| Universit
of Glasg_;rowy

vvvvvvvvvvvvvv

Gabbard, H., Messenger, C., Heng, I. S., Tonolini, F. and Murray-Smith,
R. (2022) Bayesian parameter estimation using conditional variational
autoencoders for gravitational-wave astronomy. Nature Physics, 18(1), pp.
112-117. (doi: 10.1038/s41567-021-01425-7)

There may be differences between this version and the published version.
You are advised to consult the published version if you wish to cite from it.

http://eprints.gla.ac.uk/251149/

Deposited on 22 December 2021

Enlighten — Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://dx.doi.org/10.1038/s41567-021-01425-7
http://eprints.gla.ac.uk/251149/
http://eprints.gla.ac.uk/

Bayesian parameter estimation using conditional variational autoencoders for
gravitational-wave astronomy

Hunter Gabbard!,* Chris Messenger!, Ik Siong Heng', Francesco Tonolini?, and Roderick Murray-Smith?
SUPA, School of Physics and Astronomy’,
University of Glasgow,
Glasgow G12 8QQ, United Kingdom

School of Computing Science?,
University of Glasgow,
Glasgow G12 8QQ, United Kingdom

(Dated: December 14, 2021)

Gravitational wave (GW) detection is now
commonplace [1-3] and as the sensitivity of the
global network of GW detectors improves, we
will observe on the order of 100s of transient
GW events per year [4]. The current methods
used to estimate their source parameters em-
ploy optimally sensitive [5] but computationally
costly Bayesian inference approaches [6] where
typical analyses have taken between 6 hours and
6 days [7]. For binary neutron star (BNS) and
neutron star black hole (NSBH) systems prompt
counterpart electromagnetic (EM) signatures are
expected on timescales of 1 second — 1 minute
and the current fastest method for alerting EM
follow-up observers [8], can provide estimates in
on the order of 1 minute, on a limited range of
key source parameters. Here we show that a
conditional variational autoencoder (CVAE) [9,
10] pre-trained on binary black hole (BBH) sig-
nals can return Bayesian posterior probability es-
timates. The training procedure need only be
performed once for a given prior parameter space
and the resulting trained machine can then gener-
ate samples describing the posterior distribution
~ 6 orders of magnitude faster than existing tech-
niques.

The problem of detecting GWs has largely been solved
through the use of template based matched-filtering, a
process recently replicated using machine learning tech-
niques [11-13]. Once a GW has been identified through
this process, Bayesian inference, known to be the opti-
mal approach [5], is used to extract information about
the source parameters of the detected GW signal.

In the standard Bayesian GW inference approach, we
assume a signal and noise model and both may have un-
known parameters that we are either interested in infer-
ring or prefer to marginalise away. Each parameter is
given a prior astrophysically motivated probability dis-
tribution and in the GW case, we typically assume a
Gaussian additive noise model (in reality, the data is not
truly Gaussian). Given a noisy GW waveform, we would
like to find an optimal procedure for inferring some set of

the unknown GW parameters. Such a procedure should
be able to give us an accurate estimate of the parameters
of our observed signal, whilst accounting for the uncer-
tainty arising from the noise in the data.

According to Bayes’ Theorem, a posterior probability
distribution on a set of parameters, conditional on the
measured data, can be represented as

p(zly) o< p(ylz)p(z), (1)

where x are the parameters, y is the observed data, p(z|y)
is the posterior, p(y|z) is the likelihood, and p(z) is the
prior on the parameters. The constant of proportionality,
which we omit here, is p(y), the probability of our data,
known as the Bayesian evidence or the marginal likeli-
hood. We typically ignore p(y) since it is a constant and
for parameter estimation purposes we are only interested
in the shape of the posterior.

Due to the size of the parameter space typically en-
countered in GW parameter estimation and the volume
of data analysed, we must stochastically sample the pa-
rameter space in order to estimate the posterior. Sam-
pling is done using a variety of techniques including
Nested Sampling [14-16] and Markov chain Monte Carlo
methods [17, 18]. The primary software tools used by
the advanced Laser Interferometer Gravitational wave
Observatory (LIGO) parameter estimation analysis are
LALInference and Bilby [6, 19], which offer multiple
sampling methods.

Machine learning has featured prominently in many
areas of GW research over the last few years. These
techniques have shown to be particularly promising in
signal detection [11-13], glitch classification [20], earth-
quake prediction [21], and to augment existing Bayesian
sampling methods [22]. We also highlight recent devel-
opments in GW parameter estimation (independent to
this work) where one- and two-dimensional marginalised
Bayesian posteriors are produced rapidly using neural
networks [23], and where normalised flows in conjunc-
tion with CVAEs can reproduce Bayesian posteriors for
a single GW detector case [24, 25]. These methods, in-
cluding the one presented in this paper, are known as

“likelihood-free” approaches in which there is no require-
ment for explicit likelihood evaluation [26], only the need
to sample from the likelihood. Nor is it the case that
pre-computed posterior distributions are required in the
training procedure.

Recently, a type of neural network known as CVAE
was shown to perform exceptionally well when applied
towards computational imaging inference [9, 27], text to
image inference [28], high-resolution synthetic image gen-
eration [29] and the fitting of incomplete heterogeneous
data [30]. CVAEs, as part of the variational family of
inference techniques are ideally suited to the problem of
function approximation and have the potential to be sig-
nificantly faster than existing approaches. It is there-
fore this type of machine learning network that we apply
in the GW case to accurately approximate the Bayesian
posterior p(x|y), where x represents the physical param-
eters that govern the GW signal, and are the quantities
we are interested in inferring. The data y represents the
noisy measurement containing the GW signal and ob-
tained from a network of GW detectors.

The construction of a CVAE begins with the defini-
tion of a quantity to be minimised (referred to as a cost
function). In our case we use the cross entropy, defined
as

H(p,r) = —/dxp(wly) log g (x|y) (2)

between the true posterior p(z|y) and rg(z|y), the para-
metric distribution that we will use neural networks to
model and which we aim to be equal to the true posterior.
The parametric model is constructed from a combination
of 2 (encoder and decoder) neural networks ry, (z]y) and
ro, (x|y, z) where

ro(ly) = / dz o, (2ly)roa (zly, 2). (3)

In this case the 0 subscripts represent sets of trainable
neural network parameters and the variable z represents
locations within a latent space. This latter object is typ-
ically a lower dimensional space within which an encoder
can represent the input data, and via marginalisation
allows the construction of a rich family of possible prob-
ability densities.

Starting from Eq. 2 it is possible to derive a com-
putable bound for the cross-entropy that is reliant on the
r9, and rg, networks and a third “recognition” encoder
network g, (z|z,y) governed by the trainable parameter-
set ¢. The details of the derivation are described in the
methods section and in [9] but equate to an optimisation
of the evidence lower bound (ELBO). The final form of
the cross-entropy cost function is given by the bound

1 ~
15 5 2| = toaroa(alon i)

KL
+ KL 1gg (zln y)lro, (lya)] | (4)

which is also represented graphically in Fig. 1. The cost
function is composed of 2 terms, the “reconstruction”
cost L which is a measure of how well the decoder net-
work 1y, predicts the true signal parameters z, and the
Kullback—Leibler (KL)-divergence cost that measures the
similarity between the distributions modelled by the 7,
and g4 encoder networks. In practice, for each iteration
of the training procedure, the integrations over x,y and
z are approximated by a sum over a batch of Ny, draws
from the user defined prior p(x), the known likelihood
p(y|x), and the recognition function ¢4(z|,z,y). Details
of the training procedure are given in the methods sec-
tion.

