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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Currently, damage identification and localization in remanufacturing is a manual visual task. It is time-consuming, labour-intensive. and can 
result in an imprecise repair. To mitigate this, an automatic vision-based damage localization method is proposed in this paper that integrates a 
camera in a robotic laser cladding repair cell. Two case studies analyzing different configurations of Faster Region-based Convolutional neural 
networks (R-CNN) are performed. This research aims to select the most suitable configuration to localize the wear on damaged fixed bends. 
Images were collected for testing and training the R-CNN and the results of this study indicated a decreasing trend in training and validation 
losses and a mean average precision (mAP) of 88.7%. 
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1. Introduction 

Laser Cladding (LC) or Laser-based Direct Metal 
Deposition (LMD) is an attractive additive manufacturing 
technique that has garnered considerable interest for 
applications in aerospace, oil and gas industry and mechanical 
engineering [1]. This well-established industrial process works 
by focusing a high-power laser beam to generate a molten pool 
on the substrate along with continuously directing material 
through a coaxial nozzle into that weld pool where it solidifies 
[2]. This layer-by-layer technique of manufacturing has the 
capability of increasing time and cost efficiency as compared 
to conventional technologies like casting, forging, and 
machining [3]. 

For several decades, LMD is being actively researched as an 
effective technology for repair and remanufacturing [4]. Repair 
or remanufacturing is credited for increasing the sustainability 
of the manufacturing sector by bringing damaged or worn 
metal parts back to like-new conditions. The process generally 

involves identifying and locating damages on a part’s surface 
and then depositing material to restore the original geometry. 
Today, innovators in the field of repair are seeking to develop 
strategies to boost the level of automation for repair and 
maintenance and thereby boosting the flexibility of the process 
[5]. It has been shown that when integrated with a robotic 
manipulation system LMD shows an increased geometric 
flexibility, accessibility and saves production time [6]. 

In robotic laser cladding applications, inspection of the worn 
area is currently a manual process. The damage is visually 
localized by an operator who then uses a laser scanner to 
capture the surface geometry of the defect [7,8]. The 
information from this process is used to generate a repair 
strategy for the part. As the scale of the part increases, this 
procedure becomes more time-consuming, prone to error and 
labour-intensive. 

Computer vision is an interdisciplinary field that seeks to 
understand, automate, and replace human visual tasks in any 
working environment. Moving towards an autonomous 
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Robotic Laser Cladding Repair Cell (RLCRC), a significant 
amount of research is being done using artificial intelligence 
(AI), more specifically supervised learning methods such as 
deep learning to inspect the laser welding process [9,10]. 
Convolutional Neural Networks (CNN) are being trained to 
monitor and identify weld defects and melt pools during the 
laser cladding procedure [11,12]. Region-based Convolutional 
Neural Network (R-CNN) is a deep learning object detection 
approach where the R stands for regions of interest in an image. 
R-CNN first generates region proposals then uses CNN to 
extract features, locate and classify objects. Computer vision 
techniques paired with R-CNN’s are being extensively adopted 
across many disciplines such as construction, transportation, 
materials science, geoscience and food production for 
automatic object detection and classification [13,14]. They 
have also made their way into manufacturing for damage 
detection and classification [15,16]. Additionally, intelligent 
vision-based practices are being implemented on shop floors 
for classifying and automating the repair inspection process 
[17]. 

Faster R-CNN has a notably speedier object detection time 
compared with previous image classification and object 
detection models [18]. It was developed to function closest to 
real-time reaching ten times the speed of Fast R-CNN [19]. 
You Only Look Once (YOLO) and Single Shot multi-box 
Detector (SSD) Mobilenet have a higher detection speed then 
Faster R-CNN’s but a notably lower accuracy [20] 

R-CNN’s are deep and complex networks that require a 
significant amount of time and data to reach desirable results. 
Transfer learning is a promising learning framework that 
essentially transfers knowledge learnt in a previous task to a 
novel task; proven to save time and give effective results when 
data is scarce [21]. 

