layer Filtering

Link Layer filtering is not actually mentioned as a security feature within the Bluetooth spec-

ification. It is considered a mechanism for reducing the number of devices that the Link Layer

needs to respond to, and consists of device whitelisting in combination with various filter poli-

cies. However, even if it is not explicitly a security mechanism, Link Layer filtering could be

used to reduce the impact of Denial of Service (DoS) attacks. In particular, whitelisting in

combination with resolvable private addresses could limit the connections processed by the Link

Layer to only those devices that have previously undergone pairing and bonding.

34

PRELIMINARIES 〉 Background 〉 Security and Privacy Requirements and Features in BLE

Table 2.3: BLE security modes and levels.

Mode Level Description

1 1 No security (no authentication and no encryption)

2 Unauthenticated pairing with encryption

3 Authenticated pairing with encryption

4 Authenticated LE Secure Connections† pairing with encryption using a 128-bit
strength encryption key

2 1 Unauthenticated pairing with data signing

2 Authenticated pairing with data signing

3 1 No security (no authentication and no encryption)

2 Use of unauthenticated Broadcast Code

3 Use of authenticated Broadcast Code

†This is the new “generation” of pairing in BLE. See §2.2.5.

2.2.3 Security Modes and Levels

When two BLE devices connect, one or both devices or some of the data on them may have

security requirements. These are specified in terms of a Security Mode and a Security Level.

Table 2.3 presents the Security Modes and Levels available within the BLE specification. The

terms “authenticated pairing” and “unauthenticated pairing” in the table refer to the presence or

absence of Man-in-the-Middle (MitM) protection. Unauthenticated pairing refers to the pairing

process without MitM protection, while authenticated pairing requires MitM protection.

LE Security Mode 3, as described in the table, is a mode introduced in v5.2 of the BLE speci-

fication. It is concerned with Isochronous channels used for LE Audio (which is a new feature

that is still partially in development) and is out of scope for this thesis.

A “Secure Connections Only” mode has also been defined, and a device in this mode will only

use Mode 1, Level 4, unless a service specifies Mode 1, Level 1.

2.2.4 (G)ATT Security

As described in §2.1.3.3, every value used or served by a BLE device is stored as an attribute.

This could be personal or protected information, such as the user’s heart rate, blood glucose

levels, or a value controlling the ‘locked’ status of a smart lock. It could also be something less

sensitive like the device’s name or type. For this reason, each attribute may need different levels

of security. Restricting access to attributes is facilitated via the attribute permissions mentioned

in §2.1.3.3, which are a combination of the following:

• Access permissions specify whether an attribute is Readable, Writeable, Readable and

Writeable, or None (neither Readable nor Writeable).

• Authentication/Encryption permissions indicate whether the link between the two

devices must be authenticated/encrypted before the attribute can be accessed.

• Authorisation permissions specify whether client authorisation is required before the

attribute can be accessed.

35

PRELIMINARIES 〉 Background 〉 Security and Privacy Requirements and Features in BLE

The permissions are stored in a security database, and a client cannot directly learn of the

permissions applied to an attribute. Instead, the client has to first attempt to access (i.e., read

or write) the attribute. If the access is not allowed or requires more security than is currently

available, then the server will typically respond with an error. If the action type (read or write)

requested by the client is not permitted, then a Read/Write Not Permitted will be returned.

If the client is not authorised to access the attribute, an Insufficient Authorisation error

will be returned. If the server requires a secure connection before it will allow an action to

be performed, and the two devices already share keys but the link is unencrypted, then an

Insufficient Encryption error will be returned; if the devices don’t already share keys or if

the strength of the pairing process used to generate the keys was insufficient, an Insufficient

Authentication error will be returned. However, the required level of encryption or authen-

tication will not be indicated. In the case of Insufficient Authentication errors, the client

device will need to pair (or re-pair) with the server device before re-attempting access.

Attribute permissions are most relevant in the case of characteristics (or, more specifically, char-

acteristic value attributes) and descriptors. Characteristic declarations, on the other hand, are

expected to always be freely readable, but not writable. The same applies to service declara-

tions. This is reflected in the attribute database in Table 2.2, where all service and characteristic

declarations have the permissions “Read Only, No Authentication, No Authorisation”.

2.2.5 Pairing

Pairing is the process by which two devices generate one or more shared secrets. It is handled

by the Security Manager and, in BLE, it is always initiated by the Master device. During the

pairing process, both devices exchange capabilities and security requirements, and ultimately

derive keys that are used to encrypt the connection between them (at the Link Layer).

There are two “generations” of pairing: LE Legacy was introduced in the first version of BLE,

i.e., v4.0 of the Bluetooth specification. It uses a proprietary key exchange protocol, which was

acknowledged within the specification to be vulnerable to passive eavesdropping attacks. LE

Secure Connections (LESC) was introduced in v4.2 of the specification, and uses Elliptic-Curve

Diffie-Hellman (ECDH) for key exchange.

Regardless of the type of pairing (LE Legacy or LESC), the pairing process consists of three

phases. These are outlined below and discussed in greater detail in §2.2.5.1 through §2.2.5.3.

1. Feature Exchange enables the exchange of supported features and security requirements,

and determines which of the two pairing methods (i.e., LE Legacy or LESC) and four

association models (discussed in §2.2.5.2) will be used.

2. The Key Generation stage differs based on whether LE Legacy or LESC is used, but

always results in the generation of a key that is then used to encrypt the transport.

3. Transport Specific Key Distribution is an optional phase common to both LE Legacy

and LESC, and is when additional keys may be exchanged if required.

36

PRELIMINARIES 〉 Background 〉 Security and Privacy Requirements and Features in BLE

Table 2.4: Key features exchanged during Phase 1 of BLE pairing.

Feature Description

Bonding
Flag

While pairing results in key generation, it is only if the devices bond that keys will be
stored for future use, thereby eliminating the need to go through pairing on each
connection. The bonding flag is a 2-bit value indicating whether bonding is required.

OOB Data This is an 8-bit value indicating whether Out Of Band (OOB) authentication data is
available. OOB simply refers to the fact that the authentication material is shared
between the devices using some method other than Bluetooth, e.g., NFC.

IO Capa-
bilities

This is an indication of the device’s input/output capabilities (such as the presence of
a keyboard and/or display).

Encryption
Key Size

A BLE device may support only up to certain key sizes for encryption, which it will
indicate to the pairing device via the “maximum encryption key size” field. The key is
actually always 128 bits long. This field really refers to the entropy, which must be a
minimum of 56 bits and can be up to 128 bits.

Key Distri-
bution

Both devices inform each other of the keys they wish to exchange. The keys can be
Long Term Keys (LTK), Identity Resolving Keys (IRK), and Connection Signature
Resolving Keys (CSRK).

MitM Single bit indicating whether MitM protection is required.

LESC Single bit indicating whether LESC is supported.

2.2.5.1 Phase 1: Feature Exchange

The Feature Exchange stage is initiated when the Master device sends a Pairing Request to

the Slave. Within this request the Master device sends its input/output capabilities, Out-Of-

Band authentication information availability, the requirements it has for authentication and for

encryption key size, as well as the keys it would like exchanged. If the features are satisfactory

and the Slave wishes to proceed with pairing, it will send a Pairing Response back to the Master,

with details of its own capabilities and security requirements. Some of the most important

features exchanged during the first stage of pairing have been summarised in Table 2.4.

2.2.5.2 Phase 2: Key Generation

Once the two devices have exchanged features, they generate keys to encrypt the link. This

is done via one of four possible association models, selected based on the features (particularly

the IO capabilities) exchanged in Phase 1. The association model determines how the key (that

is used to encrypt the transport during pairing) will be generated. There are four possible

association models:

1. Passkey Entry - This method is probably familiar to most people who have used Blue-

tooth. During the pairing process, one device displays a passkey (a decimal number which

is normally six digits long), and the user keys the passkey into the other device. This

process results in an authenticated key. It requires at least one of the two devices to have

a display and the other to have a keypad.

2. Just Works - Just Works is an association model that is used when at least one of the

communicating devices does not have suitable input-output capabilities. This method

37

PRELIMINARIES 〉 Background 〉 Security and Privacy Requirements and Features in BLE

MASTER SLAVE

Create MRand; TK=X Create SRand; TK=X

MConfirm = c1(TK, MRand,...) SConfirm = c1(TK, SRand,...)

PairingConfirm (MConfirm)

PairingConfirm (SConfirm)

PairingRandom (MRand)

Check for confirm value match

PairingRandom (SRand)

Check for confirm value match

STK = s1(TK, MRand, SRand)

Figure 2.4: Legacy BLE pairing: key generation.

results in an unauthenticated key. It affords the least amount of security but is widely

used, since many BLE Peripheral devices have neither a display nor a keypad.

3. Numeric Comparison - With Numeric Comparison, both devices need to only have a

display and the ability to indicate Yes/No. They don’t need a full keyboard/keypad. The

pairing process generates keys and then displays an artefact of the key generation process

on both devices’ screens. If the displayed values match, then the user can choose ‘Yes’

to proceed with the remainder of the pairing process. The resultant key is considered

to be an authenticated key. Numeric Comparison is viewed as being more secure than

Passkey Entry and Just Works, but is only available for LE Secure Connections, i.e., it is

not available for LE Legacy pairing.

4. OOB - The Out Of Band association model is used when authentication material is shared

between the two devices using some transport other than Bluetooth (e.g., NFC). This can

be a very secure method provided the OOB mechanism is secure. If the mechanism for

transmitting the key is secure enough, then the key is considered to be authenticated.

In the case of LE Legacy pairing, the key that results from the Key Generation phase is a Short

Term Key (STK). With LESC, the key is the Long Term Key (LTK).

Figure 2.4 depicts the LE Legacy pairing process. Both devices start off with a Temporary

Key (TK). This Temporary Key is derived based on the association model that is used. If Just

Works is used, then the key is simply 000000. In the case of Passkey Entry, the TK will be the

6-digit passkey that is displayed on one device’s screen and input by the user on the other device.

With OOB, the TK will be the key that is distributed out-of-band. Both devices individually

generate a random number. These are referred to as MRand (the random number generated by

the Master device) and SRand (generated by the Slave). The devices do not share the random

38

PRELIMINARIES 〉 Background 〉 Chapter Summary, Observations and Next Steps

numbers with each other at this point. Instead, they each generate Confirmation Values using

a function c1 with the TK, their own random number, and messages exchanged during Phase 1

as inputs. They then exchange these confirmation values, followed by their random numbers.

Each device computes its peer device’s confirmation value using the peer’s random number, and

checks this against the received confirmation value. If the values match, then a Short Term Key

is generated using a key generation function s1, with TK, MRand and SRand as arguments.

LE Legacy was acknowledged within v4.0 of the Bluetooth specification, i.e., the version of the

specification in which BLE was first introduced, as being vulnerable to passive eavesdropping at-

tacks. Version 4.2 of the specification saw the introduction of LESC. With LESC, Elliptic-Curve

Diffie-Hellman is used as the key exchange protocol. Each device generates a public-private key

pair, and then transmits its public key (which is a point in the format (x, y) on the elliptic curve)

to the connected BLE device. Information from the public key, as well as independently gener-

ated random numbers are used by the Slave device to compute a confirmation value. The Slave

transmits this to the Master device, which verifies the value. Once this has been completed,

if Just Works or Numeric Comparison association models are used, then a User Confirmation

value is computed and (in the case of Numeric Comparison) displayed to the user for manual

confirmation. In the case of Passkey Entry, the passkey is converted to a 20-bit value and 20

rounds (one for each bit) of confirmation value generation and validation occurs between the

communicating devices.4 Once this stage is complete, each device computes a MacKey and

an LTK using previously exchanged values and the newly derived shared Diffie-Hellman key.

Additional confirmation values are exchanged and checked prior to moving on to Phase 3.

2.2.5.3 Phase 3: Transport Specific Key Distribution

This phase is used to transmit any keys that the devices indicated as required during the Phase 1

Feature Exchange. In the case of LESC, this could be a CSRK, IRK, as well as the device identity

(i.e., real address) of the communicating devices. In the case of LE Legacy, an LTK, as well as

two values EDIV and RAND, which identify the LTK, may also be exchanged.

2.3 Chapter Summary, Observations and Next Steps

In this chapter, we have described the BLE architecture and the operation of each individual

architectural layer. We have set out security and privacy requirements for BLE systems and

described the security and privacy features that are available within the BLE specification.

At a high level, the security and privacy features within the BLE specification appear to ful-

fil most of the requirements presented in §2.2.1. That is, the requirements for confidentiality,

integrity and privacy are directly addressed, and device availability can be improved via LL

filtering, by reducing the number of connections that a device has to process. The device au-

thentication requirement is fulfilled via pairing. However, from the time BLE was introduced,

many vulnerabilities affecting these requirements have been identified, both with the specifica-

4This reveals one bit of the passkey at a time and necessitates random passkeys.

39

PRELIMINARIES 〉 Background 〉 Chapter Summary, Observations and Next Steps

tion and with implementations. These vulnerabilities can be exploited to perform different types

of attacks.

We next present a comprehensive look at BLE attacks and vulnerabilities. Due to the differ-

ence in their nature, we consider attacks and vulnerabilities separately. With BLE attacks,

we focus on the outcome of the attacks and the mechanisms for achieving them. We define

a purpose-defined taxonomy (Chapter 3) for analysing such attacks. With vulnerabilities, the

goal is to understand the root cause such that similar vulnerabilities may be prevented in fu-

ture. We therefore analyse vulnerabilities differently, taking into consideration the architectural

layer within which a vulnerability occurs, as well as the stakeholders who are responsible for it

(Chapter 4).

40

3 BLE Attack Taxonomy

In this chapter, we present our taxonomy for classifying current BLE attacks, and describe in

detail each class of attack and the mechanisms for effecting it.

3.1 Introduction

Bluetooth Low Energy has been incorporated into billions of devices, with around 3 billion BLE-

capable devices being shipped in 2019 alone [1]. As we have already observed, an increasing

number of these BLE devices are handling sensitive user data (such as health measurements or

Personally Identifiable Information (PII)) or performing critical functions (such as controlling

insulin pumps, eScooters or door locks). As the sensitivity or criticality of BLE applications

increases, so too does the scrutiny placed on its security. Over the past few years, a number

of security and privacy attacks have been identified for Bluetooth Low Energy. In this chapter,

we present a comprehensive survey of such attacks. We describe the methodology employed to

survey previous work in the area of attacks on BLE security and privacy (§3.2). We develop a

taxonomy for existing BLE attacks, focusing on the impact or outcome of the attack (§3.3). We

describe each attack in detail, explaining the mechanisms by which it can be effected (§3.4-§3.8).

For completeness, we also provide a brief overview of some well-known Bluetooth Classic attacks

and analyse their applicability to BLE (§3.9).

Related work We mention here related work that is applicable to both Chapter 3 and Chap-

ter 4. There have been several attempts over the years to survey BLE attacks and vulnerabil-

ities. For example, Padgette et al. [38] present a succinct account of Bluetooth vulnerabilities

and threats (for both Classic and BLE) in a NIST publication, covering every version of the

Bluetooth specification up to and including v4.2. However, they do not include a number of

attacks on privacy and availability. An overview of key- and cipher-related vulnerabilities in

different versions of Bluetooth (mainly applicable to Bluetooth Classic) is presented in work

by Cope et al. [39]. Other types of vulnerabilities are not addressed in this work. Lonzetta et

al. [40] make references to these vulnerabilities and present a taxonomy for Bluetooth threats

(again, predominantly applicable to Bluetooth Classic). Ghori et al. [27] describe BLE attacks

in the context of BLE mesh networks, but mistakenly include attacks that are applicable to

only Bluetooth Classic. A number of possible attacks against BLE are described in work by

Jasek [19], but without addressing all possible vulnerabilities. Attacks specifically targeting BLE

beacons are explored by Tay et al. [20] and Kolias et al. [41].

As can be seen from the sample above, most Bluetooth security and privacy surveys tend to focus

more on Bluetooth Classic. In addition, none have presented a complete overview of all security

41

PRELIMINARIES 〉 BLE Attack Taxonomy 〉 Methodology

and privacy issues identified in BLE thus far. Further, some studies conflate Bluetooth Classic

attacks, such as Bluejacking and Bluesnarfing, with BLE. This chapter and the next together

present a comprehensive look at the various security and privacy attacks and vulnerabilities that

are specifically applicable to BLE. We mention Bluetooth Classic attacks separately, solely to

discuss their potential applicability for the BLE case.

3.2 Methodology

In order to obtain a list of all publications related to BLE security/privacy, we use a keyword-

based search against the Digital Bibliographic Library Browser (DBLP) database [42], by gen-

erating a combination of each search term within the set {bluetooth,1 ble, btle} with each term

within the set {security, privacy, attack, vulnerability, vulnerabilities, track, spoof}. We cross-

check by using each search term within the first set with the names of highly-ranked conferences

(i.e., those within the top two tiers in [43]),2 to ensure that papers presented at such venues

are included.3 Further, we perform a search with each of the terms within the set {bluetooth

low energy, ble, btle} (without additional terms and manually examining titles for indications of

security and privacy relevance) to further build our dataset of BLE security- and privacy-related

academic publications.

However, the nature of BLE research is such that oftentimes studies are published as whitepapers

or technical papers, rather than as purely academic publications. For this reason, we include

such papers when they have made significant contributions to the field. CVEs are another

source of information regarding vulnerabilities. We therefore search the MITRE database [44]

for BLE-related vulnerabilities. However, we only include them if they apply to a large number

of devices, i.e., vulnerabilities in chipsets or platforms rather than small-scale end products.

Since our focus is BLE attacks and vulnerabilities, we filter out works that utilise BLE to build

custom security or privacy solutions, and analyses of custom protocols built on top of BLE

(e.g., [45]). We also generally do not include studies that merely repeat previously demonstrated

attacks or test for known vulnerabilities. Further, we exclude studies pertaining to Bluetooth

Mesh, as that is a standard built on top of BLE (using BLE as the transport protocol), containing

its own stack, and deserving separate analysis.

1We filter out results specific to Bluetooth Classic based on the year of publication (BLE was introduced in
2010. Therefore, any publication prior to that year will not relate to BLE). We also filter out works by examining
the title and abstract for terms specific to Bluetooth Classic (e.g., “BR/EDR”, “Classic”, “SDP”, “LMP”).

2At the time of writing, this list included the following conferences: IEEE Symposium on Security and Privacy
(S&P); ACM Conference on Computer and Communications Security (CCS); USENIX Security Symposium (Secu-
rity); ISOC Network and Distributed System Security Symposium (NDSS); International Cryptology Conference
(Crypto); European Cryptology Conference (Eurocrypt); European Symposium on Research in Computer Secu-
rity (ESORICS); International Symposium on Recent Advances in Intrusion Detection (RAID); Annual Computer
Security Applications Conference (ACSAC); The International Conference on Dependable Systems and Networks
(DSN); Internet Measurement Conference (IMC); ACM Symposium on Information, Computer and Communica-
tions Security (ASIACCS); Privacy Enhancing Technologies Symposium (PETS); IEEE European Symposium on
Security and Privacy (EuroS&P); IEEE Computer Security Foundations Symposium (CSF); International Confer-
ence on the Theory and Application of Cryptology and Information Security (Asiacrypt); Theory of Cryptography
Conference (TCC); Conference on Cryptographic Hardware and Embedded Systems (CHES).

3Where a study has been previously published in preprint form and later at a conference, we use the conference
version.

42

PRELIMINARIES 〉 BLE Attack Taxonomy 〉 A Taxonomy for BLE Attacks

We distil the information from each source within the resultant list and separate out the attack(s)

and the underlying vulnerability or vulnerabilities. We taxonomise and discuss the attacks in

this chapter, and analyse the vulnerabilities in Chapter §4.

3.3 A Taxonomy for Attacks against BLE Security and Privacy

We construct the first layer of our attack taxonomy hierarchy by mapping the security require-

ments outlined in §2.2.1 to the following corresponding attacks:

1. Unauthorised Acquisition of Data: This is an attack on confidentiality. We consider the

unauthorised acquisition of BLE data (i.e., characteristic values) under this category.

2. Tampering : This is an attack on integrity. We consider attacks that tamper with data

integrity or the device’s integrity in this category. However, attacks on a device which

render it temporarily or permanently unusable are not included in this category. They are

instead included within Denial of Service.

3. Denial of Service: A detriment to availability, any attack that temporarily or permanently

renders the device unusable (such that it cannot be used as expected by a legitimate user)

is considered here.

4. Profiling & Tracking : This is a privacy issue. Any means by which a device (and possibly

the user) can be tracked over time or across locations, or any leakage of information about

the user, is considered within this category. We do not include leakage of BLE data values

within this category, as that is covered by Unauthorised Acquisition of Data.

5. Spoofing : This occurs due to a failure of device authentication. Any attack that enables

a legitimate device to be spoofed in such a way as to cause a peer device to accept the

spoofed device as legitimate is included here.

The second-level categories within the taxonomy expand upon the first-level attacks, denoting

the impact or outcome of the attack in greater detail. At the third and fourth levels are the

mechanisms by which the attacks are effected, in progressively more detail.

Figure 3.1 presents the resultant taxonomy for classifying BLE-related attacks. The labelling

of the nodes corresponds to the associated security requirement. For example, nodes related

to unauthorised data access are an attack on Confidentiality and are labelled with “C”. Note

that the first-level node (D) Spoofing and the second-level node (I.1) Tampering→Tamper with

BLE data do not have subtrees. This is because the subtrees for these nodes are derived from

the subtrees of other nodes. For example, tampering with BLE data would require the same

conditions as to read the data (except that the data must also be writable for it to be tampered

with). Therefore, the node (I.1) will have the same subtree as node (C.1). Similarly, to fully

spoof a device, its data and address (including the IRK, if relevant) must be known. Therefore,

the subtree for (D) will be a combination of the subtrees for nodes (C.1) and (P.1).

§3.4 through §3.8 describe attack mechanisms within each of these categories in further detail.

43

PRELIMINARIES 〉 BLE Attack Taxonomy 〉 A Taxonomy for BLE Attacks

Figure 3.1: Taxonomy for BLE attacks.

44

PRELIMINARIES 〉 BLE Attack Taxonomy 〉 Unauthorised Acquisition of Data

The vulnerabilities corresponding to the attacks described in this chapter are specified in Chap-

ter 4. When an attack is described as exploiting one or more vulnerabilities, it is assumed that

the devices do actually contain the vulnerabilities. The true applicability for the vulnerabilities

is also provided in Chapter 4.

3.4 Unauthorised Acquisition of Data

This section deals with attacks that result in unauthorised access to BLE characteristic data.

Note that the adaptive frequency hopping employed by BLE is incorrectly referred to as a

security mechanism and the ability to eavesdrop on (unencrypted) BLE traffic by circumventing

AFH is stated as an attack on confidentiality in several studies [11, 25, 26, 39]. However, the

Bluetooth specification itself does not refer to AFH as a security mechanism. It states that the

“LE system employs a frequency hopping transceiver to combat interference and fading” [36].

Therefore, we consider the ability to eavesdrop on raw BLE communications to be akin to

eavesdropping on any other wireless connection, i.e., not in itself an attack.

C.1 Access BLE characteristic data

As described in §2.1.3.3, BLE data is stored and accessed as discrete values known as attributes,

which can have permissions (§2.2.4) applied to them in order to restrict access. Recall also that

applying such protection is not mandatory.

There are three main ways in which an attacker might read data from a victim BLE device:

1. Direct access, if the data has insufficient protection applied to it.

2. If the data is protected but the attacker is able to obtain cryptographic keys that the

victim device shares with a legitimate peer.

3. If the data is protected but the attacker is able to bypass authentication.

These mechanisms are discussed in C.1.1 through C.1.3. In all cases, the characteristic data

must have the read, indicate or notify properties (see §2.1.3.3) for the attacks to work.

C.1.1 Direct access

This section deals with the acquisition of BLE characteristic values when either no protection

is applied or the protection applied to the characteristics is not sufficiently strong.

C.1.1.1 Exploit at link layer If a characteristic does not specify authentication or encryption

requirements, i.e., does not require pairing before it can be accessed, then its values can be read

by any connected device, including attacker devices.4 The values can also be obtained via MitM

attacks or monitoring of the wireless interface when two legitimate devices are exchanging data.

4Note that an attacker will be able to eavesdrop on values in any case, but with pairing, the data will be
encrypted and therefore not intelligible to the attacker. Strong cryptographic protections applied at a higher
layer can also prevent unauthorised access, and are discussed in C.1.1.2.

45

PRELIMINARIES 〉 BLE Attack Taxonomy 〉 Unauthorised Acquisition of Data

Even if a characteristic specifies Mode 1 Level 2 security requirements, this can be achieved via

Just Works pairing. The nature of this particular pairing model is such that an attacker may be

able to pair with the device covertly, i.e., without the user’s knowledge. The attacker can also

compute the relevant STK as part of a MitM or eavesdropping attack (as described in C.1.2.1,

using TK=“000000”) and thereafter decrypt the traffic between two legitimate devices.

Further, even if two legitimate devices’ IO capabilities enable them to conduct authenticated

pairing (e.g., Passkey Entry or Numeric Comparison), an attacker may be able to MitM into

the pairing process, downgrade it to Just Works by manipulating the feature exchange, and

thereafter access poorly protected data. Note that the ability to downgrade pairing is indepen-

dent of the protection applied to BLE data, and does not automatically mean that BLE data

will be accessible to the attacker; the data will only be accessible if little or no protection has

been applied to it.

We demonstrate in Chapter 9 and Chapter 10 (and other works [46,47] have also shown) that a

significant proportion of BLE Peripherals have either no security requirements or only Mode 1

Level 2. This enables an attacker to read BLE characteristic data from such devices. Apart

from being an attack on confidentiality, this also has serious privacy concerns associated with

it, particularly if the data is related to a user’s health or lifestyle.

C.1.1.2 Exploit at app-layer In Chapter 5 we demonstrate that, on a multi-application Central

platform (e.g., Android or iOS), once one application triggers pairing with a BLE Peripheral,

any other application on the same Central device will be able to access pairing-protected char-

acteristics from the Peripheral. This is similar to the result identified for Bluetooth Classic by

Naveed et al. [48], but with greater attack potential. With this vulnerability, even if a Peripheral

device specifies the strongest authentication requirements for its data, if it does not implement

strong higher-layer security (via authorisation permissions), then a malicious application may

be able to covertly read information from the Peripheral.

C.1.2 Obtaining cryptographic keys

If a BLE characteristic requires authenticated pairing before its value can be accessed, then an

attacker would need to either (i) pair with the device and bypass authentication, or (ii) obtain

the cryptographic keys exchanged by legitimate devices in order to read the characteristic data

via a MitM, spoofing or eavesdropping attack. We describe authentication bypass mechanisms

in C.1.3 and describe mechanisms by which an attacker can obtain cryptographic keys in this

section. We elaborate on two different scenarios in which an attacker can obtain cryptographic

keys that are shared by legitimate devices. The first scenario (C.1.2.1) assumes that the attacker

is present when the legitimate devices are pairing and exploits protocol weaknesses to obtain the

keys. The second scenario (C.1.2.2) assumes that the legitimate devices have already completed

pairing (unobserved by the attacker) and describes mechanisms by which the devices can be

forced to re-pair such that the attacker can eavesdrop on the protocol and derive the keys using

techniques from C.1.2.1.

46

PRELIMINARIES 〉 BLE Attack Taxonomy 〉 Unauthorised Acquisition of Data

C.1.2.1 Cryptographic key theft during pairing The Passkey Entry association model in LE

Legacy has a well-known pairing vulnerability that is fairly straightforward to exploit. Phase 2

in LE Legacy pairing (as depicted in Figure 2.4) shares the Master and Slave random numbers

(MRand and SRand) in the clear. These are used, along with the Temporary Key (TK), as

inputs to the key generation function s1 to produce the Short Term key (STK), which is used to

encrypt the remaining communications. An attacker who observes the pairing exchange between

two BLE devices will therefore be able to obtain two out of three inputs to the key generation

function. The third input, the TK, is only 6 digits long. It has a value of “000000” for Just Works

pairing and also sometimes for Passkey Entry (if the device defines a static all-zero passkey).

Even if the TK is not all-zero, it only has 20 bits of entropy, which can be brute-forced in less

than a second [16]. The attacker can therefore compute the STK and use it to decrypt the

remaining encrypted messages and obtain the LTK. This can then be used to decrypt all future

communications between the two devices.5

While LE Legacy is undoubtedly less secure than LESC, Biham et al. [49] have identified a

vulnerability in LESC as well, within the ECDH key authentication mechanism. Specifically,

the protocol only authenticates the x-coordinate of the devices’ public keys, and older versions of

the specification did not specify a requirement for validating the y-coordinate. This meant that

a MitM attacker could eavesdrop on the pairing protocol between two legitimate BLE devices,

intercept each device’s public key, modify the y-coordinate to zero, and forward it on to the

intended recipient. This forces the possible key space to a very small set of numbers such that

the attacker has a reasonable chance (25% to 50%) of computing the key [49].

Another attack that has the potential to impact LESC, specifically with Passkey Entry pairing,

exploits the fact that the passkey is revealed bit-by-bit during Phase 2 of the pairing process. If a

BLE device uses a fixed passkey (which is disallowed since v5.1 of the Bluetooth specification), an

attacker will be able to learn the passkey by eavesdropping on one run of the pairing protocol,

and use that knowledge to directly pair with the device or to MitM when the device pairs

again [50]. This was originally shown for Bluetooth Classic, but was noted to be applicable for

BLE as well [51].

An attack that affects LESC and LE Legacy pairing is the provision within the specification

for key entropy reduction. That is, while the BLE specification supports encryption key sizes

of up to 128 bits, it also has provisions for reducing the entropy down to 7 bytes (56 bits). A

MitM attacker could intercept the communications during the pairing feature exchange phase

and replace the value of the maximum supported key size with its minimum possible value of 7

bytes. If no checks are made by the communicating devices, then the entropy of the resultant

key will be 56 bits, making it easier for the attacker to brute-force [52].

5Interestingly, this vulnerability was noted within the specification itself. Version 4.0 of the Bluetooth standard
states with regard to LE pairing “None of the pairing methods provide protection against a passive eavesdropper
during the pairing process as predictable or easily established values for TK are used.”, and further “A future
version of this specification will include elliptic curve cryptography and Diffie-Hellman public key exchanges that
will provide passive eavesdropper protection.”. LE Secure Connections, introduced in Version 4.2 of the Bluetooth
specification, uses ECDH for key exchange. However, it is important to note that LE Legacy is still an option
within the specification and that it is in widespread use.

47

PRELIMINARIES 〉 BLE Attack Taxonomy 〉 Unauthorised Acquisition of Data

Another attack that enables cryptographic key theft exploits a finding by Santos et al. [53] that

BLE Peripherals have limited storage for bond information. The authors discovered that some of

the mechanisms employed by Peripherals to handle full bond lists can result in the possibility for

LTK theft. For example, on some Peripherals, once the bond list is full, subsequent connections

will be unable to store bond information and will therefore have to pair each time. If this is

the case, the attacker must fill up the bonding list before the legitimate Peripheral and Central

attempt to pair. This will cause the pairing process to be undertaken every time, rather than

LTKs being stored. The attacker would then be able to obtain the keys for each connection

that they are able to eavesdrop on, using one of the aforementioned techniques. This assumes

unauthenticated pairing (or the attacker would need physical access to the Peripheral).

C.1.2.2 Cryptographic key theft post-pairing This section describes mechanisms by which an

attacker can force two legitimate BLE devices that have already paired to re-pair, such that

the attacker can eavesdrop or MitM into the pairing exchange to obtain the keys, using the

techniques described in C.1.2.1.

As previously mentioned in C.1.2.1, BLE Peripherals often have limited storage for bond infor-

mation. In such scenarios, one technique employed by Peripherals is that, if the bond list is full,

a new bond displaces an existing item on the list. Assuming a legitimate Peripheral and Central

have completed bonding (say, with LTK = K1), an attacker can make multiple pairing requests

to the Peripheral using different MAC addresses and fill up the Peripheral’s bond list. Once

the list is full, the attacker makes an additional request, to displace K1. This would force the

legitimate Peripheral and Central to go through the pairing process again, at which point the

attacker can eavesdrop and derive the key [53]. This again assumes unauthenticated pairing.

In addition to the above mechanism, assuming two legitimate devices have previously paired

and bonded, and then disconnected, then when the devices later reconnect, a MitM attacker

could force a re-pairing by interfering with the re-encryption procedure. That is, when two

bonded devices reconnect, they go through a procedure of (plaintext) message exchanges prior

to re-encrypting the link. If the attacker injects a message to falsely indicate that one of the

legitimate devices has lost the LTK, this will force a key renegotiation that the attacker can

eavesdrop on [16].

C.1.3 Bypassing authentication

We discuss within this section three subcategories of attacks by which an attacker might by-

pass authentication and access protected BLE data. The first subcategory exploits protocol

weaknesses and involves the attack device interfacing with a single victim device. The second

subcategory also exploits protocol weaknesses, but with the attack device in a MitM position

between two legitimate devices. The third subcategory exploits software bugs.

C.1.3.1 Protocol weaknesses: direct device communication Rosa [15] identified that the LE

Legacy confirm value generation function c1, as used during Phase 2 of the pairing process

(depicted in Figure 2.4), did not bind the generated confirmation value to the random numbers

48

PRELIMINARIES 〉 BLE Attack Taxonomy 〉 Unauthorised Acquisition of Data

used to generate it. Rosa demonstrated that it was possible for a malicious Slave device, with no

knowledge of the passkey, to bypass passkey authentication. The malicious Slave device spoofs a

legitimate device, such that the Master device connects to it. During the pairing exchange, the

spoofed Slave device transmits a random confirmation value (SConfirm) and later brute-forces

the correct passkey (i.e., TK) using information sent by the legitimate Master device. This is

used to compute an appropriate SRand, which is sent to the Master, giving the Master device

the impression that the spoofed Slave had knowledge of the passkey all along. In this way, a

malicious Slave device (normally a Peripheral) may be able to read protected information from

the Master device [15]. This attack assumes that the Master device displays the passkey, which

should be entered on the Slave device (as otherwise, the Slave device would have knowledge of

the passkey anyway). We observe that it could also be used with the OOB association model

(with LE Legacy pairing), when the OOB key has the same entropy as with Passkey Entry and

the malicious Slave device has no knowledge of the OOB data.

The next attack also involves a Peripheral device reading information from a Central. Wu et

al. [54] and Zhang et al. [55] observed that on “typically Central” platforms such as Android,

Windows, iOS and Linux, receiving a 0x06 Key Not Found link layer encryption error caused the

communications to be downgraded to plaintext. This is in accordance with the BLE specification.

However, Wu et al. [54] additionally observed that the above-mentioned platforms do not adhere

to the specification requirement that the error should be communicated to higher layers and

that, upon receiving notification of such errors, pairing should be restarted after notifying the

user. Assuming a legitimate Central and Peripheral have previously completed pairing, a fake

Peripheral could connect to the legitimate Central device by spoofing the legitimate Peripheral

(details on how spoofing can be achieved are provided in §3.8). When the encryption procedure

is initiated, the spoofed Peripheral transmits a message with the 0x06 Error Code. This would

cause the remaining communications to occur in plaintext. This could then be used to obtain

sensitive data from the Central [54,55].

C.1.3.2 Protocol weaknesses: MitM manipulation There are two separate BLE attacks,

brought to light in 2020/2021, which enable an attacker to place themselves in a MitM position

between two legitimate devices that undergo authenticated pairing, i.e., pairing that includes

MitM protection. The first attack occurs at the time of pairing, while the second occurs after

pairing has completed and the legitimate devices are communicating.

The first attack was disclosed by Tschirschnitz et al. [56], and is best demonstrated using LESC

pairing models. The attack exploits the fact that the association model used during pairing is

determined independently by the two devices that are undergoing pairing. There is no mutual

confirmation of the association model at any point during the pairing procedure. Tschirschnitz

et al. [56] demonstrate that it is possible for an attacker to exploit the visible artefacts of the

Passkey Entry and Numeric Comparison pairing models (in particular, the fact that they both

display a six-digit value on a device), such that the attacker pairs using Passkey Entry with one

device and Numeric Comparison with the other device to enter a MitM position between the

two legitimate devices. The user assumes that the two legitimate devices have paired with each

49

PRELIMINARIES 〉 BLE Attack Taxonomy 〉 Unauthorised Acquisition of Data

Initiator I Malicious Responder MR Malicious Initiator MI Responder R

IOcapI Trigger IOcapMI
= DisplayY esNo

IOcapMR
= DisplayOnly IOcapR

Association model =
Passkey Entry

Association model =
Passkey Entry

Association model =
Numeric Comparison

Association model =
Numeric Comparison

Exchange public keys Exchange public keys

Calculate confirm value va Calculate confirm value va
va

Display vaUser inputs va (as
displayed on R)

Passkey = va

User confirms va
(displayed on R)Complete pairing

Complete pairing

Figure 3.2: MitM attack by manipulating association model.

other. This attack is depicted in Figure 3.2.

The second attack exploits vulnerabilities in older versions of the Cross Transport Key Deriva-

tion (CTKD) mechanism in Bluetooth. CTKD is intended to allow dual-transport devices (i.e.,

devices that support Bluetooth Classic and BLE) to communicate with each other over both

transports after pairing over only one. When pairing occurs over one transport, a key can be

derived for the other transport using a CTKD algorithm. Antonioli et al. [57] and researchers

at Purdue University independently discovered that CTKD-derived keys will overwrite any pre-

existing key, even if the preexisting key was generated using stronger pairing mechanisms. This

gives rise to the possibility of MitM attacks as follows [57]:

• Assume two legitimate dual-transport devices, DevA and DevB, have paired over Blue-

tooth Classic using a pairing mechanism that includes MitM protection (with LTK =

LTKABClassic
) and are currently communicating with each other.

• An attacker can impersonate DevA and pair with DevB over the BLE transport (specifying

no input-output capabilities). This results in LTK generation for BLE and triggers CTKD,

which will generate an LTK for the Bluetooth Classic transport, overwriting LTKABClassic
.

The communication between DevA and DevB is disrupted.

• The attacker impersonates DevB and sends a pairing request to DevA over Bluetooth

Classic. DevA completes pairing with the attacker under the assumption that it is pairing

with DevB. The attacker is now in a MitM position between DevA and DevB and can

access BLE characteristic data.

However, we observe that if the BLE characteristic data specifies a requirement for authenticated

pairing, then this attack will not be effective, as the attacker will have used unauthenticated

pairing. Further, if the BLE characteristic data specifies no security requirements or only unau-

50

PRELIMINARIES 〉 BLE Attack Taxonomy 〉 Tampering

thenticated pairing (i.e., Mode 1 Level 1 or Mode 1 Level 2), then the attacker will be able

to access the data even without exploiting CTKD, using more straightforward methods (see

C.1.1.1). The impact of this attack on BLE is chiefly the interruption of an existing legit-

imate connection and enabling the attacker to MitM between two devices that were already

communicating with each other.

C.1.3.3 Exploit software bugs Garbelini et al. [58] identified two software bugs in certain

Telink chipsets which, when combined, would enable authentication bypass. One was that a

zero default LTK was used in LESC pairing. The second bug was that the chipsets accepted

an out-of-order encryption request prior to pairing completion. An attacker device can initiate

pairing with a vulnerable Peripheral and, once it receives the Pairing Response, it can send

an Encryption Request. The Peripheral transmits an Encryption Response. Each of these

messages contain half of what is known as a Session Key Diversifier, which together with the

LTK are used to derive a session key. The Peripheral then sends a Start Encryption Request,

which expects a response encrypted with the session key. Because Telink Peripherals default to

a zero LTK, the attacker device can easily compute the session key and send a valid encrypted

Start Encryption Response. This will be accepted by the Peripheral and communications will

continue. The attacker can now access data on the Peripheral that has a security requirement

of LESC protection, without actually going through LESC pairing [58].

3.5 Tampering

Tampering in this work refers to either tampering with BLE characteristic data or tampering

with the device itself.

I.1 Tampering with BLE data

Tampering with BLE characteristic data is accomplished by exploiting the same vulnerabilities

as for unauthorised acquisition of data, detailed in C.1, when characteristics are writable. That

is, if a device’s characteristic data is unprotected, or if the attacker is able to obtain the LTK

and MitM into a legitimate connection, or if the attacker can bypass authentication, then any

writable characteristics can be modified by the attacker. This could lead to false data being

presented to the user, control commands being issued (such as if HID data is modified), or device

functionality being manipulated such that user safety is endangered (such as if BLE door locks,

eScooters or insulin pumps are tampered with).

I.2 Tampering with the BLE device

There are two mechanisms by which an attacker could tamper with a BLE device: by exploiting

a firmware update mechanism, or by exploiting coding bugs.

I.2.1 Exploiting firmware updates

Updates to the firmware of a BLE device can be made over the BLE interface (if supported by

the chipset). This is achieved by writing small amounts of firmware code at a time to a special

51

PRELIMINARIES 〉 BLE Attack Taxonomy 〉 Denial of Service

(vendor-specific) characteristic. If the update mechanism is not suitably protected, then it may

be possible for an attacker to replace the firmware with one of their choosing, thereby completely

compromising the system. We demonstrate this in §6.7.

I.2.2 Exploiting software bugs

Some vulnerabilities identified with specific BLE chipsets or platforms (e.g., [58,59]) cause over-

flows when exploited. These may also enable an attacker to accomplish code execution on

the implementing platform via carefully crafted packets [58–60]. It has been demonstrated in

one case that an attacker can gain control of a device by sending multiple apparently-benign

messages, each with a small amount of shell code, prior to the actual overflow message [59].

3.6 Denial of Service

We now look at Denial of Service (DoS) attacks against BLE. We consider three specific types

of attacks: (i) attacks where the device itself is rendered unavailable (due to bricking, crashing,

restarting or battery depletion), (ii) attacks where the device is up but peer devices are prevented

from connecting to or communicating with it, and (iii) attacks where packets are dropped.

We note that the simplest form of DoS attack would be to transmit a jamming signal on the

2.4 GHz part of the spectrum. However, this is a fairly crude method, which would affect all

devices that use the spectrum. We do not explore this attack further in this thesis. However,

we do discuss selective jamming in A.2.1.1.

A.1 Rendering a device unavailable

Two main types of attacks have been identified which can render a BLE Peripheral unavailable:

through battery exhaustion or by exploiting a software bug. We note that the attacks result in

the device being unavailable only temporarily, unless they are sustained for long periods.

A.1.1 Battery exhaustion

A BLE Peripheral, when not connected to a Central device, transmits advertising messages

periodically but is otherwise inactive. This enables it to conserve battery power. Connecting

to a Central device and transmitting or receiving data are actions that use up the battery. For

this reason, BLE is intended to be used in situations where data is transferred in short bursts

over transient connections, rather than being streamed over long-lived or frequent connections.

Issuing a large number of connection requests (which the Peripheral will need to process if it

does not implement a whitelist and filtering policies) over a period of time will keep the BLE

Peripheral active for a very long time and will drain the Peripheral’s battery much faster than

with standard operations [18,61]. This could have serious ramifications in certain scenarios (e.g.,

if the Peripheral performs critical monitoring functions).

52

PRELIMINARIES 〉 BLE Attack Taxonomy 〉 Denial of Service

A.1.2 Exploit software bugs

A number of software bugs have been identified in BLE chipsets and implementing platforms,

mainly to do with insufficient validation of input lengths and improper validation of incoming

packets. If exploited, these bugs can lead to device instability, deadlocks, crashes or restarts.

For the most part, these vulnerabilities only lead to temporary denial of service, but some may

require manual power-cycling in order to be resolved [58–60].

A.2 Preventing peer device connection/communication

An attacker can employ different methods to prevent a legitimate BLE device from connecting

to a legitimate BLE peer. One technique is to hide a Peripheral from a legitimate Central, such

that the Central cannot connect to it (see A.2.1). Another method is to lock a legitimate peer

out by interfering with the cryptographic keys that are used to encrypt data (A.2.2).

A.2.1 Peripheral hiding

A Peripheral can be hidden from a Central device by selectively jamming the Peripheral’s ad-

vertisements, by stopping the Peripheral from advertising, or by reducing the “visibility” of the

Peripheral’s advertisements.

A.2.1.1 Selective jamming If a BLE Peripheral utilises a random static or public advertising

address (or if it incorrectly implements private addresses, such that the address remains un-

changed for a long duration), then it will advertise with a fixed address for extended periods

of time. Bräuer et al. [21] have identified that fixed advertising addresses can be used by an

attacker to selectively jam the advertisement of only a single Peripheral device. The jammer

scans each advertising channel, looking for the preamble and the advertising access address

(0x8e89bed6). Once those are detected, it continues reading bits until it finds the advertiser’s

address. If the address matches a programmed address, the jammer transmits a brief noisy

signal on the advertising channel. This will prevent the Peripheral’s advertisements from being

received by a scanning Central device, thereby effectively denying the Central the possibility of

connecting with the Peripheral [21].

A.2.1.2 Stop Peripheral advertisements A BLE Peripheral only advertises when it is not in a

connection. To stop a Peripheral from advertising, an attacker device can initiate a connection

to it. This would prevent a legitimate Central from being able to find and connect to the

Peripheral. The attack would need to be conducted in a loop for the effect to be sustained [22].

A.2.1.3 Reducing Peripheral visibility Jasek [19] observed that the “visibility” of a BLE Pe-

ripheral was apparently connected with its advertising frequency (although some doubt has been

cast upon this finding in subsequent work [62]). Most legitimate Peripherals do not advertise

too rapidly, to conserve their battery. Therefore, if an attack device can spoof the legitimate

Peripheral but advertise rapidly, it will be more “visible” to the Central, causing the legitimate

Central to connect to the spoofed Peripheral rather than to the legitimate Peripheral.

53

PRELIMINARIES 〉 BLE Attack Taxonomy 〉 Denial of Service

A.2.2 Device lockout via cryptographic key manipulation

We discuss two methods by which an attacker can lock a legitimate BLE peer out by interfering

with pairing LTKs. In both cases, the result is likely to be a permanent Denial of Service unless

the affected devices are reset or the existing LTKs are cleared.

A.2.2.1 Exploiting encryption error mishandling This attack exploits the 0x06 Key Not Found

encryption error mishandling vulnerability described in C.1.3.1. It assumes that two legitimate

devices have previously paired and bonded, but have subsequently disconnected. At this stage

both devices share the same LTK (let this be LTKgood). An attack device can spoof the le-

gitimate Peripheral, connect to the legitimate Central, and then exploit the encryption error

mishandling vulnerability to downgrade the link as described in C.1.3.1. The spoofed Periph-

eral indicates that its characteristics require encryption, which triggers the Central to start the

pairing process. This results in the legitimate Central and spoofed Peripheral sharing an LTK,

LTKattack, which the legitimate Central assumes is the LTK that it shares with the legitimate

Peripheral. If the spoofed Peripheral now disconnects and allows the legitimate devices to con-

nect, the legitimate devices will find that they are no longer able to communicate because they

do not share the same key. The legitimate Peripheral still uses LTKgood while the legitimate

Central uses LTKattack. Neither device will throw an error because each will believe itself to be

in possession of a valid LTK [55].

A.2.2.2 Resource exhaustion This is a variation of the resource exhaustion attack described

in C.1.2.2. As mentioned there, Peripheral devices tend to have limited storage for bond infor-

mation. In some cases, once the bonding list is full, new connections are ignored [53]. In this

scenario, the attacker could fill up the bonding list, thereby causing new (legitimate) requests

to be rejected.

A.3 Dropping packets

The dropping of legitimate packets within a connection can be considered a form of Denial of

Service, and is accomplished by an attacker who is able to MitM into a legitimate connection.

While dropping packets at random is always possible, we consider the scenario where an attacker

is able to examine and drop specific packets.

A.3.1 Dropping packets via MitM attacks

In this section we outline how MitM packet dropping attacks can be accomplished in two sce-

narios: (i) when there is no security requirement (i.e., pairing) and (ii) when pairing is required.

If no pairing or bonding is required between the legitimate devices, then all the attacker need

do is to spoof the legitimate Central and connect to the legitimate Peripheral, then spoof the

legitimate Peripheral and wait for a connection from the legitimate Central (see §3.8). In this

way, the attack device can find its way into a MitM position. After this point, the attack device

can examine and drop any packets it chooses.

54

PRELIMINARIES 〉 BLE Attack Taxonomy 〉 Profiling & Tracking

If the legitimate devices do require pairing and bonding, then additional effort will need to

be expended by the attacker. Two MitM attacks are described in C.1.3.2. If these are not

possible, the attacker would have to perform one of the attacks described in C.1.2 to retrieve

the LTK or session key used by the legitimately bonded BLE peers. During reconnections

between the legitimate devices, the attacker would MitM as in the unauthenticated case. To be

able to actually read the contents of the packets, however, the attacker would need to know the

session key. This is derived from the LTK (which the attacker has obtained) and key diversifying

material (which is exchanged in the clear). The attacker will thus be able to compute the session

key, such that they can examine the contents of packets and drop any as required.

3.7 Profiling & Tracking

In this section, we discuss the leakage of data from BLE devices that can enable device or user

tracking, and expose a user’s activity or profile. This differs from unauthorised data access in

that the information that is leaked is not BLE data. It is extraneous data that nevertheless

reveals information regarding the user or device.

P.1 Device tracking

Being able to track a BLE-enabled device is a privacy concern for the user, because many such

devices are worn/carried by the user, i.e., are always on or about the user’s person. Therefore,

tracking a BLE device may, in these cases, be synonymous with tracking the user.

There are two main techniques that an attacker can employ to track a BLE-enabled device: one

is to use the advertising address (P.1.1), and the other is to use data within advertising messages

or the device’s configuration (P.1.2).

P.1.1 Tracking BLE devices using advertising addresses

As described in §2.1.1.3, BLE advertising messages contain, among other information, an ad-

vertising address. The BLE specification allows for periodically-changing private addresses (see

§2.2.2.1) in order to enable device privacy. This section describes mechanisms by which a device

can be tracked using only its device address (whether private or otherwise).

P.1.1.1 Tracking using fixed addresses Several studies [9, 23, 63] have found that many BLE

Peripheral devices do not actually use private addresses, i.e., most used fixed addresses. Our

findings from performing firmware analysis against BLE binaries (described in Chapter 10)

support these studies. A device that periodically transmits an advertising message with a fixed

address opens itself (and its user) to the risk of tracking [9, 23, 64]. Issoufaly et al. [65] state

that the tracking could even be performed on a large scale using multiple compromised devices,

i.e., a botnet, which would collect and periodically transmit BLE advertisements to an attack

server, which could then analyse the data and infer movement patterns for one or more users.

55

PRELIMINARIES 〉 BLE Attack Taxonomy 〉 Profiling & Tracking

P.1.1.2 Tracking using private addresses As mentioned in P.1.1.1, most resource-constrained

BLE Peripherals do not utilise private addresses. In contrast, BLE-enabled Central platforms

such as mobile phones and laptops do tend to implement resolvable private addresses. However,

as described in C.1.3.1, many of these devices exhibit a vulnerability in which they don’t handle

encryption errors properly. Zhang et al. [55] describe an attack to exploit this vulnerability

in such a way as to enable tracking of the victim Central device: an attack device spoofs a

legitimate Peripheral, causing the legitimate Central to connect to it. The spoofed Peripheral

issues a 0x06 Key Not Found link layer encryption error, which downgrades communications to

plaintext. The spoofed Peripheral specifies no IO capabilities and Mode 1 Level 2 authentication

requirements for its data, which will trigger Just Works pairing, and will enable the attacker

to steal the Central device’s Identity Resolving Key (IRK) and identity address, so that the

Central device can thereafter be tracked.

We observe that, if a legitimate BLE Peripheral does employ resolvable private addresses but

allows for unauthenticated pairing, i.e., Just Works, then any malicious device could connect

and pair with the device and obtain the IRK in a straightforward manner (since Just Works

pairing does not require user interaction and may occur without the user’s knowledge).

P.1.2 Tracking BLE devices using the service list

Advertising messages often include a list of the BLE services that are available on the advertising

device. In the case of beacon-style devices, a single fixed UUID may be used. According to

several studies [41, 66, 67], the BLE service UUIDs broadcast in advertising messages may be

used to fingerprint device models and manufacturers.

Celosia et al. [46] describe an extension of this attack, exploiting the fact that the service list on a

device is freely accessible, as per the BLE specification. An attacker could connect to the device

and enumerate all services and characteristics, thereby obtaining a more exact fingerprint for

the device. A large-scale study has shown that this is practically feasible, and that the obtained

data could be used to track a user [46]. However, this attack requires connecting to every device

rather than simply monitoring advertisements.

This type of attack may also be possible with other information within advertising messages.

In particular, Becker et al. [68] and Celosia et al. [69] demonstrated that the Manufacturer

Data and Device Name fields included within the advertisements of various devices (including

Windows 10 and iOS/MacOS devices) enable identification and tracking of the device.

Note that all of these attacks enable tracking even in the presence of private addresses.

P.2 User/activity detection

In this section, we describe traffic analysis attacks to determine the activity levels of a user and

to identify a user from within a group.