The implementation of the CVAE that we employ in
this letter has a number of specific features that were
included in order to tailor the analysis to GW signals.
The details of these enhancements are described in the
Methods section but in summary, the primary modifi-
cations are as follows, 1) Physically appropriate output
decoder distributions are used for each output param-
eter: von Mises-Fisher distribution on the sky location
parameters, von Mises distributions on all parameters
with cyclic prior bounds, and truncated Gaussians for
parameters with defined prior bounds. 2) Each of the
functions ¢, ,7g,, and g4 are modelled using deep convo-
lutional neural networks with multi-detector time-series
represented as independent input channels. 3) The rg,
encoder models an M = 32 component Gaussian mixture
model within the n, = 15 dimensional latent space in or-
der to capture the corresponding typical multi-modal na-
ture of GW posterior distributions. 4.) All cyclic param-
eters are represented as points in an abstract 2D plane.

We present results on 250 multi-detector GW test BBH
waveforms in simulated advanced detector noise [31] from
the LIGO Hanford, Livingston and Virgo detectors. We
compare between variants of the existing Bayesian ap-
proaches and our CVAE implementation which we call
VItamin !. Posteriors produced by the Bilby inference
library [19] are used as a benchmark in order to assess the
efficiency and quality of our machine learning approach
with the existing methods for posterior sampling.

For the benchmark analysis we assume that 14 pa-
rameters are unknown: the component masses my, mo,
the luminosity distance di,, the sky position «,d, the

! https://github.com/hagabbar/VItamin.git

https://github.com/hagabbar/VItamin.git

Xsamp

FIG. 1. The configuration of the CVAE neural network.
During training (left-hand side), a training set of noisy GW
signals (y) and their corresponding true parameters (x) are
given as input to encoder network g4, while only y is given to
encoder network rg,. The KL-divergence (Eq. 7) is computed
between the encoder output latent space representations (pq
and pu,) forming one component of the total cost function.
Samples (z,) from the g4 latent space representation are gen-
erated and passed to the decoder network 74, together with
the original input data y. The output of the decoder (pr,)
describes a distribution in the physical parameter space and
the cost component L is computed by evaluating that dis-
tribution at the location of the original input . When per-
formed in batches this scheme allows the computation of the
total cost function Eq. 4. After having trained the network
and therefore having minimised the cross-entropy H, we test
(right-hand side) using only the rg, encoder and the rg, de-
coder to produce samples (Zsamp). These samples are drawn
from the distribution 7¢(z|y) (Eq. 3) and accurately model
the true posterior p(z|y).

binary inclination ©;,, the GW polarisation angle 1,
the time of coalescence tg, and the spin parameters
ai,a2,01,02,p12,0;. We do not include phase ¢¢ in
our results because we apply phase marginalisation to all
Bayesian samplers since this improves overall stability
and runtime [19].For each parameter we use a uniform

prior with the exception of the declination, inclination,
and tilt angle parameters for which we use priors uniform
in cosd, sin®;,, sinO;, and sin Oy respectively. The
prior on the component masses are conditional, such that
my > ma. The corresponding prior ranges are defined in
Table II and result in a signal-to-noise ratio (SNR) dis-
tribution that has a median value of SNR ~ 9 and rang-
ing between 0 and 75. We use a sampling frequency of
1024 Hz, a time-series duration of 1 second, and the wave-
form model used is IMRPhenomPv2 [32] with a minimum
cutoff frequency of 20Hz. For each input test waveform
we run the benchmark analysis using multiple sampling
algorithms available within Bilby. For each run and sam-
pler we extract on the order of 8000 samples from the
posterior on the 14 physical parameters.

The VItamin training process uses as input 107
whitened waveforms corresponding to parameters drawn
from the same priors as assumed for the benchmark anal-
ysis. The waveforms are also of identical duration, sam-
pling frequency, and use the same waveform model as in
the benchmark analysis. The signals are whitened? using
the same advanced detector PSDs [31] as assumed in the
benchmark analysis. When each whitened waveform is
placed within a training batch it is given a unique de-
tector Gaussian noise realisation (after signal whitening
this is simply zero mean, unit variance Gaussian noise).
The VItamin posterior results are produced by passing
each of our 250 whitened noisy testing set of GW wave-
forms as input into the testing path of the pre-trained
CVAE (Fig. 1). For each input waveform we sample until
we have generated 8000 posterior samples on 15 physical
parameters, collectively denoted here as x. Comparison
results between VItamin and Bayesian samplers do not
use ¢g since it is marginalised out in the Bayesian sam-
pler inference process.

We can immediately illustrate the accuracy of our ma-
chine learning predictions by directly plotting 2 and one-
dimensional marginalised posteriors generated using the
output samples from our VItamin and Bilby approaches
superimposed on each other. We show this for one ex-
ample test dataset in Fig. 2 where strong agreement be-
tween the Bilby sampler Dynesty in blue, and the CVAE
(red) is clear. It is also evident that whilst we refer to
the Bilby sampler results as benchmark cases, differ-
ent existing samplers do not perfectly agree with each
other (i.e. ptemcee in green) despite using expert rec-
ommended sampler settings shown in Tab. IV. For each
of our 250 test cases we see reasonable levels of agree-
ment between pairs of benchmark samplers and between

2 The whitening is used primarily to scale the input to a magnitude
range more suitable to neural networks. The true power spec-
tral density (PSD) does not have to be used for whitening, but
training data and test data must be contain signals that share
the same PSD.

66.95:87¢

48.641%82

m; (Mo)

dL(Mpc)

to (seconds)

O (rad)

1.57719%8

a1

a

time (seconds)

o1

2]

318434

ey

92

= Dynesty
- Ptemcee
= Vitamin

3.1413%

]

a(rad)

6(rad)

dv (Mpc) to(seconds))y (rad) [a a o [N b2 o a(rad) 5(rad)

FIG. 2. Corner plot showing one and two-dimensional marginalised posterior distributions on the GW parameters for one
example test dataset. Red contours represent the two-dimensional joint posteriors obtained from VItamin and blue and green
contours are the corresponding posteriors output from our benchmark analyses (using the Dynesty and ptemcee samplers within
Bilby). In each case, the contour boundaries enclose 68,90 and 95% probability. One dimensional histograms of the posterior
distribution for each parameter from both methods are plotted along the diagonal. Vertical dashed lines in the one dimensional
plots are representative of the 5% — 95% symmetric confidence bounds of the 3 sampler 1 dimensional posteriors. Orange
vertical and horizontal lines denote the true parameter values of the simulated signal. At the top of the figure we include a
Mollweide projection of the sky location posteriors from all three analyses. All results presented in this letter correspond to
a three-detector configuration but for clarity we only plot the H1 whitened noisy time-series y and the noise-free whitened
signal (in blue and cyan respectively) to the right of the figure. The test signal was simulated with an optimal multi-detector
signal-to-noise ratio of 14.3.

TABLE I. Durations required to produce samples from each
of the different posterior sampling approaches.

run time (seconds) .
. . ratio
min max median TX

TVItamin
sampler .

Dynesty® [16] 21564 261268 45607 ° 2.2 x 10~ °
emcee [17] 16712 39930 19821 5.1 x 107°
ptemcee [18] 2392 501632 41151.0 2.4 x 107°
CPNest [15] 10309 437008 83807 1.2 x 107
VItamin® 1x10* 1

2 The benchmark samplers all produced on the order of 8000
samples dependent on the default sampling parameters used.

b We note that there are a growing number of specialised
techniques [33-36] designed to speed up traditional sampling
algorithms that could be used to reduce the runtimes quoted
here by approximately 1-2 orders of magnitude.

