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Abstract

Polystyrene beads are used as test particles in aerosol science. A contact-less tech-

nique is reported for determining the refractive index of a solid aerosol particle as

a function of wavelength and temperature (20–234 ◦C) simultaneously. Polystyrene

beads with a diameter of 2 µm were optically trapped in air, in the central orifice

of a ceramic heating element, and Mie spectroscopy was then used to determine

the radius and the refractive index (to precisions of 0.8 nm and 0.0014) of 8 beads

as a function of heating and cooling. Refractive index, n, as a function of wave-

length, λ (0.480–0.650 µm) and temperature, T, in centigrade, was found to be n =

1.5753 − (1.7336 × 10−4)T + (9.733 × 10−3)λ−2 in the temperature range 20 < T <

100 ◦C and n = 1.5877 − (2.9739 × 10−4)T + (9.733 × 10−3)λ−2 in the temperature

range 100 < T < 234 ◦C. The technique represents a step change in measuring the
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refractive index of materials across an extended range of temperature and wavelength,

in an absolute manner and with a high precision.

Introduction

The real component of the refractive index of a material is important for modelling the

light scattering of that materials aerosol.1 In the atmosphere it is especially critical for

evaluation of radiative forcing, for modern climate change.2 As a material is heated, its

volume will change due to thermal expansion and any phase changes, causing a change

in the refractive index of that material. There is a need to measure the refractive index of

aerosol in the visible spectrum at elevated temperatures for the calculation of light scattering

from aerosol produced by processes such as wildfires, eg 3,4 and biogenic and anthropogenic

combustion.eg 5–8 The intensity of light scattered back to space from aerosol in the Earths

atmosphere is a strong function of the aerosol particle’s size and refractive index.1

Also, an emerging issue in atmospheric science is the transportation and deposition of mi-

croplastics, as they may pose serious risks to both human health and the environment.eg 9–15

It is therefore useful to study the refractive index of one such plastic, polystyrene.

Polystyrene beads are frequently used in atmospheric and aerosol science as a test aerosol

particle and for the calibration of instruments such as nephelometers eg,16–19 and cavity ring-

down aerosol spectrometers. eg 20–22 Precise measurement of the temperature dependence of

the refractive index of polystyrene beads is required for an accurate calibration of such

instruments. Miles et al.23 reported that uncertainties in the size and real refractive index

of the polystyrene beads, used for calibration of aerosol cavity ring down spectroscopy, lead

to errors of up to 2.9% in the measurements of refractive index, demonstrating the need

for accurate determinations of the refractive index of polystyrene beads. The uncertainty

highlighted in the work by Miles et al.23 would obviously be larger at elevated temperatures

because the temperature dependence of the refractive index of the polystyrene beads used
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for calibration is unknown.

More traditional methods of measuring the refractive index of a material, such as ellip-

sometry24 and refractometry,25 have previously been used to determine the refractive index

of macroscopic thin films of polystyrene as a function of temperature.26–28 Ellipsometry uses

the difference in polarization between the incident and refracted light from a thin film on a

surface. Beaucage et al.26 and Efremov et al.28 used ellipsometry to calculate the refractive

index of thin films of polystyrene as a function of temperature. Krause et al.27 used a Bausch

and Lomb precision refractometer, which measures the angle at which light is refracted when

passed through a thin film of material, to determine the refractive index. These methods

are normally used on macroscopic thin films, and for a single wavelength.

In an alternative method He et al.29 used microsphere imaging to calculate the refractive

index of several polymer beads as a function of temperature. Illuminating the microspheres

while they are submerged in oil gives rise to a dark ring in their image. The refractive

index can then be determined from the ratio of the size of the dark ring to the size of

the microsphere. The microsphere imaging described by He et al.29 only determines the

refractive index at one wavelength of light, and measurements are dependent on the values

and ncertainties of the refractive index of the oil used. The temperature dependences of the

refractive index of polystyrene reported by Beaucage et al.,26 Efremov et al.,28 He et al.29

and Krause et al.27 do not agree and are limited to single wavelengths. Thus, there is a need

for a technique that can report the wavelength-dependent refractive index of polystyrene

as a function of temperature. It would be advantageous if the method avoided potential

contamination by oils and did not rely on the value and uncertainty of reference refractive

index.