56

PRELIMINARIES 〉 BLE Attack Taxonomy 〉 Spoofing

P.2.1 Traffic analysis

During a BLE connection, if no data is available, then devices may exchange empty packets.

Das et al. [9] observed that the volume of empty packets corresponded to the level of activity

of a user in the case of BLE-enabled fitness trackers. This means that simply monitoring BLE

traffic may allow an attacker to infer a user’s activities. This is true even if the packets are

encrypted, as it is the volume of traffic that provides an indication of activity.

Further, it was also identified that BLE traffic differed between different users (for the same

set of fitness trackers). This means that traffic analysis could also be used to identify a single

user from a small group of fixed users, by first training a machine learning model and later

monitoring BLE traffic and testing it against the model [9].

P.3 Obtaining user/device profile

This section discusses attacks that divulge information regarding a user (particularly their

health, lifestyle or device usage) via their BLE devices.

P.3.1 Exploiting open access to list of services and characteristics

As mentioned previously, the list of services and characteristics on a BLE device are always

freely readable. Several BLE services have known meanings (e.g., Heart Rate Service, Glucose

Service). A malicious application on a user’s Central device could connect to and enumerate all

services of all the devices in the user’s vicinity. Combining this with signal strength information

could provide a reasonable indication of which devices are the user’s own. Depending on the

types of devices, the attacker might be able to learn about the user’s health and general activities

(e.g., if the Glucose Service is present, then the user is likely to be diabetic).

P.3.2 Protocol observation

Sun et al. [70] observe that in accordance with the Bluetooth specification, the public keys

used by a BLE device for LESC pairing may not change for long periods of time. That is,

the device will use the same public key for every new pairing it enters into. An attacker could

observe a device’s pairing exchange and store the public key, which is exchanged in unencrypted

form. If the same public key is observed again in another pairing exchange, the attacker will

conclude that the same device is involved. In this manner, an attacker will be able to build a

communication profile for a device [70].

3.8 Spoofing

If an attacker is able to spoof a legitimate BLE device to its (legitimate) BLE peer, then the

attacker would be able to read data from and inject false data to the peer device, issue commands,

and perform MitM attacks. It could do all of this while the BLE peer (and user) assumes that

the actions were performed by the legitimate device. In the case of BLE beacons, spoofing

attacks can also result in incorrect assumptions regarding user location [20].

57

PRELIMINARIES 〉 BLE Attack Taxonomy 〉 Spoofing

Throughout this section, we will use DevA and DevB to denote two legitimate devices in our

illustration of spoofing attacks. DevM is an attacker device which spoofs DevA so that it can

connect to or otherwise interfere with DevB. DevM may also spoof DevB so that it can perform

MitM attacks between DevA and DevB.

A spoofing attack will require three parts, each of which will require the exploitation of one or

more vulnerabilities: (i) cloning the BLE device address (since that is what is typically used to

identify a device to its peer) and potentially also the advertising data, (ii) cloning the list of

services and characteristics, and (iii) spoofing the data, i.e., characteristic values. Depending on

the attack goal, it is possible that only the first one or two parts may suffice.

Cloning the BLE device address and advertising data If DevA does not use resolvable ad-

dresses (see §2.2.2.1), then address spoofing is straightforward, as it only requires a freely-

available address changing tool [71]. If resolvable addresses are used, then an attacker would

need to obtain DevA’s identity address and IRK in order to be able to spoof DevA. This can

be accomplished using the techniques described in P.1.1.2. After this point, the attacker can set

up DevM with the same address as DevA.

If DevA is a Central device, then DevM can now spoof DevA and initiate a connection with

DevB. If DevA is a Peripheral or Broadcaster, then DevM will spoof DevA and clone the

advertising data. In the event that DevA is a beacon, its advertisements will contain a UUID

identifying the beacon. If this UUID is static, then the UUID will also be cloned [20]. If DevA

is not in the vicinity, then DevM will be able to advertise as DevA and will be assumed to be

DevA by DevB. If DevA is advertising in the vicinity, then DevM will need to ensure that

its own advertisements (instead of DevA’s) are seen by DevB. This can be achieved using the

techniques described in A.2.1.

Cloning BLE services and characteristics If DevM is to exchange data with DevB, then it

will need to implement the same set of services and characteristics as DevA. The list of services

and characteristics is always freely readable, as per the BLE specification. This enables the

attacker to first connect to DevA, enumerate the service list, and then set up DevM with the

same service list.

Cloning BLE data If DevM is to exchange data with DevB, particularly in a covert manner,

then DevM will need to know acceptable values for the characteristics that it spoofs. Otherwise,

it is possible that DevB will ignore the data sent by DevM or exhibit unstable behaviour.

Similarly, if DevM wishes to perform MitM attacks between DevA and DevB, then it will need

to be able to read and possibly also modify the exchanged data.

If DevA applies no protection for its characteristics, or only specifies Mode 1 Level 2 require-

ments, then spoofing is straightforward. The attacker can either connect to DevA (silently

pairing with Just Works, if needed) and access the data, or monitor legitimate traffic between

DevA and DevB to identify possible characteristic values and apply them to DevM . If, on

58

PRELIMINARIES 〉 BLE Attack Taxonomy 〉 Applicability of Bluetooth Classic Attacks

the other hand, DevA requires Passkey Entry or Numeric Comparison pairing, then the at-

tacker will need to first obtain cryptographic keys (using one of the techniques detailed in C.1.2,

assuming DevA is vulnerable) and then access DevA’s data.

3.9 Applicability of Bluetooth Classic Attacks

While Bluetooth Low Energy (BLE) shares many similarities with its predecessor, the two

technologies are supposed to be considered as distinct and incompatible [2]. Several aspects of

Bluetooth Classic are only available in a simplified form in BLE, and many other Bluetooth

Classic features are not available in BLE at all. Therefore, many of the vulnerabilities and

associated attacks in Bluetooth Classic will not be applicable to BLE. However, we have observed

some studies attributing Bluetooth Classic attacks to BLE. In this section, we outline some well-

known Bluetooth Classic attacks and explain why they are not applicable (or are less applicable)

to BLE. Note that this is not intended to be a comprehensive overview of Bluetooth Classic

vulnerabilities.

3.9.1 Bluejacking, Bluesnarfing, Bluebugging

Bluejacking is an attack on insecure implementations of Bluetooth in which unsolicited messages

(or images or sounds) are sent to Bluetooth-enabled devices via the Object Exchange Protocol

(OBEX). Bluesnarfing is similar to Bluejacking in that it targets insecure implementations of

Bluetooth and uses the OBEX protocol. However, it issues a “get” request to steal files with

known names. With Bluebugging, the attack again begins by sending a message via Bluetooth.

The transmission is then paused. On devices with faulty Bluetooth implementations, the at-

tacker device is added to the victim device’s trust list, enabling the attacker to thereafter connect

to the victim device’s Bluetooth headset and issue commands to control the victim device [72].

OBEX is supported by Bluetooth Classic but not BLE, and being able to send unsolicited

messages in the above-described manner is inapplicable to BLE, which means that these attacks

are not applicable in the Low Energy setting.

3.9.2 Bluetooth Impersonation AttackS (BIAS)

BIAS attacks are impersonation attacks that target Bluetooth Legacy and Secure Connections

pairing (but not the LE versions). They exploit the fact that in Bluetooth Legacy pairing,

authentication is unilateral; they also exploit the possibility for performing Master-Slave role

switching in the middle of a connection [73]. In LE pairing (Legacy and Secure Connections),

authentication is mutual (albeit not vulnerability-free). Further, role switching is not a feature

in BLE. Therefore, these particular attacks are not applicable to BLE.

3.9.3 BlueBorne

BlueBorne [74] was a suite of vulnerabilities identified in different widely-used Bluetooth Classic

implementations. Vulnerabilities were identified in various layers of the Bluetooth stack. We

discuss each vulnerability in brief below, primarily focusing on why it is not applicable to

59

PRELIMINARIES 〉 BLE Attack Taxonomy 〉 Applicability of Bluetooth Classic Attacks

BLE. Note that BlueBorne described a Security Manager vulnerability in Bluetooth Classic

whereby temporary pairings could take place without the user’s knowledge. We observe that

this particular issue may be true in the case of BLE as well. If a BLE device has a maximum

security requirement of Mode 1 Level 2 applied to it or its characteristics, then it may be possible

to covertly pair with the device.

L2CAP Linux’s BlueZ stack contained a vulnerability in its implementation of the L2CAP

Extended Flow Specification, which enabled a stack overflow. This is not applicable in the case

of BLE because BLE only uses three fixed L2CAP channels, and no Extended Flow Specification.

SDP Linux’s BlueZ stack and Android each contained an information leak vulnerability in

their implementation of the Service Discovery Protocol (SDP). SDP is only used in Bluetooth

Classic, and is not available in BLE. This vulnerability is therefore not applicable to BLE.

BNEP Android was found to contain two remote code execution vulnerabilities in its imple-

mentation of the Bluetooth Network Encapsulation Protocol (BNEP). However, since BNEP is

not used in BLE, these vulnerabilities do not apply.

3.9.4 Pairing Vulnerabilities

Numerous vulnerabilities have been identified for the different types of Bluetooth pairing. We

observe that Bluetooth Classic Legacy pairing vulnerabilities are not applicable to BLE, due

to the difference in the pairing protocol. However, Bluetooth Classic’s Secure Simple Pairing

(SSP) is very similar to LESC. Therefore, vulnerabilities identified for SSP need to be analysed

carefully to determine their impact on LESC. For example, the fact that the passkey is revealed

bit-by-bit during the pairing protocol of SSP is equally applicable to LESC (see C.1.2.1).

In some cases, vulnerabilities exist in Bluetooth Classic and BLE, but with different impacts.

The key entropy downgrade vulnerability is a good example. Both Bluetooth Classic and BLE

allow for the entropy of the encryption key to be reduced, and the maximum supported key size

is exchanged as a feature during the pairing protocol. However, while in BLE the minimum

possible key entropy is 56 bits, in Bluetooth Classic the key can be downgraded to a single byte

(8 bits) of entropy. Therefore, the key can be brute-forced far more easily for Bluetooth Classic.

Pairing downgrade attacks (distinct from key entropy downgrade attacks) may be conducted

against both Bluetooth Classic and BLE. This is accomplished by a MitM attacker manipulating

the IO capabilities exchanged by the two devices to force them to use the Just Works association

model. However, in the case of BLE, this does not automatically give the attacker access to BLE

data. If the BLE characteristics specify a security requirement of “authenticated encryption”,

i.e., Mode 1 Level 3, then even if the link has been downgraded, the characteristic values will

not be accessible.

60

PRELIMINARIES 〉 BLE Attack Taxonomy 〉 Chapter Summary and Next Steps

3.10 Chapter Summary and Next Steps

In this chapter, we introduced our BLE attack taxonomy and described the various attacks

against BLE security and privacy, focusing on the attack impact or outcome. In Chapter 4,

we discuss the vulnerabilities that give rise to these attacks. With vulnerabilities, we focus on

understanding the root cause, such that similar vulnerabilities can be prevented in future. We

therefore perform a per-layer, per-stakeholder classification.

61

4 Vulnerability Analysis

In this chapter, we discuss the vulnerabilities that give rise to the attacks described in Chapter 3.

We map each vulnerability to one or more attacks and present an analysis of the vulnerabilities

according to their source. We also briefly survey proposals for enhancing the security or privacy

of BLE deployments in the presence of one or more vulnerabilities.

4.1 Vulnerabilities in BLE

In our categorisation of BLE attacks (§3.3), we used a taxonomy that prioritised understanding

the impact of attacks. When classifying vulnerabilities, we instead want to identify the root

cause. There are two considerations that we take into account: (i) identifying the root cause

in terms of vulnerability location, and (ii) identifying the root cause in terms of responsible

stakeholders.1

For the first, i.e., to analyse vulnerability location, we organise the vulnerabilities according to

the architectural layer they are present in, to be able to group related vulnerabilities, better

understand related concerns and identify gaps in current research trends.

To determine responsible stakeholders, we analyse whether vulnerabilities occur within the BLE

specification itself, as opposed to within implementations. We clearly state the source of vul-

nerability wherever possible as one of the following three options.

1. Specification Issue [S]: The problem lies within the specification itself. Any standard-

compliant device may be vulnerable.

2. Product Design Issue [D]: The problem lies with end product implementations, usually

addressing non-utilisation of security features. It will affect products from a subset of

vendors.

3. Coding Issue [C]: The problem lies with end product implementations, specifically coding

bugs, and will affect products from a subset of vendors.

In one instance (VGAP5), the source of vulnerability is unclear, because it is not yet fully under-

stood how advertising frequency and the “visibility” of the Peripheral are linked. This particular

vulnerability is therefore categorised as an Unclassified [U] vulnerability source.

1Note that the dataset we use here is the same as that for the attack taxonomy. With each work (i.e.,
publication, white paper or CVE), we examine the data to look for explicit mentions of attacks and vulnerabilities
or, in cases where only one is explicitly mentioned, infer one from the other. We also cross-check attacks and
vulnerabilities from different sources to determine whether one vulnerability can give rise to multiple attacks or
vice versa. We discussed the attacks in Chapter 3 and analyse the vulnerabilities in this chapter.

62

PRELIMINARIES 〉 Vulnerability Analysis 〉 Architectural Analysis and Research Gaps

Note that with Product Design and Coding Issues, we only include vulnerabilities that affect

a wide range of products (as would be the case if a chipset or widely-used operating system

was vulnerable), rather than where the issue affects only a limited number of end products

(e.g., [75–77]).

Tables 4.1 through 4.8 summarise the BLE vulnerabilities that have been identified thus far,

organised by BLE architectural layer. Each vulnerability has an identifier (denoted by VID),

which is used to cross-reference the vulnerability. For each vulnerability, we also present the

vulnerability source (Specification vs. Design vs. Coding, denoted by VSrc), and the scope or

applicability for the vulnerability (i.e., how many devices might be expected to be vulnerable).

For the sake of completeness, we include associated CVEs and “code names” (denoted by VCN),

potential solutions, and related tools or frameworks. The tools are either for testing the presence

of a vulnerability, for exploiting it or for mitigating it. Tools marked with a circle [◦] are not

publicly available. Tools marked with a star [?] were developed by us.

Table 4.9 maps these vulnerabilities to the attacks described in §3.4 through §3.8. It shows that

a single vulnerability can give rise to multiple attacks, particularly if the vulnerability enables

the theft of cryptographic keys (which would then enable reading and tampering of data, packet

dropping, and spoofing). Table 4.10 summarises the number of vulnerabilities in each layer that

can be assigned to the different sources (i.e., Specification, Design, Coding and Unknown).

4.2 Architectural Analysis and Research Gaps

Examining the data in Tables 4.1 through 4.8, we note that the source stakeholder differs for

vulnerabilities identified in different layers. For example, vulnerabilities identified with the Secu-

rity Manager layer are more focused on specification issues, with 8 out of 11 SMP vulnerabilities

being at least partly rooted in the specification; in contrast, 80% of vulnerabilities identified for

GAP were implementation-related.

We could also approach this differently and hypothesise that the design of GAP has not been

subjected to sufficient scrutiny, and in the same way that there has been insufficient testing of

Security Manager implementations. By approaching the data in this manner, we can identify

even more gaps in research, which could be the subject of future work.

We believe that the nature of research conducted thus far, particularly in terms of disparity of

coverage for different layers, may be related to the existing expertise within the security commu-

nity, as well as to the “ease of access” to each layer. For example, analysing Security Manager

protocols is similar to most other network security or cryptographic analyses, which have been

conducted for several decades [78]. In fact, 80% of all specification-related vulnerabilities were

identified within SMP, and around half of these studies were protocol analyses. Further, there

is easy access to certain components within a BLE system, such as LL/GAP advertisements

and GATT messages (which can be obtained by sniffing traffic over the air interface, or even by

using a mobile developer API), whereas “inner” components such as HCI and L2CAP cannot

be easily interfaced with at the moment.

63

P
R

E
L

IM
IN

A
R

IE
S
〉

V
u

ln
erab

ility
A

n
alysis

〉
A

rch
itectu

ral
A

n
alysis

an
d

R
esearch

G
ap

s

Table 4.1: Security and privacy vulnerabilities within the Physical Layer.

VID Vulnerability VSrc Applicability (Potential) Solution Notes

VPHY 1 The volume of empty data packets exchanged

during a connection can be correlated with

user activity [9].

D Fitness trackers. Transmit dummy packets

during low-intensity

activities [9].

Tools: Ubertooth [79], nRF

sniffer [80], btlejack [81] can sniff

BLE communications over the

wireless interface. Code for inferring

the user/activity has not been made

available.

Table 4.2: Security and privacy vulnerabilities within the Link Layer.

VID Vulnerability VSrc Applicability (Potential) Solution Notes

VLL1 Not implementing LL whitelisting and

filtering, which is intended to limit the

number of connections that a BLE device

need process [18].

D Device specific. Implement whitelisting

and filtering, along with

resolvable private

addresses and strong

pairing requirements.

Implementing only whitelisting is

insufficient as an attacker may spoof

the whitelisted address [19].

VLL2 Improper handling of invalid length field in

advertising packets (see Figure 2.3a) [59,82].

C Various Texas

Instruments BLE

stacks.

Code fix. VCN: BleedingBit

CVEs: CVE-2018-16986,

CVE-2019-15948

VLL3 Improper handling of invalid length field in

data packets (see Figure 2.3b) [58].

C Various Cypress,

NXP and Dialog

Semiconductor

BLE SDKs.

Code fix. VCN: SweynTooth

CVEs: CVE-2019-16336,

CVE-2019-17519, CVE-2019-17517

Tools: Sweyntooth [83]

VLL4 No input validation to ensure that data

packets with empty LLID fields are not

accepted (see Figure 2.3b) [58].

C Various Cypress

and NXP BLE

SDKs.

Code fix. VCN: SweynTooth

CVEs: CVE-2019-17061,

CVE-2019-17060

Tools: Sweyntooth [83]

64

P
R

E
L

IM
IN

A
R

IE
S
〉

V
u

ln
erab

ility
A

n
alysis

〉
A

rch
itectu

ral
A

n
alysis

an
d

R
esearch

G
ap

s

VID Vulnerability VSrc Applicability (Potential) Solution Notes

VLL5 Peripheral accepts an out-of-order LL

Encryption request and prompts the

encryption of packets before successfully

completing the pairing process [58].

C Telink BLE SDK

v3.4.0 for

TLSR8258.

Code fix. VCN: SweynTooth

VLL6 Insufficient buffer allocated to copy incoming

BLE packets [60].

C Various Cypress

chipsets.

Code fix. CVEs: CVE-2019-13916

Table 4.3: Security and privacy vulnerabilities within HCI.

VID Vulnerability VSrc Applicability (Potential) Solution Notes

VHCI1 The length of BLE advertising and scan

response data (as set by higher layers) not

checked to ensure it is below the allowable

maximum [84].

C Android v8.0, 8.1

and 9.0.

Code fix. CVEs: CVE-2019-2032

Table 4.4: Security and privacy vulnerabilities within L2CAP.

VID Vulnerability VSrc Applicability (Potential) Solution Notes

VL2CAP1 Unexpectedly short L2CAP packets (outside

the range of 4-31 bytes) are not rejected [58].

C Microchip

ATSAMB11

BluSDK Smart

up to v6.2.

Code fix. VCN: SweynTooth

CVEs: CVE-2019-19195

Tools: Sweyntooth [83]

65

P
R

E
L

IM
IN

A
R

IE
S
〉

V
u

ln
erab

ility
A

n
alysis

〉
A

rch
itectu

ral
A

n
alysis

an
d

R
esearch

G
ap

s

Table 4.5: Security and privacy vulnerabilities within SMP.

VID Vulnerability VSrc Applicability (Potential) Solution Notes

VSMP1 Pairing key components are transmitted in

the clear in LE Legacy [16,85].

S BLE devices

using LE Legacy

pairing with Just

Works or Passkey

Entry.

Use LESC, which utilises

ECDH for authentication

and key generation.

Tools: crackle [86] analyses and

decrypts LE Legacy-protected BLE

data.

VSMP2 Confirm value generation function c1 used in

LE Legacy does not bind the generated

confirmation value to the random

number [15].

S BLE devices

using LE Legacy

pairing with

Passkey Entry.

Use LESC, which utilises

different confirm value

generation functions.

VSMP3 No mutual confirmation of association model

during pairing [56].

S All BLE devices.

Most impact for

LESC.

Modify pairing protocol

to mutually agree on

association model [56].

At present, the only option is user

vigilance to ascertain the association

model used during pairing.

VSMP4 Keys derived for a transport using CTKD

overwrite any existing key, even if new key is

less secure [57].

S+D Dual-stack

devices that

support CTKD

and specification

<v5.2.

Do not overwrite existing

keys if new keys are of

lower strength.

VSMP5 The BLE specification does not require

public keys used for ECDH in LESC to

change frequently, and platforms may not

change the keys either [70].

S+D BLE devices

supporting

LESC.

Change public key after

some n pairing

attempts [70].

VSMP6 LESC requires only authentication of the

x-coordinate of the elliptic curve point.

Older versions of the specification do not

even require validation of the y-coordinate.

Most implementations do not proactively

validate the y-coordinate [49].

S+D BLE devices

supporting LESC

and specification

<v5.1.

Validate both x- and

y-coordinates of received

elliptic curve point.

66

P
R

E
L

IM
IN

A
R

IE
S
〉

V
u

ln
erab

ility
A

n
alysis

〉
A

rch
itectu

ral
A

n
alysis

an
d

R
esearch

G
ap

s

VID Vulnerability VSrc Applicability (Potential) Solution Notes

VSMP7 LESC with Passkey Entry reveals passkey

bit-by-bit during pairing [50,51]. Older

versions of specification do not mandate

non-static passkeys. Implementations may

use fixed passkeys.

S+D BLE devices

supporting LESC

with Passkey

Entry and

specification

<v5.1.

Use random passkeys (a

new passkey for each new

pairing attempt) or

Numeric Comparison.

CVEs: CVE-2018-5383

VSMP8 Key entropy reduction allowed. No integrity

protection in place for maximum supported

key size during the feature exchange phase,

nor is there a check made by implementing

platforms regarding acceptable key sizes [52].

S+D All BLE devices Fix the key size to a

secure value, implement

integrity protection for it,

and/or check value at

higher layers [52].

Tools: Sweyntooth [83] includes a

script to test for this vulnerability.

VSMP9 Acceptance of large key sizes (i.e., greater

than the max allowed size of 16 bytes) during

pairing feature exchange [58].

C Various Telink

chipsets

Code fix. VCN: SweynTooth,

CVEs: CVE-2019-19196

Tools: Sweyntooth [83]

VSMP10 The LTK is set to zero if an out-of-order

encryption request is received (see VLL5) [58].

C Various Telink

chipsets

Code fix. VCN: SweynTooth,

CVEs: CVE-2019-19194

Tools: Sweyntooth [83]

VSMP11 If a public key is transmitted during LE

Legacy pairing, the Peripheral accepts the

key and tries to copy it to a null address [58].

C Texas

Instruments SDK

up to v3.30.00.20

for CC2640R2

Code fix. VCN: SweynTooth,

CVEs: CVE-2019-17520

Tools: Sweyntooth [83]

67

P
R

E
L

IM
IN

A
R

IE
S
〉

V
u

ln
erab

ility
A

n
alysis

〉
A

rch
itectu

ral
A

n
alysis

an
d

R
esearch

G
ap

s

Table 4.6: Security and privacy vulnerabilities within ATT/GATT.

VID Vulnerability VSrc Applicability (Potential) Solution Notes

VGATT1 According to the Bluetooth specification, the

list of services and associated characteristics

are freely readable by any connected device,

and cannot be protected by

authentication [36].

S All BLE devices. Require authentication

before allowing

enumeration of services

and characteristics [46].

(This could break

backward compatibility

with existing devices.)

VGATT2 In practice, many BLE devices apply

minimal or no protection to their

characteristics [46,87–90]. We show this in

Chapters 9 and 10.

D Device specific. Suitably strong

permissions should be

applied to characteristics.

Tools: ATT-Profiler? [32] identifies

minimum security required for

accessing each BLE characteristic on

a Peripheral. argXtract? [33] and

FirmXray [91] can identify configured

characteristic protection levels via

firmware analysis. BALSA◦ [17] is an

app-layer security add-on (see

§4.4.2).

VGATT3 Sequential ATT requests arriving too close to

one another are improperly handled [58].

C STMicroelectronics

BLE Stack up to

1.3.1 for

STM32WB5x.

Code fix. VCN: SweynTooth

CVEs: CVE-2019-19192 [58]

Tools: Sweyntooth [83]

68

P
R

E
L

IM
IN

A
R

IE
S
〉

V
u

ln
erab

ility
A

n
alysis

〉
A

rch
itectu

ral
A

n
alysis

an
d

R
esearch

G
ap

s

Table 4.7: Security and privacy vulnerabilities within GAP.

VID Vulnerability VSrc Applicability (Potential) Solution Notes

VGAP1 In practice, many BLE devices do not

implement private addresses [9, 23,68,92],

and those that do, may not be doing so in a

secure manner [10]. We demonstrate the lack

of private address usage in Chapter 10.

D Device specific. Use private addresses as

outlined in the Bluetooth

specification. Change the

addresses periodically.

Tools: argXtract? [33] and

FirmXray [91] can identify the

presence (or absence) of private

addresses. Valkyrie [93] verifies

correctness of address randomisation

implementations [94].

BLE-Guardian◦ [10] is a management

tool to enable privacy in existing

BLE deployments (see §4.4.1).

VGAP2 A GAP advertisement contains the

Peripheral’s advertising address, and also

usually information such as Service UUIDs,

manufacturer data, etc., some of which may

be very specific to a certain manufacturer or

type of device [46].

D Device specific. BLE Peripherals could be

configured to limit the

information they

broadcast in

advertisements. However,

this could make a

Peripheral less easy to

identify by a legitimate

Central.

Tools: Valkyrie [93] tests for

identifiers within advertisements.

Venom◦ implements a tracking

system using such identifiers [95].

BLEScope◦ extracts BLE UUIDs

from Android APKs, to test against

UUIDs in advertisements [66].

VGAP3 When an LL encryption error is sent to the

Host, the BLE specification states that

pairing should be restarted after user

confirmation [54]. However, many platforms

do not do so, but instead allow

communications to continue in

plaintext [54,55].

D Android, iOS and

similar operating

systems.

On receiving an LL

encryption error from its

peer, the device should

notify the Host, which in

turn should re-bond after

confirming with the user.

VCN: BLESA [54]

69

P
R

E
L

IM
IN

A
R

IE
S
〉

V
u

ln
erab

ility
A

n
alysis

〉
A

rch
itectu

ral
A

n
alysis

an
d

R
esearch

G
ap

s

VID Vulnerability VSrc Applicability (Potential) Solution Notes

VGAP4 BLE Peripherals have limited storage for

bond information, causing them to reject

new bonds or replace existing ones [53].

D Unknown (likely

all BLE

Peripherals).

Authenticated pairing or

LL whitelisting (with

resolvable private

addresses) could reduce

attack potential.

VGAP5 The visibility of BLE Peripherals is

dependant on advertising frequency [19].

U Unknown (likely

all BLE

Peripherals).

Filtering advertisements

using thresholds for

advertising interval,

combined with received

signal strength

information, etc. could

reduce the impact [96,97].

Tools: GATTacker [98] performs

MitM attacks by exploiting

Peripheral visibility due to

advertising frequency. MARC◦ is a

MitM detection framework for

eHealth devices [96] and

BlueShield [99] is a generic

spoofing detection framework; both

consider advertising frequency as a

parameter (see §4.4.3).

Table 4.8: Security and privacy vulnerabilities within the Application Layer.

VID Vulnerability VSrc Applicability (Potential) Solution Notes

VAPP1 No fully-defined mechanism within the BLE

specification to restrict data access at

application layer, particularly with

SIG-defined Profiles (see Chapters 5, 6).

Implementing platforms also do not

sufficiently restrict application access to BLE

data.

S+D Android, iOS and

similar

multi-application

platforms.

Specification change,

platform-level change or

application-layer security.

We propose a

specification-level change

in Chapter 7.

Tools: BLECryptracer? [29]

determines whether app-layer

security is present for BLE data by

performing taint analysis against

companion Android APKs.

BLESS◦ [100] is also a taint analysis

tool which tests for app-layer

security in APKs; it includes tests

for cryptographic correctness.

70

PRELIMINARIES 〉 Vulnerability Analysis 〉 Architectural Analysis and Research Gaps

Table 4.9: Vulnerability-to-attack mapping.

Layer Vuln. Src Attacks (Attack Mechanisms) C* I* A* P* D*

PHY VPHY 1 D Activity Detection (P.2) a

User Detection (P.2) a

LL VLL1 D Battery Exhaustion (A.1.1) a

VLL2 C Heap Overflow (A.1.2) a

Shellcode Execution (I.2.2) a

VLL3 C Buffer Overflow→Crash (A.1.2) a

VLL4 C Faulty State (Power Cycle Required) (A.1.2) a

VLL5 C Combined with VSMP9 and VSMP10 s s s

VLL6 C Heap Corruption (A.1.2) a

HCI VHCI1 C Local Privilege Escalation (I.2.2) a

L2CAP VL2CAP1 C Remote Device Restart (A.1.2) a

SMP VSMP1 S Obtaining LTK (C.1.2.1, I.1, A.3, D) a a a a

VSMP2 S Authentication Bypass (C.1.3.1, I.1, D) a a a

VSMP3 S MitM Attack (C.1.3.2, I.1, A.3, D) a a a a

VSMP4 S+D MitM Attack (C.1.3.2, I.1, A.3, D) a a a a

VSMP5 S+D Obtain Communication Profile (P.3.2) a

VSMP6 S+D Secret Key Derivation (C.1.2.1, I.1, A.3, D) d d d d

VSMP7 S+D Static Passkey Leak (C.1.2.1, I.1, A.3, D) a a a a

VSMP8 S+D Low Entropy Key Negotiation (C.1.2.1, I.1, A.3, D) d d d d

VSMP9 C Overflow→Crash (A.1.2) s

VSMP10 C Security Bypass (C.1.3.3, I.1) s s

VSMP11 C Hard Fault (A.1.2) a

GATT VGATT1 S Device Fingerprinting (P.1.2) a

VGATT2 D Unauthorised Data Access (C.1.1.1, I.1) a a

Spoofing and MitM (C.1.1.1, I.1, A.3, D) a a a a

VGATT3 C Deadlock (A.1.2) a

GAP VGAP1 D User Tracking (P.1.1.1) a

Selective Jamming (A.2.1.1) a

VGAP2 D Device Fingerprinting (P.1.2) a

Beacon Spoofing (D) a

User Profiling (P.3.1) a

VGAP3 D Data Access (C.1.3.1, I.1) a a

IRK Theft (P.1.1.2) a

Prevent Legitimate Communication (A.2.2.1) a

VGAP4 D LTK Theft (C.1.2.2, I.1, A.3, D) a a a a

Prevent New Bonds (A.2.2.2) a

VGAP5 U Hide Peripheral Advertisements (A.2.1.3) a

Spoofing (D) a

App VAPP1 S+D Unauthorised Data Access (C.1.1.2, I.1) a a

∗(Attacks on) C-Confidentiality; I-Integrity; A-Availability; P-Privacy; D-Device authentication.
a - Possibility of attack; s - Requires exploitation of another vulnerability; d - Contribution to attack

(requires further effort, such as significant brute-forcing), or only probability of attack.

71

PRELIMINARIES 〉 Vulnerability Analysis 〉 Analysis of Vulnerabilities by Source

Table 4.10: Number of vulnerabilities per-layer, per-source.

Source PHY LL HCI L2CAP SMP GATT GAP App
Specification 0 0 0 0 8 1 0 1
Design 1 1 0 0 5 1 4 1
Coding 0 5 1 1 3 1 0 0
Unknown 0 0 0 0 0 0 1 0

Fuzzing some of these inner layers can be achieved by crafting custom BLE packets using Scapy

or similar [58], but this requires knowledge of raw packet formats. We foresee that recent

developments such as InternalBlue [101], which allows for instrumenting Bluetooth stacks, but

which is currently focused on Bluetooth Classic, will help researchers bridge this gap.

4.3 Analysis of Vulnerabilities by Source

Table 4.9 shows that more than 50% of identified vulnerabilities are actually implementation

issues, and around half of these are coding bugs. This demonstrates that even if a technology

is designed to be completely secure, there is still a high probability of vulnerabilities being

introduced during implementation. We present an analysis of vulnerabilities by source below.

Bluetooth specification Table 4.10 shows that most vulnerabilities that are attributable to the

Bluetooth specification are those that are concerned with the Security Manager protocol. This

is perhaps not surprising, as this is the layer where most security protocols and algorithms are

formally defined. Most Security Manager vulnerabilities are to do with the use of proprietary

algorithms that may not have undergone security testing and formal verification. However, as

we noted in C.1.2.1, the most well-known LE Legacy vulnerability, VSMP1, was known when it

was included in the specification. Another vulnerability that was included in the specification

despite obvious security connotations was VSMP8, which allows for key entropy reduction. It

is possible that this feature was included in case resource-constrained devices were unable to

handle larger keys. However, we note that the other keys (CSRK, IRK) are 128 bits long with

no option for entropy reduction. Other specification-related Security Manager vulnerabilities

appear to be unintended consequences of security features or edge cases. These clearly indicate

the need for formal security verification and/or testing of all security protocols.

Product design Most of the vulnerabilities that have been denoted as Design issues are related

to non-implementation of available security or privacy features. It is possible that a lack of time,

money, technical/security understanding or incentive (or a combination thereof) is the cause for

such vulnerabilities. End product vendors tend to focus on time-to-market and getting ahead of

their competition. Up to now, there has been limited push from either consumers or lawmakers

to focus on security. As long as consumers want products with many features and low costs, and

as long as there are no laws surrounding proper protection of data handled by such products, it

is likely that the situation will continue.2

2In 2020, the European Telecommunications Standards Institute (ETSI) adopted a new standard, EN 303 645
V2.1.1 [102], for IoT product security. The government of the United Kingdom is currently considering legislation
to enforce some of the standards [103].

72

PRELIMINARIES 〉 Vulnerability Analysis 〉 A Brief Survey of Proposals for Security/Privacy Enhancement

However, some design issues, such as VPHY 1, are likely to have been unforeseen. With some other

vulnerabilities, such as VGAP2 or those that are denoted Specification+Design, it is possible that

end product vendors implemented the specification in good faith, without realising the potential

for attack. This demonstrates the need for threat modelling for end products.

Coding bugs Most vulnerabilities that are denoted as Coding Bugs are to do with poor input

validation, often leading to overflows. This type of vulnerability has been present in computer

programs for several decades now, and is still featuring in new products despite being one of

the best-known vulnerabilities. With BLE, the fact that processing external inputs (from a

BLE peer) is necessary for standard system operation dictates that every field within a received

packet should be carefully checked by the receiver for length, format and value constraints.

4.4 A Brief Survey of Proposals for Security/Privacy Enhancement

Along with studies that have identified vulnerabilities and attacks against BLE devices, there

have also been a number of works proposing enhancements, either to the specification itself or

to existing deployments, in order to improve the security or privacy stance of BLE.

4.4.1 Privacy in the Absence of Private Addresses

Real-world device testing has shown that many BLE Peripherals do not employ private addresses

(VGAP1), which leaves the devices vulnerable to tracking. Fawaz et al. [10] presented a Central

management tool named BLE-Guardian, which hides the presence of BLE devices, except from

authorised devices, by reactive jamming of wireless frequencies. Further, it also offers access

control capabilities, such that only specific devices can issue connection requests to a BLE

device. Interestingly, in this scenario, a privacy concern due to choices related to the GAP layer

(i.e., advertising) is solved partially using PHY/LL means (with selective jamming).

4.4.2 Application-Layer Security Add-on

Ortiz-Yepes [17] proposed a framework termed BALSA: Bluetooth Low Energy Application

Layer Security Add-on, to achieve higher-layer security in a standardised manner. The au-

thor cites weak LE Legacy pairing mechanisms (VSMP1) as the reason for development of the

system. However, as we show in Chapter 5, the strongest pairing mechanisms may still leave

data vulnerable and necessitate higher-layer protection. BALSA is intended to work on top of

existing BLE Peripherals (termed Sensors) and existing mobile devices without modifications

to the platforms. However, it requires the use of a Backend, with which the BLE Peripheral

must share symmetric keys, and a Kerberos-like protocol, which makes the solution unsuitable

for most consumer usage scenarios.

4.4.3 Identification of Spoofed BLE Devices

It has been observed that a BLE Peripheral may be more visible to a Central if it advertises

rapidly, which gives rise to the potential for spoofing attacks (VGAP5). Yaseen et al. [96] proposed

a MitM detection framework termed MARC, for the specific use case of BLE eHealth devices that

73

PRELIMINARIES 〉 Vulnerability Analysis 〉 Chapter Summary and Next Steps

have no input-output capabilities. The framework operates on four LL metrics: the Received

Signal Strength Indicator (RSSI), advertising interval, and the Central and Peripheral MAC

addresses. The framework establishes threshold values for the RSSI and advertising interval,

and a received packet that falls short of either threshold is considered to be from a possible clone.

In addition, MAC address whitelisting is used (with resolvable private addresses, if supported)

to further determine whether a device is legitimate or cloned. Note that, in the absence of

resolvable private addresses, whitelisting will only work when an attack device cannot spoof

MAC addresses.

Wu et al. [97] presented a similar spoofing detection framework, implemented as BlueShield,

for stationary BLE devices in indoor environments. It monitors a larger number of parame-

ters, including advertising pattern and operation state, and implements two phases: a profiling

phase, during which normal operational characteristics of a BLE device are determined, and a

monitoring phase, during which spoofing attacks are detected based on deviations from normal

parameters.

4.4.4 Cryptography Enhancements

A conceptual study by Perrey et al. [12] suggested the use of Merkle’s Puzzles (MP) as a key

distribution mechanism in the absence of ECDH, possibly as a new association model. The

proposed design involves the Central device broadcasting a very large number of puzzles, each

containing a puzzle identifier and a strong key, and each encrypted using a weak key. The

Peripheral selects a puzzle at random and solves it to obtain the puzzle identifier and strong

key. It unicasts its puzzle identifier back to the Central after the Central has broadcast all

puzzles. An attacker, however, would need to solve far more puzzles (on average, n
2 puzzles)

in order to come up with the same key (as the attacker has no way of knowing in advance

which puzzle will be solved by the Peripheral). The authors suggest a connection-less approach,

using BLE advertisements to broadcast the puzzles, with the Central device advertising and the

Peripheral performing the scanning. We note that this conflicts with the design of BLE. They

also propose the addition of RC5, to be used for encryption in this mode instead of AES-128.

We observe that the key exchanged in this manner can only be used to encrypt data that is

useful for a short amount of time, as the attacker may be able to obtain the key eventually.

4.5 Chapter Summary and Next Steps

In this chapter, we analysed vulnerabilities within the BLE specification and implementations,

identified their root cause and outlined proposed solutions. We also mentioned tools and frame-

works for testing, exploiting and mitigating the vulnerabilities.

This chapter concludes Part I. The next part of this thesis relates to an application-layer unau-

thorised data access vulnerability that we have identified for BLE (which we have already men-

tioned briefly in the previous chapter, under attack category C.1.1.2, and in this chapter, as

VAPP1). Part II describes the vulnerability, analyses possible mitigation options and proposes a

backward-compatible solution.

74

Part II

BLE Application Layer Security

75

5 Unauthorised Data Access on Multi-

Application BLE Platforms

In this chapter, we describe an application-level unauthorised data access vulnerability that we

have identified for multi-application BLE platforms. While a similar result was published for

Bluetooth Classic three years prior to our work, our results were obtained independently and

demonstrate additional attack techniques. Our tests were conducted on Android, and the discus-

sion on permissions is directly applicable to Android. However, the overall results regarding unau-

thorised data access are applicable, with platform-specific restrictions, to other multi-application

platforms as well.

5.1 Introduction

As described in Chapter 2 and depicted in Figure 2.1, a typical consumer usage scenario for

BLE involves the user interfacing with one or more BLE Peripherals via applications on a

multi-application platform, typically a mobile phone or tablet. In most cases, a BLE Periph-

eral manufacturer will provide their own specific mobile application for interacting with their

Peripheral device(s). These applications will be downloaded by the user from an application

marketplace and will reside on the multi-application platform among other downloaded apps.

These apps normally originate from a number of different developers and not all will necessarily

be trustworthy. The BLE Peripherals, for their part, may access user health information (as

with glucose monitors) or perform security-critical functions (as with smart door locks). It is

therefore imperative that an application should not be able to access sensitive information from

a BLE Peripheral without the user’s knowledge.

In many cases, the BLE Peripherals will specify authentication permissions (see §2.2.4) as the

mechanism for restricting access to BLE data; in fact, authentication permissions are specified as

the only security requirements within the vast majority of official SIG-defined BLE services and

profiles that have any security requirement at all. For example, the SIG-specified Glucose Service

only requires authentication for a single characteristic and the Glucose Profile, as depicted in

Figure 5.1, mandates only Mode 1 Level 2 or Mode 1 Level 3 protection for the characteristics

within the Glucose Service on the Glucose Sensor device (i.e., a glucometer). No other security

requirements are specified. In particular, authorisation permissions are specified for no SIG-

defined service specification except the Insulin Delivery Service.

If a device (such as a mobile phone) wishes to read/write data on a glucometer that conforms to

the SIG-defined Glucose Profile, it must undergo either unauthenticated or authenticated pairing

(depending on whether the glucometer specifies Mode 1 Level 2 or Mode 1 Level 3) with the

76

BLE APP LAYER SECURITY 〉 Unauthorised Data Access 〉 Attack Demonstration

Glucose Sensor Security Considerations

• All supported characteristics specified by the Glucose Service shall be set to Security Mode 1
and either Security Level 2 or 3.

• The Glucose Sensor shall bond with the Collector.

• The Glucose Sensor shall use the SM Slave Security Request procedure to inform the Collector
of its security requirements.

• All characteristics specified by the Device Information Service that are relevant to this profile
should be set to the same security mode and level as the characteristics in the Glucose Service.

Collector Security Considerations

• The Collector shall bond with the Glucose Sensor.

• The Collector shall accept any request by the Glucose Sensor for LE Security Mode 1 and
either Security Level 2 or 3.

Figure 5.1: Security requirements within Glucose Profile.

glucometer first. The pairing is typically triggered by the official glucose monitoring application

on the mobile phone, either programmatically or when characteristic access is attempted.

In this chapter, we describe a vulnerability that we have identified for multi-application plat-

forms, which could enable a malicious application to covertly access data from a BLE Peripheral,

even if a different application has previously triggered pairing with the Peripheral. We use the

Android platform to demonstrate this attack, using purpose-built BLE Peripheral devices and

BLE-enabled Android applications (§5.2). In §5.3, we discuss the implications of the attack and

its applicability to platforms other than Android. We also compare our results with results ob-

tained by Naveed et al. [48] for Bluetooth Classic on the Android platform. Finally, we present

a high-level analysis of current mitigation options.

Related work Several studies [15,16,52,56,57] have (sometimes implicitly) explored the poten-

tial for unauthorised access of BLE data due to vulnerabilities at the SMP/link layer. However,

application-layer security and privacy concerns have not been widely explored for BLE. Korolova

et al. [64] describe an application-level privacy vulnerability in which smartphone application

developers can derive fairly unique fingerprints for their users based on the BLE devices in the

vicinity. The work that is most closely related to ours is research on Bluetooth Classic by

Naveed et al. [48], which explores the implications of shared communication channels on An-

droid devices. In their paper, the authors discuss the issue of Bluetooth Classic channels being

shared by multiple applications on the same device, and demonstrate unauthorised data access

attacks against (Classic) Bluetooth-enabled medical devices. We independently identified this

vulnerability for BLE, and discovered greater attack potential in the BLE case.

5.2 Attack Demonstration

In this section, we demonstrate an application-level unauthorised data access vulnerability in

BLE, using Android as the test platform. We show how any application on an Android device

(subject to permissions) can access pairing-protected attributes from a BLE Peripheral, even

77

BLE APP LAYER SECURITY 〉 Unauthorised Data Access 〉 Attack Demonstration

when the pairing process was initiated by a different application.

We describe two attacks: the first shows that pairing-protected data can be accessed by unau-

thorised applications, while the second refines the attack and reduces the number of permissions

required by the unauthorised application. While these attacks were tailored towards Android’s

permissions model, the overarching vulnerability is applicable to other multi-application plat-

forms, as we discuss in §5.3.5.

We mimic a normal usage scenario in our tests. We emulate a BLE Peripheral (let us say a

glucometer, “GlucoMeter”) using the Nordic nRF51 Development Kit, and implement a char-

acteristic that specifies a security requirement of Mode 1 Level 3.1 We use two purpose-built

Android applications to describe the attacks:

1. One app serves as the glucose monitoring app issued by the Peripheral developer (“Offi-

cialApp”). It is expected to be able to connect to the BLE device and access its data.

2. The second application is a malicious app masquerading as a game (“EvilGameApp”). It

should not be able to access pairing-protected data from the GlucoMeter.

We conducted our experiments on an Alcatel Pixi 4 mobile phone, running Android 6.0, and on

a Google Pixel XL, running Android 8.1.0. Version 6.0 was the most widely-deployed release

and v8.1.0 was the latest stable release, when these experiments were conducted.2

Attack 1: Exploiting system-wide pairing credentials This attack demonstrates that the BLE

pairing credentials that are stored on an Android device are utilised by the OS for all applications

on the device, rather than just the application that originally triggered the pairing.

We perform the following steps in order:

• Launch OfficialApp and scan for BLE devices.

• Connect to the GATT server on the “GlucoMeter” and read a characteristic. This will

trigger pairing and read a dummy value of 0x12345678.

• Disconnect from GlucoMeter and close OfficialApp.

• Launch EvilGameApp. This covertly scans for and connects to the GlucoMeter, and reads

the same characteristic.

When the OfficialApp connects to the GlucoMeter and attempts to access a pairing-protected

characteristic, the resulting exchange will trigger the Android OS into initiating the pairing and

bonding process (as depicted in the upper block in Figure 5.2a). The resultant keys are asso-

ciated with the link between the GlucoMeter and the Android device, rather than between the

GlucoMeter and the OfficialApp (which actually triggered the pairing). Therefore, once bonding

completes, if the EvilGameApp later scans for and connects to the GlucoMeter, the Android OS

will complete the connection process and automatically initiate link encryption with the keys

that were generated during the previous bonding process (lower block in Figure 5.2a). This

1We also repeat the tests with Mode 1 Level 4 protection, i.e., LESC pairing. The same results were observed.
2Note that the Android architecture (with respect to Bluetooth) changed with v8.0 [104], but the vulnerability

is present even in the newer version, i.e., it is version-independent.

78

BLE APP LAYER SECURITY 〉 Unauthorised Data Access 〉 Attack Demonstration

Apps Android OS GlucoMeter

startLeScan()

Scan
<device list>

connect ...
...
...

...

readCharacteristic()
Read Request: <protectedChar>

Error: Insufficient Authentication

Pairing, Link Encryption, Bonding

Read Request: <protectedChar>

Read Response: <value>
onRead

getValue()

<value>

close()
Disconnect

OfficialApp

startLeScan()

Scan
<device list>

connect ...
...
...

Link Encryption

readCharacteristic()
Read Request: <protectedChar>

Read Response: <value>
onRead

getValue()

<value>

EvilGameApp

(a) Attack 1 - Unauthorised access of
pairing-protected data by creating new

connection.

Apps Android OS GlucoMeter

startLeScan()

Scan
<device list>

connect ...
...
...

...

readCharacteristic()
Read Request: <protectedChar>

Error: Insufficient Authentication

Pairing, Link Encryption, Bonding

Read Request: <protectedChar>

Read Response: <value>
onRead

getValue()

<value>

getConnectedDevices()

<device list>

connectGatt()

onConnect

writeCharacteristic()
Write Request:

<protectedChar, value2>

Write Response: success
onWrite

EvilGameApp

readCharacteristic()
Read Request: <protectedChar>

Read Response: <value2>
onRead

getValue()

<value2>

OfficialApp

(b) Attack 2 - Unauthorised access of
pairing-protected data by reusing an existing

connection.

Figure 5.2: Illustrative message exchanges depicting application-level unauthorised data access
on multi-application platforms. Note: Dashed lines indicate encrypted traffic.

enables the EvilGameApp to have the same level of access to the pairing-protected GlucoMeter

data as the OfficialApp.

A key point to note here is that, not only is the EvilGameApp able to access potentially sensitive

information from the BLE device, but also the user is likely to be unaware of the fact that this

data access is taking place, as there is no indication during link re-encryption and subsequent

attribute access.

79

BLE APP LAYER SECURITY 〉 Unauthorised Data Access 〉 Attack Demonstration

Attack 2: Reusing existing connection Our second attack exploits the fact that, on Android,

a BLE Peripheral can be accessed concurrently by multiple applications [105]. In this attack,

the EvilGameApp does not scan for BLE devices. It instead searches for connected BLE devices

using the BluetoothManager.getConnectedDevices() API call, with BluetoothProfile.GATT

as the argument. If the OfficialApp happens to be in communication with the GlucoMeter at

the same time, this call will return a list with a reference to the connected GlucoMeter. The

EvilGameApp is then able to directly connect to the GATT server on the GlucoMeter and

read and write to the (readable/writable) characteristics on it, including those that are pairing-

protected, without the need for creating a new connection to the GlucoMeter. This again is

done surreptitiously, without the user being aware of the data access. An illustrative message

flow where the EvilGameApp writes to a protected characteristic on the GlucoMeter (which the

OfficialApp subsequently reads) has been depicted in Figure 5.2b.

An interesting observation from this attack is a subtle but relevant impact it has on user aware-

ness, due to the different Android permissions that need to be requested by the two applica-

tions. Since both applications access data from a GATT server, they both require BLUETOOTH

permissions. In this attack scenario, because the OfficialApp scans for the BLE device before

connecting to it, it also needs to request the BLUETOOTH ADMIN permission. Both BLUETOOTH

and BLUETOOTH ADMIN are “normal” permissions that are granted automatically by the Android

operating system after installation, without any need for user interaction. However, due to

restrictions imposed from Android version 6.0 onward, the OfficialApp also needs to request

LOCATION permissions to invoke the BLE scanner without a filter (i.e., to scan for all nearby

devices instead of a particular device). These permissions are classed as “dangerous” and will

prompt the system to display a confirmation dialog box the first time they are required. Because

the EvilGameApp merely has to query the Android OS for a list of already connected devices, it

does not require these additional permissions. This makes the EvilGameApp appear to be less

invasive in the eyes of a user, since it does not request any permission that involves user privacy.

This could play a part in determining the volume of downloads for a malicious application. For

example, a malicious application that masquerades as a gaming application, and which does not

request any dangerous permissions, may be more likely to be downloaded by end users than one

that requests location permissions.

Attack limitations The main limitation for the EvilGameApp in the case of the first attack is

that it requires the BLUETOOTH and BLUETOOTH ADMIN permissions in its manifest, and needs to

explicitly request LOCATION permissions at first runtime in order to be able to invoke the BLE

scanner. This enables the EvilGameApp to connect to the BLE device regardless of whether or

not another application is also connected, but increases the risk of raising a user’s suspicions.

In the second attack scenario, the obvious limitation for the EvilGameApp that requests only

the BLUETOOTH permission is that the application will only be able to access data from the BLE

Peripheral when the Peripheral is already in a connection with (another application on) the

Android device. That is, data access will have to be opportunistic. This can be achieved, for

example, by periodically polling for a list of connected devices.

80

BLE APP LAYER SECURITY 〉 Unauthorised Data Access 〉 Discussion

PHY

GAP

L2CAP

HCI

Controller

ATT/GATTSMP

Host

DTM Link Layer

PHY

GAP

L2CAP

HCI

Controller

ATT/GATT SMP

Host

DTMLink Layer

Apps

pairing

Applica�on/Profiles AppsApplica�on/Profiles

Figure 5.3: Scope of BLE pairing.

5.3 Discussion

In this section we discuss responsible disclosure, examine factors that contribute to the attacks

that we have described in §5.2, and outline the impact of our findings. We further compare these

findings with the Bluetooth Classic case, discuss applicability to other platforms, and present

current options for mitigation.

5.3.1 Responsible Disclosure

We reported our findings to the Android Security Team, focusing on the need of clear documen-

tation so that developers are aware of the need for implementing additional protection measures

if they are handling sensitive BLE data. The issue was assigned a severity level of Moderate and

the Security Team informed us that remedial action was being considered. Android has since

updated its developer guidelines to state: “When a user pairs their device with another device

using BLE, the data that’s communicated between the two devices is accessible to all applications

on the user’s device. For this reason, if your application captures sensitive data, you should

implement app-layer security to protect the privacy of that data.” [106].