¢ For the VItamin sampler 8000 samples are produced as
representative of a typical posterior. The run time is
independent of the signal content in the data and is therefore
constant for all test cases.

any benchmark sampler and our CVAE results.

Figures 4 and 5 (see the Methods section) show the
results of 2 statistical tests (the probability-probability
(p-p) plot test and Jensen—Shannon (JS)-divergence
tests) performed on the entire test dataset and between
all samplers (Dynesty, ptemcee, CPNest, emcee, and
VItamin). In both tests the quality of the VItamin re-
sults are reasonably consistent with the benchmark sam-
plers. The p-p plot results specifically indicate that the
Bayesian one-dimensional marginalised posteriors from
each approach are self-consistent from a frequentist per-
spective (e.g., the true values lie within the X% confi-
dence interval for X% of the test cases). The second
test computes the distribution of JS-divergences between
posteriors conditioned on the same test data y from the
“gold standard” benchmark sampler Dynesty and ev-
ery other benchmark sampler (including VItamin). This
measure of “ distribution similarity” shows that the re-
sults of VItamin vs. Dynesty generally lie between those
of CPNest vs. Dynesty and ptemcee vs. Dynesty.

The dominating computational cost of running
VItamin lies in the training time, which takes on the
order of 7 days to complete. We stress that once trained,
there is no need to retrain the network unless the user
wishes to use different priors p(z) or assume differ-
ent noise characteristics. The speed at which posterior
samples are generated for all samplers used, including
VItamin, is shown in Table I. Run-time for the bench-
mark samplers is defined as the time to complete their
analyses when configured using the parameter choices de-
fined in Table IV. For VItamin, this time is defined as
the total time to produce 8000 samples. For our test
case of BBH signals VItamin produces samples from the
posterior at a rate which is ~ 6 orders of magnitude
faster than our benchmark analyses using current infer-
ence techniques.

In this letter we have demonstrated that we are able to
reproduce, to a high degree of accuracy, Bayesian poste-
rior probability distributions generated through machine
learning. This is accomplished using a CVAE trained on
simulated GW signals and does not require the input of
precomputed posterior estimates. We have demonstrated
that our neural network model, which when trained, can
produce complete and accurate posterior estimates in a
fraction of a second, achieves the same quality of results
as the trusted benchmark analyses used within the LIGO-
Virgo Collaboration (LVC).

The significance of our results is most evident in the
orders of magnitude increase in speed over existing al-
gorithms. We have demonstrated the approach using
BBH signals but with additional work to increase sam-
ple rate and signal duration, the method can also be ex-
tended for application to signals from BNS mergers (e.g.,
GW170817 [3], and GW190425 [37]) and NSBH [38] sys-
tems where improved low-latency alerts will be especially
pertinent. By using our approach, parameter estima-
tion speed will no longer be limiting factor® in observing
the prompt EM emission expected on shorter time scales
than is achievable with existing LVC analysis tools such
as Bayestar [3].

The predicted number of future detections of BNS
mergers (~ 180 [4]) will severely strain the GW com-
munity’s current computational resources using existing
Bayesian methods. We anticipate that future iterations
of our approach will provide full-parameter estimation on
all classes of compact binary coalescence (CBC) signals
in approximately 1 second on single graphics processing
units (GPUs). Our trained network is also modular, and
can be shared and used easily by any user to produce
results. The specific analysis described in this letter as-
sumes a uniform prior on the signal parameters. How-
ever, this is a choice and the network can be trained with
any prior the user demands, or users can cheaply resam-
ple accordingly from the output of the network trained on
the uniform prior. We also note that our method will be
invaluable for population studies since populations may
now be generated and analysed in a fully-Bayesian man-
ner on a vastly reduced time scale.

For BBH signals, GW data is usually sampled at 1—
4 kHz dependent upon the mass of the binary. We have
chosen to use the noticeably low sampling rate of 1024Hz
in order to decrease the computational time required to
develop our approach and the computational burden of
computing our 250 benchmark analyses for each of 4

3 A complete low-latency pipeline includes a number of steps. The
process of GW data acquisition is followed by the transfer of data.
There is then the corresponding candidate event identification,
parameter estimation analysis, and the subsequent communica-
tion of results to the EM astronomy community after which there
are physical aspects such as slewing observing instruments to the
correct pointing.

benchmark samplers. We have found that increasing the
sampling frequency of our input comes at the cost of an
increase in training time and a similar increase on the
GPU memory requirement. We note that with the ex-
ception of requiring one-dimensional convolutional layers
and an increase in the amount of training data to effi-
ciently deal with a multi-detector analysis, the network
complexity has not increased with the dimensionality of
the physical parameter space nor with the sampling rate
of the input data. We therefore do not anticipate that
extending the parameter space to lower masses will be
problematic.

In reality, GW detectors are affected by non-Gaussian
noise artefacts and time-dependent variation in the de-
tector noise PSD. Existing methods incorporate a pa-
rameterised PSD estimation into their inference [39]. To
account for these and to exploit the “likelihood-free” na-
ture of the CVAE approach, we could re-train our net-
work at regular intervals using samples of real detector
noise (preferably recent examples to best reflect the state
of the detectors). In this case we could also apply trans-
fer learning to speed up each training instance based on
the previously trained network state. Alternatively, since
the PSD is an estimated quantity, we could marginalise
over its uncertainty by providing training data whitened
by samples drawn from a distribution of possible PSDs.
Our work can naturally be extended to include the full
range of CBC signal types but also to any and all other
parameterised GW signals and to analyses of GW data
beyond that of ground based experiments. Given the
abundant benefits of this method, we hope that a vari-
ant of this of approach will form the basis for future GW
parameter estimation.

ACKNOWLEDGEMENTS.

We would like to acknowledge valuable input from the
LIGO-Virgo Collaboration, specifically from Will Farr,
Tom Dent, Jonah Kanner, Alex Nitz, Colin Capano and
the parameter estimation and machine-learning work-
ing groups. We would additionally like to thank Szabi
Marka for posing this challenge to us and the journal ref-
erees for their helpful and constructive comments. We
thank Nvidia for the generous donation of a Tesla V-100
GPU used in addition to LVC computational resources.
The authors also gratefully acknowledge the Science and
Technology Facilities Council of the United Kingdom.
CM and SH are supported by the Science and Technology
Research Council (grant No. ST/ L000946/1) and the Eu-
ropean Cooperation in Science and Technology (COST)
action CA17137. FT acknowledges support from Ama-
zon Research and EPSRC grant EP/M01326X/1, and
RM-S EPSRC grants EP/M01326X/1, EP/T00097X/1
and EP/R018634/1.

ADDENDUM

Competing Interests

The authors declare that they have no competing fi-
nancial interests.

Correspondence

requests for materials

Gabbard (email:

Correspondence and
should be addressed to Hunter
hunter.gabbard@gmail.com).