Described here, optical trapping was used along with a ceramic toroidal-shaped heater

to record the Mie spectra (intensity of backscattered white light as a function of visible

wavelength) produced by polystyrene beads of approximately 2 µm diameter, trapped in air,

as the temperature was varied between 20 ◦C and a maximum of 234 ◦C through a range of
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heating and cooling cycles. Measurements were taken across the glass transition temper-

ature, Tg, and up to the melting point of polystyrene. The glass transition temperature,

Tg, is the temperature at which a polymer transitions from an equilibrium, liquid-like or

rubbery state, into a non-equilibrium glassy state as a result of the restriction of molec-

ular mobility.30 The glass transition causes significant, additional change in the refractive

index of polystyrene. The method described here was used to determine the glass transition

temperature of airborne polystyrene particles.

Optical trapping is a powerful technique for studying the Mie scattering of airborne par-

ticles.31–39 Precise measurements of both the radius and the wavelength-resolved refractive

index have been obtained to a precision of ±0.8 nm and 0.0014 respectively, by reproducing

experimental Mie spectra of trapped particles with calculated Mie spectra using known values

of radius and wavelength-resolved refractive index. Polystyrene was an exemplary material

for this study as it has two well-known phase transitions, its glass transition temperature,

which has been reported as values between 96.9 ◦C and 107 ◦C,40–44 and its melting point

240 ◦C.40 The phase transition temperatures have been used to validate the experimental

variation of refractive index with temperature measurement.

Method

The strategy for performing the experiment was to levitate an airborne, solid, spherical,

polystyrene bead, in air, using an optical trap.32 Throughout this paper the back scattered

white light from the trapped particle is referred to as a Mie spectrum. The temperature in

the trapping cell was changed in steps, allowing the temperature to equilibrate between the

apparatus and the bead at each step. The Mie spectra of back-scattered light was contin-

uously recorded using a spectrometer with a three second integration. These experimental

Mie spectra were then reproduced as calculated theoretical spectra from a known refractive

index as a function of wavelength, described by a Cauchy equation,45 and a known radius to
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determine the refractive index of the bead as a function of both wavelength and temperature.

Optical trapping of airborne particles

The optical setup of the laser trap is shown in Figure 1, and has been described in detail

previously.32 A 1064 nm Nd:YAG laser (Laser Quantum) was coupled to two single-mode

fibre-optic cables via a beam-splitter coupling port (Oz Optics) and used to deliver laser

beams of power 10 mW and 15 mW (measured at the point of focus) pointing upwards and

downwards respectively. The beams were focused using two Mitutoyo M Plan Apo x50 NA

0.42 objectives into an aluminium trapping cell and aligned to sub-micron accuracy using a 3-

axis piezo-electric stage (Physik Instrumente). Polystyrene beads (Invitrogen batch S37500)

of reported diameter (2.0± 0.1) µm suspended in water were aerosolized using an atomizer

(Topas, ATM 220) and delivered as dry beads into the aluminium trapping cell via a diffusion

dryer filled with silica gel. The process of trapping involved several beads being delivered

into the cell and the position of the cell, containing the aerosol, was adjusted relative to the

laser focus until a single bead was trapped at the point of focus. The remaining beads were

removed by collisions with the cell walls over a period of approximately 2 minutes.

Heating apparatus

The toroidal-shaped ceramic heater (Thorlabs HT19R) was placed inside the aluminium trap-

ping cell, such that the focus of the counter-propagating laser beams are delivered through

the 4 mm aperture in the heater. See Figure 2. The heated volume inside the torus and thus

adjacent to where a polystyrene bead was to be held in the optical trap was ∼ 0.5 cm3.

The ceramic heater was used to control the temperature of the polystyrene bead and

surrounding air. A detailed diagram of the heating cell is shown in Figure 2. The top and

bottom heater clamps were constructed from Macor. Macor is a low thermal conductivity

composite and thus insulates the heating element from the external components of the cell.