5.3.2 Contributing Factors

Scope of pairing and absence of explicit higher-layer protection mechanisms As per the

BLE specification, the scope of BLE pairing only extends up to the Link Layer, as depicted

in Figure 5.3. That is, it does not apply to the application layer. Because of this, the pairing

credentials are implicitly used for all applications that request access to the data on a specific

BLE Peripheral. This is in any case justifiable from a user experience perspective, as a user

may not desire going through the entire pairing process every time they choose to install a new

application.

The BLE specification does mention authorisation permissions, which are an access restriction

mechanism applied at the application layer. However, it does not define expected behaviour or

protocols to handle such permissions, instead leaving the implementation to the developer. It

does not fully define any other means for restricting access at the application layer, despite being

81

BLE APP LAYER SECURITY 〉 Unauthorised Data Access 〉 Discussion

considered a full-stack protocol (including an Application Layer). Platforms such as Android

also do not implement any restrictions beyond the requirement for certain user permissions (such

as the BLUETOOTH permission).

Blanket application of Android BLUETOOTH permissions The attacks we have described in §5.2

bring to light a concern with regard to how Android permissions are applied for external device

accesses. The Android BLUETOOTH (and BLUETOOTH ADMIN) permissions, which are required for

Bluetooth operations, are applied on a per-application basis, but not on a per-Peripheral basis.

This means that if an application is downloaded to be used with one particular Bluetooth

Classic or BLE device (which means it will be granted the required permissions by the user),

that application is thereafter in a position to covertly access data from other BLE (or Bluetooth

Classic) devices. For example, if an application is installed for the purpose of controlling a BLE

light bulb, that application could then access data from any other BLE devices, such as fitness

trackers or glucose monitors, in the proximity of the user (as long as the devices don’t implement

application-layer protection).

Connection reuse among applications It is possible that concurrent connections from different

applications are allowed by design to enable multiple applications to communicate with a BLE

Peripheral without competition. Unfortunately, the possibility of reusing an existing connection

to access BLE data (as described in Attack 2) is one that gives rise to greater attack potential

for a malicious application, since the application will need to request fewer permissions and may

therefore appear to be innocuous.

5.3.3 Implications of Attack

In both of our experiments, the EvilGameApp was able to read and write pairing-protected data

from the BLE device. The simplest form of attack would then be for a malicious application to

perform unauthorised reads of personal user data and relay this to a remote server. For example,

a malicious application could target sensitive health information such as ECG, glucose or blood

pressure measurements from vulnerable BLE devices, to build up a profile on a user’s health.

Further, Smart Home devices and BLE-enabled vehicles may hold information on a user’s habits

and lifestyle (e.g., time at home, alcohol consumption, driving speed), and could be exploited.

If the BLE Peripheral has writable characteristics, then a malicious application could overwrite

values on the Peripheral, such that the written data is read back by the legitimate application,

thereby giving the user an incorrect view of the data on the Peripheral. It may also be possible

to control device functionality in such a way as to cause unexpected behaviour or even endanger

lives (as discussed in §3.5). Further, it may be possible to install malicious Peripheral firmware

via GATT writes. We demonstrate the possibility of this against a real-world device in §6.7.

We also found that, in some scenarios, the malicious app is able to circumvent certain (non-

cryptographic) protections that have been put into place at the application layer. This was found

to be the case for the Mi Band 2 fitness tracker. This device implements the Bluetooth Heart

Rate Service and, according to the service specification, characteristics within this service are

82

BLE APP LAYER SECURITY 〉 Unauthorised Data Access 〉 Discussion

only supposed to be protected by pairing [107]. However, we observed that access to the Heart

Rate Measurement characteristic was artificially “locked” and had to be “unlocked” by first

writing to certain other characteristics on the tracker. Despite this, we found that by deploying

our second attack, our EvilGameApp was able to obtain Heart Rate Measurement readings

without the need for performing any “unlocking”. This is because the EvilGameApp connects

to the GATT server by reusing an existing connection that was initiated by the official Mi Band

2 application. The unlocking procedure would therefore already have been performed for that

connection by the official application. This result shows that artificially restricting access to

data using non-cryptographic means will not be effective. We notified the device developer of

this issue, but have not received a response.

5.3.4 Comparison with Bluetooth Classic

Naveed et al. [48] analysed unauthorised data access for the Bluetooth Classic case and demon-

strated that it was possible for a malicious app to covertly access data from a Bluetooth Classic

device that had previously been paired. However, their experiments found that an unautho-

rised Android application would not be able to obtain data from a Bluetooth Classic device if

the authorised application had already established a socket connection with the device, as only

one application can be in communication with the device at one time. Therefore, a malicious

application would either require some side-channel information in order to determine the cor-

rect moment for data access, or would need to interfere with the existing connection, thereby

potentially alerting the user. This limits the attack window for the malicious application. Our

experiments show that this is not the case with BLE communication channels. With BLE,

there are no socket connections and if the official application has established a connection with

the BLE Peripheral, then this connection can be utilised by any application that is running on

the Android device. That is, a malicious application does not have to wait for the authorised

application to disconnect before it can access data.

5.3.5 Applicability to Other Platforms

While our tests focused mainly on Android, preliminary tests on iOS showed that similar data

access was possible, but with slightly more restrictions. For example, in order to scan for BLE

Peripherals when an iOS application is running in the background, it must provide a list of

services to scan for (i.e., a list of services that must be present on the Peripheral). However,

scanning while in the foreground allows for specifying a null list of services [108]. Connecting

to an already-connected Peripheral is possible using connectPeripheral:options:, although

retrieving a list of Peripherals requires knowledge of either a Peripheral identifier (assigned by

iOS) or of one or more services on the Peripheral. In addition, from iOS13 onward, an application

that requires Bluetooth must obtain explicit user permission [109]. However, as with Android,

this permission is on a per-application basis, not on a per-Peripheral basis, which means that

once an application is allowed access to one BLE device, it will be able to access other BLE

devices without further user confirmation.

83

BLE APP LAYER SECURITY 〉 Unauthorised Data Access 〉 Chapter Summary and Next Steps

5.3.6 Mitigation Strategies

Allowing all applications on a multi-application platform to share BLE communication channels

may work in some situations, for example on a platform where all applications originate from

the same trusted source. However, most modern multi-app platforms host applications from

various, potentially untrusted sources. In this scenario, providing all applications with access to

a common BLE transport opens up possibilities for attack, as we have demonstrated.

Ideally, a fully-defined solution should be available within the BLE specification itself (we pro-

pose such a solution in Chapter 7). Otherwise, the various multi-application platforms should

incorporate some form of policies or restrictions to prevent unauthorised applications from ac-

cessing data on BLE peer devices on a per-peer basis. At present, however, such mechanisms

are not available and the responsibility of securing BLE data lies in the hands of BLE appli-

cation/device developers. That is, rather than relying solely on the pairing provided by the

underlying operating system, developers can implement end-to-end security from the BLE Pe-

ripheral firmware to the companion application. This can be achieved via BLE authorisation

permissions. Even though authorisation permissions are, strictly speaking, intended to spec-

ify a requirement for end user authorisation, the behaviour of BLE devices when encountering

authorisation requirements is implementation-specific. Most modern BLE chipsets implement

authorisation capabilities by intercepting read/write requests to the protected characteristics,

and allowing for developer-specified validation. One advantage of this method is that it gives the

developer complete control over the strength of protection that is applied to BLE device data.

This may also be a disadvantage in some cases, if protection is not applied or is insufficient.

Another disadvantage is reduced flexibility for the user, in terms of choice of applications.

5.4 Chapter Summary and Next Steps

We have demonstrated an application-level unauthorised data access vulnerability for multi-

application platforms, where a malicious application is able to access pairing-protected BLE data

in a covert manner. Our tests were conducted on the Android platform and we have responsibly

disclosed the attack to the Android Security Team. We have discussed attack implications and

applicability to other platforms, and provided a comparison with the Bluetooth Classic case.

At present, the only option for mitigating the vulnerability is the implementation of end-to-end

security by developers. However, due to the lack of clear guidelines (at the time of conducting

our experiments), it is also possible that developers implement no security at all, due to an

assumption that protection will be handled by pairing. In the next chapter, we test this assertion

of a lack of developer awareness by exploring the state of application-layer security deployments

via a large-scale analysis of BLE-enabled Android applications.

84

6 Measuring the Prevalence of

Application Layer Security

In this chapter, we measure application-layer security implementations within the BLE ecosystem

using companion mobile applications. We describe a purpose-built tool, BLECryptracer, which

performs taint analysis of Android APKs to identify evidence of cryptographically-protected BLE

data. We discuss the results obtained from applying BLECryptracer to a dataset of 18,900+

APKs.

6.1 Introduction

As evidenced by our experiments (§5.2), it is fairly straightforward for any application on a

multi-application platform to connect to a BLE device and read or write pairing-protected data.

As discussed in §5.3.6, the only strategy available at present is for developers to implement

application-layer security, typically in the form of cryptographic protection, between the appli-

cation and the BLE Peripheral. However, developers may not implement such protections due

to lack of awareness or for other reasons. It is therefore pertinent to examine real-world BLE

systems to identify those that do not implement application-layer security for their data, to

gauge the number of devices that are potentially vulnerable to unauthorised data access.

There are different sources that can be exploited to obtain this information. In Chapter 10,

we identify the presence of application-layer security via firmware analysis. In this chapter, we

measure the prevalence of higher-layer protections using BLE-enabled mobile applications. That

is, we test for the presence of cryptographically-protected BLE data on Peripheral devices by

analysing companion mobile applications.

Most BLE Peripherals that interface with mobile applications support more than one mobile

platform, typically Android and iOS at the very minimum. If the Peripheral implements end-

to-end security that needs to be handled by the companion application, all such applications

will have evidence of the higher-layer protection mechanisms. We target Android applications

for our analysis, due to the availability of large APK datasets and the availability of tools that

allow for APK decompilation and analysis. While taint-analysis tools such as Flowdroid and

Amandroid exist for analysing APKs, we found through initial experiments that such tools were

too computationally expensive for bulk analysis. For this reason, we develop a custom tool,

BLECryptracer, for the specific purpose of analysing BLE data access methods within APKs.

We obtain a substantial dataset of BLE-enabled Android APKs (§6.2), determine BLE method

calls and cryptography libraries of interest (§6.3), and define a taint-analysis mechanism to

85

BLE APP LAYER SECURITY 〉 Measuring App-Layer Security 〉 APK Dataset

determine whether BLE reads and writes make use of cryptographically-processed data (§6.4).

We evaluate (§6.5) and then apply this mechanism to our dataset, and analyse the results (§6.6).

Related work In their work with Bluetooth Classic, Naveed et al. [48] performed an analysis of

68 Bluetooth-enabled applications that handled private user data. They used grep to identify

the locations of potential authentication secrets and, excluding 48 apps where such secrets were

present in libraries, manually inspected the remaining 20 apps to conclude that the majority of

them offered no protection against unauthorised application-level data access.

Subsequent to our work, Zhang et al. [100] described BLESS, a framework for performing

taint-analysis over BLE-enabled Android applications to determine the presence (or absence)

of encryption/authentication at the application layer. Rather than identifying the presence of

standard cryptographic method calls, they instead look for the presence of keys and nonces,

where user input is also assumed to be a key, and further take into consideration proprietary

cryptographic implementations. We observe that proprietary implementations are explicitly dis-

couraged by Android and may contain many vulnerabilities (as we demonstrate in Chapter 8).

In addition, user input that is written to a BLE device may not necessarily be indicative of an

authentication sequence or user authorisation. Many BLE devices allow the user to customise

the device name, for example, which would also be accomplished via a GATT write. Applying

BLESS to 1073 BLE-enabled Android APKs, the authors found that 76% of such APKs did not

implement authentication protocols.

6.2 APK Dataset

We obtained our APK dataset from the AndroZoo project [110]. We focus on only those APKs

that were sourced from the official Google Play store, which nevertheless resulted in a sizeable

dataset of over 4.6 million APKs. The dataset includes multiple versions for each application,

as well as applications that are no longer available on the marketplace. We perform our analysis

over the entire dataset, rather than only those APKs that are currently available on Google

Play. This is in part because older applications/versions may still be residing on users’ devices,

and in part to be able to identify trends in application-layer security deployments over time.

As we are only interested in applications that perform BLE attribute access, and because such

access always requires communicating with the GATT server on the BLE Peripheral, we filter

the APKs by the BLUETOOTH permission declaration and by calls to the connectGatt Android

method,1 which is called prior to performing BLE data reads or writes. This is achieved using

Androguard [111], an open-source reverse-engineering tool that decompiles an Android APK

and enables analysis of its components.2 18,929 APKs, comprising 11,067 unique packages,3

from the original set of 4,600,000+ APKs satisfied this criteria, and these form our final dataset.

1connectGatt is a method within the android.bluetooth.BluetoothDevice class, within the Android SDK.
2We note here that Androguard does not support analysis of Native code, which may have resulted in the

exclusion of some valid APKs.
3An Android application may have many versions, each of which will be a separate APK file (with a unique

SHA256 hash), but all of which will have the same package name. We use the terms “unique applications” or
“unique packages” to denote the set of APKs that contains only the latest version of each application.

86

BLE APP LAYER SECURITY 〉 Measuring App-Layer Security 〉 BLECryptracer

Table 6.1: BLE data access methods.

Access Method Signature∗ #APKs % of Total Methods
†

Read byte[] getValue () 17896 61.58%

Integer getIntValue (int, int) 8051 27.70%

String getStringValue (int) 2313 7.96%

Float getFloatValue (int, int) 800 2.75%

Write boolean setValue (byte[]) 16198 70.49%

boolean setValue (int, int, int) 5542 24.11%

boolean setValue (String) 627 2.73%

boolean setValue (int, int, int, int) 611 2.66%

∗All methods are from the class android.bluetooth.BluetoothGattCharacteristic. †“% of Total
Methods” refers to the percentage of occurrences of a particular method for a particular data access type
(i.e., read or write), with respect to all methods that enable the same type of data access.

6.3 Identification of BLE Methods and Crypto-Libraries

We perform our analysis against specific BLE methods and crypto-libraries. When considering

BLE methods, we focus on those methods that involve data writes and reads. Such methods

have been listed in Table 6.1, and function as the starting point for our analysis. For data

writes, the BluetoothGattCharacteristic class within the android.bluetooth package has

setValue methods that set the locally-stored value of a characteristic. This is then written out

to the BLE Peripheral. For data reads, the same class has getValue methods, which return data

that is read from the BLE device (this includes data obtained via notifications). In a few APKs

that we analysed, BLE data access methods were also called from within other, vendor-specific

libraries. However, we do not include these in our analysis as they are now obsolete.

For cryptography, Android builds on the Java Cryptography Architecture [112] and provides a

number of APIs, contained within the java.security and javax.crypto packages, for inte-

grating security into applications. While it is possible for developers to implement their own

algorithms, Android recommends against this [113]. We therefore consider only calls to these

two packages as an indication of application-layer security.

6.4 BLECryptracer

Identification of cryptographically-processed BLE data is in essence a taint-analysis problem.

For instance, a call to an encryption method will taint the output variable that may later be

written to a BLE device. Therefore, when analysing data that is written to a BLE Peripheral, we

consider the cryptography API calls as sources and the setValue methods as sinks. Similarly,

for data that is read from the BLE device, we consider the getValue variants in Table 6.1 as

sources and the cryptography API calls as sinks.

Figure 6.1 depicts an anonymised excerpt of code from a real-world APK, which shows the path

taken from the output of getValue (i.e., BLE data that has been read from a connected device)

87

BLE APP LAYER SECURITY 〉 Measuring App-Layer Security 〉 BLECryptracer

1 .class Lcom/example/sdk/g/c$1;
2 .method public onCharacteristicRead(Landroid/bluetooth/BluetoothGatt;Landroid/

bluetooth/BluetoothGattCharacteristic;I)V

3 ...

4 invoke -virtual {p2}, Landroid/bluetooth/BluetoothGattCharacteristic;->

getValue()[B

5 move -result -object v0

6
7 iget -object v3, p0, Lcom/example/sdk/g/c$1;->a:Lcom/example/sdk/g/c;
8 invoke -static {v3}, Lcom/example/sdk/g/c;->b(Lcom/example/sdk/g/c;)[B

9 move -result -object v3

10
11 invoke -static {v3 , v0}, Lcom/example/sdk/i/g;->a([B[B)[B

12 ...

13
14 .class public final Lcom/example/sdk/i/g;

15 .method public static a([B[B)[B

16 ...

17 new -instance v0, Ljavax/crypto/spec/SecretKeySpec;

18 const -string v1, "AES/ECB/NoPadding"

19 invoke -direct {v0 , p0 , v1}, Ljavax/crypto/spec/SecretKeySpec;-><init >([

BLjava/lang/String ;)V

20 const -string v1, "AES/ECB/NoPadding"

21 invoke -static {v1}, Ljavax/crypto/Cipher;->getInstance(Ljava/lang/String ;)

Ljavax/crypto/Cipher;

22 move -result -object v1

23
24 const/4 v2 , 0x2

25 invoke -virtual {v1 , v2 , v0}, Ljavax/crypto/Cipher;->init(ILjava/security/Key

;)V

26 invoke -virtual {v1 , p1}, Ljavax/crypto/Cipher;->doFinal ([B)[B

Figure 6.1: Example smali code for cryptographically-processed BLE data.

to a cryptographic function.4 In the figure, the obtained BLE data is stored in register v0 (at line

5). This is used as the second argument to the function Lcom/example/sdk/i/g;->a([B[B)[B

(line 11). Analysing the smali code of that function, we find that the second input argument

is used as an input to a cryptographic function call (line 26). This provides clear evidence of

cryptographically-processed BLE data.

The manual “tracing” we have described here is similar to what is performed by taint-analysis

tools. There are a number of such tools available, e.g., Flowdroid [114] and Amandroid [115].

However, running a subset of our dataset of APKs through Amandroid (selected because of

advantages over Flowdroid and other taint-analysis tools [116]), we found that analysis of a

single APK sometimes utilised over 10GB of RAM and took several hours to complete. This

computational complexity precludes bulk analysis of our dataset of several thousand APKs. We

also found through manual analysis that many instances of cryptographically-processed data

were not identified by Amandroid, especially when the BLE functions were called from third-

party libraries. We therefore present a custom Python analysis tool called BLECryptracer [29],

built on top of Androguard, to analyse all calls to BLE setValue/getValue methods within an

APK. We note, however, that BLECryptracer does not handle certain data transfer mechanisms

4The code is in smali format. Android applications are typically written in Java and converted into Dalvik
bytecode. The smali format is a human-readable representation of the bytecode.

88

BLE APP LAYER SECURITY 〉 Measuring App-Layer Security 〉 BLECryptracer

(discussed in §6.8), which more complex tools such as Amandroid and Flowdroid do. This could

have resulted in missed instances of cryptographically-protected BLE data.

BLECryptracer traces values to/from BLE data access functions and determines whether the

data has been cryptographically processed. To achieve this, it employs the technique for tracing

register values that we have just described (when explaining Figure 6.1). This technique is

sometimes referred to as “slicing” and has been utilised in several static code analyses [117–119].

It also traces fields, as well as messages passed via Intents5 and certain threading functions, e.g.,

AsyncTask. It returns TRUE at the first instance of cryptography that it encounters and FALSE

if it is unable to identify any application-layer security with BLE data.

Our tool analyses BLE reads and writes separately, as the direction of tracing is different in

the two cases. The two trace mechanisms are described in greater detail in §6.4.1. Tracing is

performed at three levels of granularity, in the following order:

1. Direct trace - Attempt to identify link between BLE and cryptography functions via direct

register value transfers and as immediate results of method invocations.

2. Associated entity trace - If the direct trace does not identify a link between source and

sink, analyse abstract/instance methods and other registers used in previously analysed

function calls.

3. “Lenient” trace - If the above methods fail to return a positive result, perform a search

through all previously encountered methods (which would have originated from the BLE

data access method), to determine if cryptography is used anywhere within them.

The results produced by the first trace method will be the best indication of cryptographically-

processed BLE data, as the coarse-grained analyses performed in the subsequent methods add

increasing amounts of uncertainty. For this reason, BLECryptracer assigns Confidence Levels

of High, Medium and Low to its output, which correspond to the three trace methods above, to

indicate how certain it is of the result. We evaluate these confidence levels against a modified

version of the DroidBench benchmarking suite in §6.5.1. Note that BLECryptracer only looks

for application-layer security in benign applications, and these confidence levels apply only when

deliberate manipulations are not employed to hide the data flow between source and sink.

6.4.1 Trace Mechanisms

As mentioned previously, BLECryptracer analyses BLE reads and writes separately, using two

different trace directions. We describe the two directions of tracing in greater detail below.

Backtracing BLE writes BLE writes on Android use one of the setValue methods in Table 6.1

to first set the value that is to be written, before calling the method for performing the actual

write. BLECryptracer identifies all calls to these methods, and then traces the origins of the

data held in the registers that are passed as input to the methods.

5By matching the Extra identifier within the calling method.

89

BLE APP LAYER SECURITY 〉 Measuring App-Layer Security 〉 BLECryptracer

1 .method private a(Landroid/bluetooth/BluetoothGatt ;[B...)V

2 ...

3 invoke -virtual {v0 , v3}, Landroid/bluetooth/BluetoothGattService;->

getCharacteristic(Ljava/util/UUID;) Landroid/bluetooth/

BluetoothGattCharacteristic;

4 move -result -object v3

5 ...

6 invoke -virtual {v3 , p2}, Landroid/bluetooth/BluetoothGattCharacteristic; ->

setValue ([B)Z

7 invoke -virtual {v1 , v3}, Landroid/bluetooth/BluetoothGatt; ->

writeCharacteristic(Landroid/bluetooth/BluetoothGattCharacteristic ;)Z

Figure 6.2: Sample smali code for BLE attribute write.

Considering the smali code in Figure 6.2 as an example, setValue is invoked at line 13 and is

passed two registers as input. As setValue is an instance method, the first input, local register

v3, holds the BluetoothGattCharacteristic object that the method is invoked on. The second

input, parameter register p2, holds the data that is to be written to the BLE device, and is the

second argument that is passed to the method a (line 1 in Figure 6.2). BLECryptracer identifies

p2 as the register that holds the data of interest, and traces backward to determine if this data

is the result of some cryptographic processing. To achieve this, the method(s) within the APK

that invoke method a are identified, and the second input to each such method is traced. If

the BLE data had come from a local register, rather than a parameter register, BLECryptracer

would have traced back within method a’s instructions, to determine the origin of the data. This

backtracing is performed until either a crypto-library is referenced, or a const-<> or new-array

declaration is encountered (which would indicate that no cryptography is used). Note that calls

to any method within the crypto-libraries mentioned in §6.3 are accepted as evidence of the use

of cryptography with BLE data. The tool stops processing an APK at the first instance where

such a method call is identified.

During execution, BLECryptracer maintains a list of registers (set within the context of a

method) to be traced, for every setValue method call within the application code. This initially

contains the second input register for each setValue method call. A new register is added to the

list if it appears to have tainted the value of any of the registers already in the list. This could be

due to simple operations such as aget, aput or move-<> (apart from move-result variants), or

it could be as a result of a comparison, arithmetic or logic operation (in which case, the register

holding the operand on which the operation is performed is added to the trace list). Similarly,

if a register obtains a value from an instance field (via sget or iget), then all instances where

that field is assigned a value are analysed. However, the script does not analyse the order in

which the field is assigned values, as this would require activity life-cycle awareness.

Where a register is assigned a value that is output from a method invocation via move-result,

if the method is not an external method, then the instructions within that method are analysed,

beginning with the return value and tracing backwards. In some instances, the actual source

of a register’s value is obfuscated due to the use of intermediate formatting functions. In an

attempt to overcome this, BLECryptracer traces the inputs to called methods as well. Further,

90

BLE APP LAYER SECURITY 〉 Measuring App-Layer Security 〉 BLECryptracer

1 .method public onCharacteristicread(Landroid/bluetooth/ BluetoothGatt;Landroid/

bluetooth/ BluetoothGattCharacteristic;I)V

2 ...

3 invoke -virtual {p2}, Landroid/bluetooth/ BluetoothGattCharacteristic;->

getValue ()[B

4 move -result -object v0

5 new -instance v2, Ljava/lang/StringBuilder;

6 invoke -direct {v2}, Ljava/lang/StringBuilder;-><init >()V

7 const -string v3, "read value: "

8 invoke -virtual {v2 , v3}, Ljava/lang/StringBuilder;->append(Ljava/lang/String ;)

Ljava/lang/StringBuilder;

9 move -result -object v2

10 invoke -static {v0}, Ljava/util/Arrays;->toString ([B)Ljava/lang/String;

11 move -result -object v3

12 invoke -virtual {v2 , v3}, Ljava/lang/StringBuilder;->append(Ljava/lang/String ;)

Ljava/lang/StringBuilder;

13 move -result -object v2

Figure 6.3: Sample smali code for BLE attribute read.

if a register is used as input to a method, then all other registers that are inputs to the method

are also added to the trace list. While this captures some indirect value assignments, it runs the

risk of false positives and is one scenario where a confidence level of Medium would be applied.

Forward-tracing BLE reads With BLE reads, a getValue variant is invoked and the output,

i.e., the value that is read, is moved to a register. BLECryptracer identifies all calls to getValue

variants, then traces the output registers and all registers they taint. With forward-tracing, the

register holding the BLE data is considered to taint another if, for example, the source register is

used in a method invocation, or comparison/arithmetic/logic operation, whose result is assigned

to the destination register. The destination register is then added to the trace list. When a

register is used as input to a method, then along with the output of that method, the use of the

register within the method is also analysed.

This method of analysis tends to result in a “tree” of traces. As an example, considering the smali

code in Figure 6.3, the byte array output from the getValue call in line 3 is stored in register v0

(line 4). This taints register v3 via a format conversion function (lines 10 and 11), which in turn

taints v2 via a java.lang.StringBuilder function (lines 12 and 13). At this point, all three

registers (v0, v2, v3) are tainted and will be traced until either a crypto-library is referenced

or the register value changes. Such value changes can occur due to new-array, new-instance

and const declarations, as well as by being assigned the output of various operations (such as

method invocations or arithmetic/logic operations).

6.4.2 Handling Obfuscation

APKs sometimes employ obfuscation techniques to protect against reverse-engineering, and the

question then arises as to whether these techniques may impact the results of our analysis. We

therefore briefly discuss common obfuscation techniques (as described in [120]) and their impact

on our tool.

91

BLE APP LAYER SECURITY 〉 Measuring App-Layer Security 〉 Evaluation

One of the most common techniques is identifier renaming, where identifiers within the code are

replaced with short, meaningless names. However, within smali code, even such short names can

be uniquely identified and traced, enabling BLECryptracer to overcome the challenges posed

by this obfuscation technique. String encryption is another obfuscation mechanism, but it

again does not affect the output of our tool as BLECryptracer does not search for hard-coded

strings. Further, our tool was verified successfully against three out of four benchmarking appli-

cations that utilised reflection (however, two such identifications were at confidence level Low).

BLECryptracer does not handle packing and runtime-based obfuscation, due to the complexity

of analysing such techniques.

6.5 Evaluation

We evaluate BLECryptracer in terms of both accuracy and execution times. For comparison

purposes, we include test results from Amandroid as well.

6.5.1 Accuracy Measures

At present, there is no dataset of real-world APKs with known use of cryptographically-processed

BLE data, i.e., ground truth. Therefore, in order to test our tool against different data transfer

mechanisms, we re-factored the DroidBench benchmarking suite [121] for the BLE case.

DroidBench is a test suite for evaluating the effectiveness of APK taint-analysis tools. It contains

a number of Android applications, demonstrating different data transfer mechanisms. We cloned

each DroidBench test app twice and modified the data flow between the sources and sinks such

that in one app, the data would travel from getValue to a cryptography method invocation,

and in the other app, from the cryptography method invocation to setValue. This emulates

cryptographically-processed reads and writes, respectively. Some DroidBench test cases were

excluded as they were found to be irrelevant due to differences in the objectives of DroidBench

and our test set, e.g., applications that employ emulator detection or which leak contextual

information in exceptions. Further, applications where BLE data is written to or read from

files, or which contain data leaks in inactive code segments were not included. In total, we

created 184 APKs: 92 for reads and 92 for writes.

We executed BLECryptracer against our benchmarking test set, analysed the results and ob-

tained performance metrics in terms of the three different confidence levels. The statistics differ

based on the type of access that is analysed (i.e., reads vs. writes) due to differences in the trac-

ing mechanisms. The same test set was also used against Amandroid for comparison. Table 6.2

presents the performance metrics for both tools.

In the case of BLECryptracer results, the metrics are with respect to the total analysed APKs

at each confidence level. That is, because lower confidence levels analyse only those APKs that

do not get detected at higher levels, accurate metrics can only be derived by considering the set

of APKs that were actually analysed at each level. For example, when considering the analysis

of BLE reads, while the entire dataset of 92 APKs is relevant for confidence level High, only the

92

BLE APP LAYER SECURITY 〉 Measuring App-Layer Security 〉 Evaluation

Table 6.2: Accuracy statistics.

Access Tool Conf. #APKs∗ Id.† TP FP TN FN Precision Recall F-measure

Read Amandroid N/A 92 49 44 5 10 33 90% 57% 70%

BLECryptracer High 92 62 58 4 11 19 94% 75% 83%

Med 30 11 7 4 7 12 64% 37% 47%

Low 19 12 8 4 3 4 67% 67% 67%

Write Amandroid N/A 92 56 49 7 8 28 88% 64% 74%

BLECryptracer High 92 50 46 4 11 31 92% 60% 72%

Med 42 22 19 3 8 12 86% 61% 72%

Low 20 10 5 5 3 7 50% 42% 45%

∗Number of APKs tested. Note that, for confidence levels Medium and Low, we don’t consider the APKs
detected at higher confidence levels. †The number of APKs that were identified as having
cryptographically protected BLE data.

30 APKs that do not result in a TRUE outcome at level High will be analysed for confidence

level Medium. This also means that, when obtaining performance metrics for confidence level

High, all TRUE results obtained at levels Medium and Low are taken to be FALSE.

The DroidBench test set, and hence our benchmarking suite, is an imbalanced dataset, contain-

ing far more samples with leaks (77) than without (15). For this reason, metrics such as accuracy

are not suitable for analysing the performance of our tool when executed against this test set, as

they are more susceptible to skew [122,123]. For our analysis, we instead compare the combined

True Positive Rate (TPR) and False Positive Rate (FPR), and the combined precision-recall,

in-line with other taint-analysis evaluations [124].

Table 6.2 presents the precision and recall (i.e., TPR) for both BLECryptracer and Amandroid.

We further derive FPRs for both tools. With BLECryptracer, when analysing reads, False Pos-

itive Rates steadily increase as the confidence level reduces, as expected, with values of 27% for

confidence level High, 36% for Medium and 57% for Low. When analysing writes, the FPR val-

ues are 27%, 27% and 63%, respectively. Regardless of the data access mechanism being tested,

BLECryptracer (considering only the results at High confidence, for a fairer comparison) per-

forms better than Amandroid in terms of FPR, with 27% vs. 33% for reads and 27% vs. 47% for

writes. Precision values are also better in the case of BLECryptracer for both reads and writes.

In terms of the True Positive Rate, BLECryptracer performs better than Amandroid for reads

at 75% vs. 57%, and slightly worse for writes at 60% vs. 64%. These results show that, overall,

BLECryptracer performs better than Amandroid for analysing the presence of cryptographically-

protected BLE data.

It should be noted that three of the four False Positives obtained by BLECryptracer at the

High confidence level were due to the order in which variables are assigned values (i.e., life-cycle

events), which is not tested for by BLECryptracer. Other data transfer mechanisms not tested

for are Looper and Messenger functions, which generate False Negatives. The remaining False

Positive was due to the presence of method aliasing and was also identified as a False Positive

93

BLE APP LAYER SECURITY 〉 Measuring App-Layer Security 〉 Analysis of Results

0 500 1,000 1,500

0

500

1,000

1,500

Amandroid Execution Time (s)

BL
EC

ry
pt

ra
ce

rE
xe

cu
tio

n
Ti

m
e

(s
)

Figure 6.4: Comparison of time taken to execute BLECryptracer vs. Amandroid, when
analysing BLE writes. Each point represents an APK.

by Amandroid. In addition, the unexpectedly low TPR (i.e., recall) at level Medium for reads

is due to the relatively few cases analysed at that level when compared to High.

6.5.2 Execution Times

We also compare BLECryptracer and Amandroid in terms of speed of execution. For this, we ran

the two tools against a random subset of 2,000 APKs (from our dataset of 18,000+ APKs) and

compared time-to-completion in both cases. We imposed a maximum run-time of 30 minutes per

APK for both tools, and only compared execution times for those cases where Amandroid did

not time out. Approximately 40% of the tested APKs timed out when analysed by Amandroid.

In comparison, fewer than 2% of APKs timed out when analysed by BLECryptracer.

Figure 6.4 plots the time taken to analyse BLE writes using BLECryptracer vs. Amandroid. The

figure shows that analysis times with BLECryptracer were, for the most part, around 3-4 minutes

per application. We observed no obvious correlation between the size of the application’s dex file

and the execution time, for either tool. APKs that took longer to process with BLECryptracer

were predominantly of confidence level “Medium”, which indicates that the longer analysis times

may simply have been because of having to first go through the most stringent analysis (at

confidence level High). For Amandroid, the execution times vary to a greater extent than with

BLECryptracer, due to the difference in the mechanisms employed for performing the analysis.

6.6 Results from Large-Scale APK Analysis

We executed BLECryptracer against our dataset of 18,929 APKs. 192 APKs timed out when

analysing reads and 220 APKs timed out when analysing writes, when a maximum runtime of

30 minutes was imposed. These APKs were re-tested with an increased runtime of 60 minutes.

However, even with the longer analysis time, 44 and 76 APKs timed out for reads and writes,

respectively, and had to be excluded from further analysis. In addition, approximately 90 APKs

could not be processed via Androguard’s AnalyzeAPK method and were excluded.

94

BLE APP LAYER SECURITY 〉 Measuring App-Layer Security 〉 Analysis of Results

0 % 20 % 40 % 60 % 80 % 100 %

Writes

Reads

8,838

8,511

333

100

3,130

5,328

4,080

4,526 High
Medium
Low
None

Figure 6.5: Analysis results depicting the presence of cryptographically-processed data with
BLE reads and writes, with breakdown according to confidence level.

Due to the differences in performance metrics obtained for the three confidence levels during test-

ing (as mentioned in §6.5), we focus on only those results that either identify cryptographically-

protected BLE data at confidence level High or those where no protection (for BLE data) was

identified at all.

6.6.1 Presence of App-Layer Security with BLE Data

Our results show that approximately 95% of BLE-enabled APKs call the javax.crypto and

java.security cryptography libraries somewhere within their code. While this is a large

proportion of APKs, the results also indicate that a much smaller percentage of APKs use

cryptographically-processed data with BLE reads and writes (approximately 25% for both, iden-

tified with High confidence). In fact, about 46% of APKs that perform BLE reads and 54%

of those that perform BLE writes (corresponding to 2,379 million and 2,075 million cumulative

downloads, respectively) do not implement security for the BLE data. Interestingly, of the 16,131

APKs that call both BLE read and write functions, about 36% (i.e., more than 5,700 APKs),

with a cumulative download count of 1,005 million, do not implement application-layer security

for either type of data access. Figure 6.5 summarises the proportion of APKs that were identified

as containing cryptographically-protected BLE data at the three different confidence levels.

6.6.2 Libraries vs. App-Specific Implementations

We found that many BLE-enabled APKs actually use third-party libraries for incorporating

BLE functionality. To get an idea of exactly how many APKs relied on libraries, we analyse all

methods within an APK that called BLE data access functions. To do this in an automated

way, we compare the method class name with the application package name. If the first two

components (e.g., com.packagename) of each match, then we take it to be a method implemented

within the application. If the components do not match, we take it to be a library method. If

the package name uses country-code second-level domains (e.g., uk.ac.packagename), then we

compare the third components as well. We note that this technique is fairly rudimentary and

will not identify, for example, instances where libraries are repackaged into an app using the

application’s own package name, e.g., if a library com.lib is packaged as com.packagename.lib

into an app that has package name com.packagename, the library will not be identified.

95

BLE APP LAYER SECURITY 〉 Measuring App-Layer Security 〉 Analysis of Results

Table 6.3: Top ten third-party BLE libraries.

Library Function #APKs [unique] Crypto

Estimote Beacon 3980 [2804] Yes

Nordicsemi∗ DFU 1238 [847] No

Kontakt Beacon 1108 [690] No

Chromium Web BLE 402 [269] No

Randdusing Cordova Plugin 268 [188] No

Megster Cordova Plugin 317 [187] No

Flic BLE Accessory 173 [164] Yes

Polidea BLE Wrapper 138 [114] No

Evothings Cordova Plugin 142 [84] No

Jaalee Beacon 102 [79] No

∗Significant overlap between Estimote and Nordic due to repackaging of Nordic SDK into Estimote.

Of the APKs that call the setValue method, 63% use BLE functionality solely through libraries,

32% use application-specific methods only, while 4% use both. Fewer than 1% of the APKs could

not be analysed due to very short method names. Within the APKs that use both application-

specific methods and libraries, around 34% use an external library to provide Device Firmware

Update (DFU) capabilities.6 Of the APKs that utilise only application-specific methods to

incorporate BLE functionality, 67% do not implement application-layer security with the BLE

data. This proportion was lower at 48% for applications that rely on libraries.

In the case of the APKs that call getValue variants, 37% use only application-specific methods,

58% use only libraries, and 5% use both. As with the setValue case, a higher proportion

of APKs that use only app-specific BLE implementations were found to not use cryptography

(60%), when compared with those that use only libraries (39%).

Table 6.3 presents the ten most common BLE libraries within our dataset, their functionality,

the number of APKs that use them, and the presence of cryptographically-processed BLE data

within the library. The table shows that the most prevalent libraries were those that enable

communication with BLE beacons. In fact, a single such library (Estimote) made up more than

90% of all instances of cryptographically-processed BLE writes and 85% of cryptographically-

processed BLE reads (identified with High confidence). An analysis of this library suggested

that cryptography is being used to authenticate requests when modifying settings on the beacon.

Apart from beacon libraries, we identified five libraries that function as wrappers for the An-

droid BLE API. For example, Polidea wraps the API so that it adheres to the reactive program-

ming paradigm. The libraries Randdusing, Megster and Evothings enable the use of BLE via

JavaScript in Cordova-based applications. Similarly, Chromium enables websites to access BLE

devices via JavaScript calls. None of these libraries handle cryptographically-processed BLE

data. It is expected that developers using these libraries will implement their own application-

layer security (using either JavaScript or reactive Java as appropriate).

6DFU enables Peripheral firmware to be updated via the mobile application over the BLE interface.

96

BLE APP LAYER SECURITY 〉 Measuring App-Layer Security 〉 Analysis of Results

Table 6.4: Number of packages with cryptographic misuse.

Misuse Type∗ #Packages† Misuse Type∗ #Packages†

Bad key used with Cipher 11 ECB (or other bad mode) 10

Non-random IV 10 Bad IV used with Cipher 7

Non-random key 6 Incomplete operation (dead code) 4

∗Description of misuse based on [117, 126]. †Unique packages.

Of the two remaining libraries, Flic, which uses cryptographically-processed data, is a library

offered by a BLE device manufacturer. This library allows third-party developers to integrate

their services into the Flic ecosystem, to allow them to automate certain tasks.

Finally, Nordicsemi (i.e., Nordic [Semiconductor]) is a key player in the BLE Peripheral SoC

market [125]. It provides a library to enable DFU over the BLE interface. With the newest

version of the DFU mechanism, the BLE Peripheral verifies that the firmware has been properly

signed. Devices using the legacy DFU mechanism will not verify the firmware. However, the

mobile application (and by extension, the library) does not need to handle cryptographically-

processed data in either case.

6.6.3 Cryptographic Correctness

BLECryptracer identified 3,228 unique packages with cryptographically-protected BLE data

(with either reads or writes), with High confidence. However, this in itself does not indicate a

secure system. We therefore further analysed this subset of APKs to identify whether cryptog-

raphy had been used correctly in them. The tool CogniCrypt [127] was utilised for this purpose.

Although this tool does not formally verify the cryptographic protocol between the application

and the BLE Peripheral, it identifies various misuses of the Java crypto/security libraries.

Among the 3,228 unique packages, we found that there was significant overlap between APKs

in terms of the BLE libraries or functions used.7 Removing such duplicates resulted in a set

of 194 APKs. Of these, 68 were identified by CogniCrypt as having issues. However, because

CogniCrypt identifies cryptography misuse within the entire APK, the results were filtered for

BLE-specific functions. 24 APKs were found to have issues within or associated with the methods

that processed BLE data (as identified by BLECryptracer) and often, a single APK exhibited

multiple issues. Table 6.4 shows the different types of misuse encountered and the number of

unique packages that were identified as having such misuse. Note that because this analysis was

performed over unique packages, the number of APKs that contain security misconfigurations

will be much higher.

7There are instances where two applications may have unique package names, but which actually incorporate
much the same functionality. This is often the case when the same developer produces branded variants of an
application for different clients in a single industry. For example, two applications could have unique package
names com.myapp1 and com.myapp2, but their functionality may be derived from a common codebase com.myapp.
Further, two different applications (with distinct package names) that implement BLE functionality via the same
library will have the same security stance in terms of protection for BLE data. Therefore, we would only need to
analyse cryptographic correctness within the BLE library, rather than the applications.

97

BLE APP LAYER SECURITY 〉 Measuring App-Layer Security 〉 Analysis of Results

2013 2014 2015 2016 2017 2018

40

60

80

100

Year

%
AP

Ks
wi

th
no

Cr
yp

to
gr

ap
hy

Figure 6.6: Application-layer security trends over time. Graph depicts APKs that perform
BLE reads or writes, with no cryptographic protection for either.

We manually analysed the 24 packages that were flagged by CogniCrypt as having BLE-relevant

issues, and examined the identified instances of bad cipher modes and hardcoded keys/Initial-

isation Vectors (IVs). With regard to insecure block cipher modes, we found that explicit use

of ECB is prevalent (9 out of 10 cases), but Cipher.getInstance("AES") is used in one case

without the mode being specified, which may default to ECB depending on the cryptographic

provider. When analysing keys, we observed that several apps contain hardcoded keys as byte

arrays or strings. Three applications retrieve keys from JSON files. In two cases, keys are gen-

erated from the ANDROID ID, which is a system setting that is readable by all applications. We

also observed one instance where a key is obtained from a server via HTTP (not HTTPS).

This analysis shows that several real-world applications contain basic mistakes in their use of

crypto-libraries and handling of sensitive data, which means that the BLE data will not be

secure despite the use of cryptography.

6.6.4 Trends over Time

Figure 6.6 shows the trend of application-layer security over time for applications that incorpo-

rate calls to BLE reads or writes. The graph depicts the percentage of applications that do not

have cryptographic protection for either type of access. APKs with invalid dates [128] or older

than 2012 (when native BLE support was introduced for Android) have not been included.

The overall downward trend suggests that there has been some improvement in application-

layer security between the years 2014 and 2017 (we refrain from making observations about

APKs from 2013 as they were very few in number, and about APKs from 2018 as this was the

year in which our analysis was performed and the dataset was not yet fully populated at that

time). However, it should be noted that, even in 2017, which had the smallest percentage of

APKs without cryptography, these APKs corresponded to 128 million downloads, which is a

significant number.

98

BLE APP LAYER SECURITY 〉 Measuring App-Layer Security 〉 Analysis of Results

Hea
lth

&
Fit

ne
ss

Lif
est

yle
Bu

sin
ess

To
ols

Sp
ort

s
Tr

av
el

&
Lo

ca
l

Pr
od

uc
tiv

ity
En

ter
tai

nm
en

t
M

us
ic

&
Au

dio
Ed

uc
ati

on
Sh

op
pin

g

M
ap

s &
Nav

iga
tio

n
M

ed
ica

l
Co

mmun
ica

tio
n

Fin
an

ce
Au

to
&

Ve
hic

les
Fo

od
&

Drin
k

Ph
ot

og
rap

hy
So

cia
l

Oth
er

0

20

40

60

80

100

Category

%
AP

Ks
wi

th
Cr

yp
to

gr
ap

hi
ca

lly
Pr

oc
es

se
d

D
at

a
High
Medium
Low

Figure 6.7: Presence of application-layer security in different categories of applications,
averaged over BLE reads and writes, and broken down by confidence level. Only unique

packages have been taken into consideration. APKs that do not currently have a presence on
Google Play have been excluded, as their category cannot be identified.

6.6.5 Impact Analysis

While 18,929 BLE-enabled applications may seem like a relatively small number of applications

when compared with the initial dataset of 4.6 million+, a single application may correspond to

multiple BLE devices, sometimes even millions of devices as is the case with fitness trackers [129].

For example, even if we consider the slightly restrictive case of unique applications that do not

use cryptography with either reads or writes, the cumulative install count is still in excess of

1,005 million. This shows that the attack surface is much larger than may be indicated by the

number of APKs.

It is of course a possibility that the data that is read from a BLE Peripheral has no impact on

user security or privacy (e.g., device battery levels). To understand the actual impact of the

absence of application-layer security, we first need to understand the type of data that is handled

by the BLE device. One possible way of obtaining this information is through the application

categories on Google Play. That is, we would assume that an application that interfaces with a

BLE glucometer would be categorised under “Medical” on Google Play. If a lack of end-to-end

protection was identified in such an app, then the ramifications would be clear (i.e., loss of

confidentiality for user health information).

On this basis, we graph the percentage of applications that use cryptographically-processed

BLE data from each major application category in Figure 6.7. The results are in some cases

unexpected. For example, it would be reasonable to expect that most “Medical” applications

99

BLE APP LAYER SECURITY 〉 Measuring App-Layer Security 〉 Case Study: Firmware Update

would implement some level of application-layer security for their BLE data. However, the results

show that fewer than 30% of applications under this category actually have such protection

mechanisms. It is possible that this is because the devices implement the services/profiles defined

by the Bluetooth SIG (which do not mandate any security apart from pairing, as mentioned in

§5.1). In fact, of the APKs categorised under “Medical” and with no cryptographic protection

for either reads or writes, we found that three of the top ten (in terms of installations) contained

identifiers for the standard Bluetooth Glucose Service.

Another surprising result was with APKs that are categorised under “Business”, “Shopping”

and “Travel & Local”. The results indicate that such apps are the most likely to incorporate

application-layer security, with around 50% of all such applications being identified as having

cryptographically-processed BLE data with High confidence. However, in over 85% of such

occurrences, this was found to be due to the Estimote beacon library.

Looking at some of the categories (such as “Tools” or “Productivity”) in Figure 6.7, it be-

comes clear that Google Play categories are too coarse-grained to enable identification of the

functionality of BLE devices that the mobile apps interact with. Further, it is possible that

the categories don’t always reflect BLE functionality, but rather other application functionality.

This prompted a more fine-grained BLE-specific functionality mapping and impact analysis,

which we present in Chapter 8.

6.7 Case Study: Firmware Update over BLE

When analysing our results, we found that one of the APKs that was identified as not having

application-layer security was designed for use with the ID107 HR, a low-cost fitness tracker

that, based on the install count on Google Play (1,000,000+), appears to be widely used. An

analysis of the APK suggested that the device used the Nordic BLE chipset, which could be put

into Legacy DFU mode (where the firmware does not need to be signed). To exploit this, we

acquired the device and developed an APK that, in accordance with the attacks described in

§5.2, connects to the device, sends commands to place it in DFU mode, and then writes a new

modified firmware to the device without user intervention. The updated firmware in this case was

a simple, innocuous modification of the original firmware. However, given that the device can be

configured to receive notifications from other applications, malicious firmware could be developed

in such a way that, for example, all notifications (including second-factor authentication SMS

messages) are routed to the malicious application that installed the firmware.

This attack was possible because the BLE Peripheral did not verify the firmware (e.g., via digital

signatures) nor the source application (via application-layer security). We have informed the

application developer of the issue, but have not received a response.

While our attack was crafted for a specific device, it does demonstrate that attacks against

these types of devices are relatively easy. An attacker could easily embed several firmware

images within a single mobile application, to target a range of vulnerable devices.

100

BLE APP LAYER SECURITY 〉 Measuring App-Layer Security 〉 Chapter Summary and Next Steps

6.8 Limitations and Future Work

In this section, we outline some limitations of BLECryptracer that may have impacted our

results and discuss potential for future work.

Unhandled data transfer mechanisms and analyses As mentioned in §6.5, BLECryptracer

does not analyse data that is written out to file (including shared preferences), or communicated

out to a different application, because it is not straightforward (and many times, not possible)

to determine how data will be handled once it has been transferred out of the application under

analysis. It is also possible that an application obtains the data to be written to a BLE device

from, or forwards the data read from a BLE device to, another entity such as a remote server.

That is, the Android application could merely act as a “shuttle” for the data, which means that

an analysis of the APK would not show evidence of usage of cryptography libraries. However, the

transfer of data to/from a remote server does not in itself indicate cryptographically-processed

data, as plain-text values can also be transmitted in the same manner. We therefore do not

analyse instances of data transfers to external entities.

BLECryptracer does not handle activity life-cycle events. It also does not analyse data transfers

between a source and sink when only one of them is processed within a Looper function or when

the data is transmitted via messages. BLECryptracer additionally does not handle transfers

when only one of source or sink is present within a callback.

Further, BLECryptracer is built on top of Androguard, which provides access to code compo-

nents as smali. However, Native code is not supported, which means that there may be BLE

data accesses that are not analysed by BLECryptracer.

Conditional statements with backtracing When backtracing a register, BLECryptracer stops

when it encounters a constant value assignment. However, it is possible that this value assign-

ment occurs within one branch of a conditional jump, which means that another possible value

could be contained within another branch further up the instruction list. To identify this, the

script would have to first trace forward within the instruction list, identify all possible condi-

tional jumps, and then trace back from the register of interest for all branches. This would need

to be performed for every method that is analysed and could result in a much longer processing

time per APK file, as well as potentially unnecessary overheads.

Trace termination on first encounter of cryptography At present, BLECryptracer terminates

analysis of an APK at the very first instance when it identifies cryptographically-processed BLE

data. An ideal extension would be to broaden the scope of the tool to analyse the availability

of higher-layer protection for each characteristic defined within the APK.

6.9 Chapter Summary and Next Steps

In this chapter, we have analysed the prevalence of end-to-end security in BLE deployments

and have identified that a significant proportion of BLE devices are likely to be vulnerable to

101

BLE APP LAYER SECURITY 〉 Measuring App-Layer Security 〉 Chapter Summary and Next Steps

unauthorised data access at the application layer. We have also observed in some cases where

cryptographic protection is present, that the crypto-libraries are misconfigured, which can lead

to reduced security. This demonstrates that leaving security in the hands of developers can

result in vulnerable BLE data. In the next chapter, we design and present a pragmatic solution

to the application-level unauthorised data access vulnerability, taking into consideration the

various stakeholders and restrictions within the BLE ecosystem.

102

7 A Solution for the Unauthorised Data

Access Vulnerability

In this chapter, we present our proposed solution to the application-level unauthorised data ac-

cess vulnerability in BLE. We set out security and system requirements and perform a multi-

faceted stakeholder analysis, to arrive at an asymmetric specification-level modification. Our

proposed solution is fully backward compatible with existing BLE Peripherals and applications.

We also present an open-source proof-of-concept of our proposed solution, implemented on the

Android-x86 platform, and test it against real-world devices and applications.

7.1 Introduction

We demonstrated in Chapter 5 that an unauthorised data access vulnerability exists on BLE-

enabled multi-application platforms. The data on a BLE device1 may be vulnerable if it does

not incorporate end-to-end security (which is typically achieved via authorisation permissions).

However, as we have shown in Chapter 6, a significant proportion of BLE devices apparently

do not apply such application-layer security, and some that do have done so incorrectly. In any

case, we note that authorisation permissions cannot be applied to SIG-defined characteristics

when there is a need to maintain compatibility with SIG-defined services and profiles (most of

which do not specify a requirement for authorisation permissions). Further, a user may desire

the use of a secondary application to interface with their BLE device, which may not be possible

if end-to-end protection is applied. Existing platform-imposed restrictions, mostly in the form

of user-granted permissions for applications, do not restrict access on a per-peer basis.

Any solution that is proposed to mitigate this vulnerability must take into consideration not

only technical limitations but also practical issues. That is, a highly secure solution that is not

likely to be implemented in the vast majority of BLE deployments is not particularly useful.

We approach this problem from a practical standpoint. We define security and system require-

ments, based on typical BLE configurations, usage mechanisms and user involvement (§7.2).

We also conduct a pragmatic stakeholder analysis, considering stakeholder numbers, likeli-

hood of participation and technical capabilities (§7.3). Based on our evaluation, we propose

a specification-level solution (§7.4) and show that it meets the requirements that we have set

out (§7.5). To further demonstrate the viability of our solution, we implement a POC on the

Android-x86 platform (§7.7). Specific benefits realised by our solution include no changes to

1In actuality, the multi-application platform is also a BLE-enabled device and can operate as a Peripheral.
However, we use the term “BLE device” or “Peripheral” to denote the “typically Peripheral” devices that the
multi-application platform connects to.