METHODS

A CVAE is a form of variational autoencoder that is
conditioned on an observation, where in our case the ob-
servation is a one-dimensional GW time-series signal y.
The autoencoders from which variational autoencoders
are derived are typically used for problems involving
image reconstruction and/or dimensionality reduction.
They perform a regression task whereby the autoencoder
attempts to predict its own given input (model the iden-
tity function) through a “bottleneck layer” — a limited
and therefore distilled representation of the input param-
eter space. An autoencoder is composed of two neural
networks, an encoder and a decoder [40]. The encoder
network takes as input a vector, where the number of di-
mensions is a fixed number predefined by the user. The
encoder converts the input vector into a (typically) lower
dimensional space, referred to as the latent space. A rep-
resentation of the data in the latent space is passed to
the decoder network which generates a reconstruction of
the original input data to the encoder network. Through
training, the two sub-networks learn how to efficiently
represent a dataset within a lower dimensional latent
space which will take on the most important properties
of the input training data. In this way, the data can
be compressed with little loss of fidelity. Additionally,
the decoder simultaneously learns to decode the latent
space representation and reconstruct that data back to
its original form (the input data).

The primary difference between a variational autoen-
coder [10] and an autoencoder concerns the method by
which locations within the latent space are produced. In
our variant of the variational autoencoder, the output of
the encoder is interpreted as a set of parameters govern-
ing statistical distributions. In proceeding to the decoder
network, samples from the latent space (z) are randomly
drawn from these distributions and fed into the decoder,
therefore adding an element of variation into the process.
A particular input can then have a range of possible out-
puts. Any trainable network architectures can be used in
both the decoder and the encoder networks and within

VItamin we use deep convolutional neural networks in
both cases.

Cost function derivation

We will now derive the cost function and the corre-
sponding network structure and we begin with the state-
ment defining the aim of the analysis. We wish to obtain
a function that reproduces the posterior distribution (the
probability of our physical parameters x given some mea-
sured data y). The cross-entropy between 2 distributions
is defined in Eq. 2 where we have made the distributions
explicitly conditional on y (our measurement). In this
case p(x|y) is the target distribution (the true posterior)
and rg(z|y) is the parametric distribution that we will use
neural networks to construct. The variable 0 represents
the trainable neural network parameters.

The cross-entropy is minimised when p(z|y) = r¢(z|y)
and so by minimising

Hm@{/mmmm%mmm, (5)

where E,,)[] indicates the expectation value over the
distribution of measurements y, we therefore make the
parametric distribution as similar as possible to the tar-
get for all possible measurements y.

Converting the expectation value into an integral over
y weighted by p(y) and applying Bayes’ theorem we ob-
tain

H:*/MM@/@MWN%WMM (6)

where p(x) is the prior distribution on the physical pa-
rameters z, and p(y|z) is the likelihood of = (the proba-
bility of measuring the data y given the parameters).
The CVAE network outlined in Fig. 1 makes use of
a conditional latent variable model and our parametric
model is constructed from the product of 2 separate dis-
tributions marginalised over the latent space as defined
in Eq. 3. We have used 6; and 65 to indicate that the
2 separate networks modelling these distributions will be
trained on these parameter sets respectively. The en-
coder ry, (z]y) takes as input the data y and outputs pa-
rameters that describe a probability distribution within
the latent space. The decoder rg, (z|z,y) takes as input
a single location z within the latent space together with
the data y and outputs sets of parameters describing a
probability distribution in the physical parameter space.
One could be forgiven for thinking that by setting up
networks that simply aim to minimise H over the #; and
f> would be enough to solve this problem. However, as
shown in [27] this is an intractable problem and a net-
work cannot be trained directly to do this. Instead we
introduce a recognition function g4(z|z,y), modelled by

an additional neural network and governed by the train-
able network parameters ¢, that will be used to derive

an ELBO.
Let us first define the KL-divergence between the
recognition function and the distribution r¢(z|z,y) as

KL [gg (2], y)l|ro (2|2, y) (7)

] =
/dzq¢(|2, y) log (q E || ;)

from which it can be shown that

logrg(x|y) = ELBO + KL [gy (2|, y)[[ro (2|2,)], (8)

where the ELBO is given by

ELBO = /dz qs(z|z, y) log (7‘92 (J;Ly(’jzz)(dy)) . (9)

It is so-named since the KL-divergence has a minimum of
zero and cannot be negative. Therefore, if we were to find
a gy (z|z, y) function (optimised on ¢) that minimised the
KL-divergence defined in Eq. 7 then we can state that

log rg(z|y) > ELBO. (10)
After some further manipulation of Eq. 9 we find that

1Og rg(sc|y) ZEq¢(z|m,y) [log Tg, (.’1?|Z,y)]
— KL {gg(z[z, y)l|re, (2|y)] . (11)

We can now substitute this inequality into our cost func-
tion as defined by Eq. 6 to obtain

1<~ [dopla) [dyplole) [Egyin Bogrotolz.v)

~KL{gs(zl,9)llro, (2l9)] |, (12)

which can in practice be approximated as a stochastic
integral over draws of x from the prior, y from the likeli-
hood function p(y|z), and from the recognition function,
giving us Eq. 4, the actual function evaluated within the
training procedure. In standard sampling algorithms it is
required that the likelihood is calculated explicitly dur-
ing the exploration of the parameter space and hence an
analytic noise and signal model must be assumed. For
a CVAE implementation we are required only to sam-
ple from the likelihood distribution, i.e., generate simu-
lated noisy measurements given a set of signal parame-
ters. This gives us the option of avoiding the assumption
of detector noise Gaussianity in the future by training
the CVAE using “real” non-Gaussian detector noise.

Network design

The CVAE network outlined in Fig. 1 is constructed
from the 3 separate neural networks modelling the en-
coder and decoder distributions 7y, and rg, as well as

|
| !
é . \/\/J\ VVWK NF‘&
—201 Al I]'
= Recon(L) v'“ '
KL
—301 Total(H)
10! 102 10° 10°
Epochs
FIG. 3. The cost as a function of training epoch. We show

the total cost function (green) together with its component
parts: the KL-divergence component (orange) and the recon-
struction component (blue) which are simply summed to ob-
tain the total. The dark curves correspond to the cost com-
puted on each batch of training data and the lighter curves
represent the cost when computed on independent validation
data. The close agreement between training and validation
cost values indicates that the network is not overfitting to the
training data. The change in behavior of the cost between 102
and 3 x 102 epochs is a consequence of gradually introducing
the KL cost term contribution via an annealing process.

the recognition function ¢4. Each of these components
is a deep convolutional network consisting of a series of
one-dimensional convolutional layers followed by a series
of fully-connected layers, where convolutional layers are
shared between all 3 networks. The details of each net-
work structure are given in Table III where we indicate
the activations used and additional dropout and batch-
normalisation layers.

The rg, network takes the input time-series data y in
the form of multi-channel 1-dimensional vectors where
channels represent different GW detectors. After pass-
ing through a series of one-dimensional convolutional and
fully connected layers, the output then defines the param-
eters of a m,-dimensional (diagonal) Gaussian mixture
model in the latent space. We label these parameters as
Wr, containing n, x M means and log-covariances, where
M = 32 mixture component weights and n, = 15. The
motivation for using this mixture model representation
comes from the multi-modal nature of GW posterior dis-
tributions. The encoder network can use this flexibility
to represent the y time-series data as belonging to mul-
tiple possible latent space regions.

The recognition function network gy is very similar to
the rg, network with only 2 differences. The network
takes as input the y time-series and the true signal pa-
rameters x, however, only the y data is passed through
the one-dimensional convolutional layers. Only after the

TABLE II. The uniform prior boundaries and fixed parameter
values used on the BBH signal parameters for the benchmark
and the CVAE analyses.