The temperature of the polystyrene particle was set by the current flowing through the
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Figure 1: Optical set up of laser trap.

heater. The temperature was calibrated by placing a K-type thermocouple in the centre of the

heater instead of the trapped particle. During the experiments with a trapped polystyrene

bead, the temperature of the heater was monitored by a K-type thermocouple in contact with

the heater. The uncertainty in the temperature of the particle in the trap, was estimated to

be ±1 ◦C, based on the calibration technique.

Mie spectroscopy for trapped particles

As depicted in Figure 1, an LED white light source (Comar 01 LP 555, 6V), with a typical

white LED spectrum (for example similar to Thorlabs MCWHL6), illuminated the trapped

bead from below. Visible light back-scattered from the polystyrene bead was collected over

the wavelength range of 480–660 nm, at a resolution of 0.13 nm, and focused into a spec-

trograph (Acton SP2500i, 300 groove mm−1 grating). The collected Mie spectrum was then

imaged onto a charge coupled device (CCD) detector (Princeton Instrument Spec 10:400
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Figure 2: Schematic of the cross section of the aluminium trapping cell demonstrating the
positioning of the heater. The long axis of the cell is 7.8 cm and the width is 3.2 cm. The two
circular holes on the right hand side of the diagram are for addition and exhaust of aerosol.
The counter propagating beams enter from above and below the cell in this orientation.

BR). The wavelength of the spectrograph was calibrated using the gas discharge spectral

lines produced by a Hg-Ne PenRay lamp.

Mie spectra were accumulated over three second intervals continuously for each of the

polystyrene beads as the temperature was changed. Descriptions of the experiments per-

formed on each bead are summarised in Table 1. The typical rate of heating/cooling of the

beads was ∼ 1.8 ◦C min−1 for all experiments. For comparison, He et al.29 cooled polystyrene

beads at a rate of 10 ◦C min−1 and Krause et al.27 cooled polystyrene thin films at a rate

of 0.33 ◦C min−1 until 10 ◦C before Tg, then at 0.167 ◦C min−1 until just before Tg, then

0.0017 ◦C min−1 in the vicinity of Tg.
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Table 1: Summary of heating/cooling cycles for all experiments carried out

Bead Maximum temperature / ◦C Heating/Cooling Cycles
PS1 163 Heated, Cooled
PS2 234 Heated up to melting point
PS3 147 Heated, Cooled
PS4 151 Heated, Cooled, Reheated
PS5 180 Heated, Cooled (quickly 3 times)
PS6 180 Heated, Cooled (quickly 3 times)
PS7 180 Heated, Cooled (quickly once)
PS8 175 Heated, Cooled

Data analysis

It is possible to determine the size and wavelength-dependent refractive index of a particle

using the Mie spectral peak positions only32,46–48 or the profile of the Mie spectrum in

combination with peak positions.49,50 Before describing the results, it is useful to explain how

the experimental Mie spectra will be modelled to determine the radius, and the wavelength-

dependent refractive index. For the work described here, only the peak positions of the Mie

spectra were used for determining refractive index and diameter of the particle.

Generating theoretical Mie spectra

The technique described here determines the refractive index, n, as a function of wavelength,

λ, using the Cauchy equation,45

n = A+
B

λ2
+
C

λ4
, (1)

where A, B and C are material-dependent, empirical constants needed to determine the

refractive index as a function of wavelength, λ, of the polystyrene beads. The fitting process

is carried out in two steps, named either the ‘grid-scan’ or the ‘Cauchy fitting’.

Firstly, a large parameter space (typically ∼106 calculations) for potential values of A,

B, C and the radius was searched using a ‘grid-scan’ method. A second step then refined the

best-fit values of A, B, C and the radius produced by the grid-scan. The best-fit values of A,
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B, C and radius were found as those that minimised the difference between experimental and

calculated peak wavelength positions in the Mie spectra. The fitting process a priori assumes

the wavelength dispersion of the refractive index was described by a Cauchy equation and

that the particle was a sphere.

