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Abstract

We compare two zero-sum versions of the so called Chinos Game, a tradi-
tional parlour game played in many countries. In one version, which we call
Preemption Scenario, the first player who guesses right wins the prize. In the
alternative version, called the Copycat Scenario, the last player who guesses
right wins the prize. While in the Preemption Scenario there is a unique and
fully revealing equilibrium, in the Copycat Scenario all equilibria have first
movers pool (i.e. hide) their private information. Our experimental evidence
shows, however, that in the latter case early movers do not pool but try to
fool, i.e. to “lie” by systematically distorting behavior relative to equilibrium
play. In fact, doing so they benefit, although the resulting gains diminish as
the game proceeds. This highlights the point that, as players adjust their
behavior off equilibrium, they also attempt to exploit the induced strategic
uncertainty whenever the game allows for this possibility.
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1 Introduction

The analysis of positional advantage in sequential games has been the object of
an extensive discussion in the game-theoretic literature[l] In particular, for contexts
with asymmetric information, the research on strategic information transmission pi-
oneered by |Crawford and Sobel (1982) has shed important light on the extent to
which better informed first movers have the possibility of manipulating the infor-
mation they hold via their early actions. Naturally, this should be a key factor in
any dynamic scenario where information is the main economic resource agents rely
upon —see, e.g., (Gal-Or| (1987)) or [Hopenhayn and Squintani| (2011)).

In such asymmetric-information environments, there are two conflicting consid-
erations that shape agents’ behavior:

(i) On the one hand, choosing early on a revealing strategy may have a preemption
effect, reducing the options available for subsequently moving players.

(ii) On the other hand, early movers may prefer to choose instead a non-revealing
strategy, thus hiding their private information.

There are many important real-world situations where such a trade-off between
preemption and revelation is at work. To mention just two of those that have been
much studied, we may refer to the phenomena of technological adoption (Rein-
ganum, [2012; Fudenberg and Tirole, [1985; Riordan, [1992) and market (insider)
trading (Kyle, (1985} Laffont and Maskin, |1985; [Benabou and Laroque, [1985)).

The latter paper, for instance, discusses a well-known case that illustrates the
tension between pooling and fooling behavior (on- and off-equilibrium outcomes,
respectively) that is at the core of this paper. That case concerns the successful
efforts by the financier Nathan Rothschild to mislead many traders on the British
market for government securities into believing that the battle of Waterloo against
Napoleon had been lost in 1815. This fooling exercise was based on the common
knowledge of the fact that he had access to reliable and early “insider” informa-
tion on the outcome of that battle. Thus, it was thought that his public trading
behavior, observed by the other traders, carried valuable information upon which
it was important to act, as soon as possible, by selling (at a discount) government
securities —those that, precisely, Rotschild’s agents were also secretly buying at the
same time.

This paper considers a strategic environment that, building upon the related
experimental literature, is richer than the received setup, although still manageable
and intuitive. Specifically, we design an experiment inspired by the 3-player version
of the so-called Chinos Game (Feri et al. 2011; [Ponti and Carbone, 2009). This
is a simple game played by kids in many countries in which players hold a private

1See, for example, (Gal-Or| (1985) or Rasmusen and Yoon| (2012) for an analysis of how different
features of the game —i.e. whether players’ choices are strategic substitutes or complements, or the
relative quality of the information they hold— determine the induced type of positional (say, first-
versus second-mover) advantage. In a different vein, there is also another strand of literature that
studies positional advantages from a psychological point of view —see, for example, [Apesteguia and
Palacios-Huertal (2010), |Gill and Prowse| (2012), Kocher et al.| (2012)) or [Feri et al.| (2013).



signal (coins, or pebbles, which they hide in their hand) and have to guess, in some
pre-specified order, their total sum. At the time a player has to produce her guess,
she is informed about her own signal and the guesses of all her predecessorsf]

We study two versions of this game. In one of them, labeled the Preemption
Scenario (PS), the winner is set to be the first player whose guess coincides with
the sum of signals or, in case no player gets the sum of signals right, the prize goes
to the last player in the sequencef| As the alternative treatment, we consider a
second version of the Chinos Game that we call the Copycat Scenario (CS). The CS
shares the same game-form of the PS, the only difference being that the winner now
coincides with the last player whose guess coincides with the sum of the signals or,
in case nobody gets it right, with the first player in line.

However stylized, our experimental setup captures an essential dilemma faced by
agents in many signaling situations. To fix ideas, consider the following example.

Example: A fresh “window” for investment opens up in a certain market, asso-
ciated to some new technology developed elsewhere. (For example, faster
Internet access allows new ways to provide entertainment to the household).
A priori, there are a finite number of possible approaches that can be pursued.
In practice, however, only one of them is really technologically adequate (or
matches sufficiently well with consumer preferences). That is, all other firms
perform much worse and, for simplicity, we assume that comparably so.

To start with, there are three firms operating in this market. Each of them
receives a binary signal in the set {0,1}, indicating how to address a partic-
ular aspect of the problem. In the end, as it turns out, the right investment
approach is uniquely characterized by the sum of the three signals received by
the firms. In this respect, all three firms are symmetric. There are, however,
two other respects in which they are not. On the one hand, they have to make
their investment choice in some pre-specified order and this is an important
source of asymmetry. On the other hand, one of them enjoys a dominant po-
sition in the market, in the sense that, if no adequate approach is undertaken
by any firm, then the dominant firm captures the market with its suboptimal
approach.

In principle, one may combine order- and dominance-asymmetry in different
ways. Here, for the sake of focus, we consider the following two possibilities,
which are those that arguably highlight most starkly the issues involved by
balancing preemption and dominance.

PS. The dominant firm moves last and early movers enjoy a preemption ad-
vantage, i.e. if a firm develops the right approach first, it captures the
whole market.

CS. The dominant firm moves first and late movers enjoy a copycat advantage,
i.e. if a firm is the last one to develop the right approach, it captures the
whole market.

2This game was first analyzed theoretically by [Pastor-Abia et al. (2001).

3In the commonly played Chinos Game, if no player gets the sum of the signals right, the game
is repeated afresh. We introduce this modification to the original game-form to avoid across-game
strategic considerations that would have substantially complicated the analysis.