Parameter name symbol min max units
mass 1 mi 35 80 solar masses
mass 2 mo? 35 80 solar masses
luminosity distance dy, 1 3 Gpc
time of coalescence to 0.65 0.85 seconds
phase at coalescence ¢o 0 27 radians
right ascension a 0 2m radians
declination 6 —7/2 /2 radians
inclination Ojn 0 ™ radians
polarisation P 0 i radians
spin magnitude 1 ai 0 0.8 -

spin magnitude 2 a2 0 0.8 -

tilt angle 1 (X 0 T radians
tilt angle 2 S} 0 T radians
azimuthal angle b12 0 2T radians
azimuthal position dji 0 2m radians
epoch 1126259642 GPS time

detector network LIGO H1,L1, & Virgo V1 -

& Additionally mg is constrained such that ma < mj.

final convolutional layer where the output is flattened is
the x data appended. It is then this compound time-
series data “feature-space” and true signal parameters
that are processed using the remaining fully-connected
layers. The second difference is that the output of the
network defines a single-modal (diagonal) n,-dimensional
Gaussian. We label these parameters as p, containing
n, = 15 means and log-covariances. The rationale be-
hind this choice is that since the g4 distribution is con-
ditional on the true signal parameters, there should be
no ambiguity as to which mode in the latent space that
a particular time-series belongs to.

The rg, output represents the parameters (p,,) that
govern an n,-dimensional distribution in the physical pa-
rameter space and we have carefully chosen appropriate
distributions for each of the physical parameters. For the
two component masses, luminosity distance, the binary
inclination, the time of coalescence, and spin parame-
ters a1, aq, 01,02 we have adopted truncated Gaussian
distributions where the truncation occurs at the prede-
fined prior boundaries of the respective parameter space
dimensions. Independent von Mises distributions are ap-
plied for the polarization angle, phase, and spin param-
eters ¢12,¢;; in order to capture the periodic nature of
these parameters. Finally, we use the von Mises-Fisher
distribution to model the right ascension and declina-
tion (sky) parameters. Each cyclic parameter is repre-
sented as two predicted numbers in an abstract 2D plane,
whereby the angle between the two numbers is represen-
tative of each cyclic parameter value. This 2D represen-
tation is beneficial because there are no boundaries in
this space and thus it is easier for the neural network to

TABLE III. The VItamin network hyper-parameters. Dashed lines “—” indicate that convolutional layers are shared between
all 3 networks.

Network

7o, (2y) o, ()Y, 2) qe (2|7, y)

Layer

Input y [1024,3]* [1024,3] [1024,3]

conv(64,3,96)" — —
L2Reg(0.001)° — —
acti=LeakyReLU — —
conv(32,96,96) — —
stride(4)® — —
L2Reg(0.001) — —
act=LeakyReLU — —
conv(32,96,96) — —
L2Reg(0.001) — —
act=LeakyReLU — —
conv(16,96,96) — —
stride(2) — —
L2Reg(0.001) — —
act=LeakyReLU — —
conv(16,96,96) — —
L2Reg(0.001) — —
act=LeakyReLLU — —
conv(16,96,96) — —
stride(2) — —
L2Reg(0.001) — —
act=LeakyReLU

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

flatten—[6144]
append(z)—[6159]

flatten—[6144]

f
flatten' —[6144] append®(z)—[6159)

Input z,x

Layer 7

FC(6159,4096)"
act=LeakyReLU

FC(6159,4096)
act=LeakyReLU

FC(6159,4096)
act=LeakyReLU

Layer 8

FC(4096,2048)
act=LeakyReLU

FC(4096,2048)
act=LeakyReLU

FC(4096,2048)
act=LeakyReLU

Layer 9

FC(2048,1024)
act=LeakyReLU

FC(2048,1024)
act=LeakyReLU

FC(2048,1024)
act=LeakyReLU

FC(1024,960)

FC(1024,30)

FC(1024,30)

act=None
output=jg
—[15,2]'

act=(Sigmoid -ReLU)!
output=gir,
—[19,2]

act=None
output:,uT_1
—[15,32,2]'

Layer 10

a The shape of the data [one-dimensional dataset length, No. channels].

b one-dimensional convolutional filter with arguments (filter size, No. channels, No. filters).
¢ L2 regularization funciton applied to the kernel weights matrix.

d The activation function used.

¢ Striding layer with arguments (stride length).

f Take the multi-channel output of the previous layer and reshape it into a one-dimensional vector.

& Append the argument to the current dataset.

b Fully connected layer with arguments (input size, output size).

I The rg, output has size [latent space dimension, No. modes, No. parameters defining each component per dimension].

J Different activations are used for different parameters. For the scaled parameter means we use sigmoids and for log-variances we use
negative ReLU functions.

K The r9, output has size [physical space dimension+additional cyclic dimensions, No. parameters defining the distribution per
dimension]. The addtional cyclic dimensions account for the 2 parameters each cyclic parameter is represented by in the abstract 2D
plane.

I The gy output has size [latent space dimension, No. parameters defining the distribution per dimension].

produce predictions which lie on the wrapped edges of
the periodic bounds of each cyclic parameter.

We additionally reparameterise phase and the polari-
sation angle. This is done in order to simplify the search
space for the neural network and was partly influenced
by the work of [41]. This is accomplished by representing
1 and ¢p as two new parameters 1// and X. X is given
as the modulus of (1) 4 ¢g)/(n) and ¢ is given as the
modulus of (¢)/(7/2). The parameterisation given above
acts to effectively reduce the number of modes seen by
the network, thus making the search space simpler. After
training, the network will output posterior samples in the
X, ’(/Jl space and we must then convert back to the origi-
nal ¥ and ¢ space to produce our final set of posterior
samples. Whilst this parameterisation is completely ac-
ceptable for spinning and precessing waveforms, it is not
appropriate when considering higher order modes since
the ¢g, 1 degeneracy is broken.

Training procedure

Our cost function is composed of 3 probability distri-
butions modelled by neural networks with well defined
inputs and outputs where the mapping of those inputs
to outputs is governed by the parameter sets 61,602 and
¢. These parameters are the weights and biases of 3
neural networks acting as (variational) encoder, decoder,
and encoder respectively. To train such a network one
must connect the inputs and outputs appropriately to
compute the cost function H (Eq. 4) and back-propagate
cost function derivatives to update the network parame-
ters.

Training is performed via a series of steps illustrated
schematically in Fig. 1. A batch of data composed of
pairs of time-series y and their corresponding true GW
signal parameters x are passed as input and the following
steps are applied to each element of the batch.

1. The encoder g4 takes both the time-series y and the
true parameters x defining the GW signal. It then
encodes these instances into parameters p, defin-
ing an uncorrelated (diagonal covariance matrix)
n.-dimensional Gaussian distribution in the latent
space.

2. The encoder 7y, is given only the time-series data
y and encodes it into a set of variables p,, defining
a multi-component multivariate Gaussian mixture
distribution in the latent space.

3. We then draw a sample from the distribution de-
scribed by p, giving us a location z, within the
latent space.

4. This sample, along with its corresponding y data,
are then passed as input to the decoder rg,. This

10

decoder outputs (i, comprising a set of parameters
that define a distribution in the physical x space.

5. The first term of the loss function, the reconstruc-
tion loss (defined as L in Eq. 4), is then computed
by evaluating the probability density defined by pog,
at the true x training value (the average is then
taken over the batch of input data).