103

BLE APP LAYER SECURITY 〉 Proposed Solution 〉 Environment

existing layers within the BLE stack, no changes to existing apps, equal protection for SIG- and

vendor-defined services, and most changes being applied to mature platforms with stable update

capabilities (i.e., existing node devices need not be modified).

Related work A number of studies have suggested different techniques to add on security at the

application layer, but each have their own shortcomings. For example, Naveed et al. [48] propose

a re-architected Android framework which automatically creates a bonding policy between a

Bluetooth device and the first application that attempts to pair with it. The solution would

not come into play if a Bluetooth device did not require pairing. Our solution protects BLE

data from unauthorised access, regardless of whether or not the data/device specifies a security

requirement. It also explicitly informs the user of any application that makes a GATT request

to a connected BLE device. This ensures that the user is aware of which applications have

attempted to access data on their BLE devices and can make decisions regarding whether or

not to allow access. The solution by Naveed et al. [48] also assumes that the user will only want

to use a single application with their device. However, in the BLE case, we have observed that

users often utilise a secondary app with additional features. This is supported by our solution.

Ortiz-Yepes [17] proposes BALSA, an application-layer security add-on comprising an additional

authentication back-end and a Kerberos-like protocol. As described in §4.4, BALSA is intended

to work on top of existing BLE Peripherals (termed Sensors) and existing mobile devices without

modifications to the platforms. However, because this requires additional infrastructure and

setup, it would not be a suitable option for the vast majority of end users.

Zhang et al. [100] propose a public key cryptography-based solution, where the public key is made

available as a QR code on a tamper-evident label on the BLE Peripheral and the Peripheral

firmware implements a custom application-level protocol. However, this solution cannot be

retrofitted to the billions of BLE Peripherals extant in the world today.

7.2 Environment

In this section, we outline our threat model (§7.2.1) and define a set of security and system

requirements (§7.2.2, §7.2.3) that should apply to any solution that addresses the problem of

unauthorised data access on multi-application BLE platforms, based on our threat model.

7.2.1 Threat Model

We consider the common use case of a BLE device interfacing with one (or more) applications

on a multi-application platform. We make the assumption that any app on the multi-application

platform issues BLE requests via a BLE stack implemented by the platform, i.e., the application

cannot circumvent the stack that is implemented by the platform. We also assume that the

application cannot directly access the components of the platform-implemented BLE stack or

influence its operations by any means other than via robust platform APIs. In addition, we

assume an honest and uncompromised platform and BLE device. However, applications are

from multiple third-party developers and are assumed to be untrusted. These applications may

104

BLE APP LAYER SECURITY 〉 Proposed Solution 〉 Environment

abuse the unauthorised data access vulnerability to obtain and manipulate data being stored

on a BLE device without the user’s knowledge and consent. This is the kind of behaviour our

solution aims to protect against.

7.2.2 Security Requirements

To protect against unauthorised data access attacks at the application-layer, we define three main

security requirements. These are based on typical multi-application platform configurations and

usage, and the shortcomings that we have identified with existing restriction mechanisms.

SecRQ1: Prevention of unauthorised access to BLE data An application should not be

able to access the data from a BLE peer device without the user’s knowledge and explicit

authorisation. Note that the term “authorised” in this context should not be confused with the

“authorisation permissions” already defined within the Bluetooth specification.

SecRQ2: Per-device access control User authorisation should be granted to an application

for each peer device individually, i.e., if an application is granted permission to access one BLE

device, it should not automatically be possible for the application to access other BLE devices.

SecRQ3: Access revocation It must be possible for the user to revoke access that has previ-

ously been granted to an application for a BLE peer device. This limits the exposure of data in

the event of late identification of malicious application behaviour.

7.2.3 System Requirements

There are billions of BLE-enabled devices in use today and most are in consumer applications,

where the end users are not necessarily highly technical. This results in a need for security

solutions that do not require high levels of user involvement. In addition, most BLE Peripherals

are resource-constrained by design and will not be able to handle large amounts of processing.

This makes complex cryptographic protocols less desirable. While these factors are not directly

related to the security of a system, they need to be taken into consideration when proposing

a security solution. We therefore define three key system requirements, bearing in mind user

involvement, the number of BLE devices extant in the world today and the asymmetric nature

of resources on communicating BLE devices.

SysRQ1: Protection by default All devices that implement (the modified version of) BLE

should incorporate protection by default. Any specification-compliant BLE system should au-

tomatically protect against and be protected from unauthorised data access at the application

layer, without the need for additional user intervention (beyond the explicit granting of permis-

sions or authorisation).

SysRQ2: Backward compatibility Devices that incorporate the solution should function with

existing devices. Given that billions of BLE-enabled devices exist today, a solution that obsoletes

such a vast number of devices would be unacceptable.

105

BLE APP LAYER SECURITY 〉 Proposed Solution 〉 Devising a Solution Strategy

SysRQ3: Minimal overhead for resource-constrained devices The solution should not incur

a significant processing overhead for the more resource-constrained device, as this would lead to

greater power requirements and quicker battery drain, thereby defeating the purpose of BLE.

7.3 Devising a Solution Strategy

The requirements we have described in §7.2.2 and §7.2.3 are necessary for a secure and utilitarian

solution to the unauthorised data access problem. However, the most secure solution is of no

value if it will not be applied to a large proportion of the BLE ecosystem due to lack of technical

capability or stakeholder involvement. In this section, we discuss the primary stakeholders within

the BLE ecosystem and describe practical considerations that should be taken into account when

proposing a solution. From this, we determine the most suitable solution strategy to ensure

maximum coverage.

7.3.1 Stakeholders within BLE

There are five primary stakeholders within the BLE ecosystem:

1. The Bluetooth SIG: This is the entity that defines and maintains the Bluetooth specifi-

cation, as well as BLE services and profiles (such as the Glucose Profile described in §5.1).

2. Chipset vendors: These are entities that produce BLE-enabled chipsets, which are then

used in platforms and Peripherals. Chipset vendors may also provide BLE stacks for

their products, to enable application developers to create BLE end products quickly and

easily. Examples include Qualcomm, NXP, Nordic Semiconductor, Texas Instruments,

STMicroelectronics and several others.

3. Platform vendors: These are entities that develop and maintain BLE-enabled platforms,

typically supporting multiple applications. Prominent examples are Android, iOS/Mac

OS, Windows and Linux.

4. Developers: These entities produce BLE-enabled end products (e.g., fitness trackers, eS-

cooters, smart locks). They normally also develop companion applications (which typically

run on multi-application platforms) to interface with their products.

5. Users: The ultimate consumers for BLE-enabled products and services.

Users are only considered in terms of the impact of the vulnerability and the ease of applying a

solution. Users are at most expected to update their devices’ operating system or firmware and

provide explicit authorisation to applications. We do not expect users to implement any part of

a solution. We therefore confine the discussion on implementation to the first four entities.

7.3.2 Practical Considerations

When a BLE security solution is proposed, the likelihood of it being implemented depends on a

number of factors. In this section, we analyse those factors in terms of the involved stakeholders.

106

BLE APP LAYER SECURITY 〉 Proposed Solution 〉 Devising a Solution Strategy

7.3.2.1 Number of Entities

The likelihood of a solution being implemented depends in part on the number of entities that are

required to implement it. The smaller the number, the easier it is to communicate the solution to

them and the greater the reach of the solution. When considering BLE stakeholders in terms of

numbers, the SIG is a single entity (albeit made up of a large number of members). This makes

it a single point of communication, from which the solution will trickle down to implementing

entities (platform vendors, chipset vendors and developers). There are a limited number of

platform vendors, and the four most prominent platforms (Android, Windows, iOS, and Mac

OS) account for over 95% of the worldwide OS market share [130]. BLE chipset vendors are more

numerous than platform vendors, but not by a large margin (15-20 vendors [131]). Developers,

on the other hand, are multitudinous (several hundreds [132]); it would therefore be very difficult

to communicate a solution to all possible developers.

7.3.2.2 Stakeholder Participation

Not all stakeholders respond satisfactorily when they are made aware of a vulnerability. The

security behaviour of a stakeholder tends to be associated with the prominence of the stakeholder

(in terms of brand value, which may act as an incentive to adopt strong security practices),

as well as the availability of organisational support, knowledge and resources [133–135]. The

SIG and most platform/chipset vendors have clear, mature processes in place for vulnerability

reporting, assessment and mitigation [136–140], whereas many developers may not even respond

when informed of issues [141]. We have found this to be the case when reporting vulnerabilities.

Further, in inter-dependent ecosystems such as BLE, where platforms and chipsets implement

the specification, and developers create end-products on top of the platforms and chipsets, there

is a certain degree of “responsibility relaying”. That is, each stakeholder presumes that the

responsibility for implementing the solution belongs to another stakeholder. This phenomenon

of “passing the buck” is prevalent within IT security, with responsibility being transferred down

the supply chain or to other stakeholders [142, 143]. In the case of BLE, we postulate that

only a specification-level change will induce most of the remaining stakeholders within the BLE

ecosystem to incorporate a solution; the solution would have to be implemented in order to

claim conformance with the specification.

7.3.2.3 Availability of Update Mechanism

Stakeholder participation, as described in preceding sections, is key to solution implementation,

but equally so is the availability of an actual mechanism for performing the implementation.

In the case of the Bluetooth specification, all updates are to a document, which can be updated

in a straightforward manner. The solution must thereafter be implemented by the remaining

stakeholders. Platform devices, such as mobile phones and computers, run operating systems

that have fairly robust update mechanisms. Therefore, a solution implementation can be easily

rolled out on these devices. Most modern BLE chipsets support over-the-air (OTA) firmware

updates, enabling updates to applications and sometimes also to the BLE stack [144–147].

107

BLE APP LAYER SECURITY 〉 Proposed Solution 〉 Solution Design

However, many IoT devices do not incorporate such update mechanisms [148] (we verify this in

Chapter 8); this means that a large proportion of existing BLE Peripheral devices cannot be

modified.

7.3.3 Discussion

Based on the large number of BLE end-product developers, the lower likelihood of developer

participation, and the lack of firmware update mechanisms in many BLE Peripherals, we reach

the conclusion that a security solution that does not require involvement from end-product

developers is more likely to actually be implemented. We also observe that, because a sin-

gle platform device normally communicates with multiple Peripherals, an asymmetric solution

involving changes to only the platforms (which are far fewer in number) will be an effort-

efficient way to resolving the unauthorised data access vulnerability for a larger proportion of

the BLE ecosystem. Further, according to §7.3.2.2, a specification-level change is more likely to

prompt changes from implementing entities than individual communications with each entity.

In addition, a specification-level change ensures security by default even if new BLE-enabled

multi-application platforms are introduced in the future (without the need for communicating

the solution to each new platform vendor individually).

7.4 Solution Design

In accordance with our analysis in §7.3, our proposed solution involves changes to the BLE stack

and primarily involves modifications to multi-application platforms. Our solution also requires

minor changes to the Peripheral. However, as we discuss in §7.6, the changes to the Peripheral

can be avoided while still retaining the expected outcome.

Our solution introduces three new BLE components/properties:

1. ATT Access Database (AAD): A database for storing application access permissions.

2. ATT Access Manager (AAM): A layer within the BLE stack, responsible for perform-

ing the main access control functions.

3. Device/Platform Mode: A property for a BLE system, which controls the behaviour

of a BLE device with respect to the new functionality.

§7.4.1 to §7.4.3 describe the purpose and, if relevant, the functionality of each of these elements

in detail. §7.4.4 discusses concerns relating to user authorisation, while §7.4.5 describes access

revocation.

7.4.1 The ATT Access Database (AAD)

The AAD stores per-device (i.e., BLE peer), per-application access records, as authorised by the

user, for all BLE peer devices connected to the platform, for all applications that have made a

GATT request for a BLE peer.

108

BLE APP LAYER SECURITY 〉 Proposed Solution 〉 Solution Design

An access record has three components:

1. AppID: A unique identifier for the application that has made a GATT request to the

platform. This must be assigned by the platform. It should not be possible for the

application to manipulate its AppID.

2. DeviceID: A unique identifier for the BLE peer, e.g., the device’s hardware address.

3. Permission: A value indicating whether access for an application (as identified by AppID)

to a BLE device (identified by DeviceID) is Allowed or DenyListed.

By default, records do not exist for an application until the application makes a GATT request.

The first time a record is added to the AAD for an application-device pair, the associated

permission will be as selected by the user. This is described in detail in §7.4.2.

Positioning of the AAD Similar to the Security Database used within the existing design of

BLE, the AAD does not feature within our modified BLE stack, but must be implemented by

the platform in order for the BLE system to be operational. The AAD only communicates with

the AAM. Therefore, the functionality of the AAD can also be subsumed into the AAM.

Access by Applications The AAD must not be accessible to higher layer applications. It

should not be possible for an application to query its AAD permissions or to add itself to the

AAD, as that would defeat the access control mechanisms that are in place.

7.4.2 The ATT Access Manager (AAM)

We introduce the AAM as a new layer within the BLE Host subsystem. It serves as an access

control mechanism for GATT requests. For this reason, it is logically positioned between GATT

and the application layer. This position enables it to intercept and arbitrate all GATT requests

while also not unduly interfering with applications or lower stack layers.

Basic Workflow Figure 7.1 depicts the overall workflow when a GATT request is received from

an application. When an application makes a GATT request, the platform passes the AAM a

3-tuple, consisting of the GATT request, the DeviceID corresponding to the BLE peer, and the

AppID representing the requesting application. The DeviceID and AppID are assigned by the

underlying platform (as described in §7.4.1). The AAM separates out the three elements and

queries the AAD for the DeviceID/AppID combination. The following outcomes are possible:

• An entry exists within the AAD for the AppID against the given DeviceID: The AAD

forwards the corresponding permission value to the AAM.

– The stored permission is Allowed : The AAM forwards the GATT request to

ATT/GATT, receives the response, and forwards it to the platform.

– The stored permission is DenyListed : This indicates that the user has expressly

denied the application from accessing data on the specific BLE peer. The AAM

performs no further processing, but indicates the deny-listed status to the platform,

which should notify the requesting application that the request has failed and cannot

succeed even after multiple tries.

109

BLE APP LAYER SECURITY 〉 Proposed Solution 〉 Solution Design

PermissionCheck

(AppID,

DeviceID)

Pla�orm AAM AAD GATT

Append

AppID,

DeviceID

DenyList

(AppID,

DeviceID)

Extract

Elements

AAMCheck

(GATTReq,

AppID,

DeviceID)

Inform

Pla�orm

Request

User Auth

for

Device+App

UserAuth

Reqd

(AppID,

DeviceID)

Result=

DenyList?

Result=

Allowed?

Inform

App

GATTReq

from App

ReqFailed

(GATTReq)

Request

ID Check
Process

Request

Permission

or null
Yes

Process

Request
GATTReq

No

No

Yes

AppID=

null?

No

Yes GATTReq

Pass

Permission

to AAM

Update

AAD

Process

Request

AddRecord

(AppID,

DeviceID,

Permission)

Forward

Response
Forward

to App

GATTResp

to App

GATTResp GATTResp

AAMAdd

(AppID,

DeviceID,

Permission)

Figure 7.1: Proposed workflow for GATT requests. Light grey shaded areas are part of the
BLE stack. Dark grey areas are platform/application components external to the stack.

• No record exists with the AAD for an AppID-DeviceID pair: This is signalled to the

AAM, which in turn notifies the underlying platform that user authorisation is required.

The user should be presented with options to allow or deny the application to access data

from the BLE peer.

In this manner, only applications that are explicitly authorised by the user will be able to access

data from the BLE peer, and because permissions are defined per-peer and per-application, the

user has complete control over exactly which BLE devices each application can access.

110

BLE APP LAYER SECURITY 〉 Proposed Solution 〉 Solution Design

Note also that, in this design, the functionality of GATT and other existing BLE stack com-

ponents do not change. Therefore, changes to the stack are minimal. Further, the AAM only

processes GATT requests; it forwards GATT responses as received to higher layers.

Null AppIDs Upon receiving a null AppID, the AAM will forward the GATT request to

ATT/GATT without any further checks. The AAM can only be sent null AppIDs if the

underlying platform hosts a single application. See §7.4.3 for more details.

7.4.3 Device Mode

We define two modes, “Single-App” and “Multi-App”, based on the application hosting config-

uration of the platform:

A Single-App device is a BLE-compatible device that hosts only one application. A Multi-App

device is a BLE-compatible device that may host more than one application.

Examples of Single-App devices are fitness trackers, glucose monitors, door locks or insulin

pumps. These devices are resource-constrained and their firmware generally contains only one

set of application code. Devices such as mobile phones and personal computers, on which many

applications run, would fall under the Multi-App category. The Device Mode is assigned to a

device at the time of manufacture and cannot be changed during operation.

Note that the terms “Single-App device” and “Multi-App device” do not refer to how many

applications a BLE-enabled device can interface with, but rather how many applications a BLE-

enabled device hosts.

A Single-App device functions almost exactly as BLE does today. The AppID is set to null; the

AAM simply passes through requests it receives from higher layers to GATT, without performing

any further checks; the AAD is dormant. It is important to note that the AppID can only be

null for Single-App devices.

A Multi-App device incorporates the complete functionality of the AAM, has a functional AAD,

and behaves as described in the preceding sections. Because Multi-App devices tend to have

greater storage and processing capabilities, we foresee that these changes will not be overly

burdensome.

By defining the Device Mode in this manner, the new stack enables resource-constrained devices

(that typically host a single application and would therefore be defined as Single-App devices)

to operate almost exactly as they always have, thereby not incurring any significant overheads

due to additional processing.

7.4.4 Obtaining User Authorisation

The mechanism of obtaining user authorisation will depend on the implementing platform.

However, the requirement is that the mechanism must be explicitly visible to the user. We do

111

BLE APP LAYER SECURITY 〉 Proposed Solution 〉 Requirements Analysis

not foresee that this will present a problem, as authorisation is only required on Multi-App

platforms (such as mobile phones and laptops), which typically have fully-fledged input-output

capabilities, unlike some resource-constrained Single-App platforms.

7.4.5 Access Revocation

It should always be possible for a user to revoke the access they have granted to an app, on a

per-device basis. Similarly, it should be possible for a user to remove the DenyListed state for

an application-device pair. This could be achieved in a similar manner to privacy controls on

modern mobile and computer operating systems, where access to system resources are controlled

on a per-application basis. Upon access revocation or state change, a command must be sent to

the AAM, to notify the AAD to update the relevant record.

7.5 Requirements Analysis

In this section, we evaluate our proposed solution against the requirements we outlined in §7.2.

SecRQ1: Prevention of unauthorised access to BLE data The AAM intercepts and processes

all GATT requests from all applications on the platform. As long as the assumptions stated in

§7.2.1 hold, no application will be able to circumvent the AAM checks and covertly access data

from BLE peer devices.

SecRQ2: Per-device access control AAM checks are performed per-application and per-

device. An application that has been authorised to access data from one BLE device will fail

AAM checks if it has not been granted access to a different BLE device.

SecRQ3: Access revocation Explicit mechanisms exist within the AAM (as discussed in

§7.4.5) to revoke access for any application that has previously been granted GATT access

to a BLE device.

SysRQ1: Protection by default Because our solution involves the modification of the BLE

specification itself (rather than of a single device, platform or application), every platform that

is qualified against this design will incorporate the GATT access control mechanism, ensuring

protection by default across all (qualified) platforms.

SysRQ2: Backward compatibility All new functionality within our design occurs locally,

within a single device. The functionality of GATT and lower layers of the BLE stack oper-

ate as they have previously, and interface with BLE peers with no changes. Therefore, a device

that implements this solution will be backward compatible with all existing BLE systems. We

demonstrate this with our POC in §7.7, where a modified Android stack operates with an un-

modified BLE Peripheral. Note also that the changes described here do not affect the existing

BLE services or profiles in any way.

112

BLE APP LAYER SECURITY 〉 Proposed Solution 〉 Additional Benefits

SysRQ3: Minimal overhead for resource-constrained devices The processing described in

§7.4.2 applies to Multi-App devices such as mobile phones, which are expected to have reason-

ably powerful operating systems and fewer restrictions in terms of battery usage. Most BLE

Peripherals have small amounts of storage space, and usually do not support hosting multiple

applications. Therefore, such devices will be defined as Single-App devices, and will be spared

most of the processing overhead, as described in §7.4.3.

7.6 Additional Benefits

In this section, we describe advantages of our proposed solution, in addition to the fulfilment of

the requirements.

No changes to existing BLE stack layers In our solution, a single new layer is added to the

stack, and it is within this layer that the bulk of the access control behaviour is implemented.

In particular, no modifications are required for any of the existing BLE stack layers, including

the ATT/GATT layer, which is the only core layer that interfaces with the AAM. That is, the

requests received by the GATT layer with the proposed new stack will be exactly the same as

they are at present. This makes it easier for the Multi-App platform to implement the required

changes in a modular fashion (assuming the existing stack has also been implemented in such a

manner).

No changes to applications Our proposed solution requires no direct interaction between an

application and the AAM. GATT requests issued by an application are forwarded by the platform

to the AAM. This means that applications will not require any changes, apart from possibly

to handle a new error status. This is a significant advantage, as there are several thousand

mobile applications with BLE capabilities in existence today [66], and making changes to all of

them would be extremely challenging, as it would require cooperation from a large number of

developers.

Equal protection for all services A BLE device may implement services defined by the Blue-

tooth SIG (possibly via standard GATT profiles), but may also implement its own custom

services. As with the example provided in Figure 5.1, most services and profiles defined by the

SIG, including those that read user health data such as heart rate or glucose measurements,

do not specify higher-layer protection as a security requirement. With our solution, protection

is applied to both types of services, even if SIG-defined services do not specify authorisation

permissions.

Protection even in the absence of pairing Many BLE Peripherals tend not to have sufficient

input-output capabilities, and therefore either implement weak pairing or no pairing at all (as

we show in Chapters 9 and 10). Our solution is separate from and at a higher layer to link

layer protection mechanisms such as pairing. Any GATT request from an application has to

first pass through the AAM before it can be forwarded via the link layer to the BLE peer,

which means that protection is applied at a much earlier step. This means that the proposed

113

BLE APP LAYER SECURITY 〉 Proposed Solution 〉 Proof of Concept

new stack will protect data on a BLE device from access by an unauthorised application on

a Multi-App platform even if the BLE device does not specify a requirement for pairing. Of

course, if the BLE device does not require pairing, then its data can be eavesdropped over the

wireless interface when it is in a connection; it can also be accessed by a different unauthorised

device. However, that is outside the scope of this solution. Our solution focuses on protecting

data from unauthorised access at the application layer.

Most changes are to mature platforms While a specification change would typically require a

change to all devices that implement the BLE stack, the way in which the proposed change has

been designed allows for the system to function even without any changes to existing Peripherals.

The only entities that will require changes are Multi-App platforms such as mobile or personal

computer operating systems. These platforms tend to have a robust update mechanism in place

already, which is familiar to users. This ensures greater likelihood of the changes actually being

installed on end user devices.

7.7 Proof of Concept

In order to demonstrate the viability of our proposed solution, we have implemented a Proof-of-

Concept (POC) on the Android-x86 platform [30]. In this section, we discuss the implementation

details, describe the test setup, and evaluate the POC.

7.7.1 Implementation Details

The Android platform was selected for our POC due to its open-source nature, large installation

base and potential familiarity to readers. The Android-x862 code base was used, to be able to

implement and test our solution on a virtual machine,3 without the need for expensive device

installations. The Nougat-r4 release of Android-x86 was the base upon which we built our POC,

as it was found to have a stable implementation of Bluetooth. The modified Android-x86 was

built on a VM running Ubuntu 18.04.3 LTS with 128GB RAM (with 8GB allocated for heap)

and 8 cores.

Figure 7.2 depicts the components within the Android-x86 framework that were modified or

added, in order to implement our proposed solution. Specifically, as mentioned in §6.2, an

application GATT request on Android (such as those for reading or writing characteristics)

must be preceded by the connectGatt call. Because of this construct, and due to the nature of

the Android architecture, we select connectGatt as the entry point for the AAM checks. We

use the device’s hardware address as the DeviceID and extract the Android app’s application ID

(which uniquely identifies an application on the Android platform [149]) to use as the AppID.

The actual AAM functionality is implemented within the BT stack. In keeping with Android’s

workflow for other BLE functionality, we implemented the AAM functionality along a path from

2Android-x86 is a port of Android for x86 platforms. It is based on the Android Open Source Project (AOSP)
with some modifications.

3Official Android emulators do not have Bluetooth capabilities, whereas Android-x86 does.

114

BLE APP LAYER SECURITY 〉 Proposed Solution 〉 Proof of Concept

APPLICATION FRAMEWORK
/frameworks/base/

BluetoothDevice.java BluetoothAam.java

IBluetoothAam.aidl

BLUETOOTH PROCESS
/packages/apps/Bluetooth/

AamService.java

com_android_bluetooth_btservice_AamService.cpp

HARDWARE ABSTRACTION LAYER
/hardware/libhardware/include/hardware/

bt_aam.h

BT STACK
/system/bt/

b�f_aam.c bta_aam_api.c aam_api.c

BluetoothManagerService.java

btu_init.c

Figure 7.2: Modified Android-x86 platform, incorporating our solution. Utility functions are
not included. Solid lines indicate new components, while dashed lines indicate modified

components.

the application framework to a custom AAM “layer” within the stack, as shown in Figure 7.2.

Within the AAM layer, the AAD is implemented as a linked-list of records, following the same

structure that is used natively by Android for storing pairing credentials. Persistent storage to

NVRAM is achieved by extending the existing BT interface storage component.

User authorisation is requested via standard Android dialog boxes. To make the contents of the

dialog box clear and easily understood by the user, the application name is displayed instead

of the AppID. For the device, both the device name (if available) and the hardware address are

displayed, to avoid ambiguity in situations where more than one device with the same name are

advertising in the vicinity. A sample is depicted in Figure 7.3. The Allow and Deny options

within the dialog box map to the Allowed and DenyListed permissions described in §7.4.1,

respectively. We have also implemented a temporary access option AuthReqd, which is displayed

as Allow Once in the dialog box. This is similar to the Maybe partial-consent option in [150].

115

BLE APP LAYER SECURITY 〉 Proposed Solution 〉 Proof of Concept

Figure 7.3: User authorisation dialog with explicit reference to application and BLE device.

7.7.2 POC Tests

To test our POC, we replicate Attack 2, as described in §5.2, i.e., covert access of data from a

connected BLE device by an unauthorised app. The attack involves four main components:

1. BLE-capable VM player, for running the original and modified Android-x86 builds. We

used VMWare Workstation 14 Player on a Windows 10 laptop, with a CSR adapter.

2. Nordic nRF51 development kit, in the role of a glucose meter (“GlucoMeter”). No pairing-

protected characteristics.

3. Android application, in the role of a glucose monitoring application (“OfficialApp”).

4. Android application, in the role of a malicious application masquerading as a legitimate

app, e.g., a game, which accesses BLE data covertly (“EvilGameApp”).

We deploy a VM with the original Android-x86 build and perform the following:

• Launch OfficialApp.

• Scan for BLE devices.

• Connect to the GATT server on the “GlucoMeter” and read a characteristic. This will

read a dummy value of 0x12345678.

• Launch EvilGameApp (which covertly identifies the existing connection to the GlucoMeter,

calls connectGatt to it and writes the same characteristic).

Figure 7.4a depicts the interactions between five main entities (the user, OfficialApp, Evil-

GameApp, the Multi-App platform (i.e., Android-x86), and the BLE device) when going through

the above test steps in the absence of any protection mechanism.

We then repeat the tests using the modified Android-x86 build. Figure 7.4b illustrates the

interaction between the five entities when our controls have been implemented. The two figures

demonstrate that unauthorised data access is prevented with our solution because the covert

data access attempt is brought to the attention of the user and defeated. That is, data on the

BLE peer is prevented from being accessed by unauthorised applications due to explicit user

awareness and denial of authorisation.

116

BLE APP LAYER SECURITY 〉 Proposed Solution 〉 Proof of Concept

USER OA EA Android-x86 GM

Launch OfficialApp

Loca�on Perm.

Granted

Find Device Perform BLE Scan
Scan

<Device List><Device List>

Select Device Connect Device Connect

Sync Data connectGa�()

Enum + Read Read Request
<Value><Value>Display Value

Home Screen

Launch EvilGameApp

Play Game getConnectedDevices()

<Device List>

connectGa�()

writeCharacteris�c() Write <Val2>
<success>

(a) Current scenario.

USER OA EA Android-x86 GM

Launch OfficialApp

Loca�on Perm.

Granted

Find Device Perform BLE Scan
Scan

<Device List><Device List>

Select Device Connect Device Connect

Sync Data connectGa�()

Enum + Read Read Request
<Value><Value>Display Value

Home Screen

Launch EvilGameApp

Play Game getConnectedDevices()

<Device List>

connectGa�()

Authorisa�on Required

Authorisa�on Denied

Authorisa�on Required

Authorisa�on Granted

Connected

Connec�on Failed

(b) With our solution.

Figure 7.4: Interaction between User, OfficialApp (OA), EvilGameApp (EA), Multi-App
platform (Android-x86) and BLE GlucoMeter (GM). Items in italics are interactions between

EA and Android-x86 that occur without user awareness. Items in bold are new user
interaction elements.

Testing with pairing-protected data We additionally modified the “GlucoMeter” to require

pairing prior to data access. Re-running the tests again, we found that our controls worked in

that scenario as well, as expected.

Testing with real-world devices and applications We verified the functionality of the POC

implementation on real-world devices and applications by testing two popular fitness trackers,

the Mi Band 2 and ID107 HR, against the modified Android-x86. For this, we installed the

corresponding applications on the POC platform and connected to the devices. The solution

worked without the need for any modifications to the fitness trackers or to their applications.

7.7.3 Evaluation

In this section, we present an evaluation of our POC in terms of development effort, performance

overheads and user experience.

Development effort The entire set of modifications in our POC, including substantial de-

bugging information, required fewer than 1500 new lines of code. This demonstrates that the

solution is not only viable but also that it would not require significant effort to implement.

117

BLE APP LAYER SECURITY 〉 Proposed Solution 〉 Discussion

Performance overheads Analysing Android debug logs, we identified that performing an AAM

access check took at most 25 milliseconds. This is well within the 100-millisecond instantaneous

reaction perception limit [151,152]. We found while interacting with the system that this amount

of time is indiscernible (from our point of view as a user).

User experience and comprehension The user is shown a dialog when an application is first

launched and attempts to access data from a BLE device. Once that dialog has been responded

to, subsequent access attempts don’t require user interaction. Therefore, it is the impact of the

first dialog that needs to be analysed.

Due to the prevailing COVID-19 situation, we were unable to conduct in-person tests. We

therefore present here a theoretical analysis of the impact on user experience and comprehension.

If a malicious application professes to be benign but covertly accesses BLE data, then it may

limit the number of permissions that it requests in order to trick the user into believing that

it is harmless. In such a scenario, the presentation of a system dialog could serve to call the

user’s attention to the fact that covert data access is being attempted. Previous studies on user

authorisation mechanisms, such as the ones used in the Android permission system, suggest that

using a system dialog the first time a resource is accessed provides the optimal point for user

decision making [153]. Our proposal effectively achieves this by raising the authorisation dialog

the first time an application issues a connectGatt request for a BLE Peripheral. If access to

the Peripheral is not in keeping with the purported functionality of the application, the user is

likely to get suspicious and deny authorisation. Of course, there exists the possibility that the

malicious application portrays itself as a BLE accessory application, possibly with numerous

features encompassing a wide variety of Peripherals; this would make it more likely for the user

to allow the application to access the Peripheral(s). Identifying malicious behaviour after access

to the BLE Peripheral has been granted (e.g., leakage of BLE data once it has been read from

a device) is outside the scope of this thesis.

7.8 Discussion

In this section, we discuss some limitations of our proposed solution and potential barriers for

adoption, and also outline possible extensions to our work.

7.8.1 Limitations

Use of external sources of information The proposed solution requires that the implementing

platform supply unique application identifiers to a component within the BLE stack. This

removes the self-contained aspect of the stack by introducing an element external to the stack.

Reliance on honesty of platform While the proposed solution enables the user to grant permis-

sions on a per-device, per-application basis, the fact that the access control checks are entirely

performed by the Multi-App platform indicates that there is implicit reliance on the integrity

and honesty of the platform. That is, there is an underlying assumption that the Multi-App

118

BLE APP LAYER SECURITY 〉 Proposed Solution 〉 Discussion

platform will apply access control checks to all applications in an unbiased manner. However,

it may be the case that a Multi-App platform that ships with its own set of applications auto-

matically authorises those applications to access any BLE peer, and only applies access control

checks to third-party applications. This would then remove some of the visibility and control

from the user. Circumventing such an issue would require a complex protocol between the BLE

device and companion application, and could be the subject of future work. For our work, we

make the assumption of an honest and fair platform.

Complexities in desktop/laptop environments The solution we have proposed is straightfor-

ward to implement on mobile operating systems, where the level of user customisation, partic-

ularly regarding the BLE stack, is minimal. However, with operating systems such as Windows

and Linux, there is a possibility that an application might use a BLE stack that is not provided

by the OS. For example, we utilise a CSR adapter with the WinUSB drivers (installed using

Zadig) on a Windows machine for a measurement study in Chapter 9. This is done manually,

with external hardware, and requires that the system Bluetooth be turned off. While it is

less likely that such a setup should exist to be exploited on normal user systems, it is still a

consideration that should be factored in when implementing the solution.

7.8.2 Potential Barriers for Adoption

Our solution involves a modification to the BLE specification, which would then necessitate

modifications to implementing devices in order to claim compliance with the specification. As

per our analysis in §7.3, this has the greatest chance of ensuring adoption throughout the BLE

ecosystem. However, there is a possibility of resistance from the Bluetooth SIG with regard to

modifying the specification.

Despite BLE being a full-stack protocol, the core specification describes only the components

below the application layer. This can lead to BLE being viewed as merely a transport-layer pro-

tocol, on top of which applications are developed, and may give rise to the view that application-

level protection is the responsibility of either platform vendors or developers.

Further, the fact that the solution requires information external to the stack (as mentioned in

§7.8.1), may also be viewed as a barrier to adoption, as the BLE stack has thus far not required

any information from implementing platforms for its operation.

7.8.3 Potential for Extension

Reduction of covert fingerprinting by apps The ability to discover all services and char-

acteristics on a BLE peer and thereby obtain a possible fingerprint for a device is a privacy

concern that has been described in literature [46]. The Bluetooth specification [Version 5.2,

Vol 3, Part G, Sections 4.4-4.6] states that such information about services and characteristics

must be readable without authentication or authorisation, which means that a malicious appli-

cation on a multi-application platform may be well placed to fingerprint the devices in the user’s

surroundings.

119

BLE APP LAYER SECURITY 〉 Proposed Solution 〉 Chapter Summary and Next Steps

Because the AAM in our solution processes all ATT/GATT requests from applications, it can

also intercept service discovery requests (the Enum requests in Figures 7.4a and 7.4b) and process

them based on the requesting application’s authorisation status. In this manner, the number

of applications that may be able to perform covert fingerprinting can be greatly reduced. We

highlight that, because of the construction of our POC in terms of intercepting connectGatt,

which precedes service enumeration, prevention of fingerprinting by unauthorised applications

is already accomplished.

Note that this does not violate the requirement in the specification in any way. The list of

services and characteristics on the peer BLE device will be readable without authentication,

including by the multi-application platform. However, this information will only be available to

applications residing on the multi-application platform if they have been authorised by the user.

We also note that this does not defeat the fingerprinting as described in [46], as there the

authors describe tracking a user by fingerprinting their BLE devices using some external device.

However, our solution can prevent a malicious application on a user-owned Multi-App device

from learning about the user via their different BLE devices.

Fine-grained access control Our solution and POC restrict application access to BLE data at

the Peripheral level. That is, an application is either allowed to access all data on a Peripheral

or none. This can be extended to enable fine-grained access control by access type (i.e., reads

or writes) or even on a per-characteristic level (we note, however, that per-characteristic access

control is inadvisable in most cases, as it would place too much decision burden on users who

may not be aware of the purpose of individual characteristics).

7.9 Chapter Summary and Next Steps

In this chapter, we have presented a modified Bluetooth Low Energy stack to solve the unau-

thorised data access vulnerability on multi-application platforms. Our solution fulfils stringent

security and system requirements, and takes into account practical considerations in its design. It

ensures protection by default, while maintaining backward compatibility with existing systems.

Concretely, no changes are required to applications or resource-constrained BLE Peripherals,

nor are changes required to existing stack layers. We have also implemented a proof-of-concept

on the Android-x86 platform to illustrate our solution and have demonstrated that the solution

prevents unauthorised data access via explicit user awareness and authorisation.

This chapter concludes our discussion on the application-level unauthorised data access vulner-

ability. The next part of this thesis presents a set of measurement studies conducted against

BLE-enabled applications, devices, and firmware, to better understand the prevalence of vul-

nerabilities within the BLE ecosystem and to aid in focusing research efforts.

120

Part III

Measurement of BLE Security and

Privacy

121

8 Functionality Distribution and

Impact Analysis via UUIDs

In this chapter, we analyse the utility of BLE UUIDs - extracted from companion mobile applica-

tions - to understand functionality distribution within the BLE ecosystem, identify vulnerabilities,

and prioritise security analyses via functionality mapping.

8.1 Introduction

The presence of a vulnerability in a BLE system may not always be cause for concern. BLE

devices can have a variety of functionalities, and the impact of exploiting a vulnerability will

not be the same across all devices. For example, an unauthorised read of a thermostat will not

have the same privacy implications as the unauthorised read of a glucometer. Writing to an

attribute that controls the intensity of a smart bulb is in no way comparable to writing to an

insulin pump. Context is therefore important.

With our mobile application analysis (Chapter 6), we found that the coarse-grained application

categories utilised on app marketplaces, and the multi-functional nature of the apps themselves,

meant that BLE-specific functionality was not easy to gauge. Therefore the impact of any

identified BLE vulnerabilities may not be immediately apparent.

In this chapter, we explore the possibility of determining the functionality of BLE devices (that

interface with mobile applications) using a novel source of information: Universally Unique

Identifiers. UUIDs underpin data transactions in BLE and a single UUID will be associated

with a single and specific piece of data. Where a BLE Peripheral implements a number of

services, the set of UUIDs corresponding to the services and associated characteristics will be

representative of the Peripheral’s functionality. We utilise BLE-enabled Android APKs as our

primary source for UUIDs (owing to the ease of obtaining and analysing APKs) and present a

framework for the extraction, classification and functionality mapping of UUIDs. We further

discover that some UUIDs can also provide useful indications regarding potential security issues.

We provide some background on the use of UUIDs within BLE in §8.2. We describe our UUID

analysis framework, BLE-GUUIDE [31], in §8.3. The functionality distribution of BLE devices, as

gleaned from performing functionality mapping against a dataset of 17,000+ Android APKs, is

presented in §8.4. Observations are made regarding incorrect or anomalous use of UUIDs in §8.5.

We discuss potential security considerations and describe security- and functionality-prioritised

case studies in §8.6. Limitations of our technique are discussed in §8.7.

122

MEASUREMENT 〉 UUID Analysis 〉 UUIDs as used in Bluetooth Low Energy

Related work Functionality mapping and the exploration of functionality distribution specifi-

cally within the BLE ecosystem have not been widely studied, although identification of device

name and manufacturer (which could provide indications as to device functionality) from BLE

advertisements has been explored in [69, 154]. However, device identification and classification

for other types of IoT devices has been the subject of numerous analyses [155–159]. Most of

these works employ machine learning techniques against network traffic. Some of the studies try

to map traffic to a specific brand and model of device, while others classify the traffic at a higher

level (e.g., as mobile phone, printer, etc.). These works are not directly applicable to BLE as

they utilise TCP/IP traffic obtained by sniffing packets transmitted over Wi-Fi (or occasionally

Ethernet). While BLE traffic can also potentially be sniffed over the wireless interface, it is

somewhat more complicated to do so for multiple devices at a time due to the multiple channels

and the frequency hopping employed by BLE.

The use of BLE UUIDs as a source of information has only recently begun to be explored. Zuo

et al. [66] and Celosia et al. [46] explored the possibility of fingerprinting (and thereby tracking)

BLE devices by using their UUIDs. To our knowledge, we are the first to use UUIDs as a data

source for BLE functionality distribution analysis, or as indicators of vulnerabilities.

8.2 UUIDs as used in Bluetooth Low Energy

As described in §2.1.3.3, BLE organises and stores data in the form of attributes, where each

attribute, i.e., each service, characteristic and descriptor, is identified by a UUID. The Bluetooth

Special Interest Group has defined some standard UUIDs with specific meanings, which cover

a variety of behaviours. For example, 0000180D-0000-1000-8000-00805F9B34FB is the SIG-

defined UUID assigned to the Heart Rate service; 00002A19-0000-1000-8000-00805F9B34FB is

the UUID assigned to the Battery Level characteristic. This means that these UUIDs can be

tied to the defined behaviour. We refer to this type of UUID, i.e., one that has SIG-defined

functionality, as an adopted UUID and the associated service/characteristic as an adopted ser-

vice/characteristic in this thesis. Note that adopted services are, for the most part, optional

and dependent on the use case of the BLE device. Two exceptions are the GATT Service and

the GAP Service, which are mandatory [160]. With the remaining services and characteristics,

there is no compulsion to use them, and if interoperability is not needed, then a developer may

well choose not to do so. The Bluetooth specification allows for the creation of custom services

and characteristics, where the developer has full control over the type and format of data. These

services and characteristics will require custom UUIDs.

All UUIDs defined by the SIG are derived from the Base UUID 00000000-0000-1000-8000-

00805F9B34FB [161]. The range of 232 values, created by modifying the first 32 bits of the

Base UUID (i.e., of the form XXXXXXXX-0000-1000-8000-00805F9B34FB), are reserved by

the SIG. At present, all SIG-specified BLE UUIDs are defined by modifying only 16 bits of

the Base UUID (of the form 0000XXXX-0000-1000-8000-00805F9B34FB) and are commonly

referred to by only the 16-bit values. Therefore, the Heart Rate service UUID is often given as

simply 0x180D and the Battery Level characteristic as 0x2A19.

123

MEASUREMENT 〉 UUID Analysis 〉 Functionality and Security Measurement Framework

UUIDs within the SIG-reserved range should not be defined by developers for their own use,

although they can utilise the services and characteristics defined by the SIG [160]. That is, a

custom UUID of the format XXXXXXXX-0000-1000-8000-00805F9B34FB should not be defined

by developers. Any 128-bit value outside the Bluetooth SIG reserved range may be used by

developers to create custom UUIDs for their own services and characteristics. To obtain a

custom UUID within the reserved range, developers need to pay a fee to the SIG, which then

assigns a member UUID [162].

8.3 A Framework for BLE Functionality and Security Measurement

Our goal is to obtain information regarding BLE-specific functionality from within APKs, such

that the impact of BLE vulnerabilities can be determined and security analyses can be priori-

tised. We hypothesise that BLE UUIDs are a potential source of such information. However, an

APK can have functionality apart from BLE interactions and even UUIDs can be used for non-

BLE purposes within an APK. We therefore developed BLE-GUUIDE, a framework with specific

mechanisms to extract and analyse only the information that is actually related to BLE.

BLE-GUUIDE comprises three main components:

1. UUID Extractor & Classifier: extracts BLE UUIDs from Android APKs and classifies

them according to our custom categorisation.

2. Functionality Mapper: identifies BLE-relevant functionality within an APK.

3. Security Analyser: identifies vulnerabilities from raw UUIDs and performs an impact-

centric prioritisation of security issues based on the outputs of the Functionality Mapper

(also making use of findings and tools from Chapters 5 and 6).

§8.3.1- §8.3.3 describe the operation of each of these components in more detail.

8.3.1 UUID Extractor and Classifier

The functionality and security analyses performed by our framework both use BLE UUIDs as

the starting point. We first extract UUIDs from an APK (§8.3.1.1) and then perform a high-level

classification based on public knowledge of functionality (§8.3.1.2).

8.3.1.1 UUID Extraction∗

In order to extract BLE-specific UUIDs from APKs, each APK within the dataset is analysed

for standard API calls for BLE Peripheral interaction (e.g., getService, getCharacteristic,

setServiceUuid). An adapted version of the tool BLEScope [66] is used to perform UUID

extraction starting from such API calls. The final output is stored as a JSON file, containing

the UUIDs as well as the method(s) within which the UUID was called, i.e., utilised.1

1This component was developed by collaborators. Sections within this chapter that are the contribution of
co-authors are denoted with an asterisk in the section title (∗).

124

MEASUREMENT 〉 UUID Analysis 〉 Functionality and Security Measurement Framework

8.3.1.2 UUID Classifier

We classify UUIDs into two broad categories: Known Functionality UUIDs or Unknown Func-

tionality UUIDs, depending on whether or not the functionality provided by them is publicly

known. For this, we utilise the Bluetooth SIG as our primary source of information, as the SIG

describes all adopted service and characteristic UUIDs in terms of their functionality. We also

use UUID information from BLE chipset manufacturers and device developers when they are

uniquely defined and publicly documented.

Known Functionality UUIDs The Bluetooth SIG defines a number of adopted services and

characteristics that can be used by device manufacturers to achieve functionality such as insulin

delivery (0x183A) or user data gathering (0x181C), among others. In addition to this, many

developers provide information within SDKs or other documentation about the custom services

and characteristics used by their devices. We consider the UUIDs representing these services and

characteristics as Known Functionality UUIDs or KFUs. That is, they have specific assigned

meaning in the context of BLE that we can derive from publicly available information.

Our KFU database includes all the adopted services and characteristics defined by the Bluetooth

SIG. We also include SIG-assigned member UUIDs (i.e., those assigned to members of the

Bluetooth SIG upon payment of a fee), but only when unique functionality is associated with

them. In addition, we include UUIDs that are uniquely defined and publicly documented by BLE

chipset manufacturers or device developers. An example of these would be UUIDs defined by

chipset vendors to enable Device Firmware Updates (DFU). For device developers, we focus on

BLE devices that can be used without software modification by several applications. The most

prominent example of this would be BLE beacons. We obtain such KFUs from manufacturer

websites or, in a few cases, from developer sites (but only if multiple sites cite the UUIDs as

belonging to the same device, and no sites assign different functionality to them).

Unknown Functionality UUIDs We consider UUIDs that are not classified as KFUs to be Un-

known Functionality UUIDs or UFUs. UFUs are typically generated by BLE device developers

when they are producing BLE devices and their corresponding applications. These UUIDs are

expected to be randomly generated, to avoid collisions, and there is no formal or reliable source

of information that is publicly available regarding them. Note that UFUs are always custom

UUIDs, while KFUs can be adopted or custom. To put it another way, all adopted UUIDs are

KFUs, whereas a custom UUID can be a KFU or a UFU depending on whether or not it has

publicly-defined functionality.

Categorising BLE UUIDs The Classifier separates extracted UUIDs into KFUs and UFUs,

where KFUs are used for deriving security implications, as described in §8.3.3.1, as well as for

validating our framework before it is applied to UFUs.

125

MEASUREMENT 〉 UUID Analysis 〉 Functionality and Security Measurement Framework

• Medical

– Measurement

– Intervention

• Fitness

– Activity Measurement

– Body Metrics

• Device Mgmt

– Device Info

– DFU

– Bootloader

– Softdevice Mgmt

– Battery

– RSSI

– Txpower

– Connection Mgmt

– Advertising

– Scanning

– Alerts

– Factory Reset

– Reboot

• Accessories

– Audio Visual

– Input Output

– Gaming

– Other

• Environment

– Sensors

• Security

– Access Control

– Authentication

• Devices

– Personal Comms

– Office Mgmt

• Network

– Mesh

– Proxying

– Configuration

• Communications

– File Transfer

– UART

– Internet Protocol

– SPP

• User Information

– PII

• Smart Home

– Device Mgmt

– Environment Mgmt

• Transport

– Personal Transport

– Generic Transport

• Locnav

– Positioning

– Beacon

"network ":{

"mesh ":{

"mesh ":{

"blacklist ":[

"meshing"

],

"meaning ":[],

"children ":{}

}

},

"proxying ":{

"proxying ":{

"blacklist ":[],

"meaning ":[],

"children ":{}

}

},

"configuration ":{

"router ":{

"blacklist ":[],

"meaning ":[

"router.n.02"

],

"children ":{}

}

}

}

Figure 8.1: Categories used for functionality mapping, with sample entry structure.

8.3.2 Functionality Mapper

The functionality mapper identifies the BLE-relevant functionality contained within an APK.

This is thereafter used to derive a picture of the overall BLE functional landscape as well as to

prioritise security analyses.

Building a database of functional categories In order to derive BLE functionality, we first

build a database of possible functional categories, to be tested against. To build the database,

we manually analysed several hundred APKs, their metadata, Google Play descriptions, and

manufacturer websites, looking for the specific functionality of the BLE device. Thus, our

categories represent the different functionalities that may be available on a BLE device. For each

category, we provide a list of related words (e.g., microphone, camera, etc., for an audio visual

category). As a word can have several meanings (e.g., a “speaker” could be a loudspeaker or a

speaker at a conference), we map each word to its corresponding WordNet definition [163].

The obtained functional categories are grouped according to their semantics, e.g., the high-

level category security includes two sub-categories: access control and authentication. Overall,

we have 13 categories and 40 sub-categories. Figure 8.1 depicts these categories and provides

126

MEASUREMENT 〉 UUID Analysis 〉 Functionality and Security Measurement Framework

. c l a s s La/b/c ;
. f i e l d HR UUID: Ljava / u t i l /UUID;

. . .

. c l a s s Lx/y/z ;
. f i e l d IRRELEVANT FIELD: Lb/c/d ;

. method heartRateMeasuringMethod ()V
/∗ This method c a l l s HR UUID, so the method name , and s t r i n g s & f i e l d s

with in the method , w i l l be cons ide r ed when mapping f u n c t i o n a l i t y f o r
the HR UUID ∗/

. . .
s t r i n g ”Read heart ra t e from dev i ce ”
i g e t La/b/c;−>HR UUID: Ljava / u t i l /UUID;
. . .

. end method

. method irre levantMethodInSameClass ()V
/∗ This method does not c a l l HR UUID, and w i l l not be used f o r mapping i t s

f u n c t i o n a l i t y ∗/
. . .
i g e t Lx/y/z;−>IRRELEVANT FIELD: Lb/c/d ;
. . .

. end method

Figure 8.2: Proximity-based approach of UUID Mapper.

the database structure for one category (“network”). The complete database structure, with

descriptions, is provided in our code repository.

8.3.2.1 Mapping UUIDs to Functionality

We explore the possibility of using the method signatures, field names and logging strings defined

within an APK - which may provide clues as to the APK’s, but also in some cases specifically

to a single UUID’s, functionality - for our functionality mapping.

Our framework uses Androguard [111] to extract all strings, fields and method signatures from

an APK. Each of these elements is individually tested against the functional category database,

to obtain element-wise lists of functional category assignments, all of which are then combined to

get a master list of possible categories. With method signatures, we found that the combination

of the class and method names produced the most accurate results. For example, for a method

with signature Lcom/a/b/classA;->methodX(descriptor), we extract the classA and methodX

components.

Using the entire set of elements found within an application would result in significant false

positives. Our framework overcomes this by applying a proximity-based approach and consid-

ering only those methods that actually call the UUID. That is, it only considers the class and

method names, as well as the fields/strings that are present within the method, for methods

that actually utilise a UUID. This has been depicted with an artificial example in Figure 8.2.

Evaluation of the UUID Mapper KFUs have known functionality that we can easily ascertain.

We were able to manually classify 376 KFUs against our keyword set, and these were used as

127

MEASUREMENT 〉 UUID Analysis 〉 Functionality and Security Measurement Framework

ground truth against which to validate our framework. That is, we use the UUID Mapper to

classify KFUs as if they were UFUs and then compare the obtained results against our manually

annotated validation dataset. Note that the classification is on a per-UUID basis, not for a device

as a whole, and therefore may not reflect the overall device functionality. For example, not all

UUIDs used with a beacon device will necessarily have beacon-related functionality. Some may

be related to signal strength, firmware updates, etc.

Given that three different sources of information (i.e., strings, fields and API method names) feed

into the UUID Mapper, each of which will generate its own assignments, we opted to consider

only those instances where the combined list consists of (possibly multiple instances of) a single

unique category-subcategory. This technique provided an accuracy of 78% when compared to

the alternative of taking a majority vote over all assigned category-subcategory pairs (which

gave an accuracy of 74%). Here, accuracy was computed as matches
matches+mismatches .

Coverage obtained by UUID Mapper At a later stage (as described in §8.4.1.2), we observed

that the UUID Mapper was able to map functionality for ∼18% of the available UFUs. This

is a fairly low coverage and could have been due to a lack of logging or user interface strings,

and also due to obfuscation techniques being applied to class, method and field names. Due

to the poor coverage achieved via UUID mapping, we explore additional sources of information

regarding BLE functionality: the SIG Product Database and Google Play. These are described

in §8.3.2.2 and §8.3.2.3, respectively. They are described at a high level in this thesis, as they

were not my contribution.