The two possibilities considered in the above examples provide heuristic illustra-
tions of the game-theoretical setups that will be formally introduced below. These
two games allow us to explore in detail, both theoretically and experimentally, the
tension between pooling (i.e., hiding own private information with the aim of main-
taining an informational advantage over followers) and fooling (i.e., manipulating
own message with the aim of deceiving followers). They help us understand, in
particular, why off-equilibrium behavior of a particular type (fooling) may naturally
arise in a copycat context but not in a preemption one: it is only in the copycat
scenario that off-equilibrium behavior yields strategic uncertainty. Thus, it is only
in the CS that fooling can exploit such uncertainty, albeit possibly with decreasing
effectiveness as the game is repeated and followers can learn. This, indeed, is what
we observe in our experiment, where such off-equilibrium behavior arises and pays
off, and more acutely so in the early rounds of play.

A first point to note is that, even though both PS and CS share the same game-
form, their contrasting outcome functions dictate completely opposite equilibrium
behavior to first movers. Thus, as our theoretical analysis in Section [3| shows, while
in PS they must fully reveal their private information, in CS they must hide it.
In fact, these games are, in a certain way, symmetric. On the one hand, player
1 in PS and player 3 in CS (we call them the “target players”) have exactly the
same equilibrium strategy, i.e. to rely on their own signals alone when formulating
their guesses. On the other hand, at equilibrium, the strategies of player 3 in PS and
player 1 in CS (we call them the “residual claimants”) should carry no informational
content about their own signal. This is because player 3’s winning chances in PS
do not depend on her own action, while player 1 in CS should optimally shade (she
can only win if the others fail to guess correctly).

Finally, concerning player 2, her intermediate position in the sequence yields the
most delicate strategic trade-off between revealing and shading. In PS, “responding
to her signal” (and hence revealing it) should be optimal for player 2, but this is
subject to the additional consideration that it never pays to repeat player 1’s guess.
Instead, in CS player 2 faces an even more complicated problem: her optimal guess
must involve shading, although a very specific one, i.e., the strategy that maximizes
her guessing chances within the set of all pooling strategies.

Our experimental evidence shows significant disparities between actual and equi-
librium behavior, as well as in actual and equilibrium winning probabilities. (This
will be clearly shown in Figure . To anticipate our conclusions in this respect,
these can be succinctly summarized as follows.

e The target player in CS (player 3) does better than in PS (player 1), because
the former can exploit/decode deviations from equilibrium while the latter
cannot.

e The residual claimants in CS (player 1) and in PS (player 3) do better than
predicted at equilibrium because they “passively” benefit from the (unavoid-
able) mistakes of others.

e The intermediate player 2 does worse in CS than in PS because

(a) she can hardly profit from the mistakes of others in either case, but



(b) her decision is substantially more complex in the CS (and, hence, worse-
tailored to available evidence).

In sum, we argue that the combined analysis of PS and CS provides a useful
environment to understand signaling in multilateral contexts. In particular, it can
shed light on the tension between pooling and fooling that plays a key role in so many
real-world applications. We stress that, as we show in Section [3] only pooling can
be an equilibrium strategy of CS. Namely, a fooling strategy can only be justified by
deviations from, so called, “rational behavior”. In this respect, the notion of fooling
is related to that of deception discussed in the literature (Crawford} 2003} Gneezy,
2005; Sobel, 2020), in that it presumes some “model of opponents’ mind.” Indeed,
our experiment shows that first movers in CS often try to fool their followers (and
gain by doing so).

The remainder of the paper is organized as follows. Section [2| reviews the rele-
vant literature, while Section [3| provides a brief synopsis of the theory underlying the
experiment. In Section |4 we describe the experimental design, while Section [5[ sum-
marizes our main results. These include a comparison of the winning probabilities
of “twins position” in each game and also the effects of various out-off-equilibrium
behaviors. Finally, Section [0 concludes, followed by Appendices containing the ex-
perimental instructions, the derivation of the equilibrium predictions and further
statistical evidence.

2 Related literature

This paper builds upon the theoretical and empirical research on signaling games
initiated by the aforementioned seminal paper of Crawford and Sobel| (1982)) (see
also [Kreps and Sobel| (1994) and Sobel| (2009) for surveys of the main developments
in the theory of signaling). In Crawford and Sobel’s “sender-receiver” model, the
sender has private information on the true state of the world and sends a message to
the receiver, whose subsequent action is payoff-relevant for both parties. Their main
insight is that, if sender and receiver have conflicting motives, misleading informa-
tion may be delivered in equilibrium. Differently from a standard sender-receiver
framework, in the Chinos game some players act as senders, others as receivers, and
others as both senders and receiversH]

The experimental literature on strategic information transmission mainly deals
with the Sender-Receiver games. The observed pattern is that deception, i.e., the
strategic manipulation of one’s own private signal, is often used and believed, in
clear contrast with the equilibrium prediction. Forsythe et al. (1999)) find that the
same individuals —the experiment is implemented within-subject— lie when they are
senders and are gullible when they are receivers. In their paper the signaling game is
framed as a market for product quality in which sellers know the quality of the good
while buyers are only informed about its distribution. The equilibrium prediction is
that buyers should never be deceived but, in the experiment, they are: buyers are

4The feature of players being at the same time senders and receivers is theoretically explored
by Hagenbach and Koessler| (2010) within Crawford and Sobel’s (simultaneous move) framework.
See also |[Krishna and Morgan| (2001)), which considers the case of multiple senders.



frequently taken in by the sellers’ overestimation and, consequently, they bid too
much.

Along similar lines, Cai and Wang] (2006) provide clean experimental evidence of
over-communication: senders truthfully reveal more private information than what
theory would predict. (Gneezy| (2005) interprets the results of sender-receiver games
by ascribing the motivation for lying to social preferences. He argues that senders
care not only about how much they gain from lying, but also how much the receivers
lose. These unselfish motives vanish as the induced payoff differences increase. Sut-
ter| (2009) finds that truth-telling can also be a vehicle for deception, if the sender
expects that the receiver will not follow the sender’s (truthful) information. In a
similar vein, [Feri and Gantner| (2011)) consider a bargaining process characterized
by asymmetric information about sellers’ costs and buyers’ surplus. Even if equilib-
rium yields a pooling strategy on behalf of the sellers (first-movers), the paper finds
significant deviations, mostly on behalf of the buyers.