6. The second loss component, the KL-divergence be-
tween the distributions g4 (z|z,y) and rg, (z|y) (de-
scribed by the parameter sets py and p,,), is ap-
proximated as

KL (g (2|%n, yn)lo, (2[yn)] (13)
~ log <Q¢(Z|Ina yn))

76, (z|yn)

z2~qg (2]Tn,Yn)

where z is the sample drawn from ¢4(z|zy,ys) in
the first training stage. We use this single-sample
Monte-Carlo integration approximation since the
KL-divergence between a single-component and a
multi-component multivariate Gaussian distribu-
tion has no analytic solution (the average is then
taken over the batch of input data).

7. The 2 loss components are then summed according
to Eq. 4 and all trainable network parameters (de-
fined by 61,05, ¢) are updated based on the deriva-
tive of the cost function with respect to these pa-
rameters.

A problematic aspect of training relates to the be-
haviour of the network during the initial stages of
training. The network has a strong tendency to be-
come trapped in local minima resulting in a decreasing
cost component L (the reconstruction cost) but a non-
evolving KL-divergence term that remains close to zero.
To avoid this state we apply an annealing process in
which the KL-divergence term is initially ignored but its
contribution is then increased logarithmically from 0 to 1
between the epoch indices 1 x 102—3 x 102. This allows
the g4 encoder to learn the latent space representation of
the data via the reconstruction cost before being required
to try to best match its distribution to that modelled by
the rg, encoder. In parallel with the gradual introduc-
tion of the KL cost term, we also find that the stability
of training is negatively affected by the complexity of our
tailored output decoder likelihood functions. To resolve
this we apply the same annealing procedure over the same
epoch range in transitioning between unbound Gaussian
likelihoods on all physical parameters to the tailored like-
lihoods, where the boundaries of the Gaussian likelihoods
are brought in from —10 to 0 on the lower bound and 11
to 1 on the upper bound.

As is standard practice in machine learning applica-
tions, the cost is computed over a batch of training sam-
ples and repeated for a pre-defined number of epochs.

An epoch is defined as the point at which the network
has been trained on a number of samples equivalent to
2 x 10%. For our purposes, we found that ~ 3 x 10? train-
ing epochs, a batch size of 1500 training samples and
a learning rate of 10™* was sufficient. We used a total
of 107 training samples in order to adequately cover the
BBH parameter space. We additionally ensure that an
(effectively) infinite number of noise realizations are em-
ployed by making sure that every time a training sample
is used it is given a unique noise realisation despite only
having a finite number of waveforms. Every 4 epochs we
load a new set of 2 x 10 training samples. When load-
ing in a new set we augment the data on the amplitude,
phase and time of arrival by shifting all the parameters
randomly within the bounds defined by the prior.

Completion of training is determined by comparing
output posteriors on test samples with those of Bilby
iteratively during training. This comparison is done us-
ing standard figures of merit such as the p-p-plot JS-
divergence (see Figs. 4 and 5). We also assess training
completion based on whether the evolution of the cost
function and its component parts (Fig. 3) have converged.
We use a single Nvidia Tesla V100 GPUs with 16/32 Gb
of RAM although consumer grade “gaming” GPU cards
are equally fast for this application.

The testing procedure

After training has completed and we wish to use the
network for inference we follow the procedure described
in the right hand panel of Fig. 1. Given a new y data
sample (not taken from the training set) we simply input
this into the trained encoder 7, from which we obtain a
single value of p,, describing a distribution (conditional
on the data y) in the latent space. We then repeat the
following steps:

1. We randomly draw a latent space sample z,, from
the latent space distribution defined by g, .

2. The z,, sample and the corresponding original y
data are fed as input to our pre-trained decoder
network 7p,. The decoder network returns a set of
parameters p,, which describe a multivariate dis-
tribution in the physical parameter space.

3. We then draw a random z realisation from that
distribution.

A comprehensive representation in the form of sam-
ples drawn from the entire joint posterior distribution
can then be obtained by simply repeating this procedure
and hence sampling from our latent model r9(x|y) (see
Eq. 3).

11

1.0

Tze

5:3 0.8 -

o

O .

> 0.6

=

E

2 0.4 4

5]

>

[}

B m VItamin
5 = Dynesty
202+ Dynesty
] = Ptemcee
- m CPNest

Emcee
0.0 T T T :
0.0 0.2 0.4 0.6 0.8 1.0

Probability within the Credible Interval

FIG. 4. One-dimensional p-p plots for each parameter
and for each benchmark sampler and VItamin. The curves
were constructed using the 250 test datasets and the dashed
black diagonal line indicates the ideal result. The best and
worst-case p-values associated with each sampling method are
(0.918, 0.047 VItamin), (0.912, 0.007 Dynesty), (0.931,0.007
ptemcee), (0.706,0.007 CPNest), (0.667,0.004 emcee).

Additional tests

A standard test used within the GW parameter es-
timation community is the production of so-called p-p
plots which we show for our analysis and the benchmark
comparisons in Fig. 4. The plot is constructed by com-
puting a cumulative probability for each 1-dimensional
marginalised test posterior evaluated at the true simu-
lation parameter value (the fraction of posterior sam-
ples < the simulation value). We then plot the cumu-
lative distribution of these values [6]. Curves consistent
with the black dashed diagonal line indicate that the 1-
dimensional Bayesian probability distributions are con-
sistent with the frequentist interpretation - that the truth
will lie within an interval containing X % of the posterior
probability with a frequency of X% of the time. It is
clear to see that results obtained using VItamin show
deviations from the diagonal that are entirely consistent
with those observed in all benchmark samplers. The p-
value has also been calculated for each sampler and each
parameter under the null-hypothesis that they are con-
sistent with the diagonal. These results show that for at
least 1 parameter, emcee shows inconsistency with the
modal at the 0.4% level. Dynesty has a worst case that
is consistent only at the 0.7% level. All other samplers
(including VItamin) show consistency at > 0.4% in the

12

TABLE IV. Benchmark sampler configuration parameters. Values were chosen based on a combination of their recommended
default parameters [19] and private communication with the Bilby development team.

sampler

parameters

Dynesty [16]

live-points = 1000, dlogz = 0.1, nact = 50, npool = 8, bound = None, sample = uniform

walkers = 200, temperatures = 20, burn_in_nact = 50, thin_by_nact = 0.5,

ptemcee [1§]

nsamples = 10000, threads = 10, autocorr_tol = 50, autocorr_csafety = 1, autocorr_tau = 1,

gradient_tau = 0.1, gradient_mean_log_posterior = 0.1, Q_tol = 1.01, min_tau = 1, threads = 1,

CPNest [15] live-points = 2048, maxmcmce = 1000, nthreads= 1, seed= 1994, dlogz = 0.1
emcee [17] nwalkers = 250, nsteps = 14000, nburn= 4000, a= 1.4, burn_in_fraction= 0.25, burn_in_act_=3
worst case. R. O’Shaughnessy, M. Pitkin, C. Rodriguez, C. Rover,

The JS-divergence is generally used as measure of the
similarity between distributions. In Fig. 5 we use this
quantity to compare the output posterior estimates be-
tween samplers for the same input test data. To do this
we run each independent sampler (including VItamin) on
the same test data to produce samples from the corre-
sponding posterior. We then compute the 1-dimensional
JS-divergence between the output single parameter dis-
tributions from each sampler with every other sam-
pler [42]. For distributions that are identical, the JS-
divergence should equal zero but since we are represent-
ing our posterior distributions using finite numbers of
samples, identical distributions result in JS-divergence
with finite values. In Fig. 5, it can be seen that Dynesty
vs. VItamin JS values are competitive with results from
Dynesty vs. ptemcee for nearly all parameters, with the
exception of ¢15 and . VItamin predictions have slightly
higher JS values across all source parameters except for
the spin parameters. The Dynesty vs. CPNest compari-
son seems to generally have similar JS values to Dynesty
vs. ptemcee with the exception of having broader credi-
ble intervals on tg, ©,, ¢;i, @ and §. Dynesty vs. emcee
generally has higher JS values than all other methods,
which is expected given the difficulty of emcee conver-
gence.