Step 1: Grid-scan search

In order to determine the radius and the values for the constants A, B and C, from equation

1, and to reproduce the experimentally measured Mie spectra. Theoretical Mie spectra were

calculated using the method described by Bohren and Huffman51 in their Fortran BHMie

code. A program was written in Python3 based on the BHMie method that was modified for

calculating the scattering over the numerical aperture of the objective lens at 0.5◦ intervals

to match our experimental data. The program was used to generate a 4-dimensional space

of theoretical spectra for a given range of each of the parameters A, B, C and radius, r. A

grid search of such a large parameter space allowed for the identification and disregard of

false minima.49 The figure-of-merit for assessing a goodness-of-fit between the calculated and

experimental Mie spectra was the average difference between the experimental and calculated

peak positions in the wavelength range 480–650 nm. The values of the parameters, A, B,

C and r, that describe the theoretical spectrum with the smallest average peak position

difference relative to the experimental Mie spectrum, were taken as the starting point for

secondary step in the fitting process, ‘Cauchy fitting’. The resolution of the 4-dimensional

grid-scan search were as follows; A at a precision of 1 × 10−4, B at a precision of 5 × 10−5

µm2, C at a precision of 1 × 10−6 µm4, radius at a precision of 2 nm and wavelength at a

precision of 0.05 nm. The ‘Cauchy fitting’ step was at higher precision, so finer resolution at

this stage was unwarranted.
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Step 2: Cauchy fitting

For a range of radii (10 nm above and below the ‘best radius’ found from the grid-scan

step, at a precision of 1 nm) each peak in the experimental Mie spectrum was fitted using a

peak comparison to the equivalent peak in the theoretical spectrum. ±10 nm was found to

be a reasonable range that resulted in finding a clear best-fit, and therefore most probable

radius.52 For each value of radius, the refractive index at each wavelength that corresponded

to a peak position, was then plotted as a function of wavelength. A Cauchy curve was

then fitted to the refractive indices against wavelength plot using a Levenberg-Marquardt

algorithm. A figure of merit, φ, was found for each Cauchy curve, by combining the errors

of each of the Cauchy parameters, A, B and C, using the equation,

φ =

√√√√ N∑
i=1

∆A2 +
∆B2

λ2i
+

∆C2

λ4i
, (2)

where λi is the wavelength of the ith peak and N is the number of peaks in the Mie

spectrum. The minimum in the resulting plot of φ versus radius, along with the determined

values of A, B and C from the fit were taken to be the most probable parameters of the

polystyrene bead.

The overall uncertainty for both steps of this fitting process was estimated by carrying out

the two step process on an indicative number (10) of spectra fitted per typical experiment.

Ten different spectra of the same particle were taken 3 seconds apart and the standard

deviation of the radii was determined for the 10 spectra. The standard deviation of the radii

was found to be ±0.8 nm, which leads to an average uncertainty in the refractive index of

±0.0014

Thermal expansion coefficient

The aim of this work was to produce a precise determination of the refractive index of

polystyrene spheres as a function of temperature. However, the change in radius of the
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particle was also measured to a precision of ±0.8 nm. Thus, enabling a calculation of volume

changes of the polystyrene bead with heating. The volumetric thermal expansion coefficient

of a solid,

αV =
1

V

δV

δT
, (3)

where V is the volume of the solid and T is the temperature (δV is the fractional amount

by which the volume will expand when heated by δT ). Comparing the volume change as a

function of temperature with literature values for polystyrene40 will validate the calibration

of the heating cell.

Results

The results focus on the comparison of experimental Mie spectra with calculated Mie spectra.

Comparison of the Mie spectra has enabled the determination of refractive index as a function

of wavelength and size. The variation in these parameters with temperature were then

reported to demonstrate the thermal expansion and phase change of spherical polystyrene

beads.