The psychology literature has also addressed the issue of deceptive communica-
tion, mainly dealing with identification of cues to deception (DePaulo et al., 2003;
Jacobsen et all [2018) [f] In this respect, [Ekman| (2001)) suggests several theoretical
relationships between verbal and nonverbal cues associated to deception and their
effects on deceptive behaviors. Based on the work by |[Ekman| (2001), Boyle et al.
(2018)) identify five main types of emotional responses to the act of deceiving others:
fear of being caught, sense of thrill of elation, guilt of violating a moral code, feeling
justified because the deception is equitable, and other specific emotions. Among
many other factors, |Boyle et al.| (2018) argue that a person could derive satisfac-
tion from deceiving a target based on the difficulty of the deception itself (duping
delight). Indeed, in our strategic copycat scenario it may well be the case that
players acting in early positions consider it challenging to mislead successors in the
sequence, therefore experiencing duping delight.

Finally, our experimental design borrows from the basic game-form of Feri et al.
(2011)), who analyze a variant of the Chinos Game where there is no conflict of in-
terest across players, since all players who guess right win the prize. In that case,
similarly to our PS; all players have a clear incentive to reveal their private infor-
mation. Their main finding is that out-of-equilibrium behavior negatively affects
successors’ winning chances (“error cascades”). Ponti and Carbone (2009) use a
similar experimental design but add a random noise to the winning probability to
estimate agents’ sensitivity to changes in expected payoffs[f]

3 The model

Three players, indexed by i € N = {1,2,3}, privately receive an iid signal, s; €
{0,1}, with s; = 1 with probability p € (0,1), uniform across players. Players act in
sequence, as indicated by their indices, and have to make a guess, g; € G = {0, 1,2, 3},

®Relatedly, some recent papers investigate how social factors influence lying behaviors (Gneezy
et al., [2018; |Utikal and Fischbacher} [2013; [Hu and Ben-Ner} 2020)).

SWhen players’ incentives are perfectly aligned, the strategic frame is very similar to that of
informational cascades, pioneered by [Banerjee (1992)) and Bikhchandani et al.| (1992).



over the sum of players’ private signals, o = Y, s;. By the time player ¢ makes her
guess, she is informed of her own signal, s;, and the guesses of her predecessors,
9;,7 <t.

In what follows, for both PS and CS, we characterize the Perfect Bayesian Equi-
librium (PBE) guessing sequences. By analogy with our experimental conditions,
we posit p > % (with p = % in the experiment). This assumption greatly simplifies
the analysis, since the distribution over the sum of & signals (binomially distributed
as Bin(k, p), for k < 2) is unimodal. Specifically, if M (p) is the mode of Bin(k,p)
-i.e., the most likely realization of the sum of k signals- then, for all p > %, Mi(p)=1
and Ms(p) = 2.

In PS the prize goes to the first player who guesses right, i.e., for whom g; = 0.
Otherwise, the prize goes to player 3. Given the realized vector of signals (sq, s2, $3),
let g7 = (g]') denote the PBE guessing sequence of treatment 7', with 7' e { P.S,CS}.

Prediction for PS. In PS all PBE share the following guessing sequence, g© :

gi%=s1+2, g5 =¢g{°-1and g° ¢ G. (1)

For a complete derivation of the PBE, see Appendix B. In words, player 1 has
an incentive to maximize her chance to guess right by choosing the fully revealing
strategy g = s; + My(p) = 51 +2. As for player 2, if she observes g; = 2, she then
learns that s; = 0. Thus, in order to maximize her chances to guess right, she should
choose g5 = 1 if s9 = 0 and choose g5 = 2 if s = 1. However, if she repeats player
I’s choice (i.e., if g5 = 2) she gets a null payoff. Therefore, it is also optimal for
player 2 to choose g, = 1 when sy = 1. Likewise, if player 2 observes ¢g; = 3, then she
learns that s; = 1. Thus, in order to maximize her chances to guess right, she should
choose g3 = 2 if s = 0 and g, = 3 if s = 1. However, since she is restricted by the
no-repetition constraint (i.e., go = 3 does not pay), it is also optimal to choose go = 2
when s, = 1. Finally, any possible choice of the residual claimant player 3 is part of
an equilibrium, since the payoffs of all players (including herself) do not depend on

gs.

The equilibrium properties of CS are summarized in the following

Prediction for CS. In CS all PBE share the following guessing sequence, g©* :

g9 € G independent of s;, g5 =2 and ¢§° = 53+ 2. (2)

For a complete derivation of the PBE, see Appendix B. In words, player 1 wins
only if both players 2 and 3 guess wrong. Thus, any pooling strategy by player
1 is consistent with a PBE. As for player 2, she only gets the prize if she guesses
right and player 3 does not repeat. Thus, player 2’s PBE strategy solves optimally
the trade-off between maximizing her winning chances and hiding her own signal to
player 3. If p > 2/3, this trade-off is solved by an optimal (pure) pooling strategy,
that prescribes ¢ = 2 independent of sy and g;. As for player 3, since both players
1 and 2 pool, in equilibrium she can only condition her play to her own signal and
prior probabilities. This, in turn, implies g5 = s3 + Ma(p).

7



Let w! denote player i’s ex-ante winning probability in treatment 7" € { P.S,C'S},
conditional of any PBE of the corresponding treatment. As for PS, from (|1)) it follows
that wfs = p?, wl¥ = 2p(1-p) and wl¥ =1-p?-2p(1-p). If p=3/4 (as in the
experiment), then

wl® =0.56, wd® =0.38 and wl® =0.06.

From (£2)) it follows that w{® = 1-p? - 2p?(1-p); wS™ = 2p?(1-p) and w§® = p2.
If p=3/4, then
wf® =0.16, w§ =0.28 and w® = 0.56.

Notice that

1. Target players do not rely on others’ guesses, but only on their own priors.
Therefore, their strategy (and the corresponding winning probability) is ex-
actly the same.

2. Player 2 is better off in PS despite the no repetition constraint, since, in PS,
player 1’s guess is fully revealing, while in CS it has no informational content.
It is player 2 who faces the trade-off between revealing and shading, which is
optimally solved in favor of the former (latter) in PS (CS), respectively.

3. This, in turn, implies that, as for residual claimants, player 1 in CS is better
off than player 3 in PS.

4 Methods and procedures

Four experimental sessions (two sessions per treatment) were run at the Labo-
ratory for Theoretical and Experimental Economics (LaTEx), at the Universidad
de Alicante. A total of 96 subjects (24 per session, 50 females) were recruited us-
ing ORSEE (Greiner|, 2004) among the undergraduate population of the University,
mainly, undergraduate students from the Economics and Management Departments
with no (or very little) prior exposure to game theory. Invitations, sent via email,
did not provide any information about the experiment, which was simply described
as a “decision-making experiment”.

