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Abstract: This paper details a novel, patent pending, abrasive machining manufacturing process for the
formation of sub-millimetre holes in THGEMs, with the intended application in gaseous and dual-phase
TPCs. Abrasive machining favours a non-ductile substrate such as glasses or ceramics. This innovative
manufacturing process allows for unprecedented versatility in THGEM substrates, electrodes, and hole
geometry and pattern. Consequently, THGEMs produced via abrasive machining can be tailored for
specific properties, for example: high stiffness, low total thickness variation, radiopurity, moisture
absorption/outgassing and/or carbonisation resistance. This paper specifically focuses on three glass
substrate THGEMs (G-THGEMs) made from Schott Borofloat 33 and Fused Silica. Circular and hexagonal
hole shapes are also investigated. The G-THGEM electrodes are made from Indium Tin Oxide (ITO),
with a resistivity of 150 Ω/Sq. All G-THGEMs were characterised in an optical (EMCCD) readout
GArTPC, and compared to a traditionally manufactured FR4 THGEM, with their charging and secondary
scintillation (S2) light production behaviour analysed.

Keywords: Glass Thick Gaseous Electron Multipliers (G-THGEMs); Thick Gaseous Electron Multipliers
(THGEM); Large Electron Multiplier (LEM); Micropattern gaseous detectors; Time Projection Chambers
(TPC); Noble liquid detectors; Photon Detectors for UV, Visible and IR Photons (Solid-state)

A R I A D N E

1. Introduction

Recent years have seen significant advancements in Micro-Pattern Gaseous Detectors (MPGDs).
Gaseous Electron Multipliers (GEMs) [1] and THick Gaseous Electron Multipliers (THGEMs) (also know
as Large Electron Multipliers (LEMs)) [2] are some of the most recent developments within the field of
MPGDs, and have proved important for their simplicity and effectiveness. GEMs and THGEMs both
have similar basic arrangements: an insulating substrate, sandwiched between two electrically conductive
electrodes, with holes perforating through all three layers. Compared to GEMs, THGEMs typically have
an order of magnitude increased thickness. Traditionally, THGEMs are manufactured from an epoxy
laminate/FR4 substrate and have copper plated electrodes. Sub-millimetre through-holes are mechanically
drilled through the device to form field amplification regions. A dielectric rim may be etched around each
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hole. It has been reported that dielectric rims reduce the probability of discharges, ultimately resulting in
ten-fold higher gain compared to designs without rims [3].

The robustness and simplicity of THGEMs, both in terms of their use and manufacturing, has
resulted in their adoption in a wide variety of applications. This paper will concentrate on their use in
dual-phase and gaseous Time Project Chambers (TPCs). Typically, TPCs can either be filled completely
with a scintillating gas or, in the dual-phase case, filled with both the liquid and gaseous state of a single
scintillator (typically argon or xenon). When an ionising particle passes through the TPC volume, both
scintillation light and free electrons are produced. By means of an applied electric field, the free electrons
are drifted to the surface of the TPC, which is typically covered by devices capable of detecting these
electrons. By detecting both the scintillation light and the ionised electron signal, event reconstruction
within the TPC is possible. In the case of gaseous TPCs, both initial scintillation/ionisation and detection
are performed in the gas. In dual-phase TPCs, initial scintillation/ionisation occurs in the liquid, affording
the benefit of increased target density. The ionised signal is drifted and extracted into the gaseous phase
for detection. The benefit of extraction into a gaseous phase is retaining the ability to amplify the ionised
signal using MPGDs, which typically offer favourable performance when operating in gas compared to
liquid. The effectiveness of THGEMs has resulted in widespread use within the contemporary TPC field,
and much development has been made including the production of Liquid Hole Multipliers and FAT
GEMs [4]. TPCs are now integral within the Neutrino and Dark Matter sectors, with the proposed kiloton
scale DUNE modules [5–11], CYGNO [12], DarkSide-20k [13], ArDM [14] and LZ [15].