* Corresponding author: h.gabbard.1@research.gla.ac.uk
[1] B. P. Abbott et al. (LIGO Scientific Collaboration and
Virgo Collaboration), Phys. Rev. X 9, 031040 (2019).

[2] R. Abbott et al. (LIGO Scientific Collaboration and
Virgo Collaboration), Phys. Rev. X 11, 021053 (2021).

[3] B. P. Abbott et al. (LIGO Scientific Collaboration and
Virgo Collaboration), Phys. Rev. Lett. 119, 161101

(2017).

[4] B. P. Abbott et al., Living Reviews in Relativity 21, 3
(2018), arXiv:1304.0670 [gr-qc].

[5] A. C. Searle, P. J. Sutton, and M. Tinto, Classical and
Quantum Gravity 26, 155017 (2009), arXiv:0809.2809
[gr-qc].

[6] J. Veitch, V. Raymond, B. Farr, W. M. Farr, P. Graff,
S. Vitale, B. Aylott, K. Blackburn, N. Christensen,
M. Coughlin, W. D. Pozzo, F. Feroz, J. Gair, C.-
J. Haster, V. Kalogera, T. Littenberg, I. Mandel,

T. Sidery, R. Smith, M. V. D. Sluys, A. Vecchio,
W. Vousden, and L. Wade, Physical Review D (2014),
10.1103/PhysRevD.91.042003, arXiv:1409.7215.

[7] “Gracedb — gravitational-wave candidate event
database (ligo/virgo 03 public alerts),” https:
//gracedb.ligo.org/superevents/public/03/, ac-

cessed: 2019-09-16.

[8] L. P. Singer and L. R. Price, Phys. Rev. D 93, 024013
(2016), arXiv:1508.03634 [gr-qc].

[9] F. Tonolini, J. Radford, A. Turpin, D. Faccio, and
R. Murray-Smith, Journal of Machine Learning Research
21, 1 (2020).

[10] A. Pagnoni, K. Liu, and S. Li, “Conditional variational
autoencoder for neural machine translation,” (2018),
arXiv:1812.04405.

[11] D. George and E. Huerta, Physics Letters B 778, 64
(2018).

[12] H. Gabbard, M. Williams, F. Hayes, and C. Messenger,
Phys. Rev. Lett. 120, 141103 (2018).

[13] T. Gebhard, N. Kilbertus, G. Parascandolo, I. Harry,
and B. Schélkopf, in Workshop on Deep Learning for
Physical Sciences (DLPS) at the 81st Conference on Neu-
ral Information Processing Systems (NIPS) (2017).

[14] J. Skilling, Bayesian Anal. 1, 833 (2006).

[15] J. Veitch, W. D. Pozzo, C. Messick, and M. Pitkin,
(2017), 10.5281/zenodo.835874.

[16] J. S. Speagle, “dynesty: A dynamic nested sampling
package for estimating Bayesian posteriors and evi-
dences,” (2019), arXiv:1904.02180.

[17] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Good-
man, PASP 125, 306 (2013), 1202.3665.

[18] W. Vousden, W. M. Farr, and I. Mandel, (2015),
10.1093 /mnras/stv2422, arXiv:1501.05823.
[19] G. Ashton, M. Huebner, P. D. Lasky, C. Talbot,

K. Ackley, S. Biscoveanu, Q. Chu, A. Divarkala, P. J.
Easter, B. Goncharov, F. H. Vivanco, J. Harms, M. E.
Lower, G. D. Meadors, D. Melchor, E. Payne, M. D.
Pitkin, J. Powell, N. Sarin, R. J. E. Smith, and
E. Thrane, Astrophysical Journal Supplement Series
(2018), 10.3847/1538-4365/ab06fc, arXiv:1811.02042.

[20] M. Zevin, S. Coughlin, S. Bahaadini, E. Besler, N. Ro-
hani, S. Allen, M. Cabero, K. Crowston, A. K. Katsagge-
los, S. L. Larson, T. K. Lee, C. Lintott, T. B. Littenberg,
A. Lundgren, C. @Osterlund, J. R. Smith, L. Trouille, and
V. Kalogera, Classical and Quantum Gravity 34, 064003
(2017).

[21] M. Coughlin, P. Earle, J. Harms, S. Biscans,
C. Buchanan, E. Coughlin, F. Donovan, J. Fee, H. Gab-
bard, M. Guy, N. Mukund, and M. Perry, Classical and

mailto:Corresponding author: h.gabbard.1@research.gla.ac.uk
http://dx.doi.org/ 10.1103/PhysRevX.9.031040
http://dx.doi.org/ 10.1103/PhysRevX.11.021053
http://dx.doi.org/ 10.1103/PhysRevLett.119.161101
http://dx.doi.org/ 10.1103/PhysRevLett.119.161101
http://dx.doi.org/10.1007/s41114-018-0012-9
http://dx.doi.org/10.1007/s41114-018-0012-9
http://arxiv.org/abs/1304.0670
http://dx.doi.org/10.1088/0264-9381/26/15/155017
http://dx.doi.org/10.1088/0264-9381/26/15/155017
http://arxiv.org/abs/0809.2809
http://arxiv.org/abs/0809.2809
http://dx.doi.org/10.1103/PhysRevD.91.042003
http://dx.doi.org/10.1103/PhysRevD.91.042003
http://arxiv.org/abs/arXiv:1409.7215
https://gracedb.ligo.org/superevents/public/O3/
https://gracedb.ligo.org/superevents/public/O3/
http://dx.doi.org/10.1103/PhysRevD.93.024013
http://dx.doi.org/10.1103/PhysRevD.93.024013
http://arxiv.org/abs/1508.03634
http://jmlr.org/papers/v21/20-151.html
http://jmlr.org/papers/v21/20-151.html
http://arxiv.org/abs/arXiv:1812.04405
http://dx.doi.org/https://doi.org/10.1016/j.physletb.2017.12.053
http://dx.doi.org/https://doi.org/10.1016/j.physletb.2017.12.053
http://dx.doi.org/ 10.1103/PhysRevLett.120.141103
https://dl4physicalsciences.github.io/files/nips_dlps_2017_13.pdf
https://dl4physicalsciences.github.io/files/nips_dlps_2017_13.pdf
https://dl4physicalsciences.github.io/files/nips_dlps_2017_13.pdf
http://dx.doi.org/10.1214/06-BA127
http://dx.doi.org/10.5281/zenodo.835874
http://dx.doi.org/10.5281/zenodo.835874
http://arxiv.org/abs/arXiv:1904.02180
http://dx.doi.org/10.1086/670067
http://arxiv.org/abs/1202.3665
http://dx.doi.org/10.1093/mnras/stv2422
http://dx.doi.org/10.1093/mnras/stv2422
http://arxiv.org/abs/arXiv:1501.05823
http://dx.doi.org/10.3847/1538-4365/ab06fc
http://dx.doi.org/10.3847/1538-4365/ab06fc
http://arxiv.org/abs/arXiv:1811.02042
http://stacks.iop.org/0264-9381/34/i=6/a=064003
http://stacks.iop.org/0264-9381/34/i=6/a=064003
http://dx.doi.org/ 10.1088/1361-6382/aa5a60

13

10°

ol

W 1] Ll ' 'k\ T [Il il “
=] ‘ -
—]
Ml Dynesty vs. VItamin i
10,4 i I Dynesty vs. Emcee
1] Dynesty vs. CPNest l
1|/l Dynesty vs. Ptemcee
D W O DN @y & YD D
O} O] S > Q\ Q{\ S >
ISR &
Sy & of
N
Source Parameters
FIG. 5. We show JS divergence values for all 250 test samples as a function of test sample source parameter for Dynesty

against every other sampling approach. Each sampler method vs. another sampler method are denoted as different colors. The
lower and upper end of boxes represent the 25th and 75th percentile credible regions respectively. The lower and upper end
of the whiskers represent the 5th and 95th percentile credible regions. The orange lines are representative of the median JS

values for each pair of compared samplers.