The experimental sessions were computerized. Instructions were provided by
a self-paced, interactive computer program that introduced and described the ex-
periment. Subjects were also provided with a written copy of the experimental
instructions, identical to what they were reading on the screen[]

Depending on the treatment, participants played 20 rounds of either CS or PS,
between subjects.

Within each round, the sequence of events was organized as follows:

1. an iid random draw, with p = 3/4, would determine each player’s private signal;

"The experiment was programmed and conducted with the software z- Tree (Fischbacher, [2007).
A copy of the instructions, translated into English, can be found in Appendix A.



2. player 1, after being informed about her own signal, would make her guess
over the group’s sum of signals;

3. player 2, after being informed about his own signal and Player 1’s guess, would
choose his own guess;

4. player 3, after being informed about her own signal and Player 1 and 2’s
guesses, would choose her own guess.

5. After each round, all subjects were informed of all payoff-relevant informa-
tion, that is, 7) the signal and choice profiles for all group members and,
consequently, i7) the identity of the winner.

6. They were also provided with a “history table” tracking down the sequence of
signals and guesses of all group members in all previous rounds.

In all sessions, for all 20 rounds, group composition was kept constant. This is
essential for our purposes, in that we want subjects to establish stable communi-
cation links and strong reputation patterns across groupmates to better investigate
on information transmission/belief manipulation. By the same token, also player
positions have been kept fixed throughout. Both of these important features of the
experimental design were publicly announced at the beginning of each session.

All monetary payoffs in the experiment were expressed in Spanish Pesetas (SP:
1 €=166 SP)ﬁ All subjects received 1000 SP just for showing up. The fixed prize
for each round was set equal to 100 SP. Subjects’ winnings correponded to their
accumulated profits in the experiment. Average winnings were 1660 SP (i.e., about
10 €), for an experiment that lasted, on average, 45 minutes.

5 Results

5.1 Aggregate behavior

Figure [I| reports the winning frequencies by treatment and player position and
compares them with the corresponding equilibrium probabilities. For each player
position 7, let w! be the observed winning frequency in treatment 7' € {PS,CS},
with Aw! = @I — w! denoting the difference between observed frequencies and
equilibrium probabilities.

As for PS (CS), player 1 (3) wins less (more) frequently than in equilibrium
(both differences are significant at 1% confidence using binomial tests), whereas no
significant difference is found for player 2. As for CS, it is player 1 who wins at a

81t is standard practice, for all experiments run in Alicante, to use (obsolete) Spanish pesetas
as experimental currency. The reason for this design choice is twofold. First, it mitigates integer
problems, compared with other currencies (USD or €, for example). On the other hand, although
Spanish pesetas are no longer in use, Spanish people still use pesetas to express monetary values
in their everyday life. Thus, by using a “real” (as an opposed to artificial) currency, we avoid the
problem of framing the incentive structure of the experiment using a scale (e.g. “experimental
currency”) with no cognitive content.
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Figure 1: Observed and theoretical winning probabilities

higher frequency, whereas player 2 wins less (again, these differences are significant
at 1% confidence), while there is no significant difference between observed and
predicted winning frequencies for player 3.

Some considerations are in order at this point. As for target players, along the
equilibrium path, both players 1 (3) in PS (CS) should guess based on own private
information only: the former because she is the first in line, the latter because
both her predecessors should optimally shade their private signal. However, if early
movers in CS play off-equilibrium -and, by doing so, partially reveal something
about their private signal- player 3’s optimal response consists in exploiting her
predecessors’ signaling. Whether player 3 in CS can benefit from her predecessors’
deviations -and, consequently, gaining a comparative advantage with respect to her
“twin player” in PS- depends on her ability to correctly “decode” such deviations.

Along similar lines, also residual claimants may be affected asymmetrically by
off-equilibrium play. While in PS player 3 is really “residual”, in the sense that she
wins the prize independently of her own behavior in that none of her predecessors has
guessed right, off-equilibrium signaling from player 1 in CS may, or may not, increase
her winning chances. To the extent she is able to “fool” her successors (this is what
Sobel| (2020) defines as deception), she may outperform her equilibrium winning
chances; if, instead, her signaling is correctly decoded by successors, off-equilibrium
play may be detrimental.

Finally, comparing the strategic situation of players 2 in PS and CS, remember
that the behavior of the former is restricted by the no-repetition constraint. By
contrast, player 2 in CS is restricted by her successor: if both make the same guess,
it is player 3 who gets the prize. Thus, player 2 in CS faces the trade-off between
maximizing her winning chances and hiding her own signal from player 3. Moreover,
player 2 in CS must also minimize the chances that player 3 repeats her own choice.
Thus, the nature of the restriction is inherently more compelling in CS which, in
turn, implies that player 2’s theoretical winning probability in CS is lower (wl® =
0.37 and w$® = 0.28).

10



In what follows, we shall look at Figure 1 with the aim of identifying to which
extent off-equilibrium play affects players’ performance.

Result 1 (target players). The observed winning frequency of player 3 in CS
is significantly higher than that of player 1 in PS (at 5% confidence, Mann
Whitney test), although -in equilibrium- they should be exactly the same.

While player 1 in PS and player 3 in CS are in strategically similar positions,
when mistakes occur they are in drastically different ones. No significant differences
should be expected in a once-and-for-all play of the game: payoffs should be ap-
proximately equal. However, if the game is repeated over time and players can learn
the “deviation patterns” of others, player 3 in CS can profit from learning how to
decode such patterns, while player 1 in PS cannot. This manifests itself in the fact
that player 3 in CS obtains significantly higher payoffs than player 1 in PS.

In other words, Result 1 indicates that player 3 in CS exploits her positional
advantage. This suggests that, in environments where there is conflict of incentives
among agents who act sequentially, late-movers may be able to properly use the
information obtained from predecessors’ mistakes and benefit from it.

Result 2 (residual claimants). In both treatments, residual claimants win more

compared with the theoretical prediction. There is no significant difference
between Aw(™® and Awt™.