Based on the above literature review, it is evident that 
computer-vision based deep learning techniques have a lot of 
potential and have shown promising results across many 
disciplines. Despite that, remanufacturing remains to be 
heavily reliant on human intervention for damage detection and 
localization. There is immense scope for these intelligent 
strategies to be used to automate the damage localization 
process in a real RLCRC. This would be incumbent in 
achieving a fully autonomous repair system. With recent 
advances in computer vision and the availability of abundant 
data, it is economically worthwhile to explore the use of this 
technology in an RLCRC. This paper first proposes an 
integration of a vision sensor in a repair cell to record image 
data of damaged components. Then, two case studies are 
carried out utilizing two different datasets. These case studies 
perform analyses to compare the viability, accuracy and time 
efficiency of popular feature extractors for damage detection 
purposes. Finally, based on the results a suitable model 
configuration is selected and the results and evaluation 
provided. 

2. Methodology 

This study focuses on damage identification and localization 
on cylindrical fixed bends, more specifically the damage and 
the pad on fixed bends. These are mechanical parts used in the 

oil and gas industry. For worn fixed bends, it is essential to 
distinguish the location of the pad, as it is the area that incurs 
the most damage and must be repaired. 

It is important to note here that this method must work hand 
in hand with a depth sensor to get an accurate volumetric 
representation of the damage. The results from this study can 
easily be extended to serve that purpose. However, that lies 
outside the scope of this paper. 

2.1 Vision-based RLCRC 

The robot arm used is Fanuc-R-1000iA/80F which is a high-
speed handling robot for medium payloads and the camera is 
UVC-G3-Bullet/UVC-G3-AF. A schematic of the setup of the 
cell is demonstrated in Figure 1. 
 

 

Fig. 1. Setup of the RLCRC 

 Configuration of the Object Detection Model 

As established earlier, the aim of this paper is to select the 
best configuration of a model for damage detection that 
functions closest to real-time. Therefore, this study utilizes 
Faster R-CNN for damage detection and localization. 

Faster R-CNN is an object detection architecture that 
comprises a feature extraction network, a region proposal 
(RPN) network and a region of interest (ROI) network. The 
pre-processed images first go through a pre-trained CNN (e.g., 
ResNet, inception etc.). Then the RPN generates possible 
regions of interest in the image. Finally, the ROI predicts the 
class label and the bounding box. 

The open-source TensorFlow object detection API is used 
with TensorFlow version 1.5. Applying the concept of transfer 
learning, the network is initialized with weights that are pre-
trained on the common objects in context (COCO) dataset and 
are present in the TensorFlow model zoo. The feature 
extractors analyzed in this study are Resnet50 and Inception 
V2. Table 1 highlights these architectures used in literature and 
their purpose. 
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Table 1. Different architectures used in literature for damage localization 

Meta-architecture Feature extractor Objective Paper 

Faster R-CNN ResNet50 Crack detection [22] 

Faster R-CNN Inception-V2 Defect detection [23] 

3. Results and Discussion 

3.1 Experimental Setup 

Experiments are carried out on Google Colaboratory (RAM~ 
12.6 GB, GPU: Tesla K80,12 GB, Disk~ 33GB).  

Values for the hyperparameters in the feature extractor 
configuration pipeline are chosen by monitoring the 
progression of mean average precision (mAP) and training and 
validation losses. The parameters are adjusted iteratively to 
minimize losses and maximize mAP values while keeping the 
duration of training manageable with the available 
computational resources. The set of values found to be optimal 
are given in Table 2. 

Table 2. Hyperparameters for training the model 

Num of 
steps Batch size Learning 

rate 
Score 

threshold 
Momentum 
optimizer 

20,000 12 0.001 0.2 0.9 

3.2 Case Study 1 

3.2.1 Dataset 
To develop a database containing images of damaged fixed 

bends, 72 images (resolution: 1920 x 1080 pixels) of 8 different 
types of fixed bends are collected. R-CNN’s require a massive 
amount of training data to generate a high-performing model. 
This can be a burdensome task as obtaining a large amount of 
data is expensive and often not readily accessible. To overcome 
this problem, data augmentation is a widely embraced practice. 
For this study, different types of geometric (horizontal flip and 
vertical flip) and photometric (grayscale, hue and exposure) 
augmentation techniques are applied to render the training 
model more robust and resilient to lighting and camera setting 
changes. Figure 2 shows sample images from the expanded 
dataset which is enlarged by augmentation from 72 to 221 
images. 