Quantum Gravity 34, 044004 (2017).

[22] P. Graff, F. Feroz, M. P. Hobson, and A. Lasenby,
Monthly Notices of the Royal Astronomical Society 421,
169 (2012), arXiv:1110.2997 [astro-ph.IM].

23] A. J. K. Chua and M. Vallisneri, arXiv e-prints |,
arXiv:1909.05966 (2019), arXiv:1909.05966 [gr-qc].

[24] S. R. Green, C. Simpson, and J. Gair, Phys. Rev. D 102,
104057 (2020).

[25] S. R. Green and J. Gair, Machine Learning: Science and
Technology (2021), 10.1088/2632-2153/abfaed.

[26] K. Cranmer, J. Brehmer, and G. Louppe, Proceed-
ings of the National Academy of Sciences (2020),
10.1073/pnas.1912789117.

[27] K. Sohn, H. Lee, and X. Yan, in Advances in Neural
Information Processing Systems 28, edited by C. Cortes,

N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Gar-
nett (Curran Associates, Inc., 2015) pp. 3483-3491.

[28] X. Yan, J. Yang, K. Sohn, and H. Lee, “Attribute2image:
Conditional image generation from visual attributes,”
(2015), arXiv:1512.00570.

[29] A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiy, and
J. Yosinski, “Plug and play generative networks: Con-
ditional iterative generation of images in latent space,”
(2016), arXiv:1612.00005.

[30] A. Nazabal, P. M. Olmos, Z. Ghahramani, and I. Valera,
“Handling incomplete heterogeneous data using VAEs,”
(2018), arXiv:1807.03653.

[31] “Advanced LIGO sensitivity design curve,” https://
dcc.ligo.org/LIGO-T1800044/public, accessed: 2019-
06-01.

http://dx.doi.org/ 10.1088/1361-6382/aa5a60
http://dx.doi.org/ 10.1088/1361-6382/aa5a60
http://dx.doi.org/ 10.1088/1361-6382/aa5a60
http://dx.doi.org/10.1111/j.1365-2966.2011.20288.x
http://dx.doi.org/10.1111/j.1365-2966.2011.20288.x
http://arxiv.org/abs/1110.2997
http://arxiv.org/abs/1909.05966
http://dx.doi.org/10.1103/PhysRevD.102.104057
http://dx.doi.org/10.1103/PhysRevD.102.104057
http://dx.doi.org/10.1088/2632-2153/abfaed
http://dx.doi.org/10.1088/2632-2153/abfaed
http://dx.doi.org/10.1073/pnas.1912789117
http://dx.doi.org/10.1073/pnas.1912789117
http://dx.doi.org/10.1073/pnas.1912789117
http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models.pdf
http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models.pdf
http://arxiv.org/abs/arXiv:1512.00570
http://arxiv.org/abs/arXiv:1612.00005
http://arxiv.org/abs/arXiv:1807.03653
https://dcc.ligo.org/LIGO-T1800044/public
https://dcc.ligo.org/LIGO-T1800044/public

[32] S. Khan, K. Chatziioannou, M. Hannam, and F. Ohme,
“Phenomenological model for the gravitational-wave sig-
nal from precessing binary black holes with two-spin ef-
fects,” (2018), arXiv:1809.10113.

[33] R. Smith, S. E. Field, K. Blackburn, C.-J. Haster,
M. Piirrer, V. Raymond, and P. Schmidt, Physical Re-
view D 94, 044031 (2016), arXiv:1604.08253 [gr-qc].

[34] D. Wysocki, R. O’Shaughnessy, J. Lange, and Y.-
L. L. Fang, Physical Review D 99, 084026 (2019),
arXiv:1902.04934 [astro-ph.IM].

[35] C. Talbot, R. Smith, E. Thrane, and G. B. Poole,
Physical Review D 100, 043030 (2019), arXiv:1904.02863
[astro-ph.IM].

[36] C. Pankow, P. Brady, E. Ochsner, and
R. O’Shaughnessy, Phys. Rev. D 92, 023002 (2015).

[37] B. P. Abbott et al., Astrophysical Journal Letters 892,

14

L3 (2020), arXiv:2001.01761 [astro-ph.HE].

[38] R. Abbott et al., The Astrophysical Journal Letters 915,
L5 (2021).

[39] T. B. Littenberg and N. J. Cornish, Phys. Rev. D 91,
084034 (2015), arXiv:1410.3852 [gr-qc|.

[40] P. Gallinari, Y. LeCun, S. Thiria, and F. F. Soulie, in
Proceedings of COGNITIVA 87, Paris, La Villette, May
1987 (Cesta-Afcet, 1987).

[41]) D. 1. Jones, Monthly Notices of the
Astronomical Society 453, 53
https://academic.oup.com/mnras/article-
pdf/453/1/53 /4915608 /stv1584.pdf.

[42] Q. Wang, S. R. Kulkarni, and S. Verdu, IEEE Transac-
tions on Information Theory 55, 2392 (2009).

Royal
(2015),

http://arxiv.org/abs/arXiv:1809.10113
http://dx.doi.org/10.1103/PhysRevD.94.044031
http://dx.doi.org/10.1103/PhysRevD.94.044031
http://arxiv.org/abs/1604.08253
http://dx.doi.org/10.1103/PhysRevD.99.084026
http://arxiv.org/abs/1902.04934
http://dx.doi.org/10.1103/PhysRevD.100.043030
http://arxiv.org/abs/1904.02863
http://arxiv.org/abs/1904.02863
http://dx.doi.org/10.1103/PhysRevD.92.023002
http://dx.doi.org/10.3847/2041-8213/ab75f5
http://dx.doi.org/10.3847/2041-8213/ab75f5
http://arxiv.org/abs/2001.01761
http://dx.doi.org/10.3847/2041-8213/ac082e
http://dx.doi.org/10.3847/2041-8213/ac082e
http://dx.doi.org/10.1103/PhysRevD.91.084034
http://dx.doi.org/10.1103/PhysRevD.91.084034
http://arxiv.org/abs/1410.3852
http://dx.doi.org/10.1093/mnras/stv1584
http://dx.doi.org/10.1093/mnras/stv1584
http://arxiv.org/abs/https://academic.oup.com/mnras/article-pdf/453/1/53/4915608/stv1584.pdf
http://arxiv.org/abs/https://academic.oup.com/mnras/article-pdf/453/1/53/4915608/stv1584.pdf

	Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy
	Acknowledgements.
	addendum
	Competing Interests
	Correspondence

	Methods
	Cost function derivation
	Network design
	Training procedure
	The testing procedure
	Additional tests

	References