The evidence that both residual claimants -player 3 in PS and player 1 in CS- win
significantly more with respect to their equilibrium benchmark could be interpreted
as indirect evidence of suboptimal play of the other group members. We note that,
even if these two players have in common the residual role (in terms of the rules
of the games), they face different opportunities: player 3 in PS -contrary to player
1 in CS- does not have any possibility to affect the strategies and payoffs of the
other players and own payoff. Therefore, comparing the performances of the two
residual claimants, we can have a rough measure of the effect of the behavior of
player 1 in CS on own payoff. Since the theoretical winning probabilities differ
across residual claimants (wf® = 0.06 and w¢S = 0.16), we compare the differences
between observed and theoretical winning frequencies. The result that there are
no significant differences in the residual claimants’ performance, compared with the
equilibrium benchmark, suggests that behavior of player 1 in CS has no significant
effects.

However, there may be heterogeneity across groups, so that some players 1 in
CS could be more able to exploit their first-mover advantage, compared to others.
To check this conjecture, Result 3 compares the performance between the 75% of
best-performing residual claimants in PS and CS.

Result 3 (best-performing residual claimants). For the best performing resid-
ual claimants, Aw{ is significantly higher than Awf® (at 5% confidence).

11



Finally, in order to check whether the extra complexity of the restriction in
CS hurts player 2 compared to her counterpart in PS, we compare the differences
between observed and theoretical frequencies, Aw,, in the following result.

Result 4 (intermediate players). AwS® is significantly lower than Awl™ (at 1%
confidence).

As explained in Results 1-3, when mistakes occur, the payoff differences across
players in strategically similar positions in CS and PS are essentially due to ei-
ther differences in learning potential or differences in fooling/revealing potential.
Mistakes, however, also bring about an additional consequence: they complicate
the analysis of the strategic situation. The equilibrium can no longer be used to
predict /understand the behavior of others and, therefore, players must resort to
decoding systematic patterns from past evidence. The difficulty of this endeavor
depends on how sharply defined are the incentives of the agents whose behavioral
patterns are to be decoded. In this sense, PS is much simpler than CS: in PS, any
player simply wants to guess right. In contrast, in CS, depending on the player
position, there are incentives both to guess right -for player 3 and, partially, for
player 2- and to hide information -for player 1 and, partially, for player 2. This is
why CS is the game where mistakes introduce higher complexity in the analysis.
And, given such complexity, the player most affected by it should be player 2, who
is simultaneously facing the need to guess right and hide private information. This
explains Result 4, which tells us that player 2 is the player whose payoff share falls
significantly below the equilibrium prediction.

5.2 Individual behavior

This section looks at two complementary informational dimensions, which play
different roles in the two treatments.

1. Signaling: the extent to which players’ guesses reveal their own private sig-
nals. This may appear in two forms: revealing, when own guesses are positively
correlated with own signals; or fooling, when own guesses are negatively cor-
related with own signals.

2. Decoding: the extent of players’ ability to gather the private information
held by their predecessors.

In principle, both forms of signaling, either revealing or fooling, are subopti-
mal in CS, as they give followers a chance to decode. By contrast, (no repetition
constrained) revealing is the only rational behavior in PS.

As we have just shown, off-equilibrium behavior has asymmetric effects in the

two game-forms under scrutiny:

e in PS, if player 1 fails to signal her private information, this may give her fol-
lowers improved winning chances, although her mistakes might mislead others,
giving rise to error cascades (Feri et al., [2011));
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e in CS, if player 1 fails to hide her private information (by either revealing, or
fooling), this may give her followers improved winning chances conditional on
their ability to decode the signaling content of predecessors.

Given these considerations, we analyze subjects’ off-equilibrium behavior by way
of two complementary methods:

1. Correlation method. We compute ¢) the correlation between subjects’ own
private signals and guesses and i) the correlation between own guesses and
those of predecessors. The former is a proxy of the signaling content of guesses;
the latter measures the extent of decoding.

2. Actions classification method. We first partition actions according to their
signaling content. In PS we look at the consequences of player 1’s deviation
from her (fully revealing) optimal strategy; in CS we distinguish between re-
vealing and fooling on behalf of player 1 and look at the consequences of these
alternative behaviors on winning frequency profiles.

5.2.1 Correlation method

Let ¢(gi,si) (c(gi,95),% < j) denote, respectively, the correlation coefficients be-
tween own guesses and signals (own and predecessors’ guesses) evaluated across the
20 rounds of play, where the former is a proxy of the degree with which a sub-
ject reveals her private signal and the latter captures the dependence of followers’
guesses on the information revealed by predecessors. Table [I| reports the estimated
coefficients of some OLS regressions,

pwin,; = o + Zﬂic(% 5;) + Z Zﬂé’jc(g,-,gj) + U, (3)

i j<i

where the dependent variable, pwin,, is the relative frequency of winning rounds for
the player i of some matching group. The most interesting fact is that, in CS, the
winning probability of player 1 (3) is decreasing (increasing) in ¢(g1, 1), respectively.
This result shows that player 3 gets hurt if player 1 fools.
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Table 1: OLS regression of winning frequencies on correlation coefficients

PS CS
VARS. pwin, pwin, pwin; | pwin, pwin, pwing
c(g1,s1) | 0.144%F  -0.12 -0.024 | -0.196* -0.124 0.319**
(0.052) (0.098) (0.1) (0.096) (0.084) (0.127)
c(ga,82) | 0.016 0.08 -0.096 | -0.099 0.071 0.028
(0.065) (-0.122) (0.124) | (-0.086 ) (0.075) (0.114)
c(g3,s3) | -0.002 0.205 -0.204 | -0.263**  -0.171 0.434%*
(0.091) (0.172) (0.175) | (0.109) (0.096) (0.145)
c(g2,91) |-0.01 0.005 0.005 0.033 -0.033 0
(0.048) (0.092) (0.093 ) | (0.074) (0.065) (0.098)
c(gs,91) | 0.061 0.262 -0.323* | -0.024 0.047 -0.023
(0.082) (0.156) (0.158) | (0.093) (0.081) (0.123)
c(g3,92) |-0.13 -0.161 0.291* | 0.024 -0.402%**  (.378*
(0.075) (0.142) (0.144) | (0.128) (0.112) (0.17)
Constant | 0.352%** (0.374%*%F 0.274%* | 0.425%F*  0.368%**  0.207
(0.055) (0.104) (0.106) | (0.089) (0.078) (0.119)
Obs. 16 16 16 16 16 16

Robust standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01

As Table (1| shows, while in PS the coefficient of ¢(gy,s1) is positive (this indi-
cating that revealing pays off for player 1), the reverse occurs in CS. In addition,
in CS the impact of ¢(gq,s1) on pwing is positive and highly significant. We are
interested in determining whether these results from CS are due to the fact that fool-
ing behavior is successful (harmful) for player 1 (player 3), rather than revealing is
harmful (successful) for player 1 (player 3), respectively. With this objective, Table
6] in Appendix B decomposes the effect of ¢(gi,s1) into two components, depending
on whether it is positive or negative. As Table [6] shows, we see that fooling has an
impact on winning prospects of players 1 and 3 while revealing has not.