Mie spectra fitting

Figure 3 shows the change in Mie spectra as a typical bead (PB2) was heated from room

temperature, 22 ◦C to 234 ◦C. The melting point of polystyrene is 240 ◦C. The experimental

data in Figure 3 are shown by the solid lines and the calculated Mie spectra are shown

by the dashed lines. Figure 3 demonstrates the excellent reproduction of the experimental

data. The Mie spectra are vertically offset for clarity. The vertical dotted lines track the

progression of the Mie spectra peak positions as the temperature rises.
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Figure 3: The top panel shows the experimental Mie spectra (solid lines) of polystyrene
bead (PB2) in air at 22 ◦C, 100 ◦C, 176 ◦C and 234 ◦C. Each experimental Mie spectrum is
compared with their matching calculated spectra (dashed lines) from Mie theory. The shift
in peak positions between 22 ◦C and 234 ◦C is also shown as vertical dotted lines. Note that
the spectra are shifted vertically, for each temperature, for clarity. The bottom panel shows
the refractive index of a polystyrene bead as a function of wavelength for polystyrene bead
PB2, at four separate temperatures. The points are plotted at the positions of peaks in the
Mie spectrum. Uncertainty in refractive index is ±0.0014.

Refractive index variation as a function of temperature

A total of eight different polystyrene beads were studied, as summarised in Table 1. The

refractive index (at a wavelength of 589 nm) for all polystyrene beads studied as a function

12



of temperature are shown in Figure 4. The real component of the refractive index decreased

with an increase in temperature. The rate of change in refractive index with temperature

is different before and after the glass transition temperature, (Tg). The rate of change of

refractive index with temperature was found to be independent of wavelength. A demon-

stration of the rate of change of refractive index being independent of wavelength is included

in the supplementary information. It is noted that beads from the same sample were poly-

disperse in both size and refractive index.32 The range of measured refractive indices for the

polystyrene bead sample was broad, from 1.5923 to 1.6009 at room temperature. Thus, the

phase change at Tg was calculated from a single bead (PB2) by extrapolation of linear fits

between refractive index and temperature between 20 ◦C and 90 ◦C, and, 110 ◦C and 150 ◦C.

The intersection of these linear fits was at a temperature of 100.2 ◦C which falls into the

range of literature values 96.9 ◦C and 107 ◦C.40–44 There was no observation of hysteresis in

either radius or refractive index over a cycle of heating and cooling.

The change in the refractive index as a function of temperature, at a wavelength 589 nm,

for all beads, is compared with experiments by Krause et al.,27 Beaucage et al.26 and He et

al.29 in Figure 4 (inset). It should be noted that the experiments by Beaucage et al.26 and

He et al.29 were carried out at wavelengths of 633 nm and 532 nm respectively, while the data

plotted in Figure 4 and Krause et al.27 are reported at 589 nm. Figure 3 shows the refractive

index of a bead (PB2) as a function of wavelength for a range of temperatures (22–234 ◦C),

which demonstrates that the refractive index can be defined by a Cauchy equation (1) across

the temperature range studied.

The wavelength-dependent variation of the refractive index is defined here by the param-

eters A, B and C of the Cauchy equation (1). Figure 5 shows the values of A, B and C as a

function of temperature. The variation in A was found to have statistically significant linear

correlation with temperature below and above Tg, described by equations 4 and 5,

A = (1.5753± 0.0072)− ((1.7336± 0.0522)× 10−4)T ; 22 ◦C < T < 100 ◦C (4)
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Figure 4: The refractive index at 589 nm for all polystyrene beads as a function of temper-
ature. The grey line is a linear fit, to guide the eye, of the refractive index before and after
Tg, determined from bead PB2 as (T = 100.2, n = 1.5842). The shaded area represents 3
standard deviations in refractive index. The inset replots the data, compared with results
from He et al. (red dots- refractive index reported at 532 nm),29 Beaucage et al. (green,
purple and pink ‘+’ symbols- refractive index reported at 633 nm),26 and Krause et al. (blue
‘×’ symbols- refractive index reported at 589 nm).27