The extended dataset is annotated using labelling [24], a 
graphical image annotation tool. The two labels for 
classification are ‘damage’ and ‘pad’ on fixed bends. The 
dataset is then randomly split into 70%, 20% and 10% for 
training, validation and testing data, respectively. 

 

 

Fig 2. Sample augmented images from training dataset 

3.2.2 Comparative Analysis and Results 
This study primarily evaluates mAP as opposed to object 

proposal proxy metrics because it is a widely used metric for 
object detection [19]. 

Additionally, time taken for inference per image also plays 
an important role when implementing it in a real-world 
scenario. Thereby, two feature extractors are compared on their 
mAP and detection speed values and their results are tabulated 
in Table 3. As a reference, the publicly available mAP scores 
from the COCO dataset are also listed [25]. 

Table 3. Comparative analysis of the architectures trained with two labels 

Architecture 
‘Fixed Bends’ 

mAP 

COCO mAP 

 

Detection speed 
(ms/image) 

ResNet50 52.8% 30% 1.48 

Inception v2 49.1% 28% 1 

 
Compared to COCO the results with the ‘Fixed Bends’ 

dataset are favorable, which is expected since COCO is a 
diverse dataset with 80 or more object categories. With only 
two categories (‘pad’ and ‘damage’), higher mAP values 
should be achievable. 

From Figure 2,it is apparent that the two labels have similar 
features and a constant overlap in the images. These factors are 
hypothesized to be a reason for creating bias and variance in 
the model, resulting in the relatively low mAP scores. To 
investigate this hypothesis, the models are trained again but this 
time with one label (‘pad’). For the reason established earlier 
in section 2, the most vital information when repairing fixed 
bends is the location of the pad. From Table 4, it is evident that 
the model performance has drastically improved. 

Pad

Damage
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the model, resulting in the relatively low mAP scores. To 
investigate this hypothesis, the models are trained again but this 
time with one label (‘pad’). For the reason established earlier 
in section 2, the most vital information when repairing fixed 
bends is the location of the pad. From Table 4, it is evident that 
the model performance has drastically improved. 

Pad

Damage
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Table 4. Comparative analysis of the architectures trained with one label 

Architecture 
‘Fixed Bends’ 

mAP 
COCO mAP 

Detection speed 
(ms/image) 

ResNet50 70.4% 30% 1.48 

Inception v2 60.8% 28% 1 

 
Training and validation losses for ResNet50 with one label 

are presented in Figure 3. Inference is performed on both model 
configurations and the bounding box predictions are 
demonstrated in Figure 4 

 

 

Fig. 3. Training and validation losses vs number of steps 

 

Fig. 4. Testing dataset with bounding box output. Trained with (a,b) two 
labels ‘pad’ and ‘damage’; (c,d) one label ‘pad’ 

3.3 Case Study 2 

3.3.1 Dataset 
For autonomous damage detection, the position of the 

camera in the RLCRC will remain unchanged, meaning the 
images from the camera of the workstation will always be taken 
from the same setting. It was hypothesized that training the 
model with images of different fixed bends taken from the same 
position, will further improve the accuracy of the deep learning 
model. To this aim, a new dataset was formed containing 

images of similar orientation as those that the model will be 
expecting to see while it carries out damage detection. 

A new dataset was formed that comprised 437 original 
images (resolution: 1920 x 1080 pixels) of four different fixed 
bends. Similar to the first dataset, the images were augmented 
to expand the dataset to 1049 images (see Figure 5). The images 
were annotated using labellmg [46], this time for one label 
‘pad’ because of the higher performance achieved using one 
label as observed in section 3.2.2. The dataset was then 
randomly split into 70%, 20% and 10% for training, validation 
and testing data, respectively. 

 

 

Fig. 5. Sample augmented images from the new training dataset containing 
only images with the same camera setting 

3.3.2 Comparative Analysis and Results 
Table 5 outlines the new results obtained from the model 
trained in case study 2, with the superior results formatted in 
bold. The new model significantly outperforms the model 
trained in case study 1. The highest achieved mAP score with 
the ResNet50 architecture increases from 70.4 in case study 1 
to 88.7 in case study 2. This practically represents an 
improvement in accuracy of 26%. 