5.2.2 Action classification method

We now look at the effects of off-equilibrium behavior of player 1 on players’
winning chances and the resulting learning dynamics using the action classification
method. In PS we look at the consequences of player 1’s deviation from her optimal
fully revealing strategy; in CS we focus on the effects, on behalf of player 1, of using
a signaling strategy, either revealing or fooling’] In both cases, we look at the full
dataset first and then we split it into the first (last) ten rounds, in search of possible
learning effects.

e PS: Is my predecessor’s mistake a curse or a blessing?

90bviously, when looking at an individual action -as opposed to the full sequence- we cannot
define a pooling strategy. As a consequence, it may well happen that some actions we classify as
part of a revealing plan (or fooling) plan are indeed part of a pooling strategy. We are well aware
of this limitation of the action classification method, although the latter can really take advantage
of the panel structure of our dataset, something which is completely neglected by our correlation
method.
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As we know from the prediction for PS, player 1 has a unique -and relatively
simple- optimal guess, which consists of adding 2 to her private signal. We find that
54% (172/320) of choices of player 1 in PS fit this criterion. At the individual level,
the relative frequency of adoption of the equilibrium strategy for the 16 subjects act-
ing as player 1 in PS range from 35% to 70%, with a median of 53%. Figure[2]tracks
the relative frequency with which player 1 deviates from the equilibrium strategy
across rounds. As Figure [2| shows, average trend is decreasing, but suboptimal play
does not seem to vanish as the experiment reaches the end.

6

7

T T T T T
0 5 10 15 20
Period

‘ —=— Player 1 deviates from equilibrium choices Fitted values‘

Figure 2: Player 1’s off-equilibrium behavior in PS
We estimate the following random-effect linear probability model:

Py =1) = a+ Bry +uy, (4)

where y;; = 1 if player ¢ wins the prize in round ¢ and xy; = 1 if player 1 deviates
from the equilibrium strategy . Table |2 reports the estimated coefficients using
the full sample. As Table [2| shows, player 2 significantly benefits from player 1’s
deviation (at the 1% level), while the same result does not hold for player 3.
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Table 2: Regression of winning probability on specific strategy in PS

Playerl  Player2 Player3
Player 1 deviates -0.325%** (.285%** 0.058

(0.050) (0.054) (0.050)
Constant 0.581***  (.256%** 0.154%**

(0.031) (0.028) (0.033)
Number of Obs 320 320 320

Robust standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01

Table |3] splits the dataset between the first and last 10 rounds. Here we find
that, in the first 10 rounds, both players 2 and 3 benefit from player 1’s deviation.
However, in the second half of the experiment only player 2 gains, and twice as much
with respect to the first half. These results suggest that the learning effects enhance
player 2’s positional advantage over player 3 in the continuation of the game.

Table 3: Regression of winning probability on specific strategy in PS

First 10 rounds Last 10 rounds
Player1 Player2  Player3  Playerl  Player2  Player3
Player 1 deviates -0.324**%  0.199**  0.134** -0.337*** (0.387***  _0.049
(0.077) (0.091) (0.068) (0.047) (0.059) (0.071)
Constant 0.597***  (0.290%** 0.108***  0.570*** 0.230*%** 0.200%**
(0.062) (0.051) (0.032) (0.022) (0.037) (0.039)
Obs. 160 160 160 160 160 160

Robust standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01
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—=e—— Player 1 takes fooling action Fitted values
— #- — Player 1 takes truth-revealing action Fitted values

Figure 3: Player 1’s off-equilibrium behavior in CS

e CS: Does Fooling Work?

In CS we focus on the effects of strategic manipulation. In this context, “fooling”
on behalf of player 1 is defined as a guessing strategy which is incompatible with
the realized signal, namely,

_ 3if$120,
7Y 0if sy = 1.

We find that 24.7% (79/320) of choices of player 1 fits this definition. At the
individual level, the frequencies of fooling for the 16 subjects acting as player 1 in
CS ranges from 0% to 50%, with a median of 30%.

By the same token, “revealing” on behalf of player 1 is defined as the equilibrium
guessing strategy in PS, namely, if g; = s; +2. We find that 22% (72/320) of choices
of player 1 fits into this category. The individual frequencies of revealing for the 16
subjects acting as player 1 range from 5% to 45%, with a median of 22%. Figure
tracks the relative frequencies of use of either strategy across the 20 rounds. As
Figure 3| shows, there is an increasing (decreasing) trend in the frequencies of use of
the revealing (fooling) strategies, respectively.

To analyze the effects of player 1’s signaling on winning probabilities, we estimate
the following random-effect linear probability model:

P(yit = 1) =+ P12y + Baza + Ui, (5)

where y;; is a binary index which is positive if player ¢ wins the prize at round ¢ and
x1; (21¢) is positive if player 1 uses the fooling (revealing) strategy, respectively. Table
[ reports the estimation results. As Table[d]shows, if player 1 uses a fooling strategy,
her own winning probability increases by 15%, mostly at the expense of player 3. As
for player 2, she seems to benefit from player 1’s fooling. This suggests that player 2
decodes player 1’s signals better than player 3. By contrast the adoption on behalf
of player 1 of a revealing strategy has no significant effect on any player’s winning
probability.
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Table 4: Decoding and learning dynamics in CS (I)

Playerl  Player2 Player3
Player 1 fools 0.152%*  0.088* -0.219**
(0.068) (0.052) (0.094)
Player 1 reveals  -0.000 0.031 -0.025
(0.059) (0.056) (0.087)
Constant 0.253%**  (.129*** 0.611%**
(0.032) (0.031) (0.053)
Obs. 320 320 320

Robust standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01

Once again, Table |5|splits the dataset into the first (last) 10 rounds, respectively,
to look for learning effects. As Table [5| shows, benefits from fooling for player 1 are

limited to the first periods only, and disappear as the experiment proceeds.