8.3.2.2 SIG Processor∗

The Bluetooth SIG publishes details of qualified/declared components that incorporate the

Bluetooth technology. If a specific product version is known, then searching for the product

within the SIG Product Database would probably result in the most accurate description of BLE-

specific functionality within the product (assuming such a description was provided). However,

in the absence of product version information, we utilise application and library names.

For each APK under consideration, we compile the list of methods within which BLE UUIDs have

been used. From these methods, we extract the main package name (i.e., first component after

location domain names). For instance, for the call com.exampleVendor.BLEManager.getHR()

we extract exampleVendor.2 This is taken to be the developer or library-specific part of the

package name, and is used to perform an automated search of the SIG Product Database.3 If

more than 20 items are returned, the term is considered to be too generic and is skipped. For

each item returned, we get the product name and marketing description. If a functional category

keyword is identified within the product name or description, we execute a Natural Language

Processing (NLP) algorithm to identify the meaning of the word within the context of the text.

If the meaning matches a WordNet definition within our database, we add the category to a list.

2This is the same technique as that employed in §6.6.2 and contains the same limitations.
3https://launchstudio.bluetooth.com/Listings/Search

128

https://launchstudio.bluetooth.com/Listings/Search

MEASUREMENT 〉 UUID Analysis 〉 Functionality and Security Measurement Framework

Evaluation of the SIG Processor Because there is no ground truth available for SIG data,

a manual approach was used for evaluation. We perform a manual verification of 50 libraries

extracted from our dataset that had a single category mapping. For each of the cases, we inspect

the SIG product results that the library produces and verify that the resulting categories map

to the text describing the products (i.e., that they talk about the correct kind of BLE device).

We obtained an accuracy of 78% for the SIG Processor via our manual evaluation.

8.3.2.3 Play Processor∗

Descriptions on Google Play provide overall information about an APK’s functions, including

its BLE functionality, which can serve to augment the other data. We use Play descriptions

as an input to our Functionality Mapper to determine the functionality of an application. For

each APK, we download the Google Play description. After normalising, translating (if non-

English), tokenising and stemming the app description, we iterate over it looking for appearances

of the keywords defined in our functional category database. Such keywords, along with the app

description, are processed using the NLP algorithm, similar to our approach for SIG categories.

Evaluation of the Play Processor Similar to SIG data, there is no ground truth when consid-

ering BLE-specific functionality within Play data either. We therefore manually analysed 100

randomly selected APKs, to verify that the classification offered by the Play Processor is cor-

rect. For this, we manually inspect the app description available in Google Play including any

provided screenshots, and check the developer website for further information about the app.

We glean the BLE-specific functionality from these sources and test it against the categories

output by the Play Processor. This produced an accuracy of 62% across the 100 APKs. The

lower accuracy obtained via Play descriptions is expected in some ways because, as we have

observed before, the description will not focus solely on the BLE functionality, but will cover

the functionality of the app as a whole.

8.3.2.4 Combined Functionality

We combine the information from UUIDs and the results from the NLP-processed SIG and

Play descriptions to map APKs to BLE device functionalities. Our three methods work at

different levels of granularity. The UUID Mapper assigns functionalities directly to UUIDs

but the SIG and Play outputs are at the library/application level. Because of this, we only

consider UUIDs that have been assigned a single functional category, but accept when the

Google Play descriptions and the SIG product search return several functionalities (i.e., firmware

update, heart rate measurement, notifications, etc.). Owing to the lower accuracy obtained from

processing Google Play descriptions, we focus more on the results obtained from the other two

sources.

8.3.3 Security Analyser

The Security Analyser component within our framework performs two types of security analy-

sis/prioritisation: it identifies security indications from KFUs (§8.3.3.1), and prioritises security

analyses for UFUs (§8.3.3.2).

129

MEASUREMENT 〉 UUID Analysis 〉 Functionality and Security Measurement Framework

8.3.3.1 Identification of Security Indications from KFUs

The very presence of certain UUIDs within a BLE device can sometimes be indicative of security

vulnerabilities, when the functionality of the UUID is known. That is, some KFUs are associated

with inherent vulnerabilities. The Security Analyser identifies such instances for two types of

KFUs: adopted UUIDs and DFU UUIDs.

Adopted UUIDs As we have described in Chapter 5, the Bluetooth SIG defines a large number

of services and characteristics, covering domains from environment to health and fitness. For all

SIG-defined characteristics, including health and fitness, and excluding only those concerning

insulin delivery, the maximum security mandated in the specifications at present is protection

via the standard Bluetooth pairing mechanism. If the specification is adhered to, then protection

at higher layers will not be implemented for these characteristics. However, we have shown that

pairing/bonding alone is not sufficient protection when the data is accessed by apps on multi-

application platforms such as Android if there is no application layer security. Therefore, by

default, the vast majority of attributes with specification-compliant adopted UUIDs (specifically,

characteristics) will be vulnerable to unauthorised data access.

Absent or insecure DFU A process for updating firmware is often necessary if bugs or security

issues are discovered after a device has been released into the market. Some BLE chipsets

allow for over-the-air firmware updates, i.e., Device Firmware Update (DFU). This process

enables a BLE peripheral device to have its firmware modified by receiving updated firmware

from a connected BLE application. However, if the update process itself is not secure, the

BLE device would be vulnerable to unauthorised firmware modifications. Different chipset

vendors implement different DFU procedures, some of which have security mechanisms built-in

by default, some that require configuration by developers in order to be secure, and some that

have no security options. Each of these DFU procedures use and therefore can be identified by

a specific set of UUIDs. Table 8.1 lists the DFU UUIDs by chipset vendor, with an indication

as to whether the procedure has security that is built-in, developer-dependent or unavailable.

The presence of DFU UUIDs that are associated with processes that have known issues could

indicate a vulnerability to malicious firmware updates.

8.3.3.2 Security Prioritisation of UFUs

While understanding security implications and their impact is fairly straightforward with KFUs,

doing the same for UFUs requires greater effort and, in the general way, requires a case-by-case

analysis. If no other information was provided, this would be a monumental task, given the

potentially large number of custom UUIDs within applications. To focus our analysis, we first

determine sensitive BLE data via functionality mapping (as described in §8.3.2). We then

check, using our BLECryptracer tool (see Chapter 6), whether the BLE data has any app-layer

security implemented. If no such protection is found, the sensitive BLE data is identified as

being vulnerable to unauthorised reads and writes.

130

MEASUREMENT 〉 UUID Analysis 〉 Functionality Measurement of the BLE Ecosystem

Table 8.1: Applications containing firmware update UUIDs.

Manufacturer F/W Update UUID(s) Secur.

Nordic Legacy [164] 0000153X-1212-EFDE-1523-785FEABCD123 (X=0-4) ×
Nordic Secure [145] 0000FE59-0000-1000-8000-00805F9B34FB X

8E400001-F315-4F60-9FB8-838830DAEA50 X

8EC9000X-F315-4F60-9FB8-838830DAEA50 (X=1,2) X

8EC90003-F315-4F60-9FB8-838830DAEA50 X

8EC90004-F315-4F60-9FB8-838830DAEA50 X

Texas Instr. [165,166] F000FFXX-0451-4000-B000-000000000000 D

(XX=C0,C1,C2,C3,C4,C5,D0,D1)

Qualcomm [147,167] 00001016-D102-11E1-9B23-00025B00A5A5 D

0000110X-D102-11E1-9B23-00025B00A5A5 (X=0,1,2) D

Silicon Labs [168] 1D14D6EE-FD63-4FA1- BFA4-8F47B42119F0 D

F7BF3564-FB6D-4E53-88A4-5E37E0326063 D

984227F3-34FC-4045-A5D0-2C581F81A153 D

4F4A2368-8CCA-451E-BFFF-CF0E2EE23E9F D

4CC07BCF-0868-4B32-9DAD-BA4CC41E5316 D

25F05C0A-E917-46E9-B2A5-AA2BE1245AFE D

Cypress [146] 0006000X-F8CE-11E4-ABF4-0002A5D5C51B (X=0,1) D

NXP [144] 003784CF-F7E3-55B4-6C4C-9FD140100A16 X

013784CF-F7E3-55B4-6C4C-9FD140100A16 X

ST BlueNRG [169] XXXXXXX0-8506-11E3-BAA7-0800200C9A66 D

(XXXXXXX=8A97F7C,122E8CC,210F99F,2691AA8,2BDC576)

ST STM32WB [170] 0000FE20-CC7A-482A-984A-7F2ED5B3E58F X

0000FEYY-8E22-4541-9D4C-21EDAE82ED19 (YY=11,22,23,24) X

× = DFU with known security issues. D = DFU with developer-dependent security. X = DFU with some
security by default.

8.4 Large-Scale Functionality Measurement of the BLE Ecosystem

In this section, we present the results of applying BLE-GUUIDE against a dataset of 17,243 Android

apps obtained from Google Play.4 By executing the UUID Extractor against our dataset, we

obtained 12,352 unique, valid UUIDs from 16,197 APKs (i.e., valid UUIDs could not be extracted

from 1,046 APKs). Ultimately, 470 KFUs and 11,882 UFUs were obtained, with 5,735 APKs

having only KFUs, 1,368 APKs having only UFUs, and 9,094 APKs having both.

We describe the functionality gleaned from the three data sources (UUIDs, SIG data and Play

data) in §8.4.1 through §8.4.3. The combined BLE-relevant functionality for APKs is described

in §8.4.4. We present additional observations regarding misuse of UUIDs in §8.5.

8.4.1 Functionality Mapping with UUID Data

Functionality derivation from UUIDs occurs directly for KFUs and via the UUID Mapper for

UFUs. We first describe the two elements individually and then present a holistic view of the

results of our functionality mapping in Table 8.3.

4This is a different dataset to that described in Chapter 6.

131

MEASUREMENT 〉 UUID Analysis 〉 Functionality Measurement of the BLE Ecosystem

Table 8.2: Prevalence of adopted BLE services. ↓=Downloads in thousands.

Service Apps ↓ Service Apps ↓
Battery 1749 319015 Heart Rate Measure. 1672 173644

Device Information 1561 298719 GAP 898 127936

Common* 608 132132 Immediate Alert 371 24847

GATT 292 23979 Blood Pressure 181 115825

Glucose 158 5787 Link Loss 158 17162

Current Time 151 105716 Cycl. Speed&Cadence 141 25657

Body Composition 113 1561 Run. Speed&Cadence 110 5155

Health Therm. 100 2682 Tx Power 93 106507

Weight Scale 90 103237 Pulse Oximeter 69 720

User Data 63 811 Alert Notification 61 3516

Environ. Sensing 56 196 Cycling Power 54 11582

Transport Discovery 25 742 Cont. Glucose Mon. 23 30

Fitness Machine 10 691 HID 10 101

Location and Nav. 10 211 IP Support 7 17

Automation IO 6 7 Phone Alert Status 6 17

Scan Parameters 6 101011 Object Transfer Service 4 1

Indoor Positioning 3 0 Mesh Provisioning 3 1

Mesh Proxy 3 1 Next DST Change 3 10

Ref. Time Update 3 5 Bond Management 2 0

HTTP Proxy 1 0 Insulin Delivery 1 1

Unassigned** 105 3349

*UUIDs that have been assigned to multiple services. **UUIDs that have been defined but apparently not
assigned to any service.

8.4.1.1 KFU Categorisation Results

We describe some of our observations regarding the most prevalent KFUs in this section.

Adopted UUIDs Adopted UUIDs were the most prevalent of the KFUs extracted from our

dataset. This is unsurprising given that they make up a significant proportion of KFUs overall.

We found that 12,289 of the 16,197 APKs contain adopted UUIDs. Table 8.2 presents the

number of APKs that contain adopted UUIDs, grouped according to the services defined by the

SIG, along with their cumulative download counts. The table shows that 3 of the top 10 most

prevalent UUIDs are related to user health and fitness, of which heart rate-related services are

the most common. This may reflect one of the most popular consumer applications of BLE -

fitness trackers - which typically measure a user’s heart rate. In fact, the distribution of these

UUIDs across the various categories could provide some insights into the distribution of services

across the general BLE eco-system. To gauge the popularity of the various applications, we

analyse approximate download counts from Google Play, which show that 3 of the top 10 most

downloaded (adopted) services are also related to user health.

Beacons Coming second to adopted UUIDs in prevalence were beacon UUIDs (10% of all tested

APKs contained UUIDs with beacon functionality). As we have mentioned before, beacons are

BLE-enabled transmitters that operate predominantly via advertisements. These advertisements

contain a UUID, which a nearby listener (such as a mobile phone) can pick up, which normally

132

MEASUREMENT 〉 UUID Analysis 〉 Functionality Measurement of the BLE Ecosystem

triggers some location-based services. The prevalence of beacon UUIDs, with a cumulative

download count of over 28 million for the containing apps, shows the popularity and potential

of proximity-based marketing and services.

DFU A small percentage of APKs contained references to known DFU UUIDs. As these may

have security implications, we discuss the exact ramifications of this, as well as of the individual

UUIDs that were identified, in §8.6.1.

8.4.1.2 UFU Categorisation Results

We applied the UUID Mapper to the 11,882 UFUs extracted from our APK dataset, considering

only unique UFU-methods pairs. This produced 25,157 UFU-methods pairs, out of which the

UUID Mapper assigned a single unique category to 4,622 UFU-methods pairs. Examining this

on a per-UFU basis, a single unique category-subcategory was assigned for 2,174 UFUs from

our set of 12,195 UFUs (∼18% coverage).

A note on localised strings The original version of our framework did not use localised strings

for UUID functionality mapping. A custom taint analysis script was used at a later stage to

extract localised text from APKs. However, we found that very few APKs contained localised

strings within the BLE data access methods (only 172 APKs contained such strings). A manual

analysis revealed that most of the strings did not provide information regarding potential BLE

functionality. Localised strings from only 50 APKs revealed useful information. Further, because

class/method names were already used in functionality mapping, we found that only 47 methods

(and the UUIDs therein) would have had functionality mapped solely due to localised strings,

of which only 32 were assigned a unique category-subcategory.

8.4.2 Functionality Mapping with SIG Data∗

The SIG functionality mapping component produced a very limited number of matches (22% in

terms of apps but only 6.3% in terms of downloads). A manual inspection of the results showed

that many of the companies that were being queried had incomplete information in the SIG

product database about their products, e.g., only the codename for the device with no further

information about it. Also, the type of names used in some of the cases made it difficult to map

some of the libraries to the actual developers. As an example, we extracted shenzhen as one of

our possible library names. However, Shenzhen is a well known location of chip manufacturers

and a search in the Bluetooth SIG database reveals 1,210 companies with Shenzhen in their

name. Most of the functionality matches we were able to achieve using the SIG Processor were

related to location and fitness.

8.4.3 Functionality Mapping with Play Data∗

Using our NLP processor over Google Play descriptions we were able to extract functional

categories for 11,734 apps, accounting for 97.1% of the overall downloads. This makes the

extraction of functionality via Play descriptions the method with the most coverage. However,

as observed in §8.3.2.3, this method is also likely to be less accurate than the other two.

133

MEASUREMENT 〉 UUID Analysis 〉 Functionality Measurement of the BLE Ecosystem

We observed that most of the apps (that were assigned a category) were assigned three functional

categories when using information from Google Play. This is expected because, as we observed

earlier, a BLE device may have different services each with different functionality and the Play

description may indicate all such functionalities. For example, in the case of wearable devices,

the Play descriptions will map to both Medical and Fitness categories because of their access to

heart rate and activity data.

8.4.4 APK Categorisation Results∗

We produce the final BLE-relevant functionality categorisation of an application by joining

together the results produced by each of the sources (UUIDs, Google Play and SIG database).

Note that the presence of a KFU automatically assigns its functionality to its app, while the

presence of a UFU assigns its functionality if and only if all copies of the UFU found within

the app are assigned to the same category across the whole dataset of UUIDs. Using all three

information sources, we were able to assign BLE-specific functionality for 87.7% of the analysed

apps. Our results are shown in Table 8.3. From these, we make the following observations:

Fitness and Medical are not the most popular BLE devices While there are more apps

for medical and fitness related functionalities than any other category, the two most popular

categories in terms of downloads are audio-visual and positioning. Devices within audio-visual

include cameras, microphones but also speakers. For cameras, BLE is normally used to enable

remote control of the device. For audio systems it is normally used as a wake up mechanism,

but not to transmit music. The possibility for transmitting audio over BLE been added very

recently into the Bluetooth specification as LE Audio [171] and we expect this to grow in the

future.

Bluetooth is widely used for location-related tasks During our initial dataset filtering, we

identified 50k+ apps that scanned for BLE advertisements but didn’t connect to them. This, in

addition to the fact that 16% of app downloads have some location-related functionality, point

to widespread use of BLE as an additional method to incorporate location-tracking capabilities

within applications. This is likely due to the very fine-grained indoor location tracking that

BLE enables, via beacon technology.

Developers define custom UUIDs even when SIG-defined UUIDs exist Many applications

use attributes with custom UUIDs even for functionalities that have already been defined by the

official BLE specification. Although this means that the BLE devices will only able to function

with their own application (meaning the user has less flexibility in their choice of apps), this

may help protect against cross-application attacks, such as those described in Chapter 5, if

application-layer security is applied to such attributes.

134

M
E

A
S

U
R

E
M

E
N

T
〉

U
U

ID
A

n
alysis

〉
F

u
n

ction
ality

M
easu

rem
en

t
of

th
e

B
L

E
E

cosystem

Table 8.3: Results of the functional categorisation of applications within the BLE ecosystem. ↓ = Downloads in millions

Known Funct.UUIDs Play Processor SIG Processor UUID Mapper Total
Category Subcategory Apps % ↓ % Apps % ↓ % Apps % ↓ % Apps % ↓ % Apps % ↓ %
Medical Measurement 1915 8.2 198.3 7.1 4287 16.6 420.2 4.2 287 6.4 8.2 1.7 272 3.4 22.1 1.8 5031 9.0 541.2 3.9

Intervention 1 0.0 0.0 0.0 39 0.2 4.6 0.0 7 0.2 0.0 0.0 0 0.0 0.0 0.0 47 0.1 4.6 0.0
Fitness Activity measmnt. 198 0.8 36.1 1.3 4487 17.4 1302.6 13.0 393 8.8 136.0 28.3 499 6.3 243.3 19.8 5059 9.1 1623.6 11.8

Body metrics 147 0.6 105.8 3.8 1549 6.0 87.4 0.9 14 0.3 10.8 2.2 33 0.4 0.8 0.1 1643 2.9 190.3 1.4
Security Access control 52 0.2 0.1 0.0 726 2.8 40.8 0.4 115 2.6 10.4 2.2 63 0.8 3.7 0.3 944 1.7 54.4 0.4

Authentication 2390 10.2 41.1 1.5 426 1.7 54.1 0.5 17 0.4 0.1 0.0 314 4.0 25.6 2.1 3103 5.6 109.3 0.8
Location Positioning 13 0.1 0.2 0.0 2193 8.5 2139.2 21.3 2418 53.9 27.8 5.8 5 0.1 0.0 0.0 4285 7.7 2159.6 15.7

Beacon 2382 10.2 28.0 1.0 371 1.4 11.0 0.1 20 0.4 0.1 0.0 1721 21.7 26.3 2.1 2849 5.1 43.0 0.3
Device mgmt. Device info 4693 20.1 346.1 12.4 230 0.9 143.3 1.4 2 0.0 0.1 0.0 150 1.9 27.2 2.2 4936 8.9 498.7 3.6

DFU 604 2.6 136.6 4.9 1420 5.5 247.7 2.5 9 0.2 0.2 0.0 2831 35.7 183.8 15.0 4480 8.0 531.8 3.9
Bootloader 0 0.0 0.0 0.0 6 0.0 0.6 0.0 0 0.0 0.0 0.0 14 0.2 0.3 0.0 20 0.0 0.9 0.0
Softdevice 0 0.0 0.0 0.0 2 0.0 0.6 0.0 7 0.2 10.6 2.2 0 0.0 0.0 0.0 9 0.0 11.2 0.1
Battery 4125 17.7 354.8 12.7 965 3.7 161.2 1.6 1 0.0 0.0 0.0 399 5.0 83.9 6.8 5153 9.2 521.3 3.8
RSSI 3 0.0 0.0 0.0 28 0.1 1.6 0.0 0 0.0 0.0 0.0 58 0.7 1.3 0.1 88 0.2 2.9 0.0
TX Power 2509 10.7 135.6 4.9 13 0.1 0.0 0.0 8 0.2 0.0 0.0 15 0.2 1.0 0.1 2543 4.6 136.7 1.0
Connection mgmt. 84 0.4 11.2 0.4 307 1.2 231.5 2.3 0 0.0 0.0 0.0 505 6.4 353.5 28.8 876 1.6 493.5 3.6
Advertising 2408 10.3 28.0 1.0 7 0.0 0.1 0.0 0 0.0 0.0 0.0 0 0.0 0.0 0.0 2411 4.3 28.0 0.2
Scanning 6 0.0 101.0 3.6 3 0.0 0.0 0.0 1 0.0 0.0 0.0 0 0.0 0.0 0.0 8 0.0 101.0 0.7
Alerts 467 2.0 126.5 4.5 1221 4.7 111.7 1.1 16 0.4 1.6 0.3 87 1.1 12.5 1.0 1638 2.9 237.4 1.7
Factory reset 65 0.3 0.1 0.0 9 0.0 1.0 0.0 0 0.0 0.0 0.0 0 0.0 0.0 0.0 74 0.1 1.1 0.0
Reboot 1 0.0 0.0 0.0 10 0.0 0.1 0.0 5 0.1 0.1 0.0 15 0.2 1.0 0.1 31 0.1 1.2 0.0

Transport Personal 0 0.0 0.0 0.0 82 0.3 2.8 0.0 0 0.0 0.0 0.0 0 0.0 0.0 0.0 82 0.1 2.8 0.0
Generic 0 0.0 0.0 0.0 1023 4.0 90.6 0.9 33 0.7 0.1 0.0 29 0.4 1.8 0.1 1050 1.9 90.7 0.7

Smart home Device mgmt. 0 0.0 0.0 0.0 827 3.2 199.3 2.0 39 0.9 4.0 0.8 205 2.6 23.2 1.9 1051 1.9 202.8 1.5
Environment mgmt. 0 0.0 0.0 0.0 94 0.4 117.7 1.2 110 2.5 1.1 0.2 37 0.5 0.3 0.0 233 0.4 119.0 0.9

Environment Sensors 118 0.5 10.5 0.4 1219 4.7 37.5 0.4 82 1.8 101.8 21.2 86 1.1 102.4 8.3 1458 2.6 252.2 1.8
Devices Office mgmt. 0 0.0 0.0 0.0 122 0.5 41.9 0.4 15 0.3 12.1 2.5 143 1.8 0.9 0.1 265 0.5 53.8 0.4
Accessories Audio visual 0 0.0 0.0 0.0 2682 10.4 2697.9 26.9 483 10.8 138.7 28.9 58 0.7 1.5 0.1 3081 5.5 2706.7 19.7

I/O 10 0.0 0.1 0.0 116 0.5 138.0 1.4 22 0.5 0.1 0.0 7 0.1 0.1 0.0 152 0.3 138.3 1.0
Gaming 0 0.0 0.0 0.0 679 2.6 1439.3 14.3 5 0.1 0.0 0.0 2 0.0 0.1 0.0 683 1.2 1439.3 10.5
Other 0 0.0 0.0 0.0 391 1.5 166.2 1.7 258 5.8 15.7 3.3 58 0.7 102.4 8.3 691 1.2 182.0 1.3

Network Mesh 3 0.0 0.0 0.0 91 0.4 3.8 0.0 78 1.7 0.5 0.1 100 1.3 0.4 0.0 231 0.4 4.6 0.0
Configuration 0 0.0 0.0 0.0 40 0.2 24.8 0.2 0 0.0 0.0 0.0 0 0.0 0.0 0.0 40 0.1 24.8 0.2

Comms. File transfer 4 0.0 0.0 0.0 9 0.0 120.0 1.2 0 0.0 0.0 0.0 1 0.0 1.0 0.1 14 0.0 121.0 0.9
UART 1098 4.7 1126.2 40.4 27 0.1 0.9 0.0 20 0.4 0.1 0.0 205 2.6 8.4 0.7 1312 2.4 1134.9 8.2
Internet protocol 7 0.0 0.0 0.0 0 0.0 0.0 0.0 0 0.0 0.0 0.0 0 0.0 0.0 0.0 7 0.0 0.0 0.0
SPP 13 0.1 0.0 0.0 19 0.1 0.2 0.0 20 0.4 0.1 0.0 27 0.3 0.2 0.0 79 0.1 0.5 0.0

User info PII 55 0.2 0.8 0.0 54 0.2 2.8 0.0 0 0.0 0.0 0.0 1 0.0 0.0 0.0 101 0.2 3.6 0.0

135

MEASUREMENT 〉 UUID Analysis 〉 Observations Regarding UUID Usage

8.5 Observations Regarding UUID Usage

We make some observations regarding developers’ use of UUIDs within their BLE devices,

focusing on incorrect or anomalous use.

8.5.1 Incorrect Use of SIG-Reserved Range

As mentioned in §8.1, the range of 232 UUIDs formed by modifying the first 32 bits of the

Bluetooth Base UUID are reserved by the Bluetooth Special Interest Group. However, we found

that 13% of UFUs, i.e., custom UUIDs, were actually formed using this base UUID. While such

UUIDs don’t have a functionality assigned to them (by the Bluetooth SIG) at present, the use

of them in applications runs the risk of future conflicts.

8.5.2 Anomalies

Adopted UUIDs typically have clear meaning and functionality assigned to them. We made

use of the defined functionality for adopted UUIDs to create a mapping between the UUIDs

and the Google Play categories that they could be expected to fall under. Although Google

Play categories don’t provide fine-grained details about an application’s BLE functionality, they

do provide a very high-level functional overview, which can be useful in determining obvious

anomalies. For example, a Heart Rate Measurement UUID may be expected to be used in a

Medical, Sports, or Health & Fitness application. However, inclusion of this UUID within a

Finance application would be highly incongruous.

We applied the mapping to the applications in our dataset, to identify possible anomalies between

the inclusion of an adopted UUID within an Android application and the functionality of the

application as indicated by its Google Play category. 10,556 applications within our dataset

made use of at least one non-GATT/GAP adopted UUID as well as having a presence on Play

at the time of testing. Only these were therefore used for anomaly detection.

From our mapping, we identified 333 instances of incongruous use of adopted UUIDs. From

these, we separated out 123 applications that used UUIDs belonging to health-related BLE

services. Using additional information from Play, we prioritised these APKs as follows:

(a) Suspicious - No obvious need for the UUID (taking Play description into consideration).

(b) Somewhat suspicious - There may be a use case for the UUID, but the app description

doesn’t explicitly state it.

(c) Very likely benign - Based on UUID and Play categories, as well as Play description,5

there appears to be a legitimate use for the UUID.

Within the second category there were instances where adopted UUIDs were used for slightly

different reasons than expected from the specification, e.g., Health Thermometer UUIDs to

measure temperatures in industrial applications.

5We also used screenshots available in Play for this verification.

136

MEASUREMENT 〉 UUID Analysis 〉 Observations Regarding UUID Usage

We manually analysed 95 APKs which were considered to be suspicious. The purpose of our

analysis was to determine whether the apps were making use of their BLE access capabilities to

access sensitive data, when their functionality clearly didn’t require it.

Fifteen of the 95 APKs defined UUIDs that were not used anywhere within the app. In all

such cases, the UUIDs were defined in a library, rather than in the core application. This

would account for why a UUID might be present but not used, as libraries may define more

functionality than is actually used by the calling application.

There was one APK that incorporated the nRF Toolbox by Nordic Semiconductor [172], which

demonstrates a large number of BLE profiles. The APK itself apparently only used the DFU

functionality within nRF Toolbox, but started the Heart Rate Measurement function because

the code for doing so was present within nRF Toolbox.

We found one instance of a Blood Pressure Sensor service being defined within the code of an

application that did not perform health functions. A closer analysis of this APK revealed that

this particular BLE-specific code was being reused from another app by the same developer that

actually did connect to a blood pressure monitor.

There were a number of instances of incorrect UUID usage, i.e., UUIDs used for purposes other

than for what they were defined. In particular, 4 APKs from one developer denoted the Heart

Rate Service as “RX Service”; one APK used it to store door lock parameters; and one APK

used various adopted UUIDs to control a barometer.

There was also an unusual combination of UUIDs being used in a set of 42 applications which

all enabled the control of music streaming to speakers. The applications used the service UUID

0x180A (Device Information) in conjunction with the Heart Rate Measurement characteristic.

Given that this combination of service and characteristic does not conform to the BLE service

specification, it is likely that this is due to a developer error.

One APK included functionality to interface with a popular fitness tracker, but with no indi-

cation of doing so within the application description. Whenever a developer intends for their

application to interface with any sort of user device, particularly one that handles sensitive user

data, some mention should be made within the app description.

Finally, there were ∼10 APKs where health-related services appeared to be defined within the

application’s own code, for no apparent reason and where the developer did not have other

health-related apps on Play. It should be noted that around half of them defined the Heart

Rate Service, which is the BLE service most commonly used in coding examples. Therefore, it

is possible to assume that the UUIDs for the service were copied from online sources uninten-

tionally [173]. We emulated a BLE peripheral with the services declared in each APK, to check

if the application would attempt to surreptitiously connect to it, but found that none did. This

finding supports our assumption of accidental use of adopted UUIDs.

137

MEASUREMENT 〉 UUID Analysis 〉 Security Analysis

Table 8.4: Firmware update UUIDs.

Manufacturer #Apps Manufacturer #Apps Manufacturer #Apps

Nordic (Legacy) 291 Nordic (Secure) 94* Texas Instr. 175

Qualcomm 39 Silicon Labs 37 Cypress 31

NXP 22 ST (BlueNRG) 8 ST (STM32WB) 0

*Partial overlap with Nordic Legacy.

8.6 Security Analysis

In this section, we discuss security considerations derived from the extracted UUIDs, in accor-

dance with §8.3.3.

8.6.1 Security Indications from KFUs

Adopted UUIDs As mentioned previously, of the 16,197 APKs for which at least one valid

UUID was identified, we found that around 70% expose services defined by the Bluetooth SIG

(excluding the GATT/GAP services, which are always included and therefore do not offer much

insight into functionality). In addition, 1,457 APKs use only Bluetooth-defined services (i.e.,

no custom services and at least one non-GAP/GATT service). As we have mentioned before,

BLE data within adopted UUIDs, if adhering to specification-compliant absence of higher-layer

protections, will be vulnerable to access by unauthorised apps.

This observation is particularly concerning when the data in question is of a sensitive nature.

For example, Table 8.2 shows that, of the 7,077 APKs that reference BLE UUIDs (excluding

GATT/GAP/common/unassigned),6 over 25% are concerned with user health data such as

glucose level, blood pressure and heart rate measurements. If this information is combined with

other data such as activity levels, then a malicious application could derive a complete health

and fitness profile for a user. In addition to general privacy concerns, this data could also be

exploited, unbeknownst to the user, by insurance agencies and other interested parties.

Absent or insecure DFU We found that, out of the 16,197 APKs in our dataset that returned

at least one UUID during the extraction phase, 603 APKs contained references to DFU UUIDs.

This implies that, for the remaining devices, even if a bug or security issue is identified, there will

be no easy means by which to update the device. While other mechanisms of firmware update

are possible, they will typically involve greater levels of user intervention and may therefore be

neglected.

Table 8.4 summarises the number of APKs containing DFU UUIDs from various chipset manu-

facturers. It shows that the Nordic Legacy DFU UUID is the most prevalent among the DFU

UUIDs. This particular DFU mechanism does not test the source of the firmware or the identity

of the communicating BLE device, and is therefore vulnerable to malicious firmware overwrites

by unauthorised entities. Nordic has since provided a new, more secure mechanism, using signed

6A single application may use multiple adopted UUIDs.

138

MEASUREMENT 〉 UUID Analysis 〉 Security Analysis

firmware. However, as the table shows, the proportion of devices using the new mechanism is

much lower. Given that the SDK containing the Secure DFU functionality also contains the

Legacy UUIDs, the number of APKs that only support the insecure firmware update mecha-

nism was found to be 207. Obtaining download counts from Google Play for 170 of these APKs

(the rest were no longer on Play), we found that this corresponded to at least 109 million down-

loads. This means that there are potentially over 100 million BLE devices that are vulnerable

to unauthorised firmware updates. Forty of the 207 APKs contained at least one health or

fitness-related adopted UUID. Malicious firmware modifications on such devices could enable

incorrect health information being fed to the user.

Of the remaining DFU UUIDs identified by our framework, those corresponding to Nordic

Secure, NXP and STM32WB have security mechanisms built into the DFU process. The rest

have security options that require enabling by the developer, which runs the risk of those security

mechanisms not being implemented.

8.6.2 Security- and Functionality-Prioritised UFUs

Within APKs that contained UFUs, BLECryptracer identified 8,593 APKs with no protection

for BLE reads and 10,420 APKs with no protections for BLE writes. These were prioritised for

manual analysis using the results from the Functionality Mapper component of BLE-GUUIDE.

The APKs with the most sensitive BLE functionality were identified, with particular focus on

functionality that relates to user health or personal data, or which has security consequences.

We next present a selection of case studies based on our analysis of such APKs.

Case study - ECG applications: Two ECG measurement applications within the dataset read

data from external ECG recording devices and display the results in the app with no protection

between the two endpoints. This means that while the “official” app is reading information from

the ECG recorder, so too can any other app on the same Android device (as we have described

in Chapter 5). We have informed the developers of both applications of this vulnerability, but

received no response from either.

Case study - user PII: The Functionality Mapper returned two UFUs that were mapped to

the sub-category PII (Personally Identifiable Information). Both belonged to the same APK: a

proximity-based “friend-finder”. Manually analysing the app, we found code suggesting that the

app advertises the user’s first name, device address, and an ID within BLE advertisements, and

scans for such advertisements to identify other app users in the area. The app also maintains

a Last Seen parameter for each user it identifies, which can facilitate unauthorised tracking

of users. When we installed the app, we found that it was in demo mode, and the data-

collection functionality was not being executed. At the time of conducting this analysis, we

hypothesised that the mere presence of code within the application for advertising user PII,

along with burgeoning interest in user/device trackers [174], signalled an increase in the future

of such tracking or “finding” apps. This hypothesis is now validated by the increasing use of

contact-tracing applications for COVID-19.

139

MEASUREMENT 〉 UUID Analysis 〉 Limitations

Case study - door lock: From the results obtained using our framework, we identified an APK

that interfaced with a BLE-enabled door lock in an insecure manner. Specifically, the application

code logs the start of an authentication sequence, and the data that is read from the BLE lock

is sent to a decryption method. However, the decryption code revealed that it did not employ

any standardised algorithm, but rather a custom scheme.

Analysing the custom algorithm, we found that it comprises an array of fixed bytes, to which

another array of bytes and a string are used as inputs. The authentication sequence begins

with reading a value from a specific BLE characteristic. The read value (in bytes) is the first

argument to the decryption algorithm. The key/PIN to the door lock is the second argument.

This means that an attacker in the vicinity can eavesdrop on the initial authentication exchange

(i.e., the challenge issued by the door lock and the reply from the app) and brute-force the PIN

offline. That is, the attacker can submit the challenge and every possible value of the PIN to

the decryption algorithm and identify the PIN that results in the correct response. The PIN can

be 4, 5 or 6 digits long for this particular door lock, which means the keyspace is smaller than

3.5 million and offline brute-forcing can be performed within a reasonable timeframe. Once the

correct PIN has been identified, the attacker can trigger the authentication protocol with the

actual door lock and complete the authentication sequence with the identified PIN.

In general, the use of non-standard cryptographic algorithms is discouraged as their security

has likely not been verified by a community of experts. Since a BLE lock may be used to

secure a home or building, standardised strong cryptography is imperative. We have notified

the developer about this issue, but have not received any response.

8.7 Limitations

UUID extraction UUIDs are sometimes generated over multiple iterations, which makes it

difficult to extract them without complex static or dynamic analyses. This means that there is

a possibility that we may not have obtained complete coverage of all UUIDs used by an APK. In

addition, as discussed in §8.5.2, sometimes only a small subset of the UUIDs defined within an

APK may actually be used. The extraction mechanism may not always capture this scenario,

and may therefore extract even those UUIDs that are not used.

Native code We conducted the APK string/field extraction (§8.3.2.1) and localisation analysis

(§8.4.1.2) using Androguard over smali code, i.e., analysis of Native code was not performed.

There could therefore be instances of UUIDs whose descriptions are contained within native

code that our analysis does not capture.

Functionality mapping The richness and accuracy of information obtained through the vari-

ous sources (i.e., API, fields, strings, Play and SIG descriptions) depends entirely on the BLE

device/app developer actually incorporating or publishing such information in the first place.

If a developer chose to include no strings within an app, to obfuscate methods and fields, and

also to publish vague or incomplete descriptions on Google Play and even when validating their

140

MEASUREMENT 〉 UUID Analysis 〉 Chapter Summary

device on SIG, then the amount of information we will be able to retrieve will be negligible. In

addition, if a single method called all UUIDs, then they would all be assigned exactly the same

categories, even if their functionality differed.

8.8 Chapter Summary

We have presented a framework for measuring functionality distribution within the BLE ecosys-

tem and for determining the impact of a BLE vulnerability by performing functionality mapping

for the BLE device. We have evaluated a novel source of information for this purpose: the

Universally Unique Identifiers used to identify each data value on a BLE device. Our UUID

functionality mapping resulted in a reasonably accurate estimate of device functionality but

produced poor coverage. Augmenting this data with information from the Bluetooth SIG and

Google Play improved the coverage slightly (where the SIG data produced greater accuracy but

very poor coverage, while Play resulted in high coverage but lower accuracy). However, we have

arrived at the conclusion that functionality mapping using such techniques leaves the analysis

at the mercy of the developer, i.e., it is fully dependent on the amount of information provided

by the developer, which may be insufficient in many cases.

We have also utilised UUIDs to identify the presence of certain types of vulnerabilities within

BLE devices, and - making use of the functionality mapping - prioritised and presented case

studies where our framework identified poorly-protected sensitive data.

In the next chapter, we present a measurement technique for identifying minimum access re-

quirements for BLE data by interacting with physical devices.

141

9 Device Security Measurements

In this chapter, we describe a technique and Node.js tool that we have developed for ascertaining

the minimum access requirements on a per-characteristic basis for data on BLE devices. We

analyse our results in light of later research and present limitations of our technique.

9.1 Introduction

Of the different types of attributes within a BLE device (as described in §2.1.3.3), characteristic

value attributes are the most interesting from a security standpoint. These hold the data value

of interest, which could be user health measurements, activity levels or values controlling a

device’s functions (such as in the case of door locks or eScooters). Access to these characteristics

can be restricted via attribute permissions (see §2.2.4). Of the different types of attribute

permissions, access, authentication and encryption permissions are handled by the BLE stack,

while authorisation permissions are implementation-specific.

A device may apply no protection to its characteristics or it may apply protection to only

some of its characteristics. For example, a fitness tracker can specify a requirement for an

authenticated/encrypted link prior to allowing access to some of its characteristics (e.g., heart

rate measurement values). When doing so, it will specify the requirement in terms of the security

modes and levels described in §2.2.3. A device (e.g., a mobile phone) that attempts to access

the data over an unauthenticated/unencrypted link will be presented with an Insufficient

Authentication/Encryption error. An Insufficient Authentication error normally triggers

pairing between the two devices. However, it should be noted that the error will not indicate the

level of protection that is required. Therefore, if the strength of pairing is insufficient, then data

access requests will receive Insufficient Authentication errors even after pairing and link

encryption, and the devices will have to re-pair (assuming both devices are capable of stronger

pairing).

The pairing “generation” (i.e., LE Legacy or LESC) and the association model together play a

large part in determining the strength of the pairing process and therefore the strength of the

generated encryption key. The pairing generation and association model that are ultimately used

are decided by the features that the devices exchange during Phase 1 of the pairing process (see

§2.2.5). The association model in particular is strongly linked to the IO capabilities indicated

by the two devices. When two honest devices undergo pairing, they will specify their true

security and IO capabilities, which will result in the strongest pairing association model that

their combined capabilities allow. An attacker, who is not bound by such principles, can specify

the lowest possible IO capabilities when attempting to pair with a victim BLE device, to force

142

MEASUREMENT 〉 Device Security Measurements 〉 Introduction

the pairing to the least secure association model, i.e., Just Works. If the permissions applied

to the victim device’s characteristics are strong, e.g., Mode 1 Level 3 or Mode 1 Level 4, then

regardless of the fact that weak pairing has taken place, the attacker will not be able to access the

victim device’s data. If, however, the applied permissions are not strong enough, e.g., Mode 1

Level 2, then the attacker will be able to read and potentially manipulate the data on the victim

device (subject to characteristic properties).

In addition, Haataja et al. [175] and Antonioli et al. [52] pointed out a weakness of Bluetooth

pairing, in the form of key entropy downgrade. That is, the Bluetooth standard allows for the

entropy of the pairing and session keys to be reduced from the default entropy of 128 bits to as

low as 56 bits for BLE (and 8 bits for Bluetooth Classic). It is up to individual implementations

to check the entropy of the key and refuse a pairing request if the key size is insufficient via an

Insufficient Encryption Key Size error. A low-entropy key would make it far easier for an

attacker to brute-force, and is therefore another aspect of interest when testing devices.

In this chapter, we describe a mechanism by which we determine the minimum possible level of

security at which data on a BLE device can be accessed, including checks for acceptance of low

entropy keys, through direct device interaction. Specifically, we exploit the existing algorithm

for determining the pairing association model (§9.2) to define an algorithm for incremental access

checking (§9.3). We implement our algorithm as a Node.js tool (§9.4), and test it against real-

world devices (§9.5). We also utilise device-specific analyses to discuss limitations of a generic

testing mechanism (§9.6).

Related work Security and privacy testing of physical BLE devices has been conducted in

a number of previous works. Such works tend to fall into one of two categories: analysis of

a particular class of device (e.g., wearables or medical devices), or tests for a particular type

of vulnerability. Examples for the first category of studies include security analyses of BLE

locks [7], eScooters [8, 176] and fitness trackers [9, 23, 177, 178]. Some of these analyses have

identified severe safety-related vulnerabilities in the respective devices, including the ability to

overwrite the firmware in wearables, unlock smart locks without authentication and take control

of eScooters with the potential to cause injury to the user.

Analyses that fall under the second category explore one aspect (or occasionally more, if they

are related to one another) of BLE security or privacy. For example, Das et al. [9] and Fawaz et

al. [10] tested for the presence and correct implementation of resolvable private addresses within

BLE Peripherals by monitoring the device address within BLE advertisements over a period of

time. Antonioli et al. [52] described tests for low-entropy key negotiation vulnerabilities against

real-world devices. Key and pairing downgrade attacks against devices were explored in [47] as

well. Our work also falls into the second category, in that we test for insufficient protection of

BLE data. To our knowledge, we are the first to explore minimum access requirements on a

per-characteristic basis for BLE data.

143

MEASUREMENT 〉 Device Security Measurements 〉 Determining the Pairing Association Model

Algorithm 9.1: Pseudocode for determining association model during pairing.

Data: OOB flags, MitM flags, IO capabilities, pairingGen (pairing generation)
Result: Set association model (assocModel)

1 if pairingGen == LESC then
2 if at least one device has OOB flag set then
3 assocModel = OOB;
4 else
5 CheckMitm();
6 end

7 else
8 if both devices have OOB flag set then
9 assocModel = OOB;

10 else
11 CheckMitm();
12 end

13 end
14 Function CheckMitm():
15 if neither device has MitM flag set then
16 assocModel = Just Works;
17 else
18 CheckIO();
19 end

20 end
21 Function CheckIO():
22 if (pairingGen is LESC) and (both devices have DisplayYesNo or Keyboard+Display) then
23 assocModel = Numeric Comparison;
24 else if (one device has Display) and (other device has Keyboard) then
25 assocModel = Passkey Entry;
26 else
27 assocModel = Just Works;
28 end

29 end

9.2 Determining the Pairing Association Model

As mentioned previously, when two devices undergo pairing, the association model that is to

be used for key generation will be determined based on the features that are exchanged during

Phase 1 of pairing.

Algorithm 9.1 presents pseudocode for the process (as defined in the Bluetooth specification

[Version 5.2, Vol 3, Part H, Section 2.3.5.1]) to determine the association model that will be

used during Phase 2 of pairing. As can be seen from the pseudocode, unless Out Of Band

data is used, the association model is determined by the IO capabilities of the communicating

devices. While a peer device or MitM attacker can manipulate the exchanged features in order

to downgrade the pairing to the weakest association model (Just Works), a BLE device can

refuse to pair with a peer device that does not have sufficient IO capabilities. However, many

real-world devices may not do so.

144

MEASUREMENT 〉 Device Security Measurements 〉 Incremental Access Checking

Algorithm 9.2: Incremental access checking for BLE characteristics.

Data: Device address
Result: Per-characteristic security levels.

1 secLevels←− [0, ..., n];
2 smpObjects←−<list of command packets with incrementally strong pairing configurations,

corresponding to secLevels >;
3 currSecLevel←− min(secLevels);
4 accessTypes←− [read,write, notify];
5 connect to device and enumerate services + characteristics;
6 get characteristic properties;
7 characteristicList←− (characteristics, properties) ;
8 outputObject←− (characteristics, properties);
9 repeat

10 for accessType ∈ accessTypes do
11 for characteristic ∈ characteristicList do
12 if accessType is applicable to characteristic then
13 attempt characteristic access;
14 if access succeeds then
15 update outputObject with currSecLevel for characteristic and accessType ;
16 remove characteristic− accessType from characteristicList;

17 end

18 end

19 end

20 end
21 if characteristicList is empty then
22 break;
23 end
24 while currSecLevel < max(secLevels) do
25 currSecLevel + +;
26 pairingObject←− smpObjects[currSecLevel];
27 pair with pairingObject;
28 if pairing succeeds then
29 break;
30 end

31 end

32 until characteristicList is empty or currSecLevel == max(secLevels);

9.3 Incremental Access Checking

We begin with the assumption that there likely exist BLE devices which, while possibly under-

going pairing as part of normal operations, might have characteristics that are freely readable

and writable, i.e., no authentication or authorisation required. The same devices may also have

characteristics that do require an encrypted link prior to access but which may be accessible

after pairing using the fairly insecure Just Works pairing model. Some other devices may require

Passkey Entry pairing prior to allowing access to any characteristics. We define Algorithm 9.2

to determine the lowest possible protection level at which each individual characteristic on a

BLE device can be accessed.

The algorithm outlines the enumeration of services and characteristics on a BLE Peripheral,

followed by determining appropriate access types (read, write, etc.) for each characteristic,

based on the characteristic’s properties. The core of the algorithm is the incremental access

145

MEASUREMENT 〉 Device Security Measurements 〉 Implementation

component (line 9 onward). Characteristic access attempts are made at increasingly high security

levels, and within each security level, different types of access are attempted, as applicable to

the characteristic (i.e., determined by the characteristic’s properties). When a specific type of

access for a characteristic is successful, that characteristic-access pair is removed from further

consideration. This process continues until all the characteristics have been accessed or the

highest level of security has been reached.

9.4 Implementation

We have implemented Algorithm 9.2 as a Node.js tool, ATT-Profiler [32], to profile BLE Periph-

eral devices. The tool is written on top of noble [179], which is an open-source implementation

of a BLE Central device. We modify noble to capture and manipulate pairing-related events,

to enable custom pairing requests and Central behaviour.

ATT-Profiler scans for and connects to a user-specified BLE Peripheral device. It then attempts

to access (i.e., read, write, or subscribe to) every applicable characteristic, where a characteristic

is applicable if the access type is present in its properties set. That is, ATT-Profiler will attempt

to read a characteristic if the characteristic has the read property and will attempt to subscribe

to the characteristic if the characteristic has the notify property, etc. If access is denied because

the characteristic is protected, then the tool will attempt to pair with the test Peripheral using

the lowest level of security. If pairing fails, then the tool will disconnect and reconnect to the

test Peripheral, increment the security level and re-attempt pairing. If pairing is successful, then

it will re-attempt characteristic access. If the characteristic still cannot be accessed, another

reconnection is performed, the security level is incremented again and another pairing request

is sent. We enable successive pairing attempts in this manner by disabling bonding, i.e., by

clearing the bonding flags in our pairing requests.1

In our implementation, we use four security levels with different configurations: None - No

pairing; Low - Pairing attempt specifying no MitM protection requirement, no input-output

capability and 64-bit key (more accurately, a key with 64 bits of entropy); Medium - Pairing

attempt with no MitM protection requirement, no input-output capability and 128-bit key;

High - Pairing attempt with MitM protection requirement, Keyboard+Display capability and

128-bit key.2 Given these features, we would expect pairing attempts at levels Low and Medium

to result in the Just Works association model and level High to result in Passkey Entry (assuming

the target Peripheral has a display). We perform STK masking to enable encryption using the

correct key in scenarios where the key entropy has been reduced (i.e., at level Low).3

1In some cases, when bonding is enabled, the target device will reject pairing attempts that follow a successful
pairing because it will have stored bond information for the successful pairing. Additional steps would need to
be taken in order to clear this information from the device. Since we do not require the preservation of bond
information for our tests, we instead set the bonding flags to 0. This feature was not present in the original
version of our code, which resulted in some incorrect outputs in [35].

2Additional levels are possible by introducing additional pairing configurations. However, these four levels are
sufficient to identify the main concerns of weak pairing and acceptance of low key entropy.

3The key entropy downgrade checks were present in the original version of our code [32] and manuscript [35].
However, STK masking had not been performed in the initial version of the code, which meant that the pairing
process failed when issuing pairing requests at level Low.

146

MEASUREMENT 〉 Device Security Measurements 〉 Real-World Device Testing

Ch
ar
ge
HR

M
I B
an
d
2

ID
10
7
HR

Go
jiG
o

Se
ns
e-
U

Ti
le

0

10

20

#
ch
ar
ac
te
ri
st
ic
s

Read Access Security

Ch
ar
ge
HR

M
I B
an
d
2

ID
10
7
HR

Go
jiG
o

Se
ns
e-
U

Ti
le

0

5

10

Write Access Security

Ch
ar
ge
HR

M
I B
an
d
2

ID
10
7
HR

Go
jiG
o

Se
ns
e-
U

Ti
le

0

5

10

15

Notify Access Security

None Low Med High Unknown

Figure 9.1: Security levels for read/write access in real-world devices.

Identification of static passkeys via dictionary attacks Some BLE devices utilise fixed passkeys

(i.e., PINs made up of six decimal digits) with the Passkey Entry model. This somewhat defeats

the purpose of passkeys since a known fixed passkey can be entered programmatically, with

no need for the user intervention that is required with dynamically generated passkeys. We

implement a brute-forcing component within ATT-Profiler to identify whether a BLE device

uses a static passkey, by making repeated pairing attempts using a dictionary of commonly used

passkeys, derived in part from an analysis of six-character passwords [180].

9.5 Real-World Device Testing

Tests were conducted against four fitness trackers of different prices and capabilities (Fitbit

ChargeHR, Mi Band 2, ID107 HR, and GojiGo), a baby monitoring device (Sense-U), and an

asset tracker (Tile). All devices were under our ownership and control.

The number of characteristics on each device accessible at each security level has been graphed in

Figure 9.1. The level “Unknown” on the graph refers to when a characteristic was not accessible,

even though its properties indicated that it should be.

The graphs show that four out of the six devices allowed all applicable characteristics to be read,

four allowed all applicable characteristics to be subscribed to, and three also allowed all applica-

ble characteristics to be written, without any authentication required. Here, ‘applicable’ refers

to the presence of the relevant property (read, notify or write). These devices could therefore

be vulnerable to unauthorised data read/writes and perhaps also MitM attacks. However, we

see in the following discussion that there may be other factors to consider.

9.5.1 Per-Device Analysis

We present a per-device analysis of the characteristics that returned a result of Unknown or that

returned incongruous results. This analysis feeds into our discussion on limitations of physical

device testing (§9.6).

147

MEASUREMENT 〉 Device Security Measurements 〉 Real-World Device Testing

Fitbit ChargeHR The Fitbit ChargeHR had 12 characteristics with the read property, and 11

of these were freely readable. One characteristic returned Insufficient Encryption despite

successfully pairing at level High. However, we observed that, while the ATT-Profiler sent

a Pairing Request indicating Keyboard+Display capabilities for level High, the ChargeHR re-

turned a Pairing Response indicating No Input Output capabilities (despite having a display).

The same observation was made even when the ChargeHR paired with the official Fitbit mobile

application. Another unusual finding was that the ChargeHR appeared to have no character-

istics with the write property. This seemed unlikely since the device supports OTA firmware

upgrades, which would require writing to a characteristic. Tracing over the BLE wireless inter-

face while interacting with the ChargeHR via the official Fitbit application, we found that the

ChargeHR has a writable characteristic that cannot be enumerated (i.e., is initially not visible in

the list of services and characteristics) until a different characteristic has notifications enabled.