Figure 6 illustrates the resulting metric plots obtained from 
the ResNet50 model. The training and validation losses, as 
shown in Figure 6(c, d), both decrease to a point of stability, 
which implies there is no overfitting. This model is assessed 
over several IoU metrics (IoU=0.50:0.05:0.95), which means 
the model has to be performing well at every IoU threshold for 
it to achieve a high mAP score. Figure 6(b) shows the mAP 
value at 0.50 IoU, reaching 100%. 

Table 5: Comparative analysis of the architectures trained on the ne w dataset 
with one label 

Architecture 
‘Fixed Bends’ 

mAP 
COCO mAP 

Detection speed 
(ms/image) 

ResNet50 88.7% 30% 1.48 

Inception v2 79.4% 28% 1 
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Fig. 6. Resulting metric plots showing (a) mAP @ 0.5:0.95 IOU & (b) mAP 
@ 0.5 IOU; (c) validation loss and (d) training loss 

3.4 Discussion and Limitation 

For case study 1, the model is being trained to detect pads 
and damages on fixed bends. Both classes have similar features 
and always overlap, which adds another level of complexity for 
the model. To mitigate this, the model is trained with only one 
label ‘pad’. Doing so increases the mAP by 33% from 52.8 to 
70.4 but this comes at the cost of not detecting the damage and 
pad separately. Since detection of pads is more vital for fixed 
bends, this is considered as the optimal choice. 

Figure 4 shows that the prediction of pad locations is more 
concise for one label as opposed to two. For example, Figure 
4a shows how when working with two labels, the bounding box 
of the pad does not cover the full width of the pad as opposed 
to Figure 4c where the pad width is entirely covered. It appears 
that with two labels, the ‘pad’ and ‘damage’ bounding boxes 
tend to share some of their boundary lines which leads to the 
localization of the pad being inaccurate. This could be due to 
the RPN and ROI regression being faulty. Analyzing alternate 
ways of object detection that support better decision overlap 
could improve the detection results. 

The aim of this study is to develop an intelligent vision 
system that can identify and localize a damaged area. This 
localization process is performed using a fixed camera 
orientation, which means that the view of the camera remains 
unchanged throughout the process and between different parts. 
Therefore, it is more important to have a specialized model to 
localize the ‘pad’ surface with a higher accuracy for the setup 
proposed rather than a robust model with a much lower 
accuracy. For this purpose, a second case study is performed 
with a new dataset consisting of images taken from the same 
camera orientation for one label ‘pad’. The results from this 
second model indicate a mAP score of 88.7, which is an 
increase of 26% compared to results from case study 1 for one 
label. Overall, an improvement of 35.9 in mAP is achieved by 
moving from a more diverse dataset trained with two labels to 
a less diverse dataset with one label. This represents a relative 
increase in accuracy of 68%. 

The first case study is carried out on a relatively small 
dataset of 72 original images of eight fixed bends, whereas the 
second case study has 437 original images of four fixed bends. 

Results from the second case study are more favorable as the 
objective is to obtain a well-trained, more specialized model for 
detecting damages in a specific environment. A much larger 
dataset would enable the R-CNN to more accurately 
understand features of the damage and the pad and yield a more 
robust and higher performing model. Furthermore, GPU 
limitation on Google Colab restricted testing for a greater 
number of steps and experimenting with different 
hyperparameter settings to fine-tune the model and enhance 
performance. Access to more computational power would also 
make it possible to train and compare deeper architectures like 
ResNet101 for which training is more computationally 
expensive. 