A = (1.5877± 0.0140)− ((2.9739± 0.1345)× 10−4)T ; 100 ◦C < T < 234 ◦C (5)

below and above Tg respectively. Parameters B and C had no statistically significant

correlation with temperature. The value if B is the average value, 9.73± 0.3× 10−3µm2 and

C is effectively 0 µm4. Thus, the change in refractive index with wavelength is summarised
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by the equations;

n = (1.5753± 0.0072)− ((1.7336± 0.0522)× 10−4)T +
(9.7333± 0.3001)× 10−3

λ2
(6)

and

n = (1.5877± 0.0140)− ((2.9739± 0.1345)× 10−4)T +
(9.7333± 0.3001)× 10−3

λ2
(7)

in the temperature ranges 20 ◦C < T < 100 ◦C and 100 ◦C < T < 234 ◦C respectively.

Thermal expansion of polystyrene beads

The change in bead radius as a function of temperature was determined for all beads. Figure 6

shows the change in radius for bead PB2. All other beads studied exhibited similar behaviour,

but because bead size at room temperature for the other polystyrene beads varied between

0.986 µm and 1.007 µm they are not shown for clarity.

Figure 6 shows maximum and minimum theoretical radii calculated from the thermal

expansion literature values of αV , both below and above Tg
40. Below the glass transition

temperature, Tg, the expansion of the bead agrees with literature within literature uncer-

tainty. Above Tg, the expansion of the polystyrene bead agrees with literature within lit-

erature uncertainty until 150 ◦C, after which point there is slight deviation. Approaching

240 ◦C, the polystyrene bead starts to melt causing the volume to decrease rapidly.

Discussion

Radius and refractive index as a function of temperature

The refractive index of polystyrene is dependent on its chemical and physical properties,

following the Lorentz-Lorenz equation,53
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Figure 5: Cauchy equation (1) parameters A, B/λ2 and C/λ4, as a function of temperature.
The plot demonstrates the contribution of each of the terms in the equation (1) to the change
in refractive index as a function of temperature. The legend is the same as the legend from
Figure 4.

n2 − 1

n2 + 2
=
Nαρm

3M
(8)

where n is the refractive index, ρm is the mass density, N is Avogadro’s constants, α is

the mean polarizability and M is the molecular weight of the polystyrene. As N and M are

constant, and α is found to be effectively constant with changing temperature,54 then the

density is the significant factor determining the change in refractive index as a function of

temperature.55–57
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Figure 6: Radius as a function of temperature for polystyrene bead PB2, compared with
minimum (solid line) and maximum (dashed line) radii based on literature values for the
volumetric thermal expansion coefficient40

.

As the polystyrene beads are heated thermal expansion causes the the mass density, ρm

to decrease, causing a decrease in refractive index. This is consistent with results found in

this study, where an increase in radius and a decrease in refractive index was found as the

temperature increased, with the rate of change increasing at the glass transition temperature,

due to physical changes occurring more rapidly at this point.

Measurements were carried out from room temperature to 234 ◦C, just below the melting

point of polystyrene (240 ◦C) without disturbing the optical trapping stability. The particle
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was stable in the trap throughout the changes. Even approaching the melting temperature

the bead was retained for sufficient time to enable spectral acquisitions indicating a rapid

loss of material, possibly due to evaporation of monomer and short chain polymer styrene

and polystyrene molecules. The wavelength-dependent refractive index determined at room

temperature compares well within uncertainty with previous work.32

Figure 4 shows a comparison between the determined refractive index of all results ob-

tained with results from He et al.,29 Beaucage et al.,26 and Krause et al.,27 which were all

monochromatic studies. The inset in Figure 4 compares the refractive index data recorded

by others26,27,29 at similar, but different, wavelengths. There is good agreement between this

study and He et al.,29 before the glass transition temperature (Tg), where Krause et al.27

found the refractive index to be slightly lower and Beaucage et al.26 found the refractive in-

dex to be substantially lower. The offset observed between this study and that of Krause et

al. and Beaucage et al. is likely to be due to differences in the properties of the polystyrene

studied. The glass transition temperatures for all four studies were: 100.2 ◦C for this study,

98.3 ◦C for He et al., 100 ◦C for Krause et al. and 86.4 ◦C, 91.6 ◦C and 111.5 ◦C for Beaucage

et al. at different film thicknesses.