Mi Band 2 For the Mi Band 2, twenty-one characteristics had the read property, and all but

two had no protection applied to them. The two that could not be accessed returned Read

Not Permitted errors. Similarly, 8 of 15 characteristics that had the notify property returned

Write Not Permitted errors for access attempts (recall from §2.1.3.3 that we need to write to

a characteristic’s CCCD in order to enable notifications). Further, one characteristic that had

the write property also returned Write Not Permitted. Three other writable characteristics

returned Application Error 0x80 when write access attempts were made.

Analysing the errors individually, an Application Error is an obvious indication of application-

layer restrictions. However, Read or Write Not Permitted errors for characteristics that have

the read or write properties set is incongruous. Exploring BLE chipset vendor forums, we

find a possible explanation for this behaviour. For example, with Nordic chipsets, when a

characteristic has authorisation requirements, a security check is performed every time an access

attempt is made for the characteristic. The type of check is developer-dependent; it could be a

cryptographic authentication sequence, but could simply be that a specific character or character

sequence is expected. If the check fails, the device can return a custom response, including Read

Not Permitted or Insufficient Authentication, despite these errors not being inline with

the specification’s definitions. We believe that the Mi Band 2 may have implemented similar

behaviour.

This surmise is validated by findings we made during later analyses. In particular, examination

of the application code for the Mi Band 2 mobile app showed that access to the Heart Rate

Measurement characteristic was “locked” and could be “unlocked” by writing a specific byte

sequence to one of the freely writable characteristics (see §5.3.3).

ID107 HR The ID107 HR fitness tracker allowed all visible characteristics to be read, written

and subscribed to without any security requirements. Tracing the message exchanges when

the device communicated with its official mobile application, we found that a Nordic firmware

update characteristic was made visible when the device was placed in Direct Firmware Update

mode by writing to a specific characteristic.

148

MEASUREMENT 〉 Device Security Measurements 〉 Limitations and Future Work

GojiGo The GojiGo Activity Tracker had three characteristics with the write property, one

of which was related to the Nordic DFU process. When a write attempt was made to the

Nordic DFU characteristic, the device stopped responding to further requests. However, when

the Nordic characteristic was removed from the tests, the remaining characteristics were found

to be freely writable.

Tile The Tile asset tracker apparently had a single writable characteristic. However, this was

found to be a SIG-defined Device Name characteristic. We knew from the product description

that other configurations were also possible, which meant that at least one other characteristic

with the write property had to be present on the device. Tracing over the BLE interface while

interacting with the official Tile application, we found that the Tile, similar to the Fitbit, has

writable characteristics that are hidden until a different characteristic’s CCCD is written to.

9.5.2 Observations on Low-Entropy Keys

None of the devices, save for the ChargeHR, required pairing. When testing the ChargeHR,

we found that it accepted the pairing request at security level Low, i.e., with a Maximum

encryption key size value of 64 bits. This indicates that it is vulnerable to key downgrade

attacks [52]. In addition, we modified ATT-Profiler to send pairing requests even when pairing

was not required, to identify the prevalence of the key downgrade vulnerability. We found that

the Mi Band, GojiGo and Sense-U baby monitor all successfully paired when requesting 64-bit

key entropy. The Tile refused the pairing request with Pairing Not Supported; the same was

returned even when requesting full-length keys. The ID107 HR appeared to complete pairing

successfully, but then disconnected for no apparent reason. It did the same when requesting 16

byte key entropy. Observing message exchanges via traces when the device interacted with its

official app, we found that pairing was not used during its normal operations.

9.6 Limitations and Future Work

Limitations of physical device testing Performing security tests with physical devices has

many advantages. When testing individual devices manually, we are able to trace device com-

munications over the wireless interface, explore its interactions with any companion application,

and fuzz for device behaviour when provided with unexpected values. However, as we found from

our tests of real-world devices, many devices exhibit custom, specification-deviant behaviour,

which may require per-device analysis. This leads to a loss of generalisability and hampers auto-

mated bulk testing of devices. Further, conducting this type of testing at scale is also hindered

by the cost of procuring devices.

Validation of SIG-defined services The ATT-Profiler enumerates and tests access for all

visible services on a BLE Peripheral. Some or all of these services may be SIG-defined, and

will therefore have predefined structures and security requirements. One possible option for

extending ATT-Profiler would be to validate the obtained service structures against those

defined by the SIG, to ensure that they match the SIG definitions. We have not implemented

149

MEASUREMENT 〉 Device Security Measurements 〉 Chapter Summary and Next Steps

this functionality at present owing to the relatively small collection of devices that makes up

our test set, and the lack of diversity of device types and of BLE services within the collection,

which would not result in meaningful outcomes.

9.7 Chapter Summary and Next Steps

In this chapter, we have described a mechanism and purpose-built tool for determining the

minimum access requirements for every characteristic on a BLE Peripheral. We have found

through real-world device tests that many BLE Peripherals do not appear to protect their

data sufficiently. However, we have also found through per-device analysis that devices may

actually incorporate hidden and possibly protected characteristics that are not accessible via a

generalised tool. In addition, bulk testing of physical devices suffers from the obvious drawback

of the expense involved in purchasing the devices. We therefore explore an alternative source of

security-relevant information in Chapter 10.

150

10 Firmware Analysis

In this chapter, we describe a mechanism for extracting security-relevant configuration data

from a rich information source: device firmware. Our analysis technique is not confined to BLE

firmware, but instead is applicable to generic ARM Cortex-M architectures, which are gaining

popularity among IoT devices. We outline our approach to overcoming the challenges inherent

to the analysis of stripped ARM Cortex-M binaries, and present case studies for extracting API

arguments from BLE binaries that target Nordic Semiconductor and STMicroelectronics chipsets.

Our results reveal widespread lack of security and privacy controls in real-world BLE devices.

10.1 Introduction

Numerous flaws have been uncovered in IoT devices in recent years, some of which have been

exploited at a large-scale (e.g., Mirai [181–183] and Brickerbot [184]). Severe vulnerabilities have

also been discovered in certain cardiac devices [76], baby heart monitors [77] and webcams [75].

The root cause on many occasions was poor device configuration, e.g., default passwords [185,

186] or poor protection for data [187–189].

The configuration of an IoT device can therefore be a vital source of information regarding

possible vulnerabilities. While this could be obtained from the device itself, physical device

testing has several disadvantages, particularly in terms of difficulty in automating large-scale

analyses and the cost of procuring devices (as we observed in Chapter 9). The firmware running

on the device is often a good alternative, as it generally reflects the device’s configuration and

functionality exactly. While firmware files were originally difficult to acquire, the advent of

OTA firmware upgrade mechanisms in IoT devices has led to several vendors hosting firmware

files on their websites or including them within mobile applications. However, even if firmware

binaries are now easier to source, there are other challenges. The analysis of binary files is not

straightforward in general, and IoT firmware tends to be made available as stripped binaries

(without headers, symbol tables or section information), which further complicates analysis.

With devices such as IoT hubs and gateways (e.g., mobile phones, routers), which often run

some version of the Linux OS, familiar filesystem structures and commands may be identifiable

within firmware, which can contribute towards the analysis. Even so, the analysis will generally

not be straightforward. Analysis is much more complex for IoT peripheral/node devices (e.g.,

BLE Peripherals), which may feature custom operating systems, or sometimes have no operating

system at all. This has resulted in far fewer analyses of IoT peripheral binaries.

In this chapter, we focus on peripheral firmware analysis. We do not limit our analysis to solely

BLE binaries, but consider any ARM Cortex-M firmware, as this is a processor family that is

151

MEASUREMENT 〉 Firmware Analysis 〉 Introduction

gaining popularity with resource-constrained IoT devices. We outline the challenges involved in

the analysis of stripped binaries, particularly in the case of IoT node devices (§10.2). We describe

the design of our firmware analysis framework, argXtract [33], and detail how it overcomes each

of the aforementioned challenges (§10.3). We implement and evaluate our framework against

ground truth (§10.4) and present two case studies: the extraction of security and privacy-

relevant configuration information from stripped Nordic (§10.5) and STMicroelectronics (§10.6)

BLE binaries. §10.7 discusses limitations of our technique and potential avenues for future work.

Related work Various aspects regarding the analysis of firmware binaries and configuration

security have been explored in previous studies. While it may seem like most aspects of firmware

analysis have already been covered by previous studies, most such studies have focused on Linux-

based systems [190]. We observe that the analysis of stripped binaries targeting non-traditional

operating systems and the ARM Thumb instruction set, which is increasingly favoured by IoT

peripherals and which is the focus of our analysis, has still not been explored sufficiently.

Analysis of stripped binaries: The analysis of stripped binaries, particularly function bound-

ary identification, has been the subject of widespread study. Control flow analysis has been

used in [191–195] to determine functions in PE, ELF, COFF and XCOFF binaries, and a

QEMU+LLVM approach for function boundary identification was presented in [196]. These

approaches may not be suited to ARM IoT analysis due to errors introduced by inline data

and compiler-introduced constructs such as Thumb switch-case conditions. Machine Learning

(ML) has also been proposed for identifying function entry points [197–199], but this approach

requires a sufficiently large labelled training set, which is currently not available for IoT periph-

eral binaries. A semantics-based approach was used in Jima [200] for ELF x86/x86-64, which

employs techniques for computing jump tables that are similar to those used in argXtract for

computing table branch addresses. To the best of our knowledge, we are the first to employ

the techniques we describe in this chapter for identifying the application code base,1 the .data

segment, as well as several sources of inline data. The inline data identification employed by

argXtract also improves the performance of function identification (as we show in §10.4) and

subsequent tracing.2

Function matching and labelling: Previous works have employed various strategies to achieve

function pattern matching or similarity computations (primarily for non-ARM binaries). One

approach for function pattern matching is to compute statistical similarities between instruc-

tion sequences of functions [201, 202], but this may suffer poor performance due to compiler-

introduced variations and optimisations [203]. Dynamic similarity testing via function execution

was employed in [204]. While this is in some ways similar to our approach, argXtract looks for

functional equivalence based on known function behaviour,3 while [204] considers function simi-

1Similar to our approach, Wen et al. [92] also uses vector table entries as one input to compute the application
code base, but without considering default handlers as we do.

2This could be because the techniques we have developed are mainly applicable to stripped Cortex-M binaries,
which have not been sufficiently studied by the research community.

3Our technique, while not seen in other works, is only applicable to functions that result in clearly distinguish-
able artefacts within memory or registers.

152

MEASUREMENT 〉 Firmware Analysis 〉 Introduction

larity based on random executions. Most current approaches favour ML techniques [199,205–207]

but, as mentioned previously, this requires sufficiently large training sets.

Security analysis and patching of IoT firmware: A number of previous works have described tech-

niques for assessing different aspects of security for IoT devices via static or dynamic firmware

analysis. Large-scale security analyses of embedded firmware files, predominantly Linux and

VxWorks-based, were presented in [208, 209]. FIE [210], built from the KLEE symbolic exe-

cution engine, identifies vulnerabilities in embedded MSP430 firmware. Firmalice [211] detects

authentication bypass vulnerabilities within the firmware of Linux and VxWorks-based binaries.

FirmFuzz [212] specifically targets IoT firmware and is intended for security analysis. It uses

QEMU and targets unstripped Linux-based binaries. These works analyse binaries that target

at least pared-down versions of fully-fledged operating systems. They would not be suitable

for analysing stripped firmware of embedded devices that do not have a proper operating sys-

tem. InternalBlue [101] enables testing and patching of Broadcom Bluetooth firmware, while

LightBlue [213] analyses and performs debloating of unneeded Bluetooth profiles and HCI com-

mands within firmware to reduce the potential attack surface. The randomness of RNGs used

in Bluetooth chipsets was measured via firmware analysis in [214].

BLE security analysis: On the BLE front, previous works (including our own) have explored the

security and privacy configurations and behaviour of BLE peripherals by analysing devices [9,

10, 23, 47, 52, 177, 178], and mobile apps [34, 66]. However, as mentioned in §9.6, device analysis

is expensive and may not be generalisable for bulk analysis, while mobile applications generally

don’t provide insights about low-level pairing mechanisms.4

Independently to us, Wen et al. [92] developed a tool named FirmXRay, built on top of Ghidra,

that identifies BLE link layer configuration vulnerabilities by targeting supervisor calls on Nordic

and ICalls on Texas Instruments BLE binaries. To compare argXtract and FirmXRay, we

executed them against a random subset of 300+ binaries from the FirmXRay dataset. We found

that a direct comparison was not possible due to insufficient information within FirmXRay’s

output data structures. In general, while FirmXRay is geared towards BLE vulnerabilities,

our work is capable of handling generic analysis of any technology that targets ARM Cortex-M

binaries. Further, FirmXRay only handles specific supervisor calls and ICalls, whereas argXtract

performs function pattern matching to identify any function (provided the requisite artefacts can

be identified within memory/registers). The template-based approach used in our framework

also enables easy addition of new test functions, and has greater format parsing capabilities.

Within the BLE analysis, Wen et al. [92] have confined the discussion to link layer vulnerabilities,

while we discuss application-layer issues as well.

4Some studies use the presence of pairing-related API calls within companion mobile applications as the only
indication of pairing protection on the associated BLE devices [54,66]. However, we observe that mobile operating
systems automatically handle pairing when relevant attribute access errors are encountered, even in the absence
of such API calls. Therefore, the absence of pairing-related API calls within mobile application code does not
automatically mean that the BLE device applies no protection for its data.

153

MEASUREMENT 〉 Firmware Analysis 〉 Challenges Involved in the Analysis of Stripped IoT Binaries

BLE_GAP_OPT_PASSKEY = 34;

uint8_t passkey [] = "123456";

ble_opt_t ble_opt;

ble_opt.gap_opt.passkey.p_passkey = &passkey [0];

err_code = sd_ble_opt_set(BLE_GAP_OPT_PASSKEY , &ble_opt);

(a) Source C code.

1eaba: 4ab8 ldr r2 , [pc ,#736]

;(1 ed9c)

1eabc: ab06 add r3 , sp , #24

1eabe: 6811 ldr r1 , [r2 ,#0]

1eac0: 2022 movs r0 , #34 ;0x22

1eac2: 9106 str r1 , [sp ,#24]

1eac4: 8891 ldrh r1 , [r2 ,#4]

1eac6: 8099 strh r1 , [r3 ,#4]

1eac8: 7992 ldrb r2 , [r2 ,#6]

1eaca: a908 add r1 , sp , #32

1eacc: 719a strb r2 , [r3 ,#6]

1eace: 9308 str r3 , [sp ,#32]

1ead0: f7fffe3a bl 1e748 <

sd_ble_opt_set >

1ed9c: 00021 f14 .word 0x00021f14

21f0c: 2528 2000 0001 0700 3231 3433

3635 0000 (%.123456..

(b) Disassembly of unstripped binary.

0x3aba: b84a ldr r2 , [pc ,#0 x2e0]

0x3abc: 06ab add r3 , sp , #0x18

0x3abe: 1168 ldr r1 , [r2]

0x3ac0: 2220 movs r0 , #0x22

0x3ac2: 0691 str r1 , [sp ,#0x18]

0x3ac4: 9188 ldrh r1 , [r2 ,#4]

0x3ac6: 9980 strh r1 , [r3 ,#4]

0x3ac8: 9279 ldrb r2 , [r2 ,#6]

0x3aca: 08a9 add r1 , sp ,#0x20

0x3acc: 9a71 strb r2 , [r3 ,#6]

0x3ace: 0893 str r3 , [sp ,#0x20]

0x3ad0: fff73afe bl #0 x3748

0x3d9c: 141f subs r4 , r2 , #4

0x3d9e: 0200 movs r2 , r0

0x6f14: 3132 adds r2 , #0x31

0x6f16: 3334 adds r4 , #0x33

0x6f18: 3536 adds r6 , #0x35

(c) Disassembly of stripped binary.

Figure 10.1: Differences in the disassembly of unstripped and stripped binaries.

10.2 Challenges Involved in the Analysis of Stripped IoT Binaries

IoT Peripherals may implement one or more communication technologies, such as BLE [215],

Zigbee [216], ANT [217] or Thread [218]. Many of these technologies have fully-fledged stacks,

with protocols defined from the physical up to application layers. To reduce development time

and ease application development, many IoT SoC vendors implement the technology stacks

themselves and provide APIs through which application developers can configure certain aspects

(including security features) of the stacks [219–221]. In addition, developers may use library

functions to perform other configurations. We present an example configuration function using

sample C code in Figure 10.1a, where a fixed passkey is defined for the BLE pairing process

using an API call sd ble opt set. We will use this example throughout the chapter.

Focusing on this example, it is known that fixed passkeys are a vulnerability, as they reduce

the security of the pairing mechanism. A security analyst would therefore want to identify

such uses of fixed passkeys from devices’ firmware (since in most cases, the source code will not

be publicly available). That is, they would want to know whether sd ble opt set (which we

term a Call Of Interest, or COI) is called with a fixed passkey as its argument. To do this, we

would need to pinpoint the location of the function call within the firmware binary, and then

analyse the arguments that are passed to it. Figure 10.1b depicts the assembly instructions

corresponding to this section of code, obtained by disassembling the firmware binary. From the

154

MEASUREMENT 〉 Firmware Analysis 〉 Challenges Involved in the Analysis of Stripped IoT Binaries

instructions, we are able to identify that the relevant function call occurs at address 0x1ead0,

that the passkey bytes occur at address 0x21f14, and that they are referenced by their absolute

location at address 0x1ed9c.

The ability to correctly deduce the above pieces of information depends on a set of conditions:

C1 Knowledge of function location and callers’ addresses (i.e., knowing that the code for

sd ble opt set is at address 0x1e748 and that it is called at address 0x1ead0).

C2 Knowledge of locations of inline data (i.e., knowing that the bytes at addresses 0x1ed9c

and 0x21f0c should be interpreted as data rather than as code).

C3 Firmware being loaded at the correct address (such that the absolute address 0x21f14

results in bytes being loaded from the correct location).

This information is present within headers and symbol tables within the firmware. However,

due to storage considerations, most IoT Peripherals tend to ship firmware with this information

removed, i.e., as stripped binaries.

Figure 10.1c depicts the disassembly of the binary file with ELF headers and debugging sym-

bols stripped out. The disassembly of the stripped binary does not contain information about

function names, thereby making it difficult to pinpoint locations of function calls (failing Condi-

tion C1). Data segments have been incorrectly interpreted by the disassembler as code (failing

Condition C2),5 which leads to incorrect results when performing value tracing and precludes

the use of emulation frameworks (e.g., QEMU [224], unicorn [225]). Further, the code has been

loaded at the incorrect offset (failing Condition C3), which means absolute addressing will fail.

Contributing to this problem is the fact that many resource-constrained IoT devices feature

ARM processors [226] with the Thumb and Thumb-2 instruction sets (as opposed to the ARM

instruction set),6 to achieve greater code densities [227]. In fact, the ARM Cortex-M processors,

which are very popular in embedded systems, support only the Thumb and Thumb-2 instruction

sets. These instruction sets are not yet fully supported by many disassemblers.

Out of the current state-of-the-art reverse-engineering tools, IDA (free) [228] does not currently

support ARM,7 while Debin [229] and BAP [230] do not fully support the Thumb instruction

set. Testing free reverse-engineering tools that do support Thumb analysis against a simple

stripped Cortex-M IoT binary, we found that radare2 [231] failed to identify almost 40% of the

functions within the binary (analysing using aaa and aaaa), Ghidra [232] failed to identify 30%

of functions, while angr [233] was unable to produce a valid Control Flow Graph (CFG) - a step

prior to analysis. Our observation regarding the robustness of angr and radare2 for Thumb

mode analysis is supported by [222], which also noted that Ghidra too has better support for the

ARM instruction set than for Thumb. Further, because IoT peripheral binaries typically do not

5Note that inline data is far more common in ARM than in x86/x64 [222], and the misinterpretation of such
data as code is a problem that is encountered even with state-of-the-art disassemblers [223].

6The ARM instruction set features fixed 32-bit instructions. The Thumb instruction set is a compact 16-bit
encoding of a subset of the ARM instruction set. Thumb-2 extends the Thumb instruction set with additional
32-bit instructions.

7We consider only free tools, to increase reach and improve accessibility for researchers.

155

MEASUREMENT 〉 Firmware Analysis 〉 argXtract

Algorithm 10.1: Application code base identification.

Result: Application code base

1 vtAddresses = [] ; . Vector Table (VT) addresses.

2 for vtIndex ∈ [1, 2, 3, 4, 5, 6, 14, 15] do
3 vtEntry = readBytesFromBinary(vtIndex, vtIndex + 4);
4 vtAddresses.insert(vtEntry − 1);

5 end
6 for branchIns ∈ disassembledInstructions do
7 if target(branchIns) == address(branchIns) then
8 for vtAddress ∈ vtAddresses do

. Consider addresses whose last 3 hex digits match those of a VT entry.

9 if vtAddress[−3 :] == address(branchIns)[−3 :] then
10 appCodeBase = (vtAddress− address(branchIns));
11 end

12 end

13 end

14 end

include the technology stack or ROM data, dynamic analysis approaches are unsuitable. This

reveals a gap in the automated IoT security analysis landscape and prompted the development

of argXtract.

10.3 argXtract

We design argXtract to take as input the disassembly of a stripped Cortex-M binary, perform

several levels of processing, and finally extract and output arguments to security-relevant COIs.

The input disassembly is obtained via any existing disassembler and will very likely feature the

issues described in §10.2. The processing is divided into the following stages: §10.3.1 - Applica-

tion code base identification, for correct absolute addressing; §10.3.2 - Data identification,

such that data is not incorrectly interpreted as code; §10.3.3 - Function boundary identifica-

tion, to enable call execution path generation and to enable function pattern matching; §10.3.4

- COI identification (function call or ARM supervisor call), to produce a list of trace termina-

tion points; §10.3.5 - Tracing and argument processing, to determine the input arguments

passed to a Call Of Interest.

10.3.1 Application Code Base Identification

As described in §10.2, using an incorrect offset for instruction addresses will lead to the failure of

absolute addressing. argXtract combines known address information with obtained addresses

to compute the application code base using Algorithm 10.1.

The addresses of core interrupt handlers are known, as they are present at specific offsets (line 2)

within the Vector Table (VT), which is located at 0x00000000 within the stripped binary [234].

The addresses will have a Least Significant Bit (LSB) of 1, indicating a switch to Thumb mode.

The actual address is obtained by subtracting 1 (line 4). Corresponding interrupt handler code

within the stripped binary is identified by exploiting the fact that at least one interrupt han-

156

MEASUREMENT 〉 Firmware Analysis 〉 argXtract

dler is usually the default handler, i.e., an endless loop or self-targeting branch. Addresses of

self-targeting branches are extracted from the disassembly (lines 6-7) and compared against VT

addresses to compute the correct offset (lines 8-10).

Once the application code base has been identified, the binary disassembly is reloaded at the

correct offset. It now satisfies Condition C3 as presented in §10.2. argXtract then examines

the first block of words within the file for valid address structures and uses this information to

compute the size of the vector table; it sets the code start address as application code base +

vector table size.

10.3.2 Inline Data Identification

Disassembly of an unstripped binary file produces a .text (i.e., code) segment and often a .data

segment, with a clear demarcation between the two, gleaned from section information. Stripped

Cortex-M binaries do not contain section information, which means that their disassembly will

produce a block of instructions with no distinction between the .text and .data segments, and

with the .data segment misinterpreted as code. The .text segment also tends to feature inline

data, which is also often misinterpreted as code and thereby results in value tracing errors.

The data identification component of argXtract uses information from the Reset Handler,

whose address is read from the Application Vector Table, to identify the location and correct

starting address of the .data segment. It also identifies inline data using four primary sources:

(i) PC-relative memory-loads (e.g., ldr, ldrh), (ii) direct write-to-PC operations (iii) table

branches (tbb, tbh), and (iv) compact switch table helpers such as ARM common switch8 and

gnu thumb1 variants. These operations aid in satisfying Condition C2 (described in §10.2).

We describe the data identification mechanism for each of these sources in further detail below.

Identification of .data The Reset Handler often contains the final address of the .text seg-

ment as well as the start and end addresses for the .data segment. This is present in the form

of consecutive memory-loads, where the first memory-load reads in the address from which the

.data segment starts and subsequent memory-loads read the (actual) start and end addresses

for the .data segment. An example has been shown in Figure 10.2. argXtract analyses in-

structions within the Reset Handler to determine whether they match the required structure.

If they do, then the addresses starting after the final address of the .text segment and ending

at the end of the file are marked as data, i.e., as the .data segment. The addresses within the

newly-identified .data segment are also modified according to the information extracted from

the Reset Handler. In the example in Figure 10.2, the memory-loads at addresses 0x24176 and

0x24178 denote that the addresses from 0x263fc onward need to be reinterpreted as data, and

need to be re-addressed with addresses starting from 0x200033b0.

PC-relative memory-loads A memory-load (i.e., ldr and variants) that loads data from an

address within the firmware file will specify the source address relative to either the Program

Counter (PC) or a register. Register-relative loads may require significant tracing in some cases.

However, PC-relative loads are straightforward to analyse. argXtract performs a linear scan for

157

MEASUREMENT 〉 Firmware Analysis 〉 argXtract

00024164 <Reset_Handler >:

...

24172: 430a orrs r2, r1

24174: 6002 str r2, [r0, #0]

24176: 4908 ldr r1, [pc, #32] ;(24198)

24178: 4a08 ldr r2, [pc, #32] ;(2419c)

2417a: 4b09 ldr r3, [pc, #36] ;(241 a0)

2417c: 1a9b subs r3, r3, r2

2417e: dd03 ble.n 24188 <Reset_Handler +0x24 >

24180: 3b04 subs r3, #4

24182: 58c8 ldr r0, [r1, r3]

24184: 50d0 str r0, [r2, r3]

24186: dcfb bgt.n 24180 <Reset_Handler +0x1c >

24188: f000 f812 bl 241b0 <SystemInit >

2418c: f7f6 ffc8 bl 1b120 <_mainCRTStartup >

24190: 40000524 .word 0x40000524

24194: 40000554 .word 0x40000554

24198: 000263 fc .word 0x000263fc

2419c: 200033 b0 .word 0x200033b0

241a0: 20003460 .word 0x20003460

Figure 10.2: Identification of .data using Reset Handler.

Algorithm 10.2: Inline data identification (memory load).

1 for instruction ∈ disassembledInstructions do
2 if opcode(instruction) ∈ ldrInstructions then
3 ldrTarget = target(instruction);
4 if isPcRelativeAddress(ldrTarget) then
5 numBytes = 1;
6 if opcode(instruction) == ldr then
7 numBytes = 4;
8 else if (opcode(instruction) ∈ [ldrh, ldrsh]) then
9 numBytes = 2;

10 markAddressAsData(ldrTarget, numBytes);
11 if (numBytesAtTarget == 4)&(numBytes < 4) then
12 reinterpretOverflowAsInstruction(ldrTarget + 2);
13 end

14 end

15 end

16 end

PC-relative memory-loads, calculates the address from which data is loaded and marks it as data,

reprocessing residual bytes as instructions where required. This is described in Algorithm 10.2.

Write-to-PC operations Direct write-to-PC operations are sometimes used to accomplish code

branches. Figure 10.3 depicts an example. This operation loads a branch address from an

address within the firmware and writes the branch address to the PC. The address from which

the branch address is loaded (i.e., the ldr source at 0x1a844, obtained in this example by adding

the contents of r2 and r3) must be interpreted as data, but is misinterpreted as code within the

disassembly of stripped binaries.

When a write-to-PC is encountered (at 0x1a846 in Figure 10.3), argXtract examines the pre-

ceding instructions until an integer comparison is identified (0x1a83c). It then uses subsequent

158

MEASUREMENT 〉 Firmware Analysis 〉 argXtract

1a83c: 2c17 cmp r4 , #23

1a83e: d8fc bhi.n 1a83a

1a840: 4ac7 ldr r2 , [pc , #796]

1a842: 00a3 lsls r3 , r4 , #2

1a844: 58d3 ldr r3 , [r2 , r3]

1a846: 469f mov pc , r3

Figure 10.3: Write-to-PC operation.

2894a: 2e08 cmp r6, #8

2894c: d219 bcs.n 28982

2894e: e8df f006 tbb [pc, r6]

28952: 1b181804 ; data

28956: 172 f2f22 ; data

2895a: 8901 ldrh r1, [r0, #8]

Figure 10.4: Sample table branch structure.

conditional branches (0x1a83e) to determine the actual range of values for the comparison regis-

ter ([0,23] in this example). The instructions following the branch and until the non-PC-relative

memory-load (0x1a844) are executed for all possible values of the comparison register. This pro-

duces a range of addresses from which the branch addresses are loaded. The range of addresses is

marked as data. A second execution until the PC-write instruction produces the set of branch ad-

dresses, which are stored to be used by the function boundary identification component (§10.3.3).

Table branches Table branch instructions (tbb, tbh) were introduced in the ARMv7-M ar-

chitecture to handle complex branching conditions. Figure 10.4 depicts a sample table branch

instruction (at address 0x2894e). The instruction is immediately followed by a branch table

(0x28952 and 0x28956). This table should be interpreted as data, but is misinterpreted by

disassemblers as code in the absence of debugging symbols.

In the case of table branch instructions, an index value is used to index into the branch table.

argXtract follows the procedure described in Algorithm 10.3, exploiting the comparison made

with the indexing register (0x2894a) - similar to the process described for write-to-PC operations

- to identify the range of addresses that make up the branch table. In the example in Figure 10.4,

the comparison (0x2894c) and conditional branch (0x2894a) indicate that the branch table has

8 entries. Because the table branch instruction in our example is tbb, the table will consist of

single-byte offsets (if the instruction had been tbh, the table would contain halfword offsets).

argXtract processes this information and marks the 8 bytes from the PC onward as data.

Compact switch helpers Prior to the introduction of table branch instructions, helper func-

tions were utilised to handle switch-case constructs. The GCC compiler produces gnu thumb1

variants, while Keil produces ARM common switch8. These helper functions have identifiable

function prologues, and calls to the functions are followed by an index table, similar to ta-

ble branch instructions. argXtract determines the locations of helper functions and applies

function-specific processing to determine the size of the index table. It also determines addresses

of resultant branches, to be used by the function boundary identification module (§10.3.3).

159

MEASUREMENT 〉 Firmware Analysis 〉 argXtract

Algorithm 10.3: Inline data identification (table branch).

1 for instruction ∈ disassembledInstructions do
2 if opcode(instruction) ∈ tableBranchInstructions then
3 mulFactor = (opcode(instruction) == tbh)?2 : 1;
4 cmpV alue = getTableSkipComparisonV alue(address(instruction));
5 maxBranchAddress = pcAddress + (cmpV alue ∗mulFactor) + 2;
6 if (opcode(instruction) == tbb)and(byte(maxBranchAddress) == 00) then
7 maxBranchAddress += 1;
8 end
9 tableBranchAddress = pcAddress;

10 while tableBranchAddress < maxBranchAddress do
11 markAddressAsData(tableBranchAddress);
12 tableBranchAddress += 2;

13 end

14 end

15 end

10.3.3 Function Boundary Identification

Function boundary identification is used within argXtract to enable function pattern matching

and call execution path determination. The challenges involved in function boundary identifica-

tion have been widely studied. These include indirect function calls, absence of specific function

prologues, indeterminate location of start instructions, absence of a clear exit point and presence

of multiple exit points [235]. The presence of inline data within Cortex-M disassembly, which

may be misinterpreted as code, can further complicate function boundary estimation [223].

argXtract’s function boundary identification is performed in two stages. First, an initial set of

high-certainty candidates for function start addresses is generated by extracting the addresses

of interrupt handlers from the Vector Table. That is, each interrupt handler is considered as

a separate function and the addresses of the interrupt handler functions are obtained from the

VT that occurs at the beginning of the binary file. Targets of branch-and-link (bl) instructions

are added to this set; targets of branch (b) instructions are also added, but subject to satisfying

requirements regarding function prologues.

In the second stage, a function estimation algorithm (Algorithm 10.4) is executed against each

block of instructions beginning from one start address and ending prior to the next start. The

algorithm operates on the basic principle that, while a function may have multiple exit instruc-

tions due to conditional executions, it must have mechanisms for bypassing all but one of the

exit points. This could be via conditional branch instructions or a switch/branch table (as

identified in §10.3.2). argXtract determines all potential exit points (e.g., pop, bx lr, uncon-

ditional branches to lower addresses or outside the current block, and data) within the block

of instructions that is being analysed and marks the exit point that cannot be bypassed as the

ultimate function exit. The next valid instruction is determined to be the beginning of the next

function. This procedure is performed iteratively to obtain the final list of function boundaries.

We further illustrate this algorithm using the code example in Figure 10.5 as reference. This ref-

erence code contains two functions, denoted as functionB and functionC. Of these, functionB

160

MEASUREMENT 〉 Firmware Analysis 〉 argXtract

Algorithm 10.4: Function estimation.

Result: Start addresses for estimated function blocks

1 functionAddresses = [vtAddresses, branchTargets].sort();
2 for functionAddress ∈ functionAddresses do
3 start = functionAddress, end = getF inalAddressInBlock(functionAddress);
4 exitPoints = getExitPoints(start, end).sort()
5 for i = start→ end do
6 if opcode(i) ∈ conditionalBranchInstr then
7 branchTargeti = target(i) ; . Target of branch.

8 for exit ∈ exitPoints do
9 if doesBranchBypassExit(branchTargeti, exit) then

10 exitPoints.remove(exit);
11 end

12 end

13 else if i ∈ [switchCalls, PCwrites] then
14 maxBranchAddress = max(switchTable);
15 if doesOverflowBlock(maxBranchAddress, end) then
16 combineAndReestimate(maxBranchAddress, start);
17 end
18 for exit ∈ exitPoints do
19 if doesBypassExit(maxBranchAddress, exit) then
20 exitPoints.remove(exit);
21 end

22 end

23 end

24 end
25 nextFunctionStart = getF irstInstructionPostExit(exitPoints);
26 functionAddresses.insert(nextFunctionStart));

27 end

18228: bl 182b0 <functionB >

000182 b0 <functionB >:

182b0: push {r4 , lr}

182b2: cmp r2 , #32

182b4: blt.n 182c0 ;skips pop at 182be

182b6: mov r0 , r1

182b8: subs r2 , #32

182ba: lsrs r0 , r2

182bc: movs r1 , #0

182be: pop {r4 , pc}

182c0: mov r3 , r1

182c2: lsrs r3 , r2

182c4: lsrs r0 , r2

182c6: movs r4 , #32

182c8: subs r2 , r4 , r2

182ca: lsls r1 , r2

182cc: orrs r0 , r1

182ce: mov r1 , r3

182d0: pop {r4 , pc}

182d2: nop

000182 d4 <functionC >: ;not called within code

182d4: ldrb r2 , [r0 , #0]

182d6: adds r0 , r0 , #1

Figure 10.5: Reference ARM assembly for function estimation.

161

MEASUREMENT 〉 Firmware Analysis 〉 argXtract

0x18228 : b l 0x182b0
. . .
0x182b0 : push { r4 , l r }
0x182b2 : cmp r2 , #0x20
0x182b4 : b l t #0x182c0
0x182b6 : mov r0 , r1
0x182b8 : subs r2 , #0x20
0x182ba : l s r s r0 , r2
0x182bc : movs r1 , #0
0x182be : pop { r4 , pc}
0 x182c0 : mov r3 , r1
0 x182c2 : l s r s r3 , r2
0 x182c4 : l s r s r0 , r2
0 x182c6 : movs r4 , #0x20
0 x182c8 : subs r2 , r4 , r2
0 x182ca : l s l s r1 , r2
0 x182cc : o r r s r0 , r1
0 x182ce : mov r1 , r3
0x182d0 : pop { r4 , pc}
0x182d2 : nop
0x182d4 : ldrb r2 , [r0]
0x182d6 : adds r0 , r0 , #1

(a) Capstone disassembly
(starting point).

0x18228 : bl 0x182b0
. . .
0x182b0: push r4, lr ;start
0x182b2 : cmp r2 , #0x20
0x182b4 : b l t #0x182c0
0x182b6 : mov r0 , r1
0x182b8 : subs r2 , #0x20
0x182ba : l s r s r0 , r2
0x182bc : movs r1 , #0
0x182be : pop { r4 , pc}
0 x182c0 : mov r3 , r1
0 x182c2 : l s r s r3 , r2
0 x182c4 : l s r s r0 , r2
0 x182c6 : movs r4 , #0x20
0 x182c8 : subs r2 , r4 , r2
0 x182ca : l s l s r1 , r2
0 x182cc : o r r s r0 , r1
0 x182ce : mov r1 , r3
0x182d0 : pop { r4 , pc}
0x182d2 : nop
0x182d4 : ldrb r2 , [r0]
0x182d6 : adds r0 , r0 , #1

(b) Identify function blocks using
b, bl.

0x18228 : b l 0x182b0
. . .
0x182b0: push r4, lr ;start
0x182b2 : cmp r2 , #0x20
0x182b4 : b l t #0x182c0
0x182b6 : mov r0 , r1
0x182b8 : subs r2 , #0x20
0x182ba : l s r s r0 , r2
0x182bc : movs r1 , #0
0x182be: pop {r4, pc} ;end?
0 x182c0 : mov r3 , r1
0 x182c2 : l s r s r3 , r2
0 x182c4 : l s r s r0 , r2
0 x182c6 : movs r4 , #0x20
0 x182c8 : subs r2 , r4 , r2
0 x182ca : l s l s r1 , r2
0 x182cc : o r r s r0 , r1
0 x182ce : mov r1 , r3
0x182d0: pop {r4, pc} ;end?
0x182d2 : nop
0x182d4 : ldrb r2 , [r0]
0x182d6 : adds r0 , r0 , #1

(c) Mark potential exit points
such as pop pc

0x18228 : b l 0x182b0
. . .
0x182b0: push r4, lr ;start
0x182b2 : cmp r2 , #0x20
0x182b4: blt #0x182c0
0x182b6 : mov r0 , r1
0x182b8 : subs r2 , #0x20
0x182ba : l s r s r0 , r2
0x182bc : movs r1 , #0
0x182be: pop {r4, pc} ;end?
0 x182c0 : mov r3 , r1
0 x182c2 : l s r s r3 , r2
0 x182c4 : l s r s r0 , r2
0 x182c6 : movs r4 , #0x20
0 x182c8 : subs r2 , r4 , r2
0 x182ca : l s l s r1 , r2
0 x182cc : o r r s r0 , r1
0 x182ce : mov r1 , r3
0x182d0: pop {r4, pc} ;end?
0x182d2 : nop
0x182d4 : ldrb r2 , [r0]
0x182d6 : adds r0 , r0 , #1

(d) Identify instructions that
skip exit points.

0x18228 : b l 0x182b0
. . .
0x182b0: push r4, lr ;start
0x182b2 : cmp r2 , #0x20
0x182b4 : b l t #0x182c0
0x182b6 : mov r0 , r1
0x182b8 : subs r2 , #0x20
0x182ba : l s r s r0 , r2
0x182bc : movs r1 , #0
0x182be : pop { r4 , pc}
0 x182c0 : mov r3 , r1
0 x182c2 : l s r s r3 , r2
0 x182c4 : l s r s r0 , r2
0 x182c6 : movs r4 , #0x20
0 x182c8 : subs r2 , r4 , r2
0 x182ca : l s l s r1 , r2
0 x182cc : o r r s r0 , r1
0 x182ce : mov r1 , r3
0x182d0: pop {r4, pc} ;end?
0x182d2 : nop
0x182d4 : ldrb r2 , [r0]
0x182d6 : adds r0 , r0 , #1

(e) Remove skipped exit
instructions.

0x18228 : b l 0x182b0
. . .
0x182b0: push r4, lr ;start
0x182b2 : cmp r2 , #0x20
0x182b4 : b l t #0x182c0
0x182b6 : mov r0 , r1
0x182b8 : subs r2 , #0x20
0x182ba : l s r s r0 , r2
0x182bc : movs r1 , #0
0x182be : pop { r4 , pc}
0 x182c0 : mov r3 , r1
0 x182c2 : l s r s r3 , r2
0 x182c4 : l s r s r0 , r2
0 x182c6 : movs r4 , #0x20
0 x182c8 : subs r2 , r4 , r2
0 x182ca : l s l s r1 , r2
0 x182cc : o r r s r0 , r1
0 x182ce : mov r1 , r3
0x182d0 : pop { r4 , pc}
0x182d2 : nop
0x182d4: ldrb r2, [r0] ;start
0x182d6 : adds r0 , r0 , #1

(f) Identify suitable start for
next function.

Figure 10.6: Process used by argXtract for identifying function blocks.

is called via a bl instruction at 0x18228, while functionC is called indirectly via a blx call (which

means the starting address of functionC cannot be identified without some level of register

tracing). Figure 10.6a depicts the equivalent assembly code obtained using the Capstone [236]

disassembler against the stripped version of the binary. To estimate function boundaries for

this disassembly, we first identify high-confidence function starts, including targets of bl in-

structions. This will result in 0x182b0 being identified as a function start (Figure 10.6b). This

162

MEASUREMENT 〉 Firmware Analysis 〉 argXtract

corresponds to functionB. We next apply our function boundary estimation algorithm to the

block of assembly instructions beginning at 0x182b0 as follows:

• Mark out possible exit points, such as pop pc, bx lr, or data. As shown in Figure 10.6c,

there are two such potential exit points, at addresses 0x182be and 0x182d0.

• Look for branches that skip the exit points. Figure 10.6d shows that the branch condition

at 0x182b4 skips the exit point at 0x182be. This exit point is therefore considered to be

part of the existing function (i.e., the one beginning at 0x182b0).

• Remove exit points that are skipped. We are left with one other potential exit point at

0x182d0. It is considered the final exit point of the function (see Figure 10.6e).

• Identify the next valid instruction as the start of the next function. Initially, we consider

the instruction at 0x182d2 to be the start of the next function. However, this address

contains a nop instruction. Therefore, we skip it and mark 0x182d4 as the start of the

next function, as shown in Figure 10.6f.

Comparing this with Figure 10.5, we can see that the algorithm has correctly identified the

function starting address for functionC.

This process is then repeated from the start of the new function (i.e., from 0x182d4), until the

end of the block is reached. At the end of this step, we have a list of function start addresses

(i.e., the addresses of functions) for the binary under test.

Function block annotation argXtract maintains a function block object, where each key cor-

responds to an identified function block. The object contains information on cross-references

to and from a function, as well as the call depth. The call depth is a parameter indicating the

maximum number of functions that get called iteratively by a function. This information tells

argXtract which functions will likely take a long time to execute and are therefore candidates

for exclusion when execution is time-limited. If a function contains perpetual loops, as is the

case with some error handlers, then it is added to a deny-list, to prevent inadvertently calling

such functions.

10.3.4 COI Identification

A COI in our framework could be a standard function call or could be translated to an ARM

supervisor call (svc). argXtract identifies calls to the svcs or functions of interest using distinct

techniques, as described in §10.3.4.1 and §10.3.4.2, respectively. In both cases, the addresses of

the calling instructions are stored, to be used in the tracing step.8 This then satisfies Condi-

tion C1 as described in §10.2. After this step, all pre-conditions for analysing a stripped ARM

binary will be satisfied.

10.3.4.1 Supervisor Call Identification

An ARM supervisor call is simply an instruction with an opcode of svc. A supervisor call will

have an associated svc number. If an IoT chipset vendor issues a technology stack that accepts

8Direct calls are identified. However, calls via blx are not.

163

MEASUREMENT 〉 Firmware Analysis 〉 argXtract

configuration commands via supervisor calls, then the associated svc numbers will normally be

available from the vendor SDK.

In svc analysis mode, an input object containing the svc numbers of interest is provided to

argXtract. A linear scan is performed over the disassembly to obtain the addresses of the

relevant svc instructions. These are stored, to be used in the tracing step (§10.3.5).

10.3.4.2 Function Pattern Matching

Identifying function calls of interest is far more complex than identifying supervisor calls, as

functions cannot be immediately identified within assembly. We exploit the fact that configu-

ration API functions (such as those provided by vendors for performing configurations to IoT

stacks) accept inputs in a specific order, which are passed within registers in a specific sequence

(r0, r1, ...) for Cortex-M. In addition, most functions generate artefacts that are detectable

within memory and/or registers, i.e., as output or intermediate values.

For each function of interest, we define a “function pattern file”, which is a collection of test sets

containing register and memory inputs, and the corresponding outputs (which could be actual

output values, stored in registers or memory, or intermediate values at detectable locations).

In the case of functions that store identifiable values at binary-specific locations that cannot

be predetermined, we propose wildcard addresses, where expected values are specified at some

predetermined offset from the wildcard address.

The function pattern files are passed to each of the functions that have been identified (using the

process described in §10.3.3) for the binary under test. The function instructions are executed

with the input register and memory values specified in the pattern file. Output register and

memory contents are compared against the expected values. If a single function matches the

given pattern, then this is taken to be the function of interest. In the case of nested function

calls, the function with the lowest call depth that satisfies the given pattern is taken to be the

function of interest. Polymorphism will be detected if the processing of the inputs differs between

the functions such that the artefacts/outputs are different.9 Note however that if two functions

produce the same outputs for any given inputs, then function pattern matching will fail.

10.3.5 Register Tracing and Argument Processing

Once COIs have been identified (as described in §10.3.4), argXtract performs backward inter-

procedural tracing to determine all call execution paths leading to the COI(s). It then forward-

traces along the paths while updating the values of registers, memory and conditional flags with

each instruction execution. Note that argXtract does not, in the interest of processing time

and resources, follow every possible branch that it encounters during the trace.10 Instead, it

follows a set of rules, to determine whether or not to proceed with a branch:

9Note that input structures within function pattern files are provided in byte format. Therefore, differences in
input type do not impact the analysis.

10A fairly simple firmware binary can have several thousand branch instructions, which rapidly compounds the
required memory as well as analysis time.

164

MEASUREMENT 〉 Firmware Analysis 〉 argXtract

• All branches that are within the identified call execution path are followed.

• All unconditional internal loops (i.e., branches to other addresses within the same function)

are followed.

• Conditional internal loops are followed if the conditions are satisfied. If conditional checks

cannot be made (due to the flags not being set as expected, for example), then the outcome

is indeterminate and both possible paths are taken.

• Branches to functions on the deny-list are not taken.

• Branches to functions that are not present within the call execution path are only followed

if their call depth is less than a configurable max call depth value (default=1).

If a branch check should fail, then argXtract skips it and proceeds to the next instruction. If a

bl is skipped, then going by the ARM convention of using register r0 for holding the output of

subroutines [237], and the convention of returning 0 on execution success, we artificially assign

a value of 0 to r0 in order to bypass a possible subsequent branch to fault handlers due to

non-zero status returns.

Once the COI is reached via the trace, its arguments are extracted for processing. The arguments

to a COI are contained within registers r0-r3 (or are on the call stack) [238–240]. Some of these

register values may actually be pointers to data in memory. Therefore, when a COI is reached,

the contents of both the register object and the memory map are returned to an argument

analysis component for processing.

The type and format of data that are used as arguments to COIs are obtained from header files

within vendor SDKs and provided to argXtract in the form of Argument Definition Objects.

These are JSON files that describe the expected structure of data bits for each input argument

using predefined keywords.11 For example, Figure 10.7a depicts the Argument Definition Object

for the sd ble opt set COI discussed in §10.2. A corresponding trace output may look like that

depicted in Figure 10.7b. Taking the second argument as an example, we note that it is defined

as a pointer to a pointer to a 6-byte (48-bit) array. This argument is contained within register

r1, which according to the trace output in Figure 10.7b contains a value of 20007f68. As the

Argument Definition Object indicates that this is a pointer, we refer to the contents of memory.

The memory object in Figure 10.7b shows that the address 0x20007f68 contains the value

20007f60. This (also being a pointer) is interpreted as a memory address, 0x20007f60, which

contains the hex value 0x313233343536. This corresponds to the ASCII string “123456”, which

is the value specified as the fixed passkey in our example in Figure 10.1a. This results in the

output depicted in Figure 10.7c.

Arguments that hold outputs (by being written to a memory location) will be specified in

the Argument Definition Object to be fed back into the memory map and used in subsequent

traces. This is used to tie together two separate traces. We use this functionality to link a BLE

characteristic with its associated service when analysing Nordic binaries (§10.5).

11We adopt this template-based approach for greater flexibility, such that supporting additional COIs only
requires including new Argument Definition Objects, rather than needing to add extra COI-specific code.

165

MEASUREMENT 〉 Firmware Analysis 〉 Evaluation

{

"args": {

"0": {...},

"1": {

"in_out ": "in",

"ptr_val ": "pointer",

"data": {

"p_opt": {

"ptr_val ": "pointer",

"length_bits ": 48,

"type": "hex"

}

}

}

}

}

(a) Argument definition object.

{" sd_ble_opt_set ":{

memory :{..., 0x20007f60 :"31", 0x20007f61 :"32", 0x20007f62 :"33",

0x20007f63 :"34" , 0x20007f64 :"35" , 0x20007f65 :"36" , 0

x20007f66 :"00" , 0x20007f68 :"60" , 0x20007f69 :"7f", 0x20007f6a

:"00" , 0x20007f6b :"20", ...},

registers :{... , r0 :"00000022" , r1 :"20007 f68", ...}}}

(b) Sample register/memory contents.

"output ": {

"sd_ble_opt_set ": [

{

"opt_id ": 34,

"p_opt": "313233343536"

}

]

}

(c) Processed output file.

Figure 10.7: Template-based argument processing.

10.4 Evaluation

We implement argXtract using Python. We select Capstone as the disassembler, as it under-

pins ARM disassembly for a large number of existing reverse-engineering and analysis tools,

including radare, angr and binwalk. Our implementation supports the entire ARMv6-M in-

struction set and the most prevalent instructions within ARMv7-M. In this section, we evaluate

our implementation in terms of the accuracy of function boundary identification and pattern

matching, and the correctness of extracted configurations.

10.4.1 Test Set and Ground Truth

There is no publicly available dataset of ARM Cortex-M binaries with known and annotated

configurations. For this reason, we generated our own dataset, comprising 28 stripped binaries,

for testing and verification purposes. The binaries target chipsets from NXP, STMicroelectronics,

Nordic Semiconductor and Texas Instruments, for multiple IoT technologies including Zigbee,

166

MEASUREMENT 〉 Firmware Analysis 〉 Evaluation

Table 10.1: True Positive Rates (TPR) and Effective False Positive Rates (EFPR) for function
block identification against test binaries. EFPR is computed by discounting misidentifications

that do not impact the trace.

Bin File argXtract radare21 ghidra2 Bin File argXtract radare21 ghidra2

ID† #Fns‡ TPR EFPR TPR EFPR TPR EFPR ID† #Fns‡ TPR EFPR TPR EFPR TPR EFPR

0a1 324 100 0.29 95.68 2.19 87.96 0 0d2 841 0 100 69.32 7.4 69.68 2.85

1d7 951 93.27 0.97 74.24 3 73.08 0.82 3b1 204 99.02 0 88.24 0 82.35 0

443 598 100 0 83.78 3.05 83.95 1.95 4d7 1563 95.71 1.17 78.57 3.28 77.8 0.15

589 1486 97.51 0.68 83.24 1.59 84.79 0 5d3 398 99.50 0.73 94.97 0 93.47 0

646 166 98.80 0 80.72 0.73 77.71 0.76 67e 2138 99.16 0.05 82.69 0.54 83.4 0.22

681 1961 97.86 0.56 94.19 0.7 87.51 0.12 6ac 265 98.11 0.37 73.96 0.5 72.08 0

70b 115 95.65 0 67.83 0 73.04 0 7e8 1529 97.58 0.66 81.62 1.57 84.96 0

928 520 95.38 0.93 90.19 0 71.15 0 938 2764 99.57 0.74 85.53 0.59 83.90 0.09

989 762 95.80 9.7* 69.27 8.62 63.10 9.39 ade 1951 99.33 0.89 89.54 0.46 87.69 0.12

bad 839 92.25 0.79 69.85 5.43 68.53 0 be7 2035 99.71 0.39 5.11 87.43 4.72 88

cb5 92 94.57 1.11 61.96 0 67.39 0 cc8 1582 94.82 0.71 82.68 1.91 83 0

dd9 801 96.63 6.9* 95.93 6.36 88.15 6.66 e2a 495 95.15 0.39 89.7 0 69.29 0

e2d 698 96.42 0.35 94.99 0 86.25 0 f2b 1926 99.79 0.65 81.15 1.01 79.85 0.06

f37 1585 95.21 1.16 78.23 3.18 78.36 0 fe9 1007 99.40 0.1 61.27 0.80 56.21 0.70
†ID = First three characters of SHA256 of binary. ‡#Fns = Number of functions. 1radare2 was executed using
aaa analysis mode, 2Ghidra was executed using the ARM Aggressive Instruction Finder option. Both were

provided with the application code base manually.