4. Conclusion and Future Work 

Damage identification and localization in remanufacturing 
is a manual visual task. It can be time-consuming, tedious and 
prone to error. With recent advances in computer vision, 
computational power and access to a large amount of data it is 
now worthwhile to explore the use of this technology in 
remanufacturing. This paper proposes a machine learning-
based method for automatic visual detection and localization of 
damages in a robotic laser cladding repair cell process. To 
accomplish this, two configurations of Faster R-CNN 
combining transfer learning are employed. Two case studies 
are performed on different datasets, case study 1 with a more 
diverse set of images and case study 2 with more similar 
images. The comparative analyses of their performance are also 
carried out. For case study 1, the model is trained with one label 
and two labels. The highest mAP score obtained while training 
for two labels is 52.8 using ResNet50 as the feature extractor. 
With the same feature extractor, the mAP score increases to 
70.4 when training for only one label. For case study 2, the 
model is trained with one label only. The resulting model 
outperforms those from case study 1, reaching a maximum 
mAP of 88.7. The best model configuration in all cases is found 
to be Faster R-CNN with ResNet50 as the feature extractor. 
This model achieves a detection speed of 1.48 ms, rendering it 
potentially viable for real-time application. Promising results 
from this study demonstrate the potential of vision-based R-
CNN technology in the field of repair and remanufacturing. 

It is important to note that the scope of this paper is to find 
the best model for damage detection of fixed bends. The 
method presented in this paper will be extended to work with 
depth sensors and obtain volumetric information in the future 
that will be required to repair the part. 
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Table 4. Comparative analysis of the architectures trained with one label 

Architecture 
‘Fixed Bends’ 

mAP 
COCO mAP 

Detection speed 
(ms/image) 

ResNet50 70.4% 30% 1.48 

Inception v2 60.8% 28% 1 

 
Training and validation losses for ResNet50 with one label 

are presented in Figure 3. Inference is performed on both model 
configurations and the bounding box predictions are 
demonstrated in Figure 4 

 

 

Fig. 3. Training and validation losses vs number of steps 

 

Fig. 4. Testing dataset with bounding box output. Trained with (a,b) two 
labels ‘pad’ and ‘damage’; (c,d) one label ‘pad’ 

3.3 Case Study 2 

3.3.1 Dataset 
For autonomous damage detection, the position of the 

camera in the RLCRC will remain unchanged, meaning the 
images from the camera of the workstation will always be taken 
from the same setting. It was hypothesized that training the 
model with images of different fixed bends taken from the same 
position, will further improve the accuracy of the deep learning 
model. To this aim, a new dataset was formed containing 

images of similar orientation as those that the model will be 
expecting to see while it carries out damage detection. 

A new dataset was formed that comprised 437 original 
images (resolution: 1920 x 1080 pixels) of four different fixed 
bends. Similar to the first dataset, the images were augmented 
to expand the dataset to 1049 images (see Figure 5). The images 
were annotated using labellmg [46], this time for one label 
‘pad’ because of the higher performance achieved using one 
label as observed in section 3.2.2. The dataset was then 
randomly split into 70%, 20% and 10% for training, validation 
and testing data, respectively. 

 

 

Fig. 5. Sample augmented images from the new training dataset containing 
only images with the same camera setting 

3.3.2 Comparative Analysis and Results 
Table 5 outlines the new results obtained from the model 
trained in case study 2, with the superior results formatted in 
bold. The new model significantly outperforms the model 
trained in case study 1. The highest achieved mAP score with 
the ResNet50 architecture increases from 70.4 in case study 1 
to 88.7 in case study 2. This practically represents an 
improvement in accuracy of 26%. 

Figure 6 illustrates the resulting metric plots obtained from 
the ResNet50 model. The training and validation losses, as 
shown in Figure 6(c, d), both decrease to a point of stability, 
which implies there is no overfitting. This model is assessed 
over several IoU metrics (IoU=0.50:0.05:0.95), which means 
the model has to be performing well at every IoU threshold for 
it to achieve a high mAP score. Figure 6(b) shows the mAP 
value at 0.50 IoU, reaching 100%. 