Despite the many attractive features of THGEMs, there are limitations in terms of their design and
manufacture. Conventionally, THGEMs may be manufactured using standard printed circuit board
(PCB) techniques. This typically results in THGEMs produced from epoxy laminate/FR4 substrates.
Epoxy laminate/FR4 typically contains radioactive contaminants, precluding use within the dark matter
community. Additionally, epoxy laminate/FR4 is a porous material, hence contamination, moisture
absorption and outgassing issues may occur. Large area THGEMs/LEMs typically require mechanical
support within the active area to limit deformations caused by sagging under gravity. Variations in epoxy
laminate/FR4 thickness across the substrate may also result in variations in field (and therefore gain) across
the THGEM. The use of substrates with higher stiffness and stricter thickness tolerances may alleviate both
of these issues. Repeated sparking and discharging of THGEMs during operation may eventually lead to
carbonisation of the epoxy laminate/FR4 substrates. Carbonisation forms a conductive pathway between
electrodes, leading to degraded THGEM performance over time, potentially resulting in device failure.
Since THGEM holes are traditionally formed via mechanical drilling, they maybe subject to variations in
hole size across the THGEM due to drill bit wear. This may lead to further gain non-uniformities.

This paper details the manufacture and characterisation of Glass THGEMs (G-THGEMs), created
using a novel masked abrasive machining process (patent pending [16]), within the ARIADNE R&D
framework [17]. Performance of the G-THGEMs is compared to a conventionally manufactured THGEM.
The conventional THGEM discussed in this paper has a 1 mm thick FR4 substrate and copper-coated
electrodes, with 500 µm diameter holes formed via mechanical drilling on an 800 µm pitch hexagonal
array, with 50 µm etched rims.

Glass GEMs (G-GEMs), produced from photosensitive glass, have already been fabricated (and
tested), via a photolithography technique [18,19]. The new manufacturing technique presented in this
paper is not limited to photosensitive glass and is suitable for a wide range of substrates. Both substrate
and electrode materials can be tailored depending on specific application requirements - for example,
high stiffness, low outgassing and/or high radiopurity. Abrasive machining allows for unprecedented
versatility in THGEM patterning in terms of hole shape and layout. In addition, the abrasive machining
process is no longer subject to drill bit wear, potentially improving hole diameter consistency across the
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THGEM. The abrasive machining manufacturing process could have far reaching consequences within the
Neutrino and Dark Matter sectors [12–15,20], as well as in Medical Imaging [21].

2. Novel G-THGEMs Manufacturing Process

The manufacturing process for G-THGEMs is composed of several distinct steps. A visual
representation is shown in Figure 1. First, a substrate is selected. The substrate must generally be
nonductile, favoring materials such as glass or ceramics. In this work, Fused Silica and Schott Borofloat 33
substrates were tested. The exact substrate can be tailored according the requirements of the application.
For example, synthetic Fused Silica can be made especially radiopure [22] and would therefore be ideally
suited for experiments requiring low backgrounds. Schott Borofloat 33 is relatively lower cost and may be
well suited for applications requiring high resistance to thermal shock. For this investigation, all substrates
were selected to be 1 mm thick, identical to that of the traditional FR4 THGEM.

The next step in the manufacturing process is the formation of electrodes. In this work, a vacuum
deposited 150 Ω/Sq Indium Tin Oxide (ITO) coating is applied on both sides of the substrate. A simple
mask, as shown in orange on Figure 1, is used during the coating process to define the shape of the
electrode - in this case, the electrode area is a 163 mm diameter circle on the 200 mm diameter substrates.
A photograph of the substrate with ITO coating is shown in Figure 2. ITO was selected predominantly for
its relatively low cost and good availability, although many different electrode materials could be applied.
The controllable sheet resistance of the ITO coating may provide additional benefits when compared to
highly conductive coatings - this is discussed further in Section 3.1. More intricate electrode geometries
may also be possible via laser etching of the electrode coating [23].