ANT, BLE, Thread and 802.15.4. The binaries were compiled using GCC, IAR, Keil and

Clang, depending on the options made available by the chipset vendor. We provide a detailed

description of the test set binaries in our code repository. For ground truth, we obtained the

actual configuration for each binary by disassembling its unstripped version using the GNU ARM

embedded toolchain.

10.4.2 Accuracy of Function Boundary Identification

We evaluate the accuracy of argXtract’s function boundary identification (§10.3.3) by estimat-

ing function boundaries, i.e., function start addresses, for the 28 stripped binaries within our test

set and comparing them against the actual functions from the unstripped versions. For com-

parison, we also do the same using radare2 and ghidra. We present our results in Table 10.1.

Considering the True Positive Rate (TPR column), the table shows that for all but five binaries,

more than 95% of functions are correctly identified by argXtract. The results are more variable

for radare2 and ghidra, but in general the TPRs obtained by these two tools are lower (often

significantly lower) than those obtained by argXtract. Manual analysis of a sample of func-

tions (across the test set) that were correctly identified by argXtract but not by radare2 or

ghidra showed that many such functions occurred after inline data or less traditional function

exit points. The techniques employed by argXtract for inline data identification and function

boundary identification enable it to handle such instances and identify a greater proportion of

function start addresses correctly. There was a single exception (binary with ID=0d2), where

argXtract resulted in a TPR of 0% while radare2 and ghidra identified approximately 70% of

167

MEASUREMENT 〉 Firmware Analysis 〉 Evaluation

functions. This was a binary where the .text segment was split into two sections, each with a

different offset. argXtract was unable to compute the offsets in this case, which meant that fur-

ther analysis was not possible. Additionally, manual analysis of the remaining four cases where

argXtract produced a TPR < 95% showed that the unidentified functions were of unusual

structure, e.g., functions accessed via direct conditional branches, or containing only a bx lr

instruction. These are likely to be fragments of other functions or shared functions. We observe

that for the vast majority of such cases, radare2 and ghidra also failed to identify the functions.

Examining false positives (regardless of the analysis tool), we found that in many cases misiden-

tified functions were either where unannotated data had been identified as the start of function

blocks, or where a logical function start can be assumed, e.g., blocks of alternating ldr instruc-

tions and data bytes causing each ldr to be considered as the start of a new function. In the

former case, these particular “functions” will never be called during the tracing phase. In the

latter, the functions are directly addressed as if they are individual functions. Therefore, such

FPs will not affect the trace. We thus consider an “Effective FPR” to denote the false posi-

tives excluding such instances. The EFPRs obtained by argXtract are fairly similar to those

obtained by ghidra (within 1-2% of each other). radare2 was more likely to result in a higher

EFPR; manual analysis showed that this was often due to radare2 incorrectly considering push

instructions to be the start of a function. Overall, argXtract resulted in EFPRs of < 1.5% for

all but two binaries (marked with * in the table). These were both compiled by IAR, which is the

only compiler we have observed that uses bl instructions to branch and link within a function.

This accounts for the higher EFPR for these two binaries. While this will not impact the actual

branching functionality, it will influence the call depth calculation, which in turn could impact

tracing. We observe that radare2 and ghidra also resulted in high EFPRs for these two binaries.

10.4.3 Accuracy of Function Pattern Matching

We verified the pattern matching module against the CryptoKeyPlaintext initKey function

from the Texas Instruments SimpleLink Platform, the mbedtls ssl conf ciphersuites from

the mbedtls library, and the ot::KeyManager::SetKeyRotation OpenThread function. When

testing for these functions, we generated stripped binaries using different vendor SDKs (where

relevant), as well as different projects and compilers (Keil, IAR, Clang), to account for vendor-

and compiler-introduced variations. argXtract was able to identify the correct function location

from within the stripped binary in each case, which we verified using the unstripped versions

of the binaries. To further check the accuracy of argXtract’s function pattern matching, we

manually verified it against the HAL Write ConfigData and aci gap init functions within a

real-world STMicroelectronics binary by comparing their functionality against the functions

within an unstripped reference binary.

10.4.4 Correctness of Results

For correctness checks, we perform tests using binaries generated with known configurations, as

well as verification using a real-world binary and associated device.

168

MEASUREMENT 〉 Firmware Analysis 〉 Case Study I: BLE Security and Privacy (Nordic)

We use a subset of ten binaries from our test set, targeting Nordic and STMicroelectronics

chipsets, compiled using GCC, Keil and IAR, and implementing ANT and BLE. For Nordic

ANT binaries, we define different channel settings and encryption keys. For STMicroelectronics

BlueNRG binaries, we define different advertising addresses and privacy configurations. For

Nordic BLE binaries, we define 3 BLE services with very specific configurations as follows:

• Heart Rate Service: must include the Heart Rate Measurement and Body Sensor Location

characteristics.

• Device Information Service: must include the Manufacturer Name String characteristic

and no other characteristics (Nordic defines all possible characteristics associated with

the Device Information Service within its BLE stack. However, an accurate trace should

only identify those characteristics that we have explicitly included within our code).

• Custom service: must include our custom characteristic.

Each characteristic also has specific permissions. It is only if all these configurations are identified

exactly that an output is taken to be correct.12

In our experiments, we found that all of the conditions were satisfied for all test binaries within

our control set, i.e., the configurations were extracted exactly as expected.

We additionally verified argXtract against the Goji Go Activity Tracker, whose firmware we had

extracted from its companion mobile application. The tracker had two SIG services, as well as

the Nordic DFU service and a developer-defined service. Comparing the results obtained using

argXtract with those we obtained from manual analysis (via a combination of device interaction

using the nRF Connect app [241] and profiling using our ATT-Profiler (see Chapter 9)), we

found that argXtract accurately extracted the configuration of the device.

10.5 Case Study I: BLE Security and Privacy (Nordic)

In this section we present a case study for the identification of BLE configuration vulnerabilities

in binaries that target Nordic Semiconductor chipsets. For its BLE offerings, Nordic provides a

BLE stack to which configuration requests are issued using supervisor calls.

Building the firmware dataset As we have observed previously, BLE Peripherals typically

interface with one or more mobile applications. Many of these mobile applications implement a

firmware upgrade and/or factory reset procedure. The firmware used for this purpose is either

included within the mobile application itself or is downloaded from a server. The firmware for

Nordic chipsets is identifiable due to its specific structure and included files.

We programmatically extracted 243 unique13 Nordic BLE binaries from a large dataset of BLE-

enabled Android APKs, obtained from AndroZoo [110] and Google Play. We check for the

possibility of cloned firmware or different versions of firmware from a single developer, which

can result in the same set of characteristics in different files. We use ssdeep for this purpose, with

12The configurations we have made depended on the options made available by the respective vendors.
13Determined by the SHA256 computed over the file bytes.

169

MEASUREMENT 〉 Firmware Analysis 〉 Case Study I: BLE Security and Privacy (Nordic)

a threshold of 70%, to account for the fact that a lot of the Nordic baseline code will likely be the

same across files. The output showed that 7 clusters were present within our dataset, with an

average of 3 files per cluster. We account for these, where relevant, when presenting our results.

Execution environment We executed argXtract on a VM running Ubuntu 18.04.3 LTS with

64 GB RAM and 10 processor cores. Taking RAM usage into consideration, 8 parallel processes

were used.

Section outline The remainder of this section describes our findings. We first review the

protection (or lack thereof) applied to BLE data across the binaries for the link and application

layers (§10.5.1). We then analyse instances of weakened pairing due to the use of fixed passkeys

(§10.5.2). Finally, we examine privacy concerns identified for our dataset due to two reasons:

static addresses (§10.5.3) and device/manufacturer names (§10.5.4). Each subsection describes

the supervisor call that was targeted, mentions the obtained results, and discusses the security

or privacy implications of the results.

10.5.1 Security of BLE Data

As mentioned in §2.1.3.3 and §2.2.4, BLE data attributes can have different permissions applied

to them to restrict access. Authentication/encryption permissions are specified in terms of dif-

ferent security modes and levels and are applied to the link layer, while authorisation permissions

are applied at the application layer.

Characteristics and specific descriptors can have authentication and authorisation permissions.

According to the characteristic’s properties, the method of applying security will differ. In

particular, a characteristic that has the read property will have different security mechanisms

to one that has notify or indicate properties, despite the outcome for both being somewhat

similar (i.e., the connected device obtains the characteristic value). A read request requires that

the connected device satisfy the read permissions specified for the characteristic value itself,

while subscribing to notifications requires that the connected device satisfy the write permissions

specified for the characteristic’s CCCD.

Extracting characteristic security configurations The security requirements for BLE charac-

teristics in Nordic devices are defined when the characteristics are declared. This is achieved

using the sd ble gatts characteristic add call. To tie each characteristic to a service such

that it can be uniquely identified, we also analyse the sd ble gatts service add call.

Executing argXtract against our dataset with a maximum execution time of 1.5 hours per

trace returned 199 valid output files. Analysis was completed in less than 2 minutes for ∼50%

of the binaries. 25% of the binaries required 2-10 minutes, while the remaining required more

than 10 minutes. The 199 binaries contained 6 of the previously mentioned clusters. Manual

examination showed that the corresponding output files within each cluster had the same service

configurations. We therefore consider only 188 unique outputs.

170

MEASUREMENT 〉 Firmware Analysis 〉 Case Study I: BLE Security and Privacy (Nordic)

Table 10.2: Protection applied to developer-defined data.

Access Description #Bins

Reads Binaries with developer-defined readable characteristics 167

Binaries with Mode 1 Level 2 link-layer protection for developer-defined readable
characteristics

5

Binaries with Mode 1 Level 3 link-layer protection for developer-defined readable
characteristics

0

Binaries with application-layer security for developer-defined readable characteristics 7

Writes Binaries with developer-defined writable characteristics 169

Binaries with Mode 1 Level 2 link-layer protection for developer-defined writable
characteristics

4

Binaries with Mode 1 Level 3 link-layer protection for developer-defined writable
characteristics

0

Binaries with application-layer security for developer-defined writable characteristics 69∗

∗24 excluding Nordic DFU control point, from Nordic DFU library.

10.5.1.1 Insufficient Protection for BLE Data

In this section, we discuss the protection applied to BLE data for the binaries in our dataset.

Because BLE characteristics can either be defined by the Bluetooth SIG, with SIG-specified

security configurations, or defined by the device developer with developer-specified security, we

analyse the two instances separately.

(i) Protection for SIG-defined BLE data: argXtract extracted SIG-defined characteristics from

103 binaries. We compared the obtained security configurations with the expected values speci-

fied by the SIG and found that in all cases, the devices do follow the SIG specifications, in that

most characteristics have no security applied to them.

The results also revealed an interesting observation for the SIG-defined characteristics that do

have security requirements. In many such cases, the SIG specifies a choice of protection levels,

normally Mode 1 Level 2 or Mode 1 Level 3. These can be achieved using Just Works or

Passkey Entry pairing, respectively. While both Just Works and Passkey Entry are known to

be vulnerable to passive eavesdropping attacks (as discussed in §3.4), Passkey Entry should be

the choice for greater security, as it provides some MitM protection. However, our results show

that device developers have invariably opted for the lower security level, i.e., Mode 1 Level 2.

This may be due to insufficient IO capabilities on the devices precluding the use of Passkey

Entry, although we have previously observed real-world devices using Just Works even when

sufficient IO capabilities were available (see §9.5.1). We reiterate that, even if the BLE device

does have sufficient IO capabilities, so long as Mode 1 Level 2 is specified, an attacker can often

manipulate the pairing process such that Just Works is used.

(ii) Protection for developer-defined BLE data: argXtract extracted at least one developer-

defined characteristic from 170 binaries. Table 10.2 summarises the link layer and application

layer protection applied to the developer-defined characteristics, broken down into readable

(including notifications/indications) and writable characteristics.

171

MEASUREMENT 〉 Firmware Analysis 〉 Case Study I: BLE Security and Privacy (Nordic)

From the table, we conclude that protection for reads is virtually non-existent at the link-

layer, with only five firmware binaries specifying Mode 1 Level 2 authentication requirements.

Similarly, authorisation requirements are also not prevalent among readable characteristics, with

only seven binaries specifying protection at higher layers.

Writable characteristics fare similarly to readable characteristics in terms of link-layer protec-

tion, with only four binaries specifying Mode 1 Level 2 authentication requirements. App-layer

protection is slightly better for writable characteristics, but a significant proportion of binaries

apply no protection at all to their writable characteristics (apart from those provided by Nordic

itself, for its firmware upgrade procedure).

Security implications The security of a BLE device is strongly associated with the authenti-

cation and authorisation permissions applied to its data. As we have discussed in §3.4, having

freely accessible BLE characteristics means any user in the vicinity of the BLE Peripheral will be

able to read and write the data, subject to the characteristic being readable/writable. For that

matter, even if the characteristic is protected by Just Works pairing, an attacker in the vicinity

may be able to covertly pair with the device and access its data. Further, even if strong link-

layer protection is present, absence of application-layer protection makes the data vulnerable to

access by unauthorised apps, as we have shown in Chapter 5.

Implications for readable data within the dataset : Among the binaries that had no link-layer

or application-layer protection for readable characteristics, we found numerous fitness tracking

devices, as well as healthcare devices, all of which potentially store detailed information regarding

a user’s activity or health. No protection or only Just Works protection means that this personal

and sensitive data is vulnerable to unauthorised access, via local and remote attacks.

Implications for writable data within the dataset : Within the binaries that had writable charac-

teristics, we found one that contained the SIG-defined Human Interface Device (HID) service.

This only had Mode 1 Level 2 link-layer protection applied to its characteristics. Again, this

security requirement can be satisfied by Just Works pairing, which means that an attacker

could transmit unsolicited messages to the HID device, and also read and modify the keyboard

characters that are transmitted between the HID device and host via a MitM attack. This has

been demonstrated in [242]. We have informed the developer of this vulnerability, but have not

received a response.

The vast majority of devices applied no protection to any of their writable characteristics.

Among these were smart switches, medical respiratory devices (nebulisers) and ECG monitoring

devices. Writing random bytes to characteristics on such devices could cause the devices to

function improperly or cease to function entirely. If the behaviour of the device corresponding

to the written values is known to an attacker, then they can write carefully chosen values in

order to modify the expected behaviour, possibly with harmful consequences.

172

MEASUREMENT 〉 Firmware Analysis 〉 Case Study I: BLE Security and Privacy (Nordic)

10.5.1.2 Different Permissions for Read vs. Notify

As mentioned in §2.1.3.3, the value held within a characteristic can be accessed in different

ways, either using a direct read request or via notifications/indications, and even though the

mechanisms of access differ, the ultimate outcome is similar. We observed that one binary

within our results contained characteristics that had both read and notify properties, but

with different security properties set for the two types of access. Mode 1 Level 2 security was

required to be able to read the characteristics’ values, while the values could be freely accessed

via notifications (their CCCDs were writable without the need for any pairing or higher-layer

protection).

Security implications Different security levels for different value acquisition methods implies

that the data can always be accessed using the less secure mechanism. In addition, there may

be a false sense of security, as the protection will be assumed to be higher than it actually is.

This finding shows that developers may unintentionally leave “gaps” in security, particularly

when incorporating different functionalities. We have informed the developer about this issue,

but have received no response.

10.5.2 Use of Fixed Passkeys

The Passkey Entry association model provides MitM protection by requiring that a user manu-

ally key in a passkey that is displayed on the BLE Peripheral. However, some developers choose

to program a fixed passkey into the Peripheral. This might be because many BLE Peripherals

don’t have IO capabilities (i.e., keypad or display), but could also originate from bad practices

when programming devices that do have these capabilities.

Identifying fixed passkeys The sd ble opt set supervisor call enables setting multiple options

on Nordic BLE devices, where each option is identified using an opt id. The opt id with

value 34 denotes setting a fixed passkey. argXtract identified a binary within the dataset that

contained a fixed passkey of 0x303030303030, i.e. “000000”.

Security implications Fixed passkeys undermine the security of the Passkey Entry model,

particularly if the same passkey is used for all devices of a certain brand. In such a scenario,

an attacker would only need to know the passkey for one device in order to be able to covertly

connect to any device of the same brand. This effectively removes the MitM protection afforded

by the Passkey Entry model. With the binary we identified, a fixed passkey of “000000” equates

Passkey Entry to the Just Works model (since Just Works uses an all-zero key).

10.5.3 User Tracking due to Fixed Addresses

We have discussed the different types of addresses that BLE Peripherals can use in their adver-

tising messages in §2.2.2.1. A Peripheral would need to use private addresses if it is to prevent

address tracking.

173

MEASUREMENT 〉 Firmware Analysis 〉 Case Study I: BLE Security and Privacy (Nordic)

Table 10.3: Address types used in BLE peripherals.

Address Type #Binaries Address Type #Binaries Address Type #Binaries

Public 29 Private nonresolvable 1 Unknown 4

Random static 208 Private resolvable 1

Extracting advertising address type By default, Nordic uses a random static address for each

chipset, which is set at the time of manufacture and does not change for the lifetime of the

device. However, developers are able to modify this behaviour to choose a different address type

via the sd ble gap address set (in older versions of the stack) and the sd ble gap addr set

and sd ble gap privacy set calls (in newer versions).

argXtract extracted the arguments to these supervisor calls (where present) for all binaries

within the dataset. 35 out of the 243 firmware files included one of the svc numbers for per-

forming address type selection/setting, which meant that the remaining 208 files used the default

setting of a random static address, set at the time of manufacture and unchanging throughout

the lifetime of the device.

Table 10.3 depicts a breakdown of the address types used within the BLE Peripherals in our

dataset. Out of the 243 binaries in our dataset, only a single binary used resolvable private

addresses. Combining this with information regarding the device name, we found that the

binary was related to a personal protection device. One binary within the dataset used non-

resolvable addresses, which means it will not be vulnerable to tracking but will also not be able

to form bonds with other devices. We could not deduce its functionality from its device name.

We found that overall, the results indicated that at least 95% of the BLE binaries use static

(random or public) addresses.

Privacy implications Because BLE Peripherals tend to advertise constantly when not in a con-

nection, the use of public or random static addresses in advertising messages opens the BLE de-

vice, and by extension (depending on the device) its owner, to tracking. Further, as we discussed

in §3.7, even private resolvable addresses may be vulnerable if the associated IRK is not suffi-

ciently protected. In crowded locations such as shopping centres, repeated visits by a user can

be covertly tracked simply by monitoring BLE advertisements and logging the device addresses.

This has been previously demonstrated in [9]. It has also been shown to be feasible to set up a

botnet to track users across a range of locations [65]. These attacks are particularly relevant in

the case of devices such as wearables, which are generally always on the user’s person. We found

that all of the wearable binaries within our dataset use public or fixed random static addresses.

10.5.4 Manufacturer/Device Names and Privacy

BLE advertising messages usually contain the Peripheral’s name, which is often used by users

to identify a device from (potentially) a number of other BLE devices that are also advertising

in the vicinity. Peripherals may also include a Manufacturer Name String, normally obtained

via a scan request. These advertising messages require no authentication in order to be read.

174

MEASUREMENT 〉 Firmware Analysis 〉 Case Study II: BLE Security and Privacy (STMicro...)

Extracting device and manufacturer names A Nordic BLE device’s name is set program-

matically using the sd ble gap device name set supervisor call, while the Manufacturer Name

String is included within the Device Information Service (obtained in §10.5.1). argXtract ex-

tracted non-null values for at least one of device or manufacturer name from 156 binaries.

An analysis of the device names revealed that our dataset contained firmware from a variety of

BLE devices, including wearable fitness trackers, beacons, electric switch controls, parking aids,

security devices, personal protection devices, medical equipment and behavioural monitoring

devices.

Privacy implications Device names can reveal a lot about the nature of the device. This

is particularly concerning when the device is related to a user’s health, or is of an otherwise

private nature. Because no active connections are required to read advertising data, an attacker

would simply need to monitor the BLE advertising channels and perhaps send a scan request for

additional information. By continuously scanning BLE advertisements, extracting the device

and manufacturer name, and combining this information with the Received Signal Strength

Indicator (RSSI), along with user observation, an attacker may be able to determine which

devices belong to which users in the vicinity. This could defeat private addresses, as an attacker

might instead be able to use the device name, along with other advertising data, to track the

device [10,46,68]. Further, if a particular device has known issues (such as those identified in this

thesis), then the attacker can take advantage of the device name to identify exploitable devices.

10.6 Case Study II: BLE Security and Privacy (STMicroelectronics)

In this section we present a case study for the identification of BLE configuration vulnerabil-

ities in firmware that targets STMicroelectronics chipsets, specifically the BlueNRG family of

processors. Configurations for BlueNRG are performed via function calls. We therefore use the

function pattern matching feature of argXtract (§10.3.4.2) to determine the location of the

relevant function within the disassembly.

We manually analysed 500 real-world .bin files extracted from APKs and found that two were

STMicroelectronics BlueNRG binaries. argXtract identified that both had an application code

base of 0x10051000, which corresponds to BlueNRG-1 v2.1+ [243].

10.6.1 BLE Address Privacy

In this section, we describe our tests against the BlueNRG binaries to identify the use of resolv-

able private addresses, which are enabled by the aci gap init function.

Extracting address configurations BlueNRG provides the aci hal write config data func-

tion for configuring public addresses [244]. This function takes three arguments: an offset, a

length and a pointer to a byte array. In the case of address configuration, the offset is expected

to be 0, the length is 6 and the byte array contains the address. This can be used to validate ob-

tained outputs. Internally, this function calls HAL Write ConfigData with the same arguments.

175

MEASUREMENT 〉 Firmware Analysis 〉 Limitations and Future Work

The output memory contains the configured address at a binary-specific location. Privacy is

configured separately via the aci gap init function. This takes three inputs: the BLE role of

the device, an integer indicating whether privacy is enabled (i.e., whether resolvable addresses

are used), and the length of the device name. The function performs several tasks, most of

which require runtime information. However, we exploit the fact that the function adds the

GAP service to the database and specify test sets that look for the service structure within the

output memory contents.

Executing argXtract against the real-world binaries revealed that one contained a public address

derived from the BlueNRG example address. This along with the binary’s name led us to

conclude that the binary was for demonstration purposes. The second binary was a BLE-enabled

cyclist safety aid. It did not have privacy enabled.

Privacy implications A cyclist safety aid is likely to be about the user’s person whenever they

are cycling. A fixed address emanating from the device at all times enables the user to be tracked

over time, as discussed in §10.5.3.

10.6.2 BLE Pairing Security

With BlueNRG binaries, if a BLE characteristic has authentication requirements, then specific

configurations must be performed to enable pairing. We exploit two pairing-related functions in

our tests. We additionally check for authorisation requirements.

Extracting pairing configurations BlueNRG requires two function calls in order to enable

BLE security: the first is the aci gap set io capability to set the device’s input-output

capability, and the second is the aci gap set authentication requirement to set the pairing

requirements (such as bonding, MitM protection, etc) [244]. Authorisation permissions are set

using aci gap set authorization requirement. Focusing on the cyclist safety aid, argXtract

found that the binary had no calls to aci gap set io capability, nor did it have any calls to

aci gap set authorization requirement. This means that BLE security was not enabled.

Security implications The fact that no security was present on the cyclist safety aid means

that an attacker could connect to the device and send commands to it without the need for any

authentication, which could have serious consequences for the cyclist’s safety. We have informed

the developer regarding the identified issues, but have not received any response.

10.7 Limitations and Future Work

Edge cases argXtract is able to analyse most Cortex-M binaries. However, as seen in one

example in §10.4, there are edge cases where the .text segment is split into subsections, with

different address offsets for each subsection, where argXtract is unable to obtain individual

code bases and accurate function estimates. This improvement is left as future work.

176

MEASUREMENT 〉 Firmware Analysis 〉 Chapter Summary and Next Steps

Function boundary identification argXtract assumes that the instructions belonging to a

function are laid out in a contiguous range. If a function is split up into disjoint blocks of

instructions, then argXtract may identify each such block as a separate function.

COI and callsite identification As mentioned in §10.3.4, the function pattern matching per-

formed by argXtract uses manually-defined test sets, when function outputs or artefacts are

distinguishable. If two functions produce the same output for the same input and one is not

nested within the other, then a single function cannot be matched. Further, the function pattern

matching process can take several hours when a binary contains a large number of functions.

An ideal alternative would be automated function pattern matching, without executing function

code. The most popular method to achieve this at present is via machine learning techniques.

However, this requires a sufficiently large annotated training set for each function of interest,

which is not yet available for the types of vendor-specific configuration functions that are of in-

terest here. With callsite identification, direct calls are identified. However, calls via blx are not.

(Note that blx will be identified and handled during tracing, but not for COI identification.)

Register tracing Assigning a value of 0 to register r0 when a branch is not followed due to ex-

ceeding the max call depth (as described in §10.3.5) can give rise to inaccurate results if the value

is actually supposed to be non-zero. We have not encountered such errors for our use cases, be-

cause the data used as arguments to our COIs did not go through several nested branches of pro-

cessing. If it is known that COI arguments are likely to be highly-processed, then increasing the

max call depth can reduce the likelihood of errors at the expense of (much) longer trace times.

Binary patching argXtract is able to extract arguments to security-relevant configuration

APIs at present. A natural extension would be to perform patching of the binary if vulnerable

configurations are identified. This may be fairly straightforward in cases where the relevant API

call is present within the binary and the configuration only requires modification of simple input

structures. However, composite input structures would require complex handling. Additional

complexities could arise due to vendor-specific integrity checks and firmware signing.

10.8 Chapter Summary and Next Steps

We have described a framework for extracting security-relevant configuration information from

stripped ARM Cortex-M binaries, overcoming the challenges that are normally encountered with

stripped ARM analysis. We have applied our framework to 200+ real-world BLE firmware files

from two different vendors, and have identified widespread lack of protection for BLE data as

well as serious privacy issues. Despite some inherent limitations, we find that firmware analysis

provides rich information regarding a BLE device’s security configuration, which would otherwise

have to have been acquired using expensive device tests.

This chapter concludes our discussion on BLE measurement studies. The final part of this thesis

summarises our contributions and presents some recommendations to BLE stakeholders, based

on observations we have made at different points within this thesis.

177

Part IV

Concluding Remarks

178

11 Conclusion

In this chapter, we revisit our research questions in light of our work. We also provide some rec-

ommendations to the various stakeholders within the BLE ecosystem, based on our observations

regarding BLE vulnerabilities, to improve the overall security of the BLE ecosystem.

11.1 Research Objective and Questions

In §1.2, we specified the objective of this thesis, which was to advance the understanding of the

existing state of security and privacy within the BLE ecosystem, with a special focus on the

security of BLE data, and with the overarching goal of improving the security of BLE systems.

We defined four research questions that arose from this objective. In this section, we revisit and

answer those research questions, based on findings from our research.

RQ01: Are existing BLE deployments secure?

In order to answer this question, we have comprehensively surveyed existing security and privacy

studies related to BLE (Chapters 3 and 4). This survey has revealed the presence of numer-

ous vulnerabilities in real-world BLE systems, originating within the specification as well as

individual implementations.

We have also developed a number of analysis tools, all of which are available open-source, which

can be used to identify the presence of vulnerabilities in existing BLE deployments by analysing

different information sources: ATT-Profiler (Chapter 9) directly interfaces with devices to de-

termine minimum access requirements for BLE characteristics; BLECryptracer (Chapter 6) and

BLE-GUUIDE (Chapter 8) analyse companion Android APKs to determine the presence/absence

of app-layer security and to obtain indicators to firmware update vulnerabilities; argXtract

(Chapter 10) analyses firmware for configuration vulnerabilities. Combined, these tools have

identified numerous vulnerabilities within real-world BLE systems, including poorly protected

BLE data, weak proprietary cryptographic algorithms, weakened pairing due to fixed passkeys,

and lack of privacy controls due to static addresses.

These results lead to the conclusion that, at present, not all BLE systems are secure. The actual

extent and impact of such vulnerabilities are discussed in RQ03.

RQ02: Does the lack of clearly-defined application-layer security mechanisms result

in a lack of protection for BLE data?

We have analysed application-layer security in BLE and have identified an application-level

unauthorised data access vulnerability for multi-application platforms such as Android, iOS,

etc. (Chapter 5). Mitigating this vulnerability requires the implementation of end-to-end pro-

179

CONCLUDING REMARKS 〉 Conclusion 〉 Research Objective and Questions

tection by application developers. However, we have found through a large scale analysis that

a significant proportion of BLE devices likely do not implement such protection mechanisms

(Chapter 6). We theorise that it is a lack of clarity regarding application-layer security (partic-

ularly in terms of the stakeholders who should be responsible for implementing it) that is the

cause for such widespread lack of protection.

RQ03: If vulnerabilities exist, what is their extent and impact?

The vulnerability survey discussed in Chapter 4 specifies the applicability (at a high level) of each

BLE vulnerability, which can be used to gauge the potential extent of a vulnerability. Vulnera-

bilities within the specification tend to be applicable to a large proportion of BLE deployments.

Implementation vulnerabilities, on the other hand, are typically confined to a particular brand

of device, and the exact extent depends on the specific vulnerability. When considering the po-

tential impact of vulnerabilities, in Chapter 3 we describe attacks that the vulnerabilities may

give rise to. Our attack analysis has identified the possibility of unauthorised data access and

tampering, spoofing, tracking and denial of service.

Our measurement studies are more specific. These have identified the extent of a vulnerability

in terms of proportion within a certain dataset, while the impact is determined based on the

BLE functionality. For example, we have conducted a large-scale study of several thousand

BLE-enabled mobile applications and have identified that around 50% of the tested APKs did

not implement end-to-end protection for BLE data, implying that the data is vulnerable to

unauthorised reads/writes by malicious applications (Chapter 6). To determine the potential

impact, we have mapped APKs to BLE functionality using UUIDs and have identified potential

for user health and PII leakage, as well as a vulnerable security-critical application (Chapter 8).

Through a small-scale study conducted against six real-world devices, we have identified that

four of the devices allowed for reading/subscribing all applicable characteristics and three also

allowed writing all applicable characteristics with no security. However, we have noted that

implementation-specific behaviour may be present, which may cause invalid results. The im-

pact is directly gleaned from the type of device (Chapter 9). Finally, our firmware analysis

against 240+ real-world BLE binaries has determined that 97% of the tested binaries do not

incorporate link-layer security for readable and writable characteristics, 95% do not implement

app-layer protection for readable characteristics and 59% do not implement app-layer protection

for writable characteristics. The analysis has also identified that 97% of tested real-world bina-

ries do not incorporate private addresses, leaving the devices vulnerable to tracking. The actual

impact of these vulnerabilities is determined using the device functionality, as gleaned from the

device name (which is also extracted from the firmware). For example, we have identified that

several health/fitness devices and an HID device were vulnerable to unauthorised data access,

and that all binaries identified as wearables were vulnerable to tracking (Chapter 10).

RQ04: How should vulnerabilities be mitigated and who is responsible for mitiga-

tion?

Within the vulnerability survey in Chapter 4, we have specified mitigation options (as identified

by previous studies) and determined the responsible stakeholder for each vulnerability. Our

180

CONCLUDING REMARKS 〉 Conclusion 〉 Recommendations for Stakeholders

analysis shows that around 50% of all vulnerabilities are implementation-related, which means

that mitigation in these cases lies in the hands of developers or platform vendors, while the rest

require modifications to the specification (or combined specification-implementation changes).

In the case of the application-layer unauthorised data access vulnerability we have identified,

we have delved deeper. The way in which the specification has been defined makes it difficult

to assign a single responsible stakeholder for this vulnerability. We have therefore performed a

pragmatic analysis instead, and have devised a solution that has the greatest likelihood of being

adopted. We have determined through a multi-faceted stakeholder analysis that a specification-

level modification which places a greater burden of change on platform devices is more likely

to be implemented. We have also designed and implemented a proof-of-concept for such a

solution, which we have verified to be backward compatible with existing devices and applications

(Chapter 7).

11.2 Recommendations for Stakeholders

The security and privacy issues described in this thesis demonstrate that vulnerabilities are

not confined to a single stakeholder (i.e., vulnerabilities have in different instances been due

to the SIG, platform vendors and device developers). We therefore make recommendations for

the following stakeholders in order to ensure a secure BLE ecosystem: (i) The Bluetooth SIG,

(ii) Central platform vendors (such as Android, iOS), (iii) End product developers, (iv) Law-

makers. We also discuss the importance of a unified approach to security.

Bluetooth SIG The Bluetooth SIG should utilise standard, secure cryptographic algorithms

in its security protocols. If possible, protocols should undergo formal security verification. Pro-

tocols with known issues should not be included within the specification. Similarly, mechanisms

that reduce security (e.g., key entropy reduction) should not be an option. If some security aspect

is not within scope of the BLE specification, then this must be clearly stated. We also recom-

mend that the BLE-relevant sections of the Bluetooth specification be extracted and formulated

into a standalone document; at present the specification document is at 3250+ pages, containing

details of not only BLE but also Classic Bluetooth and Alternative MAC/PHY (AMP). This

makes the specification difficult to follow, which could be the cause for some of the vulnerabil-

ities. We further recommend that the SIG issue a security summary, containing security- and

privacy-relevant aspects that vendors and developers need to keep in mind when designing and

developing their products.

Central platform vendors When implementing the BLE specification, platform vendors should

formulate a threat model for the platform and identify any risks that might arise from entities

outside the BLE stack. If some elements are outside the scope of the specification, then platform

vendors should apply custom security controls for those areas. Further, standard secure coding

practices should be followed when developing the platform.

181

CONCLUDING REMARKS 〉 Conclusion 〉 Recommendations for Stakeholders

End product developers Developers should formulate a threat model for their specific use

case. They should understand and implement the security and privacy features that are avail-

able within the BLE specification, and consider whether additional measures are required to

cover areas that do not fall under the specification’s scope. When developing device firmware

or companion applications using SDKs, developers should understand and correctly utilise any

security features provided by the SDKs, and bridge any gaps with additional protection mech-

anisms. When incorporating SDKs that include BLE features that are not required within the

end product, developers should turn off such features to limit the attack surface. They should

also follow standard secure coding practices.

Further, as we have observed in Chapters 6 and 10, most developers do not respond at all

when informed of vulnerabilities in their products (in fact, none of the end product developers

we contacted responded to our emails). Ideally, every product manufacturer should have a

communication channel specifically for reporting security vulnerabilities (e.g., dedicated email

address), and should be open to discussion with security researchers.

Lawmakers Many BLE devices handle health data, and we have observed that their companion

mobile apps tend to be classified on application marketplaces under Health & Fitness. However,

the devices are not considered to be medical and so do not have the stringent requirements

regarding data protection that apply to medical devices. We recommend that nations modify

the scope of privacy requirements to include any device that handles a user’s health or other

personal data, regardless of its intended use. Further, we recommend that security regulations

be introduced for any device that has safety implications for its user.

We observe that bringing about a legal framework for BLE end product security and privacy

will require cross-country cooperation since most consumers purchase devices from online mar-

ketplaces, which may source products from different countries and which may not be properly

regulated.

A unified approach When analysing vulnerabilities and determining responsible stakeholders,

perhaps of most concern are vulnerabilities that are attributed to more than one stakeholder

or where a responsible stakeholder cannot be identified. This is because the absence of a single

responsible entity can result in each stakeholder assuming that the fix will be applied by an entity

other than themselves, ultimately resulting in no fix being applied at all. We recommend that

major stakeholders cooperate to create a secure BLE design, where security gaps are not likely to

occur. We note that many chipset and platform vendors are already members of the Bluetooth

SIG, and are therefore well-placed to bring forth product-specific security considerations for

discussion by the SIG.

182

Bibliography

[1] Bluetooth Special Interest Group, “2020 Bluetooth market update,” 2020. [On-

line]. Available: https://www.bluetooth.com/bluetooth-resources/2020-bmu [Ac-

cessed 13-May-2020].

[2] R. Heydon, Bluetooth Low Energy: The Developer’s Handbook. Prentice Hall, 2013.

[3] J.-R. Lin, T. Talty, and O. K. Tonguz, “On the potential of Bluetooth Low Energy technol-

ogy for vehicular applications,” IEEE Communications Magazine, vol. 53, no. 1, pp. 267–

275, 2015.

[4] M. Collotta and G. Pau, “A solution based on Bluetooth Low Energy for smart home

energy management,” Energies, vol. 8, no. 10, pp. 11916–11938, 2015.

[5] R. Karani, S. Dhote, N. Khanduri, A. Srinivasan, R. Sawant, G. Gore, and J. Joshi,

“Implementation and design issues for using Bluetooth Low Energy in passive keyless

entry systems,” in India Conference (INDICON), 2016 IEEE Annual, pp. 1–6, IEEE,

2016.

[6] A. H. Omre and S. Keeping, “Bluetooth Low Energy: Wireless connectivity for medical

monitoring,” Journal of diabetes science and technology, vol. 4, no. 2, pp. 457–463, 2010.

[7] S. Jasek, “Blue picking: Hacking Bluetooth smart locks,” in HITBSec-Conf, 2017.

[8] R. Idan, “Don’t give me a brake – Xiaomi scooter hack enables dangerous

accelerations and stops for unsuspecting riders,” 2019. [Online]. Available:

https://blog.zimperium.com/dont-give-me-a-brake-xiaomi-scooter-hack-

enables-dangerous-accelerations-and-stops-for-unsuspecting-riders/ [Ac-

cessed: 02 Apr 2021].

[9] A. K. Das, P. H. Pathak, C.-N. Chuah, and P. Mohapatra, “Uncovering privacy leakage in

BLE network traffic of wearable fitness trackers,” in Proceedings of the 17th International

Workshop on Mobile Computing Systems and Applications, pp. 99–104, ACM, 2016.

[10] K. Fawaz, K.-H. Kim, and K. G. Shin, “Protecting privacy of BLE device users,” in

USENIX Security Symposium, pp. 1205–1221, USENIX Association, 2016.

[11] W. Albazrqaoe, “A study of Bluetooth frequency hopping sequence: Modeling and a

practical attack,” Master’s thesis, 2011. Michigan State University. Computer Science.

183

https://www.bluetooth.com/bluetooth-resources/2020-bmu
https://blog.zimperium.com/dont-give-me-a-brake-xiaomi-scooter-hack-enables-dangerous-accelerations-and-stops-for-unsuspecting-riders/
https://blog.zimperium.com/dont-give-me-a-brake-xiaomi-scooter-hack-enables-dangerous-accelerations-and-stops-for-unsuspecting-riders/

Bibliography

[12] H. Perrey, O. Ugus, and D. Westhoff, “Security enhancement for Bluetooth Low En-

ergy with Merkle’s puzzle,” SIGMOBILE-Mobile Computing and Communications Review,

vol. 15, no. 3, p. 45, 2011.

[13] J. Padgette, K. Scarfone, and L. Chen, “Guide to Bluetooth security,” NIST Special

Publication, vol. 800, no. 121, 2012.

[14] C. Gomez, J. Oller, and J. Paradells, “Overview and evaluation of Bluetooth Low Energy:

An emerging low-power wireless technology,” Sensors (Basel, Switzerland), vol. 12, no. 9,

pp. 11734–11753, 2012.

[15] T. Rosa, “Bypassing passkey authentication in Bluetooth Low Energy.,” IACR Cryptology

ePrint Archive, vol. 2013, p. 309, 2013.

[16] M. Ryan, “Bluetooth: With low energy comes low security,” in 7th USENIX Workshop

on Offensive Technologies, WOOT ’13, Washington, D.C., USA, August 13, 2013, 2013.

[17] D. A. Ortiz-Yepes, “BALSA: Bluetooth Low Energy Application Layer Security Add-on,”

in 2015 International Workshop on Secure Internet of Things (SIoT), pp. 15–24, IEEE,

2015.

[18] J. Uher, R. G. Mennecke, and B. S. Farroha, “Denial of Sleep attacks in Bluetooth Low

Energy wireless sensor networks,” in MILCOM 2016-2016 IEEE Military Communications

Conference, pp. 1231–1236, IEEE, 2016.

[19] S. Jasek, “Gattacking Bluetooth Smart devices,” in Black Hat USA Conference, 2016.

[20] H. J. Tay, J. Tan, and P. Narasimhan, “A survey of security vulnerabilities in Bluetooth

Low Energy beacons,” tech. rep., 2016.

[21] S. Bräuer, A. Zubow, S. Zehl, M. Roshandel, and S. Mashhadi-Sohi, “On practical selective

jamming of Bluetooth Low Energy advertising,” in 2016 IEEE Conference on Standards for

Communications and Networking, CSCN 2016, Berlin, Germany, October 31 - November

2, 2016, pp. 158–163, 2016.

[22] P. Gullberg, “Denial of service attack on Bluetooth Low Energy,” 2016.

[23] A. Hilts, C. Parsons, and J. Knockel, “Every step you fake: A comparative analysis of

fitness tracker privacy and security,” vol. 11, 2016.

[24] Bluetooth Special Interest Group, “2018 Bluetooth market update.” [Online]. Avail-

able: https://www.bluetooth.com/bluetooth-resources/2018-bluetooth-market-

update [Accessed 22-Apr-2021].

[25] M. Sinda, T. Danner, S. O’Neill, A. Alqurashi, and H.-K. Kim, “Improving the Bluetooth

hopping sequence for better security in IoT devices,” International Journal of Software

Innovation (IJSI), vol. 6, no. 4, pp. 117–131, 2018.

184

https://www.bluetooth.com/bluetooth-resources/2018-bluetooth-market-update
https://www.bluetooth.com/bluetooth-resources/2018-bluetooth-market-update

Bibliography

[26] S. Sarkar, J. Liu, and E. Jovanov, “A robust algorithm for sniffing BLE long-lived con-

nections in real-time,” in 2019 IEEE Global Communications Conference (GLOBECOM),

pp. 1–6, IEEE, 2019.

[27] M. R. Ghori, T.-C. Wan, and G. C. Sodhy, “Bluetooth Low Energy mesh networks: Survey

of communication and security protocols,” Sensors, vol. 20, no. 12, p. 3590, 2020.

[28] M. Woolley, “Bluetooth 5,” 2019.

[29] P. Sivakumaran and J. Blasco, “BLECryptracer,” 2018. https://github.com/

projectbtle/BLECryptracer.

[30] P. Sivakumaran and J. Blasco, “Proof-of-concept solution for unauthorised data access

vulnerability on multi-app Bluetooth Low Energy platforms,” 2020. https://github.

com/projectbtle/BLE-MultiApp-POC.

[31] P. Sivakumaran and J. Blasco, “BLE-GUUIDE,” 2020. https://github.com/

projectbtle/BLE-GUUIDE.

[32] P. Sivakumaran and J. Blasco, “ATT Profiler,” 2018. https://github.com/

projectbtle/att-profiler.

[33] P. Sivakumaran and J. Blasco, “argXtract,” 2020. https://github.com/projectbtle/

argXtract.

[34] P. Sivakumaran and J. Blasco, “A study of the feasibility of co-located app attacks against

BLE and a large-scale analysis of the current application-layer security landscape,” in

28th USENIX Security Symposium (USENIX Security 19), (Santa Clara, CA), pp. 1–18,

USENIX Association, Aug. 2019.

[35] P. Sivakumaran and J. Blasco, “A Low Energy Profile: Analysing characteristic security on

BLE peripherals,” in Proceedings of the Eighth ACM Conference on Data and Application

Security and Privacy, pp. 152–154, ACM, 2018.

[36] Bluetooth Special Interest Group, “Bluetooth core specification v5.2,” 12 2019.

[37] N. Ahmed, R. A. Michelin, W. Xue, S. Ruj, R. Malaney, S. S. Kanhere, A. Seneviratne,

W. Hu, H. Janicke, and S. K. Jha, “A survey of Covid-19 contact tracing apps,” IEEE

Access, vol. 8, pp. 134577–134601, 2020.

[38] J. Padgette, K. Scarfone, and L. Chen, “Guide to Bluetooth security, revision 2,” NIST

Special Publication, vol. 800, no. 121, 2017.

[39] P. Cope, J. Campbell, and T. Hayajneh, “An investigation of Bluetooth security vulner-

abilities,” in Computing and Communication Workshop and Conference (CCWC), 2017

IEEE 7th Annual, pp. 1–7, IEEE, 2017.

185

https://github.com/projectbtle/BLECryptracer
https://github.com/projectbtle/BLECryptracer
https://github.com/projectbtle/BLE-MultiApp-POC
https://github.com/projectbtle/BLE-MultiApp-POC
https://github.com/projectbtle/BLE-GUUIDE
https://github.com/projectbtle/BLE-GUUIDE
https://github.com/projectbtle/att-profiler
https://github.com/projectbtle/att-profiler
https://github.com/projectbtle/argXtract
https://github.com/projectbtle/argXtract

Bibliography

[40] A. Lonzetta, P. Cope, J. Campbell, B. Mohd, and T. Hayajneh, “Security vulnerabilities

in Bluetooth technology as used in IoT,” Journal of Sensor and Actuator Networks, vol. 7,

no. 3, p. 28, 2018.

[41] C. Kolias, L. Copi, F. Zhang, and A. Stavrou, “Breaking BLE beacons for fun but mostly

profit,” in Proceedings of the 10th European Workshop on Systems Security, EuroSec’17,

(New York, NY, USA), Association for Computing Machinery, 2017.

[42] M. Ley, “DBLP,” dblp. uni-trier. de, 2005.

[43] G. Gu, “Computer security conference ranking and statistic,” 2015. [Online]. Available:

http://faculty.cs.tamu.edu/guofei/sec_conf_stat.htm [Accessed 25-Nov-2019].

[44] MITRE Corporation, “CVE® List,” 2021.

[45] G. Celosia and M. Cunche, “Discontinued privacy: Personal data leaks in Apple Bluetooth

Low Energy Continuity Protocols,” Proc. Priv. Enhancing Technol., vol. 2020, no. 1,

pp. 26–46, 2020.

[46] G. Celosia and M. Cunche, “Fingerprinting Bluetooth Low Energy devices based on the

Generic Attribute Profile,” in Proceedings of the 2nd International ACM Workshop on

Security and Privacy for the Internet-of-Things, pp. 24–31, ACM, 2019.

[47] J. Wang, F. Hu, Y. Zhou, Y. Liu, H. Zhang, and Z. Liu, “BlueDoor: Breaking the se-

cure information flow via BLE vulnerability,” in Proceedings of the 18th International

Conference on Mobile Systems, Applications, and Services, pp. 286–298, 2020.

[48] M. Naveed, X. Zhou, S. Demetriou, X. Wang, and C. A. Gunter, “Inside job: Understand-

ing and mitigating the threat of external device mis-binding on Android,” in 21st Annual

Network and Distributed System Security Symposium, NDSS 2014, San Diego, California,

USA, February 23-26, 2014, 2014.

[49] E. Biham and L. Neumann, “Breaking the Bluetooth pairing - the fixed coordinate invalid

curve attack,” in International Conference on Selected Areas in Cryptography, pp. 250–273,

Springer, 2019.

[50] A. Y. Lindell, “Attacks on the pairing protocol of Bluetooth v2. 1,” Black Hat USA, Las

Vegas, Nevada, 2008.

[51] T. Claverie and J. Lopes-Esteves, “Testing for weak key management in Bluetooth Low

Energy implementations,” 2020.

[52] D. Antonioli, N. O. Tippenhauer, and K. Rasmussen, “Key negotiation downgrade attacks

on Bluetooth and Bluetooth Low Energy,” ACM Trans. Priv. Secur., vol. 23, June 2020.

186

http://faculty.cs.tamu.edu/guofei/sec_conf_stat.htm

Bibliography

[53] A. C. Santos, J. L. Soares Filho, Á. Í. Silva, V. Nigam, and I. E. Fonseca, “BLE injection-

free attack: A novel attack on Bluetooth Low Energy devices,” Journal of Ambient Intel-

ligence and Humanized Computing, pp. 1–11, 2019.

[54] J. Wu, Y. Nan, V. Kumar, D. J. Tian, A. Bianchi, M. Payer, and D. Xu, “BLESA: Spoofing

attacks against reconnections in Bluetooth Low Energy,” in 14th USENIX Workshop on

Offensive Technologies (WOOT 20), 2020.

[55] Y. Zhang, J. Weng, R. Dey, Y. Jin, Z. Lin, and X. Fu, “Breaking secure pairing of Bluetooth

Low Energy using downgrade attacks,” in 29th USENIX Security Symposium (USENIX

Security 20), pp. 37–54, 2020.

[56] M. von Tschirschnitz, L. Peuckert, F. Franzen, and J. Grossklags, “Method confusion

attack on Bluetooth pairing,” in 2021 IEEE Symposium on Security and Privacy (S&P),

pp. 213–228, 2021.

[57] D. Antonioli, N. O. Tippenhauer, K. Rasmussen, and M. Payer, “BLURtooth: Exploiting

cross-transport key derivation in Bluetooth Classic and Bluetooth Low Energy,” arXiv

preprint arXiv:2009.11776, 2020.

[58] M. E. Garbelini, C. Wang, S. Chattopadhyay, S. Sun, and E. Kurniawan, “SweynTooth:

Unleashing mayhem over Bluetooth Low Energy,” in USENIX Annual Technical Confer-

ence (USENIX ATC), 2020.

[59] B. Seri, G. Vishnepolsky, and D. Zusman, “BLEEDINGBIT: The hidden attack surface

within BLE chips,” 2018. [Online]. Available: https://go.armis.com/bleedingbit. [Ac-

cessed: 01-Dec-2018].

[60] J. S. Ruge, “Dynamic Bluetooth firmware analysis,” Master’s thesis, 2019.

[61] Z. Guo, I. G. Harris, Y. Jiang, and L.-f. Tsaur, “An efficient approach to prevent battery

exhaustion attack on BLE-based mesh networks,” in 2017 International Conference on

Computing, Networking and Communications (ICNC), pp. 1–5, IEEE, 2017.

[62] C. Hensler and P. Tague, “Using Bluetooth Low Energy spoofing to dispute device details,”

in Proceedings of the 12th Conference on Security and Privacy in Wireless and Mobile

Networks, pp. 340–342, ACM, 2019.

[63] A. Becker, “Bluetooth security & hacks,” July 2007. [Online]. Available:

https://www.emsec.rub.de/media/crypto/attachments/files/2011/04/slides_

bluetooth_security_and_hacks.pdf [Accessed 26-July-2017].

[64] A. Korolova and V. Sharma, “Cross-app tracking via nearby Bluetooth Low Energy de-

vices,” in Proceedings of the Eighth ACM Conference on Data and Application Security

and Privacy, CODASPY 2018, Tempe, AZ, USA, March 19-21, 2018, pp. 43–52, 2018.

187

https://go.armis.com/bleedingbit
https://www.emsec.rub.de/media/crypto/attachments/files/2011/04/slides_bluetooth_security_and_hacks.pdf
https://www.emsec.rub.de/media/crypto/attachments/files/2011/04/slides_bluetooth_security_and_hacks.pdf

Bibliography

[65] T. Issoufaly and P. U. Tournoux, “BLEB: Bluetooth Low Energy Botnet for large scale

individual tracking,” in 2017 1st International Conference on Next Generation Computing

Applications (NextComp), pp. 115–120, IEEE, 2017.

[66] C. Zuo, H. Wen, Z. Lin, and Y. Zhang, “Automatic fingerprinting of vulnerable BLE IoT

devices with static UUIDs from mobile apps,” in Proceedings of the 2019 ACM SIGSAC

Conference on Computer and Communications Security, pp. 1469–1483, ACM, 2019.

[67] J. Mussared, “Privacy issues discovered in the BLE implementation of the COVIDSafe

Android app (ref: CVE-2020-12860),” 2020.

[68] J. K. Becker, D. Li, and D. Starobinski, “Tracking anonymized Bluetooth devices,” Pro-

ceedings on Privacy Enhancing Technologies, vol. 2019, no. 3, pp. 50–65, 2019.

[69] G. Celosia and M. Cunche, “Saving private addresses: An analysis of privacy issues in

the Bluetooth Low Energy advertising mechanism,” in Proceedings of the 16th EAI In-

ternational Conference on Mobile and Ubiquitous Systems: Computing, Networking and

Services, pp. 444–453, 2019.

[70] D.-Z. Sun, L. Sun, and Y. Yang, “On Secure Simple Pairing in Bluetooth standard v5.0-

part II: Privacy analysis and enhancement for Low Energy,” Sensors, vol. 19, no. 15,

p. 3259, 2019.

[71] M. M. Lap Nagra, “How to change the MAC address of Bluetooth dongle in Ubuntu,” 2012.

[Online]. Available: https://stackoverflow.com/revisions/9213406/2 [Accessed 24-

Jan-2021].

[72] G. Legg, “The Bluejacking, Bluesnarfing, Bluebugging blues: Bluetooth faces perception

of vulnerability,” 2005. https://www.eetimes.com/the-bluejacking-bluesnarfing-

bluebugging-blues-bluetooth-faces-perception-of-vulnerability/.

[73] D. Antonioli, N. O. Tippenhauer, and K. Rasmussen, “BIAS: Bluetooth Impersonation

AttackS,” in Proceedings of the IEEE Symposium on Security and Privacy (S&P), 2020.

[74] B. Seri and G. Vishnepolsky, “BlueBorne,” 2017. [Online]. Available: https://www.

armis.com/blueborne/.