The polystyrene beads used by He et al. were immersed in oil and were approximately

60 µm in diameter, where as here they were only approximately 2 µm in diameter. Both

Krause et al. and Beaucage et al. studied thin films of polystyrene. The heating rate was

also different in each of the experiments. In this study the beads were heated and cooled at

∼1.8 ◦C min−1, He et al.29 cooled polystyrene beads at a rate of 10 ◦C min−1, Krause et al.27

cooled polystyrene thin films at a rate of between 0.33–0.0017 ◦C min−1 and Beaucage et al.

heated and cooled polystyrene films at a rate of 2 ◦C min−1.

The recorded thermal expansion of a single polystyrene bead is in agreement with lit-

erature values of the thermal expansion of bulk polystyrene at temperatures below 150 ◦C,

as shown in Figure 6. The difference above this temperature, namely, a lower expansion

than expected may be due to loss of lower molecular weight material from the bead as it
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approaches the melting point. He et al., Krause et al. and Beaucage et al. all do not exceed

140 ◦C in their reported measurements.

A limitation of this technique is that only one particle can be studied at a time. However

the technique can be used to determine the refractive index over a range of wavelengths

between 480 − 650 nm, rather than for a single wavelength, and the size of the particle at

the same time. It would also be possible to determine the change in density with tempera-

ture provided the density at room temperature is known. The technique gives an absolute

measurement, therefore is not measured relative to the refractive index of another material.

As the particles are airborne rather than submerged in oil, it is a contact-less method and

the medium (air) will not affect the light scattered by the particle, or have the potential for

particle contamination. Air is an excellent choice of bath gas because its refractive index

variation with temperature is well documented and is almost unity, within the precision of

our experiment. The refractive index of air does change slightly with temperature, it is

1.00027 at room temperature and 1.00021 at 100 ◦C,58 it was found that this change in re-

fractive index of the medium led to no significant change in the determined refractive index

or size of the particle, within uncertainty and therefore does not need to be considered.

Polystyrene as a test aerosol

Polystyrene has two distinct phase changes in the temperature range studied. These may

be used as reference points to accurately calibrate recorded temperatures, polystyrene is an

excellent test aerosol for this system. Figure 6 shows that the glass transition temperature

was seen to occur at the expected temperature of 100 ◦C,40 and there was evidence for a

phase transition approaching the melting temperature of 240 ◦C,40 which gives confidence in

this method.

19



Conclusion

A technique has been developed with clear applications in combustion aerosol science, het-

erogeneous catalysis and climate science, for precisely determining the wavelength dispersion

of refractive index, as a function of temperature, for trapped airborne particles. By determin-

ing the refractive index of polystyrene beads, as a function of wavelength and temperature

simultaneously, and the size as a function of temperature, it has been demonstrated that the

technique is robust due to polystyrene’s known phase changes. A contact-less method has

been demonstrated for measuring the refractive index associated with the phase changes of

polystyrene. Presence of a contact surface would compromise such measurements. The tech-

nique has the potential to be applied to other airborne particles for measuring the refractive

index dispersion during liquid to solid, or solid to liquid, phase changes. The glass transition

temperature of polystyrene has been reported as 100 ◦C and the temperature range of the

recorded behavior of polystyrene as a function of temperature has been extended by ∼ 100 ◦C

using a polychromatic method.

There is potential for an increase in the temperature range that can be studied using this

technique. Higher temperatures could be reached through better insulation and improved cell

design. Temperatures below room temperature could be reached by cooling the aluminium

cell.

The work presented here represents a step change in measuring the refractive index of

airborne particles in an absolute manner, with high precision, as a function of both temper-

ature and wavelength. The work also demonstrates a new development in the measurement

of the refractive index of airborne particles, as a function of wavelength and temperature,

for measuring phase changes.

Supporting Information

Raw data and full set of results are available at DOI: 10.5281/zenodo.3885730
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