The substrate, now with electrodes on both sides, is ready for the through hole machining process.
The position and shape of the through holes is defined using a 2D CAD drawing, such as Drawing
Exchange Format (DXF) file. For best results during the machining process, the diameter of the holes
should typically be at least half of the substrate thickness. For example, for a 1 mm thick substrate, hole
diameters ≥ 0.5 mm are preferred. Figure 3 shows a schematic of two hole layouts which were tested in this
work. One design uses the conventional THGEM dimensions: 0.5 mm diameter holes on a hexagonal array
with a hole-to-hole pitch of 0.8 mm. The second design resembles a honeycomb structure, with hexagonal
holes on a hexagonal array. This design highlights new capabilities provided by the manufacturing process
- no longer being limited to geometries which can be produced by drilling.

The resulting mask, shown in purple on Figure 1, which defines location and shape of the through
holes, is applied to both sides of the substrate. This mask is patterned via a photolithography technique,
selectively producing areas which resist the abrasive machining process. Then, a series of abrasive delivery
nozzles traverse the substrate, selectively abrading the substrate in the regions which are not masked.
Typical abrasive materials includes aluminium oxide or silicon carbide, with a particle size of around
20-25 µm. When performed from one side, the abrasion process produces holes which taper inwards with
increasing depth into the substrate. The taper angle (controllable between 6 - 35 degrees) was measured to
be approximately 12 degrees in this work. Once the process is completed on one side of the substrate, the
substrate is flipped and the process is repeated on the other side. By abrading the substrate from both sides,
bi-conical through holes are produced. The outer perimeter of the substrate can also be shaped by this
process. In this work, the diameter was reduced to 179 mm. A schematic comparing holes of the G-THGEM
to those of a traditional FR4 THGEMs is shown in Figure 4. A photograph comparing the G-THGEM and
THGEM holes can be seen in Figure 5. Small edge chipping (less than 10 µm) occasionally occurs around
the G-THGEM holes from the abrasive machining process. No discernible affects on the behaviour of
the G-THGEMs were identified, including discharge behaviour around these holes. Optimisation of the
production technique is ongoing including varying the abrasive media, particulate size and the delivery



4 of 19

Substrate selection
Typically nonductile substrate 
e.g. glass, ceramic

Electrode masking
Defines electrode shape on 
top/bottom surfaces

Electrode deposition
150 Ohms/Sq ITO coating 
in this work

Machining masking
Defines shape and location 
of THGEM holes

Abrasive Machining 
Abraded from both sides forming 
biconical through holes

Figure 1. A visual representation of the novel, patent pending, abrasive machining technique for the
production of G-THGEMs.

pressure. The bi-conical shape of G-THGEM holes produces distinctive dielectric charging behaviour
during operation - this is discussed further in Section 4.

Following the abrasive blasting process, the mask is removed and the final G-THGEM is realised. A
photograph of a complete G-THGEM is shown in Figure 6. For these G-THGEM prototypes no special
cleaning processes were afforded before use. However, multiple types of cleaning could be permitted, for
example, the use of an ultrasonic bath. In this work, electrical connection is made to the top and bottom
ITO electrodes using spring loaded contacts connected to the the outer perimeter of the electrode.
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Figure 2. A 1 mm thick, 200 mm diameter glass wafer, coated with a 163 mm diameter Indium Tin Oxide
(ITO) electrode on both the top and bottom faces.

Figure 3. The hole topographies for circular and hexagonal masks, with the repeat unit overlayed. These
masks dictate the hole structure of the G-THGEMs, formed via abrasive machining. The hole sizes and
pattern dimensions are given in Table 1.
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Figure 4. A cutaway schematic of the hole geometry for the G-THGEM (left), formed by abrasive machining,
and the mechanically drilled holes of a conventional THGEM (right). The G-THGEM/THGEM substrate
are shown in grey, with electrodes represented in black. The G-THGEMs are rimless, with a bi-conical
shaped hole, while the THGEM has a 50 µm rim and straight walled holes.