[75] M. Stanislav and T. Beardsley, “Hacking IoT: A case study on baby monitor exposures and

vulnerabilities,” 2015. [Online]. Available: https://www.rapid7.com/globalassets/

external/docs/Hacking-IoT-A-Case-Study-on-Baby-Monitor-Exposures-and-

Vulnerabilities.pdf. [Accessed: 11 June 2020].

[76] S. Larson, “FDA confirms that St. Jude’s cardiac devices can be hacked,” 2017. [Online].

Available: https://money.cnn.com/2017/01/09/technology/fda-st-jude-cardiac-

hack. [Accessed: 11 June 2020].

188

https://stackoverflow.com/revisions/9213406/2
https://www.eetimes.com/the-bluejacking-bluesnarfing-bluebugging-blues-bluetooth-faces-perception-of-vulnerability/
https://www.eetimes.com/the-bluejacking-bluesnarfing-bluebugging-blues-bluetooth-faces-perception-of-vulnerability/
https://www.armis.com/blueborne/
https://www.armis.com/blueborne/
https://www.rapid7.com/globalassets/external/docs/Hacking-IoT-A-Case-Study-on-Baby-Monitor-Exposures-and-Vulnerabilities.pdf
https://www.rapid7.com/globalassets/external/docs/Hacking-IoT-A-Case-Study-on-Baby-Monitor-Exposures-and-Vulnerabilities.pdf
https://www.rapid7.com/globalassets/external/docs/Hacking-IoT-A-Case-Study-on-Baby-Monitor-Exposures-and-Vulnerabilities.pdf
https://money.cnn.com/2017/01/09/technology/fda-st-jude-cardiac-hack
https://money.cnn.com/2017/01/09/technology/fda-st-jude-cardiac-hack

Bibliography

[77] I. Thomson, “Wi-Fi baby heart monitor may have the worst IoT security of 2016,”

2016. [Online]. Available: https://www.theregister.com/2016/10/13/possibly_

worst_iot_security_failure_yet. [Accessed: 11 June 2020].

[78] European Union Agency for Network and Information Security, “Study on crypto-

graphic protocols,” Nov 2014. [Online]. Available: https://www.enisa.europa.eu/

publications/study-on-cryptographic-protocols [Accessed: 08 Mar 2021].

[79] M. Ryan, “Ubertooth,” 2020. https://github.com/greatscottgadgets/ubertooth.

[80] Nordic Semiconductor, “nRF Sniffer for Bluetooth LE,” 2020. [Online]. Avail-

able: https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-

Sniffer-for-Bluetooth-LE. [Accessed: 08 Mar 2020].

[81] D. Cauquil, “BtleJack: A new Bluetooth Low Energy Swiss-army knife,” 2018. https:

//github.com/virtualabs/btlejack.

[82] V. Parmar, “CC2564C: CC256x and WL18xx Bluetooth Low Energy - LE scan

vulnerability,” 2016. [Online]. Available: https://e2e.ti.com/support/wireless-

connectivity/bluetooth/f/538/t/856161. [Accessed: 18 Jan 2021].

[83] M. Garbelini et al., “SweynTooth - unleashing mayhem over Bluetooth Low Energy,”

2020. https://github.com/Matheus-Garbelini/sweyntooth_bluetooth_low_energy_

attacks.

[84] MITRE Corporation, “CVE-2019-2032.” Available from MITRE, CVE-ID CVE-2019-

2032, 2019.

[85] Bluetooth Special Interest Group, “Bluetooth core specification v5.0,” 12 2016.

[86] M. Ryan, “Crackle, crack Bluetooth Smart (BLE) encryption,” 2013. [Online]. Available:

https://lacklustre.net/projects/crackle [Accessed 02-July-2017].

[87] Apple Inc., “About the security content of iOS 8.1 (ref: CVE-2014-4428),” 2017.

[88] A. Pahwa, “Reverse engineering IoT devices (ref: CVE-2017-18642),” 2017.

[89] D. Su and A. Fletcher, “BlueSteal: Popping GATT safes (ref: CVE-2017-17436),” 2017.

[90] V. Casares, “Mimo Baby hack (ref: CVE-2018-10825),” 2018.

[91] H. Wen, Z. Lin, and Y. Zhang, “FirmXRay,” 2020. https://github.com/OSUSecLab/

FirmXRay.

[92] H. Wen, Z. Lin, and Y. Zhang, “Firmxray: Detecting Bluetooth link layer vulnerabili-

ties from bare-metal firmware,” in Proceedings of the 2020 ACM SIGSAC Conference on

Computer and Communications Security, pp. 167–180, 2020.

189

https://www.theregister.com/2016/10/13/possibly_worst_iot_security_failure_yet
https://www.theregister.com/2016/10/13/possibly_worst_iot_security_failure_yet
https://www.enisa.europa.eu/publications/study-on-cryptographic-protocols
https://www.enisa.europa.eu/publications/study-on-cryptographic-protocols
https://github.com/greatscottgadgets/ubertooth
https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Sniffer-for-Bluetooth-LE
https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Sniffer-for-Bluetooth-LE
https://github.com/virtualabs/btlejack
https://github.com/virtualabs/btlejack
https://e2e.ti.com/support/wireless-connectivity/bluetooth/f/538/t/856161
https://e2e.ti.com/support/wireless-connectivity/bluetooth/f/538/t/856161
https://github.com/Matheus-Garbelini/sweyntooth_bluetooth_low_energy_attacks
https://github.com/Matheus-Garbelini/sweyntooth_bluetooth_low_energy_attacks
https://lacklustre.net/projects/crackle
https://github.com/OSUSecLab/FirmXRay
https://github.com/OSUSecLab/FirmXRay

Bibliography

[93] G. Celosia and M. Cunche, “Valkyrie,” 2020. https://github.com/gcelosia/valkyrie.

[94] G. Celosia and M. Cunche, “Valkyrie: A generic framework for verifying privacy provisions

in wireless networks,” in 13th ACM Conference on Security and Privacy in Wireless and

Mobile Networks, 2020.

[95] G. Celosia and M. Cunche, “Venom: A visual and experimental Bluetooth Low Energy

tracking system,” in 13th ACM Conference on Security and Privacy in Wireless and Mobile

Networks, 2020.

[96] M. Yaseen, W. Iqbal, I. Rashid, H. Abbas, M. Mohsin, K. Saleem, and Y. A. Bangash,

“MARC: A novel framework for detecting MITM attacks in eHealthcare BLE systems,”

Journal of Medical Systems, vol. 43, no. 11, p. 324, 2019.

[97] J. Wu, Y. Nan, V. Kumar, M. Payer, and D. Xu, “BlueShield: Detecting spoofing attacks

in Bluetooth Low Energy networks,” in 23rd International Symposium on Research in

Attacks, Intrusions and Defenses (RAID 2020), pp. 397–411, 2020.

[98] S. Jasek, “GATTacker - a node.js package for BLE (Bluetooth Low Energy) security

assessment using Man-in-the-Middle and other attacks,” 2016. https://github.com/

securing/gattacker.

[99] J. Wu, Y. Nan, V. Kumar, M. Payer, and D. Xu, “BlueShield,” 2020. https://github.

com/allenjlw/BlueShield.

[100] Y. Zhang, J. Weng, Z. Ling, B. Pearson, and X. Fu, “BLESS: A BLE application se-

curity scanning framework,” in IEEE INFOCOM 2020-IEEE Conference on Computer

Communications, pp. 636–645, IEEE, 2020.

[101] D. Mantz, J. Classen, M. Schulz, and M. Hollick, “InternalBlue-Bluetooth binary patching

and experimentation framework,” in Proceedings of the 17th Annual International Con-

ference on Mobile Systems, Applications, and Services, pp. 79–90, 2019.

[102] European Telecommunications Standards Institute, “Cyber security for consumer Inter-

net of Things: Baseline requirements.” [Online]. Available: https://www.etsi.org/

deliver/etsi_en/303600_303699/303645/02.01.01_60/en_303645v020101p.pdf [Ac-

cessed 01 May 2021].

[103] Department for Digital, Culture, Media & Sport, “Government response to the call

for views on consumer connected product cyber security legislation.” [Online]. Avail-

able: https://www.gov.uk/government/publications/regulating-consumer-smart-

product-cyber-security-government-response/government-response-to-the-

call-for-views-on-consumer-connected-product-cyber-security-legislation

[Accessed 01 May 2021].

190

https://github.com/gcelosia/valkyrie
https://github.com/securing/gattacker
https://github.com/securing/gattacker
https://github.com/allenjlw/BlueShield
https://github.com/allenjlw/BlueShield
https://www.etsi.org/deliver/etsi_en/303600_303699/303645/02.01.01_60/en_303645v020101p.pdf
https://www.etsi.org/deliver/etsi_en/303600_303699/303645/02.01.01_60/en_303645v020101p.pdf
https://www.gov.uk/government/publications/regulating-consumer-smart-product-cyber-security-government-response/government-response-to-the-call-for-views-on-consumer-connected-product-cyber-security-legislation
https://www.gov.uk/government/publications/regulating-consumer-smart-product-cyber-security-government-response/government-response-to-the-call-for-views-on-consumer-connected-product-cyber-security-legislation
https://www.gov.uk/government/publications/regulating-consumer-smart-product-cyber-security-government-response/government-response-to-the-call-for-views-on-consumer-connected-product-cyber-security-legislation

Bibliography

[104] “Bluetooth,” June 2021. [Online]. Available: https://source.android.com/devices/

bluetooth. [Accessed: 10-Jul-2021].

[105] Nordic Semiconductor, “BLE on Android v1.0.1,” 2016. [Online]. Available: https:

//devzone.nordicsemi.com/attachment/bdd561ff56924e10ea78057b91c5c642. [Ac-

cessed: 05-Feb-2018].

[106] “Bluetooth Low Energy overview,” Sept 2020. [Online]. Available: https://developer.

android.com/guide/topics/connectivity/bluetooth-le. [Accessed: 06-Feb-2021].

[107] Bluetooth Special Interest Group, “Heart Rate Profile: Bluetooth profile specification

v1.0,” 07 2011.

[108] Apple Inc., “scanForPeripherals.” [Online]. Available: https://developer.apple.com/

documentation/corebluetooth/cbcentralmanager/1518986-scanforperipherals.

[Accessed: 08-Mar-2021].

[109] Apple, Inc., “If an app would like to use Bluetooth on your device,” Sept 2019. [Online].

Available: https://support.apple.com/en-us/HT210578. [Accessed: 20-Oct-2020].

[110] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo: Collecting millions

of Android apps for the research community,” in Proceedings of the 13th International

Conference on Mining Software Repositories, pp. 468–471, ACM, 2016.

[111] A. Desnos et al., “Androguard: Reverse engineering, malware and goodware analysis

of Android applications ... and more (ninja !).” https://github.com/androguard/

androguard.

[112] “Java Cryptography Architecture (JCA) Reference Guide.” [Online]. Available:

https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/

CryptoSpec.html. [Accessed: 18-July-2018].

[113] “Security tips,” June 2018. [Online]. Available: https://developer.android.com/

training/articles/security-tips. [Accessed: 18-July-2018].

[114] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau,

and P. McDaniel, “Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-

aware taint analysis for Android apps,” Acm Sigplan Notices, vol. 49, no. 6, pp. 259–269,

2014.

[115] F. Wei, S. Roy, X. Ou, et al., “Amandroid: A precise and general inter-component data

flow analysis framework for security vetting of Android apps,” in Proceedings of the 2014

ACM SIGSAC Conference on Computer and Communications Security, pp. 1329–1341,

ACM, 2014.

[116] F. Pauck, E. Bodden, and H. Wehrheim, “Do Android taint analysis tools keep their

promises?,” arXiv preprint arXiv:1804.02903, 2018.

191

https://source.android.com/devices/bluetooth
https://source.android.com/devices/bluetooth
https://devzone.nordicsemi.com/attachment/bdd561ff56924e10ea78057b91c5c642
https://devzone.nordicsemi.com/attachment/bdd561ff56924e10ea78057b91c5c642
https://developer.android.com/guide/topics/connectivity/bluetooth-le
https://developer.android.com/guide/topics/connectivity/bluetooth-le
https://developer.apple.com/documentation/corebluetooth/cbcentralmanager/1518986-scanforperipherals
https://developer.apple.com/documentation/corebluetooth/cbcentralmanager/1518986-scanforperipherals
https://support.apple.com/en-us/HT210578
https://github.com/androguard/androguard
https://github.com/androguard/androguard
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
https://developer.android.com/training/articles/security-tips
https://developer.android.com/training/articles/security-tips

Bibliography

[117] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical study of cryp-

tographic misuse in Android applications,” in Proceedings of the 2013 ACM SIGSAC

conference on Computer & communications security, pp. 73–84, ACM, 2013.

[118] J. Hoffmann, M. Ussath, T. Holz, and M. Spreitzenbarth, “Slicing Droids: Program slicing

for smali code,” in Proceedings of the 28th Annual ACM Symposium on Applied Computing,

pp. 1844–1851, ACM, 2013.

[119] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna, “Execute this! An-

alyzing unsafe and malicious dynamic code loading in Android applications.,” in NDSS,

vol. 14, pp. 23–26, 2014.

[120] S. Dong, M. Li, W. Diao, X. Liu, J. Liu, Z. Li, F. Xu, K. Chen, X. Wang, and K. Zhang,

“Understanding Android obfuscation techniques: A large-scale investigation in the wild,”

in International Conference on Security and Privacy in Communication Systems, pp. 172–

192, Springer, 2018.

[121] C. Fritz, S. Arzt, and S. Rasthofer, “Droidbench: A micro-benchmark suite to assess the

stability of taint-analysis tools for Android.” https://github.com/secure-software-

engineering/DroidBench.

[122] X. Guo, Y. Yin, C. Dong, G. Yang, and G. Zhou, “On the class imbalance problem,” in

Natural Computation, 2008. ICNC’08. Fourth International Conference on, vol. 4, pp. 192–

201, IEEE, 2008.

[123] L. A. Jeni, J. F. Cohn, and F. De La Torre, “Facing imbalanced data–recommendations

for the use of performance metrics,” in Affective Computing and Intelligent Interaction

(ACII), 2013 Humaine Association Conference on, pp. 245–251, IEEE, 2013.

[124] L. Qiu, Y. Wang, and J. Rubin, “Analyzing the analyzers: FlowDroid/IccTA, AmanDroid,

and DroidSafe,” in Proceedings of the 27th ACM SIGSOFT International Symposium on

Software Testing and Analysis, pp. 176–186, ACM, 2018.

[125] Nordic Semiconductor, “Quarterly presentation Q1 2020.” [Online]. Available:

https://www.nordicsemi.com/-/media/Investor-Relations-and-QA/Quarterly-

Presentations/2020/Quarterly-presentation-Q1-2020.pdf [Accessed: 03 July

2020].

[126] S. Krüger, J. Späth, et al., “CogniCrypt SAST: CrySL-to-static analysis compiler.” https:

//github.com/CROSSINGTUD/CryptoAnalysis/.

[127] S. Krüger, S. Nadi, M. Reif, K. Ali, M. Mezini, E. Bodden, F. Göpfert, F. Günther,

C. Weinert, D. Demmler, et al., “CogniCrypt: Supporting developers in using cryptog-

raphy,” in Proceedings of the 32nd IEEE/ACM International Conference on Automated

Software Engineering, pp. 931–936, IEEE Press, 2017.

192

https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
https://www.nordicsemi.com/-/media/Investor-Relations-and-QA/Quarterly-Presentations/2020/Quarterly-presentation-Q1-2020.pdf
https://www.nordicsemi.com/-/media/Investor-Relations-and-QA/Quarterly-Presentations/2020/Quarterly-presentation-Q1-2020.pdf
https://github.com/CROSSINGTUD/CryptoAnalysis/
https://github.com/CROSSINGTUD/CryptoAnalysis/

Bibliography

[128] U. du Luxembourg, “Lists of APKs.” [Online]. Available: https://androzoo.uni.lu/

lists. [Accessed: 12-Nov-2018].

[129] IDC, “Worldwide wearables market grows 7.3% in Q3 2017 as smart wearables rise and

basic wearables decline, says IDC,” 2017. [Online]. Available: https://github.com/

secure-software-engineering/DroidBench [Accessed 16-Feb-2017].

[130] statcounter, “Operating system market share worldwide.” [Online]. Available: https:

//gs.statcounter.com/os-market-share. [Accessed: 06-Feb-2021].

[131] Markets and Markets, “IoT chip market,” 2021. [Online]. Available: https:

//www.marketsandmarkets.com/Market-Reports/iot-chip-market-236473142.html

[Accessed 08-Feb-2021].

[132] Bluetooth Special Interest Group, “LaunchStudio:Listings,” 2021. [Online]. Available:

https://launchstudio.bluetooth.com/Listings/Search [Accessed 08-Feb-2021].

[133] H. Assal and S. Chiasson, “‘Think secure from the beginning’ A survey with software

developers,” in Proceedings of the 2019 CHI conference on human factors in computing

systems, pp. 1–13, 2019.

[134] J. A. Halderman, “To strengthen security, change developers’ incentives,” IEEE Security

& Privacy, vol. 8, no. 2, pp. 79–82, 2010.

[135] D. van der Linden, P. Anthonysamy, B. Nuseibeh, T. T. Tun, M. Petre, M. Levine,

J. Towse, and A. Rashid, “Schrödinger’s security: Opening the box on app developers’

security rationale,” in 2020 IEEE/ACM 42nd International Conference on Software En-

gineering (ICSE), pp. 149–160, IEEE, 2020.

[136] Bluetooth Special Interest Group, “Reporting security vulnerabilities.” [Online].

Available: https://www.bluetooth.com/learn-about-bluetooth/key-attributes/

bluetooth-security/reporting-security. [Accessed: 12-Feb-2021].

[137] Android, “Android security rewards program rules.” [Online]. Available: https://www.

google.com/about/appsecurity/android-rewards/. [Accessed: 12-Feb-2021].

[138] Apple Inc., “Report a security or privacy vulnerability.” [Online]. Available: https:

//support.apple.com/en-gb/HT201220. [Accessed: 12-Feb-2021].

[139] Texas Instruments, “Report potential product security vulnerabilities.” [Online].

Available: https://www.ti.com/technologies/security/report-product-security-

vulnerabilities.html. [Accessed: 12-Feb-2021].

[140] Nordic Semiconductor, “Product security vulnerabilities and how to report them.” [On-

line]. Available: https://www.nordicsemi.com/About-us/PSIRT. [Accessed: 12-Feb-

2021].

193

https://androzoo.uni.lu/lists
https://androzoo.uni.lu/lists
https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
https://gs.statcounter.com/os-market-share
https://gs.statcounter.com/os-market-share
https://www.marketsandmarkets.com/Market-Reports/iot-chip-market-236473142.html
https://www.marketsandmarkets.com/Market-Reports/iot-chip-market-236473142.html
https://launchstudio.bluetooth.com/Listings/Search
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/reporting-security
https://www.bluetooth.com/learn-about-bluetooth/key-attributes/bluetooth-security/reporting-security
https://www.google.com/about/appsecurity/android-rewards/
https://www.google.com/about/appsecurity/android-rewards/
https://support.apple.com/en-gb/HT201220
https://support.apple.com/en-gb/HT201220
https://www.ti.com/technologies/security/report-product-security-vulnerabilities.html
https://www.ti.com/technologies/security/report-product-security-vulnerabilities.html
https://www.nordicsemi.com/About-us/PSIRT

Bibliography

[141] L. O’Donnell, “Consumers urged to junk insecure IoT devices.” [Online]. Avail-

able: https://threatpost.com/consumers-urged-to-junk-insecure-iot-devices/

145800/. [Accessed: 12-Feb-2021].

[142] R. Ramachandran, “IoT connected healthcare devices: Challenges in cybersecurity and

the way forward,” 2020.

[143] W. Schwartau, “Let’s end pass-the-buck security,” 2004.

[144] NXP, “QN902x OTA profile guide,” 2018. [Online]. Available: https://www.nxp.com/

docs/en/user-guide/UM10993.pdf [Accessed 07 Feb 2020].

[145] “Buttonless secure DFU service,” 2017. [Online]. Available: https://infocenter.

nordicsemi.com/topic/com.nordic.infocenter.sdk5.v14.0.0/service_dfu.html.

[Accessed: 01 May 2019].

[146] “BLE external memory bootloader and bootloadable,” 2015. [Online]. Available: http:

//www.cypress.com/file/228556/download. [Accessed: 21 Dec 2018].

[147] Qualcomm Technologies, “OTAU CSR102x,” 2016. [Online]. Available: https:

//developer.qualcomm.com/qfile/34081/csr102x_otau_overview.pdf [Accessed 09

Aug 2019].

[148] K. Zandberg, K. Schleiser, F. Acosta, H. Tschofenig, and E. Baccelli, “Secure firmware

updates for constrained IoT devices using open standards: A reality check,” IEEE Access,

vol. 7, pp. 71907–71920, 2019.

[149] “Set the application ID,” Oct 2020. [Online]. Available: https://developer.android.

com/studio/build/application-id. [Accessed: 20-Oct-2020].

[150] N. Momen, S. Bock, and L. Fritsch, “Accept-maybe-decline: Introducing partial consent

for the permission-based access control model of Android,” in Proceedings of the 25th ACM

Symposium on Access Control Models and Technologies, pp. 71–80, 2020.

[151] J. Nielsen, “Response times: The 3 important limits,” 1993.

[152] L. C. Hogan, “Performance is user experience,” 2014.

[153] K. Micinski, D. Votipka, R. Stevens, N. Kofinas, M. L. Mazurek, and J. S. Foster, “User

interactions and permission use on Android,” in Proceedings of the 2017 CHI Conference

on Human Factors in Computing Systems, pp. 362–373, 2017.

[154] A. Heinrich, M. Stute, and M. Hollick, “BTLEmap: Nmap for Bluetooth Low Energy,” in

Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and Mobile

Networks, pp. 331–333, 2020.

194

https://threatpost.com/consumers-urged-to-junk-insecure-iot-devices/145800/
https://threatpost.com/consumers-urged-to-junk-insecure-iot-devices/145800/
https://www.nxp.com/docs/en/user-guide/UM10993.pdf
https://www.nxp.com/docs/en/user-guide/UM10993.pdf
https://infocenter.nordicsemi.com/topic/com.nordic.infocenter.sdk5.v14.0.0/service_dfu.html
https://infocenter.nordicsemi.com/topic/com.nordic.infocenter.sdk5.v14.0.0/service_dfu.html
http://www.cypress.com/file/228556/download
http://www.cypress.com/file/228556/download
https://developer.qualcomm.com/qfile/34081/csr102x_otau_overview.pdf
https://developer.qualcomm.com/qfile/34081/csr102x_otau_overview.pdf
https://developer.android.com/studio/build/application-id
https://developer.android.com/studio/build/application-id

Bibliography

[155] Y. Meidan, M. Bohadana, A. Shabtai, J. D. Guarnizo, M. Ochoa, N. O. Tippenhauer, and

Y. Elovici, “ProfilIoT: A machine learning approach for IoT device identification based on

network traffic analysis,” in Proceedings of the Symposium on Applied Computing, SAC

’17, (New York, NY, USA), p. 506–509, Association for Computing Machinery, 2017.

[156] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi, and S. Tarkoma, “IoT sen-

tinel: Automated device-type identification for security enforcement in IoT,” in 2017 IEEE

37th International Conference on Distributed Computing Systems (ICDCS), pp. 2177–

2184, IEEE, 2017.

[157] A. Aksoy and M. H. Gunes, “Automated IoT device identification using network traffic,”

in ICC 2019-2019 IEEE International Conference on Communications (ICC), pp. 1–7,

IEEE, 2019.

[158] J. Kotak and Y. Elovici, “IoT device identification using deep learning,” in Conference on

Complex, Intelligent, and Software Intensive Systems, pp. 76–86, Springer, 2020.

[159] S. Marchal, M. Miettinen, T. D. Nguyen, A.-R. Sadeghi, and N. Asokan, “Audi: Toward

autonomous IoT device-type identification using periodic communication,” IEEE Journal

on Selected Areas in Communications, vol. 37, no. 6, pp. 1402–1412, 2019.

[160] K. Townsend, C. Cuf́ı, R. Davidson, et al., Getting started with Bluetooth Low Energy:

tools and techniques for low-power networking. O’Reilly Media, Inc., 2014.

[161] R. Heydon, “An introduction to Bluetooth Low Energy,” 2016. [Online]. Avail-

able: https://datatracker.ietf.org/meeting/interim-2016-t2trg-02/materials/

slides-interim-2016-t2trg-2-7. [Accessed: 18 Feb 2020].

[162] Bluetooth Special Interest Group, “16 bit UUIDs for members.” [Online].

Available: https://www.bluetooth.com/specifications/assigned-numbers/16-bit-

uuids-for-members/ [Accessed 28 May 2020].

[163] G. A. Miller, “WordNet: A lexical database for English,” Communications of the ACM,

vol. 38, no. 11, pp. 39–41, 1995.

[164] “Device firmware update service,” 2017. [Online]. Available: https://infocenter.

nordicsemi.com/topic/com.nordic.infocenter.sdk5.v11.0.0/group__ble__sdk_

_srv__dfu.html. [Accessed: 01 May 2019].

[165] “OAD profile,” 2016. [Online]. Available: http://dev.ti.com/tirex/content/

simplelink_cc2640r2_sdk_1_40_00_45/docs/blestack/ble_user_guide/html/oad-

ble-stack-3.x/oad_profile.html. [Accessed: 01 May 2019].

[166] “Over-the-Air download code example,” 2017. [Online]. Available: http://dev.ti.com/

tirex/content/simplelink_msp432_sdk_bluetooth_plugin_1_20_00_42/examples/

195

https://datatracker.ietf.org/meeting/interim-2016-t2trg-02/materials/slides-interim-2016-t2trg-2-7
https://datatracker.ietf.org/meeting/interim-2016-t2trg-02/materials/slides-interim-2016-t2trg-2-7
https://www.bluetooth.com/specifications/assigned-numbers/16-bit-uuids-for-members/
https://www.bluetooth.com/specifications/assigned-numbers/16-bit-uuids-for-members/
https://infocenter.nordicsemi.com/topic/com.nordic.infocenter.sdk5.v11.0.0/group__ble__sdk__srv__dfu.html
https://infocenter.nordicsemi.com/topic/com.nordic.infocenter.sdk5.v11.0.0/group__ble__sdk__srv__dfu.html
https://infocenter.nordicsemi.com/topic/com.nordic.infocenter.sdk5.v11.0.0/group__ble__sdk__srv__dfu.html
http://dev.ti.com/tirex/content/simplelink_cc2640r2_sdk_1_40_00_45/docs/blestack/ble_user_guide/html/oad-ble-stack-3.x/oad_profile.html
http://dev.ti.com/tirex/content/simplelink_cc2640r2_sdk_1_40_00_45/docs/blestack/ble_user_guide/html/oad-ble-stack-3.x/oad_profile.html
http://dev.ti.com/tirex/content/simplelink_cc2640r2_sdk_1_40_00_45/docs/blestack/ble_user_guide/html/oad-ble-stack-3.x/oad_profile.html
http://dev.ti.com/tirex/content/simplelink_msp432_sdk_bluetooth_plugin_1_20_00_42/examples/rtos/MSP_EXP432P401R/bluetooth/oad_firmware_update/README.html
http://dev.ti.com/tirex/content/simplelink_msp432_sdk_bluetooth_plugin_1_20_00_42/examples/rtos/MSP_EXP432P401R/bluetooth/oad_firmware_update/README.html
http://dev.ti.com/tirex/content/simplelink_msp432_sdk_bluetooth_plugin_1_20_00_42/examples/rtos/MSP_EXP432P401R/bluetooth/oad_firmware_update/README.html

Bibliography

rtos/MSP_EXP432P401R/bluetooth/oad_firmware_update/README.html. [Accessed: 14

July 2019].

[167] “Consider blocklisting Qualcomm CSR firmware update service.” [Online]. Avail-

able: https://github.com/WebBluetoothCG/registries/issues/20. [Accessed: 01

May 2019].

[168] Silicon Labs, “AN1086: Using the gecko bootloader with the Silicon Labs Blue-

tooth applications,” 2018. [Online]. Available: https://www.silabs.com/documents/

public/application-notes/an1086-gecko-bootloader-bluetooth.pdf [Accessed 04

Feb 2020].

[169] ST Microelectronics, “BlueSTSDK,” 2019. [Online]. Available: https://github.com/

STMicroelectronics/BlueSTSDK_GUI_iOS [Accessed 03 Feb 2020].

[170] ST Microelectronics, “AN4869 application note,” 2016. [Online]. Available: https://www.

st.com/resource/en/application_note/dm00293821.pdf [Accessed 01 May 2019].

[171] Bluetooth Special Interest Group, “LE Audio.” [Online]. Available: https://

www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/le-audio/ [Ac-

cessed 23 Feb 2020].

[172] Nordic Semiconductor ASA, “nRF Toolbox.” https://github.com/

NordicSemiconductor/Android-nRF-Toolbox.

[173] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes, and S. Fahl, “Stack

overflow considered harmful? The impact of copy&paste on Android application security,”

in 2017 IEEE Symposium on Security and Privacy (SP), pp. 121–136, IEEE, 2017.

[174] L. Whitney, “How to locate your friends with the Apple ‘Find My’ app,” Nov

2019. [Online]. Available: https://uk.pcmag.com/gallery/123522/how-to-locate-

your-friends-with-the-apple-find-my-app. [Accessed: 03 Mar 2020].

[175] K. Haataja, K. Hyppönen, S. Pasanen, and P. Toivanen, Bluetooth security attacks: com-

parative analysis, attacks, and countermeasures. Springer Science & Business Media, 2013.

[176] L. Cameron Booth and M. Mayrany, “IoT penetration testing: Hacking an electric

scooter,” 2019.

[177] J. Classen, D. Wegemer, P. Patras, T. Spink, and M. Hollick, “Anatomy of a vulnerable

fitness tracking system: Dissecting the Fitbit cloud, app, and firmware,” Proceedings of

the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 2, no. 1,

pp. 1–24, 2018.

[178] B. Cyr, W. Horn, D. Miao, and M. Specter, “Security analysis of wearable fitness devices

(Fitbit),” Massachusetts Institute of Technology, 2014.

196

http://dev.ti.com/tirex/content/simplelink_msp432_sdk_bluetooth_plugin_1_20_00_42/examples/rtos/MSP_EXP432P401R/bluetooth/oad_firmware_update/README.html
http://dev.ti.com/tirex/content/simplelink_msp432_sdk_bluetooth_plugin_1_20_00_42/examples/rtos/MSP_EXP432P401R/bluetooth/oad_firmware_update/README.html
https://github.com/WebBluetoothCG/registries/issues/20
https://www.silabs.com/documents/public/application-notes/an1086-gecko-bootloader-bluetooth.pdf
https://www.silabs.com/documents/public/application-notes/an1086-gecko-bootloader-bluetooth.pdf
https://github.com/STMicroelectronics/BlueSTSDK_GUI_iOS
https://github.com/STMicroelectronics/BlueSTSDK_GUI_iOS
https://www.st.com/resource/en/application_note/dm00293821.pdf
https://www.st.com/resource/en/application_note/dm00293821.pdf
https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/le-audio/
https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/le-audio/
https://github.com/NordicSemiconductor/Android-nRF-Toolbox
https://github.com/NordicSemiconductor/Android-nRF-Toolbox
https://uk.pcmag.com/gallery/123522/how-to-locate-your-friends-with-the-apple-find-my-app
https://uk.pcmag.com/gallery/123522/how-to-locate-your-friends-with-the-apple-find-my-app

Bibliography

[179] S. Mistry, “noble: A Node.js BLE (Bluetooth Low Energy) central module,” 2018. https:

//github.com/noble/noble.

[180] D. Malone and K. Mahern, “Investigating the distribution of password choices,” 2011.

Retrieved from https://arxiv.org/pdf/1104.3722.pdf.

[181] New Jersey Cybersecurity and Communications Integration Cell, “Mirai: NJCCIC

threat profile,” 2016. [Online]. Available: https://www.cyber.nj.gov/threat-center/

threat-profiles/botnet-variants/mirai-botnet. [Accessed: 11 June 2020].

[182] B. Krebs, “KrebsOnSecurity hit with record DDoS,” 2016. [Online]. Avail-

able: https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-

ddos/. [Accessed: 11 June 2020].

[183] R. Chirgwin, “Finns chilling as DDoS knocks out building control system,” 2016.

[Online]. Available: https://www.theregister.com/2016/11/09/finns_chilling_as_

ddos_knocks_out_building_control_system/. [Accessed: 11 June 2020].

[184] Radware, “‘BrickerBot’ results in PDoS attack,” 2006. [Online]. Available:

https://security.radware.com/ddos-threats-attacks/brickerbot-pdos-

permanent-denial-of-service/. [Accessed: 11 June 2020].

[185] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Du-

rumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, et al., “Understanding the Mirai

botnet,” in 26th USENIX security symposium (USENIX Security 17), pp. 1093–1110,

2017.

[186] Mitre, “CVE-2015-2880.” [Online]. Available: https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2015-2880 [Accessed: 14 July 2020].

[187] Mitre, “CVE-2019-16518.” [Online]. Available: https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2019-16518 [Accessed: 14 July 2020].

[188] Mitre, “CVE-2018-10825.” [Online]. Available: https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2018-10825 [Accessed: 14 July 2020].

[189] K. Zetter, “Hackers can seize control of electric skateboards and toss riders.” [On-

line]. Available: https://www.wired.com/2015/08/hackers-can-seize-control-of-

electric-skateboards-and-toss-riders-boosted-revo/ [Accessed: 27 July 2020].

[190] A. Qasem, P. Shirani, M. Debbabi, L. Wang, B. Lebel, and B. L. Agba, “Automatic vul-

nerability detection in embedded devices and firmware: Survey and layered taxonomies,”

ACM Computing Surveys (CSUR), vol. 54, no. 2, pp. 1–42, 2021.

[191] M. Prasad and T.-c. Chiueh, “A binary rewriting defense against stack based buffer over-

flow attacks,” in USENIX Annual Technical Conference, General Track, pp. 211–224,

2003.

197

https://github.com/noble/noble
https://github.com/noble/noble
https://arxiv.org/pdf/1104.3722.pdf
https://www.cyber.nj.gov/threat-center/threat-profiles/botnet-variants/mirai-botnet
https://www.cyber.nj.gov/threat-center/threat-profiles/botnet-variants/mirai-botnet
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://www.theregister.com/2016/11/09/finns_chilling_as_ddos_knocks_out_building_control_system/
https://www.theregister.com/2016/11/09/finns_chilling_as_ddos_knocks_out_building_control_system/
https://security.radware.com/ddos-threats-attacks/brickerbot-pdos-permanent-denial-of-service/
https://security.radware.com/ddos-threats-attacks/brickerbot-pdos-permanent-denial-of-service/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2880
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2880
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-16518
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-16518
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-10825
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-10825
https://www.wired.com/2015/08/hackers-can-seize-control-of-electric-skateboards-and-toss-riders-boosted-revo/
https://www.wired.com/2015/08/hackers-can-seize-control-of-electric-skateboards-and-toss-riders-boosted-revo/

Bibliography

[192] L. C. Harris and B. P. Miller, “Practical analysis of stripped binary code,” ACM SIGARCH

Computer Architecture News, vol. 33, no. 5, pp. 63–68, 2005.

[193] G. Ravipati, A. R. Bernat, N. Rosenblum, B. P. Miller, and J. K. Hollingsworth, “Toward

the deconstruction of Dyninst,” Univ. of Wisconsin, technical report, p. 32, 2007.

[194] R. Qiao and R. Sekar, “Function interface analysis: A principled approach for function

recognition in COTS binaries,” in 2017 47th Annual IEEE/IFIP International Conference

on Dependable Systems and Networks (DSN), pp. 201–212, IEEE, 2017.

[195] D. Andriesse, A. Slowinska, and H. Bos, “Compiler-agnostic function detection in bina-

ries,” in 2017 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 177–

189, IEEE, 2017.

[196] A. Di Federico, M. Payer, and G. Agosta, “rev. ng: a unified binary analysis framework

to recover CFGs and function boundaries,” in Proceedings of the 26th International Con-

ference on Compiler Construction, pp. 131–141, 2017.

[197] N. E. Rosenblum, X. Zhu, B. P. Miller, and K. Hunt, “Learning to analyze binary computer

code,” in AAAI, pp. 798–804, 2008.

[198] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley, “BYTEWEIGHT: Learning

to recognize functions in binary code,” in 23rd USENIX Security Symposium (USENIX

Security 14), pp. 845–860, 2014.

[199] E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing functions in binaries with neural

networks,” in 24th USENIX Security Symposium (USENIX Security 15), pp. 611–626,

2015.

[200] J. Alves-Foss and J. Song, “Function boundary detection in stripped binaries,” in Pro-

ceedings of the 35th Annual Computer Security Applications Conference, pp. 84–96, 2019.

[201] G. Myles and C. Collberg, “K-gram based software birthmarks,” in Proceedings of the

2005 ACM symposium on Applied computing, pp. 314–318, 2005.

[202] Y. R. Lee, B. Kang, and E. G. Im, “Function matching-based binary-level software similar-

ity calculation,” in Proceedings of the 2013 Research in Adaptive and Convergent Systems,

pp. 322–327, 2013.

[203] M. Bourquin, A. King, and E. Robbins, “Binslayer: accurate comparison of binary ex-

ecutables,” in Proceedings of the 2nd ACM SIGPLAN Program Protection and Reverse

Engineering Workshop, pp. 1–10, 2013.

[204] M. Egele, M. Woo, P. Chapman, and D. Brumley, “Blanket execution: Dynamic similar-

ity testing for program binaries and components,” in 23rd USENIX Security Symposium

(USENIX Security 14), pp. 303–317, 2014.

198

Bibliography

[205] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural network-based graph

embedding for cross-platform binary code similarity detection,” in Proceedings of the 2017

ACM SIGSAC Conference on Computer and Communications Security, pp. 363–376, 2017.

[206] L. Massarelli, G. A. Di Luna, F. Petroni, R. Baldoni, and L. Querzoni, “SAFE: Self-

Attentive Function Embeddings for binary similarity,” in International Conference on

Detection of Intrusions and Malware, and Vulnerability Assessment, pp. 309–329, Springer,

2019.

[207] J. Patrick-Evans, L. Cavallaro, and J. Kinder, “Probabilistic naming of functions in

stripped binaries,” in Annual Computer Security Applications Conference, pp. 373–385,

2020.

[208] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A large-scale analysis of the

security of embedded firmwares,” in 23rd USENIX Security Symposium (USENIX Security

14), pp. 95–110, 2014.

[209] A. Costin, A. Zarras, and A. Francillon, “Automated dynamic firmware analysis at scale:

A case study on embedded web interfaces,” in Proceedings of the 11th ACM on Asia

Conference on Computer and Communications Security, pp. 437–448, 2016.

[210] D. Davidson, B. Moench, T. Ristenpart, and S. Jha, “FIE on firmware: Finding vul-

nerabilities in embedded systems using symbolic execution,” in 22nd USENIX Security

Symposium (USENIX Security 13), pp. 463–478, 2013.

[211] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna, “Firmalice-automatic

detection of authentication bypass vulnerabilities in binary firmware.,” in NDSS, 2015.

[212] P. Srivastava, H. Peng, J. Li, H. Okhravi, H. Shrobe, and M. Payer, “FirmFuzz: Automated

IoT firmware introspection and analysis,” in Proceedings of the 2nd International ACM

Workshop on Security and Privacy for the Internet-of-Things, pp. 15–21, 2019.

[213] J. Wu, R. Wu, D. Antonioli, M. Payer, N. O. Tippenhauer, D. Xu, D. J. Tian, and

A. Bianchi, “LIGHTBLUE: Automatic profile-aware debloating of Bluetooth stacks,” in

Proceedings of the USENIX Security Symposium (USENIX Security), 2021.

[214] J. Tillmanns, J. Classen, F. Rohrbach, and M. Hollick, “Firmware insider: Bluetooth

randomness is mostly random,” in 14th USENIX Workshop on Offensive Technologies

(WOOT 20), 2020.

[215] Bluetooth SIG, “Intro to Bluetooth Low Energy.” [Online]. Available: https:

//www.bluetooth.com/bluetooth-resources/intro-to-bluetooth-low-energy/ [Ac-

cessed: 27 July 2020].

[216] Zigbee Alliance, “What is Zigbee?.” [Online]. Available: https://zigbeealliance.org/

solution/zigbee/ [Accessed: 27 July 2020].

199

https://www.bluetooth.com/bluetooth-resources/intro-to-bluetooth-low-energy/
https://www.bluetooth.com/bluetooth-resources/intro-to-bluetooth-low-energy/
https://zigbeealliance.org/solution/zigbee/
https://zigbeealliance.org/solution/zigbee/

Bibliography

[217] Garmin Canada Inc., “What is ANT+.” [Online]. Available: https://www.thisisant.

com/consumer/ant-101/what-is-ant [Accessed: 27 July 2020].

[218] Thread Group, “What is Thread.” [Online]. Available: https://www.threadgroup.org/

what-Is-thread [Accessed: 27 July 2020].

[219] Nordic Semiconductor ASA, “SoftDevices.” [Online]. Available: https://infocenter.

nordicsemi.com/index.jsp?topic=%2Fug_gsg_ses%2FUG%2Fgsg%2Fsoftdevices.html

[Accessed: 03 July 2020].

[220] Texas Instruments, “A fully compliant ZigBee 3.x solution: Z-Stack.” [Online]. Available:

https://www.ti.com/tool/Z-STACK [Accessed: 02 July 2020].

[221] Texas Instruments, “Bluetooth Low Energy software stack.” [Online]. Available: https:

//www.ti.com/tool/BLE-STACK [Accessed: 02 July 2020].

[222] M. Jiang, Y. Zhou, X. Luo, R. Wang, Y. Liu, and K. Ren, “An empirical study on ARM

disassembly tools,” in Proceedings of the 29th ACM SIGSOFT International Symposium

on Software Testing and Analysis, ISSTA 2020, (New York, NY, USA), p. 401–414, Asso-

ciation for Computing Machinery, 2020.

[223] J. Friebertshäuser, F. Kosterhon, J. Classen, and M. Hollick, “Polypyus–the firmware

historian,” 2020.

[224] F. Bellard, “QEMU, a fast and portable dynamic translator.,” in USENIX Annual Tech-

nical Conference, FREENIX Track, vol. 41, p. 46, 2005.

[225] N. A. Quynh, “Unicorn: The ultimate CPU emulator,” 2020. [Online]. Available: https:

//www.unicorn-engine.org [Accessed:25 Oct 2020].

[226] S. M. Mishra, Wearable Android: Android Wear and Google Fit app development. John

Wiley & Sons, 2015.

[227] L. Goudge and S. Segars, “Thumb: reducing the cost of 32-bit RISC performance in

portable and consumer applications,” in COMPCON’96. Technologies for the Information

Superhighway Digest of Papers, pp. 176–181, IEEE, 1996.

[228] Hex-Rays, “IDA Pro disassembler.” [Online]. Available: https://www.hex-rays.com/

products/ida/support/download_freeware/. [Accessed: 31 Jan 2021].

[229] J. He, P. Ivanov, P. Tsankov, V. Raychev, and M. Vechev, “Debin: Predicting debug

information in stripped binaries,” in Proceedings of the 2018 ACM SIGSAC Conference

on Computer and Communications Security, pp. 1667–1680, 2018.

[230] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: A binary analysis plat-

form,” in International Conference on Computer Aided Verification, pp. 463–469, Springer,

2011.

200

https://www.thisisant.com/consumer/ant-101/what-is-ant
https://www.thisisant.com/consumer/ant-101/what-is-ant
https://www.threadgroup.org/what-Is-thread
https://www.threadgroup.org/what-Is-thread
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fug_gsg_ses%2FUG%2Fgsg%2Fsoftdevices.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fug_gsg_ses%2FUG%2Fgsg%2Fsoftdevices.html
https://www.ti.com/tool/Z-STACK
https://www.ti.com/tool/BLE-STACK
https://www.ti.com/tool/BLE-STACK
https://www.unicorn-engine.org
https://www.unicorn-engine.org
https://www.hex-rays.com/products/ida/support/download_freeware/
https://www.hex-rays.com/products/ida/support/download_freeware/

CONCLUDING REMARKS 〉 Bibliography 〉

[231] S. Alvarez, “radare2.” https://github.com/radareorg/radare2.

[232] National Security Agency, “Ghidra.” https://github.com/NationalSecurityAgency/

ghidra.

[233] F. Wang and Y. Shoshitaishvili, “Angr-the next generation of binary analysis,” in 2017

IEEE Cybersecurity Development (SecDev), pp. 8–9, IEEE, 2017.

[234] ARM, “Vector table.” [Online]. Available: https://developer.arm.com/

documentation/dui0552/a/the-cortex-m3-processor/exception-model/vector-

table [Accessed: 03 July 2020].

[235] X. Yin, S. Liu, L. Liu, and D. Xiao, “Function recognition in stripped binary of embedded

devices,” IEEE Access, vol. 6, pp. 75682–75694, 2018.

[236] N. A. Quynh, “Capstone: The ultimate disassembler,” 2020. https://www.capstone-

engine.org.

[237] ARM, “Register usage in subroutine calls.” [Online]. Available: https://developer.

arm.com/documentation/dui0473/m/writing-arm-assembly-language/register-

usage-in-subroutine-calls [Accessed: 08 July 2020].

[238] K. Wang, “Embedded real-time operating systems,” in Embedded and Real-Time Operating

Systems, pp. 401–475, Springer, 2017.

[239] ARM, “Calling SVCs from an application.” [Online]. Available: https://developer.

arm.com/documentation/dui0471/m/handling-processor-exceptions/calling-

svcs-from-an-application [Accessed: 28 July 2020].

[240] ARM, “Supervisor calls.” [Online]. Available: https://developer.arm.com/

documentation/dui0471/g/handling-processor-exceptions/supervisor-calls [Ac-

cessed: 28 July 2020].

[241] Nordic Semiconductor, “nRF Connect for mobile,” 2020. https://www.nordicsemi.com/

Software-and-tools/Development-Tools/nRF-Connect-for-mobile.

[242] G. Klostermeier and M. Deeg, “Case study: Security of modern Bluetooth key-

boards,” 2018. [Online]. Available: https://www.syss.de/fileadmin/dokumente/

Publikationen/2018/Security_of_Modern_Bluetooth_Keyboards.pdf [Accessed: 30

Nov 2020].

[243] STMicroelectronics, “AN4869: The BlueNRG-1, BlueNRG-2 BLE OTA (over-the-air)

firmware upgrade,” 11 2018.

[244] STMicroelectronics, “PM0257: BlueNRG-1, BlueNRG-2 BLE stack v2.x programming

guidelines,” 01 2019.

201

https://github.com/radareorg/radare2
https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra
https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-processor/exception-model/vector-table
https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-processor/exception-model/vector-table
https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-processor/exception-model/vector-table
https://www.capstone-engine.org
https://www.capstone-engine.org
https://developer.arm.com/documentation/dui0473/m/writing-arm-assembly-language/register-usage-in-subroutine-calls
https://developer.arm.com/documentation/dui0473/m/writing-arm-assembly-language/register-usage-in-subroutine-calls
https://developer.arm.com/documentation/dui0473/m/writing-arm-assembly-language/register-usage-in-subroutine-calls
https://developer.arm.com/documentation/dui0471/m/handling-processor-exceptions/calling-svcs-from-an-application
https://developer.arm.com/documentation/dui0471/m/handling-processor-exceptions/calling-svcs-from-an-application
https://developer.arm.com/documentation/dui0471/m/handling-processor-exceptions/calling-svcs-from-an-application
https://developer.arm.com/documentation/dui0471/g/handling-processor-exceptions/supervisor-calls
https://developer.arm.com/documentation/dui0471/g/handling-processor-exceptions/supervisor-calls
https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Connect-for-mobile
https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Connect-for-mobile
https://www.syss.de/fileadmin/dokumente/Publikationen/2018/Security_of_Modern_Bluetooth_Keyboards.pdf
https://www.syss.de/fileadmin/dokumente/Publikationen/2018/Security_of_Modern_Bluetooth_Keyboards.pdf

	I Preliminaries
	Introduction
	Motivation
	Research Objective and Questions
	Contributions
	Thesis Structure
	Publications and Manuscripts

	Background
	Bluetooth Low Energy: Architecture and Operations
	Controller
	Host Controller Interface
	Host
	Applications

	Security and Privacy Requirements and Features in BLE
	Security and Privacy Requirements for BLE
	Security and Privacy Features
	Security Modes and Levels
	(G)ATT Security
	Pairing

	Chapter Summary, Observations and Next Steps

	BLE Attack Taxonomy
	Introduction
	Methodology
	A Taxonomy for BLE Attacks
	Unauthorised Acquisition of Data
	Tampering
	Denial of Service
	Profiling & Tracking
	Spoofing
	Applicability of Bluetooth Classic Attacks
	Bluejacking, Bluesnarfing, Bluebugging
	Bluetooth Impersonation AttackS (BIAS)
	BlueBorne
	Pairing Vulnerabilities

	Chapter Summary and Next Steps

	Vulnerability Analysis
	Vulnerabilities in BLE
	Architectural Analysis and Research Gaps
	Analysis of Vulnerabilities by Source
	A Brief Survey of Proposals for Security/Privacy Enhancement
	Privacy in the Absence of Private Addresses
	Application-Layer Security Add-on
	Identification of Spoofed BLE Devices
	Cryptography Enhancements

	Chapter Summary and Next Steps

	II BLE Application Layer Security
	Unauthorised Data Access on Multi-Application BLE Platforms
	Introduction
	Attack Demonstration
	Discussion
	Responsible Disclosure
	Contributing Factors
	Implications of Attack
	Comparison with Bluetooth Classic
	Applicability to Other Platforms
	Mitigation Strategies

	Chapter Summary and Next Steps

	Measuring the Prevalence of Application Layer Security
	Introduction
	APK Dataset
	Identification of BLE Methods and Crypto-Libraries
	BLECryptracer
	Trace Mechanisms
	Handling Obfuscation

	Evaluation
	Accuracy Measures
	Execution Times

	Results from Large-Scale APK Analysis
	Presence of App-Layer Security with BLE Data
	Libraries vs. App-Specific Implementations
	Cryptographic Correctness
	Trends over Time
	Impact Analysis

	Case Study: Firmware Update over BLE
	Limitations and Future Work
	Chapter Summary and Next Steps

	A Solution for the Unauthorised Data Access Vulnerability
	Introduction
	Environment
	Threat Model
	Security Requirements
	System Requirements

	Devising a Solution Strategy
	Stakeholders within BLE
	Practical Considerations
	Discussion

	Solution Design
	The ATT Access Database (AAD)
	The ATT Access Manager (AAM)
	Device Mode
	Obtaining User Authorisation
	Access Revocation

	Requirements Analysis
	Additional Benefits
	Proof of Concept
	Implementation Details
	POC Tests
	Evaluation

	Discussion
	Limitations
	Potential Barriers for Adoption
	Potential for Extension

	Chapter Summary and Next Steps

	III Measurement of BLE Security and Privacy
	Functionality Distribution and Impact Analysis via UUIDs
	Introduction
	UUIDs as used in Bluetooth Low Energy
	A Framework for BLE Functionality and Security Measurement
	UUID Extractor and Classifier
	Functionality Mapper
	Security Analyser

	Large-Scale Functionality Measurement of the BLE Ecosystem
	Functionality Mapping with UUID Data
	Functionality Mapping with SIG Data
	Functionality Mapping with Play Data
	APK Categorisation Results

	Observations Regarding UUID Usage
	Incorrect Use of SIG-Reserved Range
	Anomalies

	Security Analysis
	Security Indications from KFUs
	Security- and Functionality-Prioritised UFUs

	Limitations
	Chapter Summary

	Device Security Measurements
	Introduction
	Determining the Pairing Association Model
	Incremental Access Checking
	Implementation
	Real-World Device Testing
	Per-Device Analysis
	Observations on Low-Entropy Keys

	Limitations and Future Work
	Chapter Summary and Next Steps

	Firmware Analysis
	Introduction
	Challenges Involved in the Analysis of Stripped IoT Binaries
	argXtract
	Application Code Base Identification
	Inline Data Identification
	Function Boundary Identification
	COI Identification
	Register Tracing and Argument Processing

	Evaluation
	Test Set and Ground Truth
	Accuracy of Function Boundary Identification
	Accuracy of Function Pattern Matching
	Correctness of Results

	Case Study I: BLE Security and Privacy (Nordic)
	Security of BLE Data
	Use of Fixed Passkeys
	User Tracking due to Fixed Addresses
	Manufacturer/Device Names and Privacy

	Case Study II: BLE Security and Privacy (STMicroelectronics)
	BLE Address Privacy
	BLE Pairing Security

	Limitations and Future Work
	Chapter Summary and Next Steps

	IV Concluding Remarks
	Conclusion
	Research Objective and Questions
	Recommendations for Stakeholders

	Bibliography