In

the meantime, player 2 seems to learn on how to decode both player 1’s fooling
and revealing. Player 3 still suffers from player 1’s fooling strategy, but the effect
becomes only marginally significant (10%), and may simply result from the fact that
player 3 has a more taxing decoding task.

To summarize: the results for the full sample seem mostly driven by what hap-
pens in the first 10 rounds. In the second half of the experiment, the pattern changes
dramatically, in that fooling does not seem sustainable in the long-run.

Table 5: Decoding and learning dynamics in CS (II)

First 10 rounds Last 10 rounds

Playerl  Player2 Player3d Playerl Player2 Player3
Player 1 fools 0.230%**  -0.009  -0.216**  0.071  0.215%%* -0.222*
(0.087)  (0.059)  (0.110)  (0.105)  (0.077)  (0.123)
Player 1 reveals  0.083 -0.079 0.001 -0.076  0.118%F  -0.027
(0.103)  (0.082)  (0.140)  (0.061)  (0.059)  (0.083)
Constant 0.187*%%* (0.165%**  0.646™** 0.316***  0.097**  0.570%***
(0.044)  (0.053)  (0.080)  (0.051)  (0.041)  (0.072)
Obs 160 160 160 160 160 160

Robust standard errors in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01

6 Conclusion

In Keynes’ (1936) classic model of speculation, often termed as the Greater Fool
Theory, a speculator may buy something at a price he regards as too high because he
believes he can find a buyer willing to pay an even higher price for it. Keynes’ insights
have later received more formal dress in the vast literature on “market bubbles”,
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and increasing attention also within the experimental domain, starting from [Smith
et al.’s | (2001) seminal contribution. What makes Keynes’ speculator different from
the financier Rothschild to the financier Rothschild we mentioned in the introduction
is that the former does not possess enough market power to affect prices directly,
while the latter exercises proper “market manipulation” through his active fooling
behavior. In the words of Jarrod (1992, p. 312), “arbitrage pricing theory invokes
the price taking paradigm. The theory of market manipulation, however, studies
arbitrage when traders affect prices...”. In this light, our experiment contributes
to the literature that studies empirically simple strategic settings in which belief
manipulation is possible, exercised, believed (and pays off!). While speculation does
not necessarily imply active belief manipulation (or deception) on the part of early
movers, it often does. Our paper also contributes to the experimental literature
on deception. As Sobel (2020, p. 908) explains, “loosely, a lie is a statement that
the speaker believes is false ...|while| I reserve the term “deception” to describe
statements -or actions- that induce the audience to have incorrect beliefs. .. Unlike
lying, deception does require a theory of mind”. This approach seems very relevant
to frame the fooling behavior we observe in the CS[I0|Its relative success may be also
due to the fact that, for the residual claimant player 1, fooling is relatively “cheap”
in that her objective is fooling the others rather than being the only one guessing
right (Crawford, 2003;|Gneezy et al}2018)). This consideration notwithstanding, it is
important to notice that, in our experimental setting, fooling pays off in CS, although
only in the short-run. This pattern confirms the findings of Forsythe et al.| (1999)
that buyers who are most frequently lied to are less gullible in the continuation of
the experiment, although subjects who observe that others are particularly gullible,
do not exploit the observation with more lying. This confines fooling as a short-run
phenomenon. Moreover, the asymmetric effects of fooling and revealing strategy
echoes the results of Sutter (2009), suggesting that truthtelling might also be a tool
for deception.

To sum up, our Chinos games embody -in a stylized setup- the incentives to signal
and shade one’s own private information that arise in many interesting applications.
In this respect, Result 2 plays, essentially, a reassuring role: residual players in each
game are symmetrically affected by mistakes. The main insights then follow from
Results 1, 3 and 4, all of which highlight a separate important factor: Result 1
centers on coding, Result 3 on fooling, and Result 4 on complexity. To understand
their role, we have considered pairs of agents who are placed in strategically similar
positions in each game, so that their respective behavior predicted at a (mistake-free)
equilibrium is similar as well. Admittedly, the factors highlighted in our analysis are
particularly stark because of the equally stark contrast displayed by the two games
under consideration. However, we believe that the same three factors should be at
play in more complicated games as well.

OTndeed, our (non-equilibrium) fooling is also reminiscent of the theoretical results by (Crawford
(2003)), which models misrepresentation of intentions to competitors, or enemies. See also [Kartik
et al.|(2007)), who study a model of communication with costly lying.
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Appendix A

A1l. Experimental Instructions

Part of the instructions common to PS and CS:

Welcome to the experiment! This is an experiment to study how people solve
decision problems. Our unique goal is to see how people act on average; not what
you in particular are doing. That is, we do not expect any particular behavior of you.
However, you should take into account that your behavior will affect the amount of
money you will earn throughout the experiment. These instructions explain the way
the experiment works and the way you should use your computer. Please do not
disturb the other participants during the course experiment. If you need any help,
please, raise your hand and wait quietly. You will be attended as soon as possible.

How to get money! This experimental session consists of 20 rounds in which
you and two additional persons in this room will be assigned to a group, that is to
say, including you there will be a total of three people in the group. You, and each of
the other two people, will be asked to make a choice. Your choice (and the choices
of the other two people in your group) will determine the amount of money that
you will earn after each round. Your group will remain the same during the whole
experiment. Therefore, you will be always playing with the same people. During
the experiment, your earnings will be accounted in pesetas (1 €=166 pesetas). At
the end of the experiment you will be paid the corresponding amount of Euros that
you have accumulated during the course experiment, plus a show-up fee of 1.000
pesetas.

The game. Notice that you have been assigned a player number. Your player
number is displayed at the right of your screen. This number represents your player
position in a sequence of 3 (Player 1 moves first, Player 2 moves after Player 1 and
Player 3 moves after Players 1 and 2). Your position in the sequence will remain the
same during the entire experiment. At the beginning of each round, the computer
will assign to each person in your group (including yourself) either 0 tokens or 1
token. Within each group, each player is assigned 0 tokens with a probability of
25% and is assigned 1 token with a probability of 75%. The fact that a player is
assigned 0 tokens or 1 token is independent of what other players are assigned; that
is to say, the above probabilities are applied separately for each player.

At each round, the computer executes again the process of assignment of tokens
to each player as specified above. The number of tokens that each player is assigned
at any particular round does not depend at all on the assignments that he/she had in
other rounds. You will only know the number of tokens that you have been assigned
(0 or 1), and you will not know the number of tokens assigned to the other persons
in your group. The same rule applies for the other group members (each of them
will only know his/her number of tokens).