Figure 5. A comparison between the abrasively machined holes in a Borofloat 33 G-THGEM (left) and the
drilled holes in the FR4 THGEM (right). Both G-THGEM/THGEM holes are 500 µm in diameter.

3. Experimental Setup

3.1. G-THGEMs

Table 1 summarises the four THGEMs, with their respective combinations of substrate material,
electrode coating and hole shape and size. Both the G-THGEMs and FR4 THGEM have a 179 mm diameter,
with a 163 mm diameter active area.

Two substrate materials were tested for the G-THGEMs: SCHOTT Borofloat 33 [24–27] and Fused
silica [27–29]. Borofloat 33 is relatively low cost, enabling potential large scale production of relatively
inexpensive G-THGEMs, whereas Fused Silica is radiopure, potentially allowing use in experiments which
are very sensitive to background radiation (for example, dark matter TPCs).

The abrasive machining process allows for more complex THGEM hole topography than conventional
manufacturing methods. To highlight this capability, a G-THGEM with hexagonal holes was also tested.
Hexagonal holes can be packed more densely (shown in Figure 3), offering higher open areas and possibly
increased electron transparency. The open area of the hexagonal G-THGEM is 62 %, compared to 35 % of
the circular holes.

There are several mechanical advantages afforded by G-THGEMs which makes them suitable for
large-scale LArTPC experiments. Firstly, both Borofloat 33 and Fused Silica are stiffer than FR4 and can be
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Figure 6. A Borofloat 33 substrate G-THGEM, coated on the top and bottom face with an ITO resistive
coating, with micro-patterned hole formation created via a masked abrasive machining process.

THGEM Type Substrate Electrode Hole Shape Hole Size (µm) Hole Pitch (µm) Rim Size (µm)
FR4 circ FR4 Cu Circle 500 800 50
FS circ FS ITO Circle 500 800 None
BF circ BF ITO Circle 500 800 None
BF hex BF ITO Hexagonal 870 1100 None

Table 1. A summary of the G-THGEM/THGEM types investigated in this paper, including substrates,
electrodes, hole pattern, size, shape and rims. The short-hand naming convention represents the
G-THGEM/THGEM’s substrate and hole shape, where "FS" and "BF" refers to Fused Silica and Schott
Borofloat 33, respectively.

produced in large flat surfaces, with thickness variation tolerances typically superior than what is possible
for FR4. Large-scale experiments, for example DUNE, utilise PCBs substrate LEMs with reported thickness
variations approaching 5 %, with a rejection rate of less than 1 LEM per Charge Readout Plane (CRP)
(18 LEMs) [11]. Borofloat 33 sheets are available with thickness variations of ≤ 15 µm for 1 mm thick
substrates [30], resulting in a thickness variation of less than 1.5%. This is an important consideration in
achieving high THGEM gain uniformity. Differential surface flatness and THGEM bowing both contribute
to THGEM field distortions. SCHOTT Borofloat 33 and Fused Silica are reported with flexural moduli
of 64 GPa [24,25] and 72 GPa [28,29] respectively. The flexural strength of epoxy laminate/FR4 used to
produce THGEMs does not typically exceed 23 GPa (crosswise) [31,32].

Glass is less porous than FR4, making it less susceptible to contamination. This presents obvious
advantages to detectors with high purity requirements. A common type of G10/FR4 is Textolite G 10
FR4, manufactured by General Electric, and this has been reported to have a Total Mass Loss (TML) and
Collected Volatile Condensable Material (CVCM) outgassing rate of 0.44% and 0.01%, respectively [33].
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Silica based glasses/ceramics such as Borosilicate (Borofloat), Fused Silica or Aluminium Silicate typically
have relatively lower outgassing rates [33].