Table 5: Comparative analysis of the architectures trained on the ne w dataset 
with one label 

Architecture 
‘Fixed Bends’ 

mAP 
COCO mAP 

Detection speed 
(ms/image) 

ResNet50 88.7% 30% 1.48 

Inception v2 79.4% 28% 1 
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Fig. 6. Resulting metric plots showing (a) mAP @ 0.5:0.95 IOU & (b) mAP 
@ 0.5 IOU; (c) validation loss and (d) training loss 

3.4 Discussion and Limitation 

For case study 1, the model is being trained to detect pads 
and damages on fixed bends. Both classes have similar features 
and always overlap, which adds another level of complexity for 
the model. To mitigate this, the model is trained with only one 
label ‘pad’. Doing so increases the mAP by 33% from 52.8 to 
70.4 but this comes at the cost of not detecting the damage and 
pad separately. Since detection of pads is more vital for fixed 
bends, this is considered as the optimal choice. 

Figure 4 shows that the prediction of pad locations is more 
concise for one label as opposed to two. For example, Figure 
4a shows how when working with two labels, the bounding box 
of the pad does not cover the full width of the pad as opposed 
to Figure 4c where the pad width is entirely covered. It appears 
that with two labels, the ‘pad’ and ‘damage’ bounding boxes 
tend to share some of their boundary lines which leads to the 
localization of the pad being inaccurate. This could be due to 
the RPN and ROI regression being faulty. Analyzing alternate 
ways of object detection that support better decision overlap 
could improve the detection results. 

The aim of this study is to develop an intelligent vision 
system that can identify and localize a damaged area. This 
localization process is performed using a fixed camera 
orientation, which means that the view of the camera remains 
unchanged throughout the process and between different parts. 
Therefore, it is more important to have a specialized model to 
localize the ‘pad’ surface with a higher accuracy for the setup 
proposed rather than a robust model with a much lower 
accuracy. For this purpose, a second case study is performed 
with a new dataset consisting of images taken from the same 
camera orientation for one label ‘pad’. The results from this 
second model indicate a mAP score of 88.7, which is an 
increase of 26% compared to results from case study 1 for one 
label. Overall, an improvement of 35.9 in mAP is achieved by 
moving from a more diverse dataset trained with two labels to 
a less diverse dataset with one label. This represents a relative 
increase in accuracy of 68%. 

The first case study is carried out on a relatively small 
dataset of 72 original images of eight fixed bends, whereas the 
second case study has 437 original images of four fixed bends. 

Results from the second case study are more favorable as the 
objective is to obtain a well-trained, more specialized model for 
detecting damages in a specific environment. A much larger 
dataset would enable the R-CNN to more accurately 
understand features of the damage and the pad and yield a more 
robust and higher performing model. Furthermore, GPU 
limitation on Google Colab restricted testing for a greater 
number of steps and experimenting with different 
hyperparameter settings to fine-tune the model and enhance 
performance. Access to more computational power would also 
make it possible to train and compare deeper architectures like 
ResNet101 for which training is more computationally 
expensive. 

4. Conclusion and Future Work 

Damage identification and localization in remanufacturing 
is a manual visual task. It can be time-consuming, tedious and 
prone to error. With recent advances in computer vision, 
computational power and access to a large amount of data it is 
now worthwhile to explore the use of this technology in 
remanufacturing. This paper proposes a machine learning-
based method for automatic visual detection and localization of 
damages in a robotic laser cladding repair cell process. To 
accomplish this, two configurations of Faster R-CNN 
combining transfer learning are employed. Two case studies 
are performed on different datasets, case study 1 with a more 
diverse set of images and case study 2 with more similar 
images. The comparative analyses of their performance are also 
carried out. For case study 1, the model is trained with one label 
and two labels. The highest mAP score obtained while training 
for two labels is 52.8 using ResNet50 as the feature extractor. 
With the same feature extractor, the mAP score increases to 
70.4 when training for only one label. For case study 2, the 
model is trained with one label only. The resulting model 
outperforms those from case study 1, reaching a maximum 
mAP of 88.7. The best model configuration in all cases is found 
to be Faster R-CNN with ResNet50 as the feature extractor. 
This model achieves a detection speed of 1.48 ms, rendering it 
potentially viable for real-time application. Promising results 
from this study demonstrate the potential of vision-based R-
CNN technology in the field of repair and remanufacturing. 

It is important to note that the scope of this paper is to find 
the best model for damage detection of fixed bends. The 
method presented in this paper will be extended to work with 
depth sensors and obtain volumetric information in the future 
that will be required to repair the part. 
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