At each round you will be asked to make a guess over the total number of tokens
distributed among the three persons in your group (including yourself) at the current
round. The other members of your group will also be asked to make the same guess.
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The order of the guesses corresponds to the sequence of the players in the group.
That is to say: Player 1 makes his/her guess first, then Player 2 makes his/her
guess and, finally, Player 3 makes his/her guess. Moreover, you will make your
guess knowing the guesses of the players in your group that moved before yourself.
Therefore, Player 2 will know Player 1’s guess and Player 3 will know both Player
1 and Player 2’s guesses.

At each round there is a unique prize of 100 pesetas that will be assigned to one
player of the group. The remaining players will earn nothing.

Part of the instructions specific of PS:

The rule for assigning the prize in the group is as follows: (i) If for one or more
players of the group, the guess coincides with the total number of tokens distributed
in the group, the prize is assigned to the first player in the sequence who guessed
the total number of tokens. (ii) If there is no player whose guess coincides with the
total number of tokens in the group, the prize is assigned to Player 3.

Let us see examples of case (i): If all the three players guess the total number
of tokens, the prize is assigned to Player 1. If only Players 2 and 3 guess the total
number of tokens, the prize is assigned to Player 2. Obviously, if only one player
guesses the total number of tokens, the prize is assigned to her.

Part of the instructions specific of CS:

The rule for assigning the prize in the group is as follows: (i) If for one or more
players of the group, the guess coincides with the total number of tokens distributed
in the group, the prize is assigned to the last player in the sequence who guessed
the total number of tokens. (ii) If there is no player whose guess coincides with the
total number of tokens in the group, the prize is assigned to Player 1.

Let us see examples of case (i): If all the three players guess the total number
of tokens, the prize is assigned to Player 3. If only Players 1 and 2 guess the total
number of tokens, the prize is assigned to Player 2. Obviously, if only one player
guesses the total number of tokens, the prize is assigned to her.
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Appendix B

B1. Theory: Perfect Bayesian Equilibria (PBE)

We focus on behavioral strategies, defined in the conventional fashion as a
mapping from information sets to (possibly probabilistic) choices. Let H; denote
the collection of player i’s information sets. For player 1, we can simply write
Hy ={h=s1:5 =0,1}, since she has only two information sets that can be associ-
ated to each of the possible realizations of s;. For players 2 and 3, information sets
can be defined as Hs = {h = (g1,52)} and H3 = {h = (g1, g2, 53) }, respectively. Player
i’s behavioral strategy is denoted by v; : H; — A(G), where v"(g;) stands for the
probability of choosing g; at information set h.

Next, we define players’ beliefs as systems of probabilities of signals conditional
on choices. Given that signals are iid and choices are publicly observed, we make the
simplifying assumption that later movers hold common beliefs of previous signals.
First, we have the system {u!'(g1)}geq, where pl(g1) € [0,1] is the probability
associated (by players 2 and 3) to s; = 1 when the choice of player 1 has been g;.
Analogously, we have {1%(g1,92) }g,.g0ec; Where 12(g1,92) € [0,1] is the probability
associated (by player 3) to s3 = 1 when the choices of players 1 and 2 have been ¢
and go, respectively.

Perfect Bayesian Equilibrium of the Preemption Scenario

Since in PS player 3’s behavior is irrelevant, let us define the PBE focusing on
7, Y2 and {pt(g1)}gec- Let p>2/3. In a PBE of the PS, the following conditions
must hold:

~ (51 +2) = 1 for all s, € {0,1}
7591’82)(511 —1)=1for all g; >2 and s, €{0,1} (6)
p'(2) =0, p'(3) = 1.

Out of the PBE equilibrium path, i.e. when ¢; < 2, p'(gy) is unrestricted.

Depending on the specific values adopted for such belief, the corresponding 72(9 1,92) ()

would follow. For completeness, we shall construct a complete PBE of the PS

combining @ and 1’1;1‘]
750752)(32 +1) =1 for all s5€{0,1}
751,0)(0) _ 751,1)(2) =1 (7)
pt(gr) =0 for all g < 2.

Perfect Bayesian Equilibrium of the Copycat Scenario

Let p>2/3. In a PBE of the CS, the following conditions must hold:

"Here we are using the same (out of equilibrium) belief criterion as [Feri et al. (2011): if a player
plays suboptimally, successors believe that she has the signal that, conditional on her choice,
minimizes losses.
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17(91) =21 (91) for all g € G

~9%2)(2) =1 for all g1 € G and sy € {0,1}

végl’”’sg’)(s;g +2) =1 for all go >2 and s3€{0,1} (8)
p(g1) =p for all g1 € G

1?(g1,2) =p for all g1 € G

12(g1,3) 2p/(3p—1) for all g, e G

Note that, in order to have an equilibrium, it is necessary that player 3 believes,
with a sufficiently high probability, that player 2 is rational: That she does not
choose g2 =3 when sy =0. When gs < 2, 12(g1, g2) is unrestricted. Depending on the
specific values adopted for such belief, the corresponding végl’”’%)(.) would follow.
For completeness, we shall construct a complete PBE of the CS combining and
O

~A$909253) (5, 1 1) =1 for all go < 2 and s5 € {0,1} ()
1?(g1,92) =0 for all go < 2.

B2. Further statistical evidence

Variables Player 1 Player 3
c(g1,s1) 0.189 -0.0509
(0.221) (0.323)
c(g1,51) -0.552%* 0.662*
(0.207) (0.302)
c(22,52) -0.217* 0.142
(0.0983) (0.144)
c(g3,53) -0.403** 0.568**
(0.122) (0.178)
c(g2g1) 0.107 -0.0713
(0.0763) (0.112)
c(g3,g1) -0.0404 -0.00722
(0.0822) (0.120)
c(g3,22) 0.185 0.223
(0.142) (0.207)
Constant 0.345%** 0.284*
(0.0896) (0.131)
Obs. 16 16

Std err. in par. - *¥** p<0.01, ** p<0.05, * p<0.1

Table 6: Identifying the effect of fooling from revealing in CS

121t can be shown that, independently of the value of p?(g1,g2) for each go < 2 and the cor-

responding best response of player 3 (7§g1’92’53))

choose g < 2.

, player 2 never finds it profitable to deviate to
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