3.2. The ARIADNE prototype TPC

Each of the four G-THGEMs/THGEM were characterised using the ARIADNE prototype detector.
The ARIADNE prototype [35], shown in Figure 7, is an optical readout, 40 L cylindrical TPC, with both
dual-phase cryogenic and gas capabilities. Characterisation of all THGEMs was undertaken in GAr
conditions.

The TPC field cage, comprised of 22 stainless steel rings, has a 178mm diameter with a 20 cm drift
length. The field cage is bounded by a cathode grid at the bottom of the TPC and capped at the top with the
bottom electrode of the THGEM. The drift field is established between the cathode and bottom THGEM
electrode. Outside the TPC active region, mounted on a rotatory feedthrough, is an Americium-241 alpha
source, with an initial 30 kBq rate. This is collimated to around 500 Bq. The rotary feedthrough allows the
source to be rotated in/out of the TPC volume during operation.

A sheet of Tetraphenyl Butadiene (TPB) coated wavelength shifting (WLS) acrylic is mounted directly
above the THGEM. This WLS plate shifts the VUV S2 scintillation light from 128 nm [37] to 420 nm
[38,39]. This wavelength is in the high quantum efficiency range of the externally mounted Andor iXon
Ultra 888 EMCCD camera [40] (further discussed in [17]). The Andor iXon Ultra 888 EMCCD camera
is positioned externally to the detector, at a distance of approximately 600 mm from the THGEM. The
EMCCD is combined with a Spacecom VF50095M lens, with a speed of f/0.95, and a focal length of 50 mm,
giving a field of view of approximately 160x160 mm2. The S2 scintillation light is imaged through a 90 mm
diameter Borosilicate glass viewport. The transparency of the viewport is > 90 % [41] at 420 nm (the peak
of the TPB emission spectrum). The camera is mounted on an adjustable tripod frame which sits on the
optical viewport. It was important to maintain consistent field of view and focusing between studies.
This was achieved through reinforcement of the legs with locking nuts and retaining EMCCD orientation
during reassembly.

An 8-inch, TPB coated, Hamamatsu R5912-20-MOD Photomultipler Tube (PMT) is mounted below
the TPC. The spectral response range of the PMT lies between 300 and 650 nm, with a quantum efficiency
of approximately 30 % at 420 nm [36].

3.3. TPC Operation Principle

The operating principle of the optical readout and ARIADNE prototype TPC in GAr conditions is
shown on the left of Figure 7. All G-THGEM/THGEM behaviours were characterised by monitoring the
intensity of the S2 light produced in the THGEM holes. The primary scintillation/ionisation was induced
by alpha particle/GAr interactions. The emitted S2 light was imaged with the EMCCD.

An emitted alpha particle enters the TPC active region and interacts with GAr, resulting in emission
of prompt scintillation light (S1), and the creation of free electrons by ionisation. The S1 light is detected by
the PMT at the bottom of the detector and is used for τ2 purity monitoring, which is further discussed in
Section 3.5.

Free ionisation electrons drift upwards in response to a uniform electric field applied between
the cathode and the grounded G-THGEM/THGEM bottom electrode. When electrons reach the top
of the field cage, they enter the G-THGEM/THGEM holes. Each electron is then accelerated by the
high electric field applied across the THGEM, between bottom and top electrodes. At sufficiently high
fields, this acceleration causes the electron to further ionise the GAr resulting in a Townsend discharge.
This exponentially increases the number of electrons. In addition, this process also produces secondary
scintillation light - the S2 light signal [42,43], through excitation of GAr atoms. Depending on applied field,
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Figure 7. The ARIADNE Prototype (right) and operating principle (left). As a single phase, optical readout
GArTPC, a wavelength shifter (TPB) is used to shift the 128 nm VUV S2 scintillation light to 420 nm visible
light. This is then imaged with an EMCCD.
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(a) Borofloat G-THGEM. (b) FR4 THGEM.
Figure 8. A Borofloat 33 G-THGEM and conventional copper-coated FR4 PCB THGEM mounted on the
ARIADNE prototype TPC.

on the order of 100s of photons are produced per accelerated electron [44]. The EMCCD camera images
this S2 light, which has been wavelength shifted using TPB to the high quantum efficiency range of the
camera.

3.4. Experimental Procedure

The TPC chamber was evacuated over 24 hours, down to rough vacuum of 10−3 mbar. The chamber
was then filled to 1100 mbar with N6.0 GAr (99.9999 % pure). GAr was continuously flushed through the
detector volume, at flow rate of approximately 5 L/min for the duration of the THGEM studies, mitigating
any outgassing effects that would otherwise degrade purity. Purity, measured using the slow scintillation
component - τ2 lifetime, was monitored throughout, as described in Section 3.5.

EMCCD camera settings were kept consistent throughout the duration of the experiment - operating
with 4x4 binning, in full frame mode, with an exposure time of 50 ms. The EMCCD gain value was set its
maximum value of 1000. In this configuration, the EMCCDs had a readout rate of 15 Hz. This rate resulted
in approximately 30 alpha GAr interactions recorded in a single image. The cameras were air cooled to
less than -60 Celsius before recording to minimise sensor noise.

The TPC drift field was established between the cathode, operated at a bias of -2.5 kV, and the
G-THGEM/THGEM bottom electrode, which was grounded. All field shaping rings were connected with
a 100 MΩ resistor chain. The THGEMs were left unbiased and grounded for a 24 hour period (in order
to be fully discharged) before measurements were taken. Characterisation began with a study into the
dielectric charging behaviour of the G-THGEMs/THGEM. During measurements, biases were applied to
the detector in a consistant manner. First, the cathode bias was applied, establishing the drift field. Next,
the EMCCD was set to record data. Once the EMCCD has began recording data, the THGEMs top electrode
is biased to near their pre-established breakdown voltage, see Table 2. This pre-established breakdown
voltage was determined experimentally before the 24 hour discharge period, by slowing increasing the top
electrode bias until THGEM discharges occured.
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Charging was investigated, through imaging alpha GAr interactions, over a 30 minute window. Care
was taken to ensure that the position of the alpha source within the TPC was consistent between runs. By
studying S2 light intensity variation over time, the dielectric charging behaviour of the THGEM can be
inferred. After this 30 minute charging period, a THGEM bias scan characterisation study was undertaken.

The THGEM bias was reduced from near its predetermined breakdown voltage in 50 V intervals
down to 1000 V (at this point the alpha tracks are barely discernible from the EMCCD sensor noise). For
each THGEM bias, 2000 EMCCD images were recorded. Investigation of THGEM charging behaviour
before the characterisation was a deliberate choice in order to maximally charge each THGEM before bias
characterisation. The results of both experiments can be seen in Section 4.

THGEM Type Charging Study Bias (kV) Breakdown Voltage (kV)
FR4 circ 1.60 1.80
FS circ 1.60 1.90
BF circ 1.60 1.85
BF hex 1.70 1.80

Table 2. A Table of the THGEM bias during the charging test and the measured breakdown voltage, in
1100 mbar N6.0, flowing at a rate of 5L/min. The naming convention in the THGEM type is consistent with
Table 1.

3.5. GAr Purity Monitoring

Purity was monitored using the well established τ2 lifetime method [45]. Argon S1 VUV scintillation
occurs through two decay paths: (singlet excimer) τ1 and (triplet excimer) τ2, the fast and slow component,
respectively. As the τ2 decay time increases with argon purity, this value can be used as a relative purity
monitor. It was important to ensure similar purity conditions for each G-THGEM/THGEM study as
electronegative impurities, within GAr, could potentially vary the charge gain and S2 scintillation light
production.

The highest values of τ2 lifetime reported for GAr is 3200±300 ns [46] (with variation depending
on fitting models) and more recently 3480±65 ns [47]. The PMT at the base of the TPC was used for all
purity measurements. Purity measurements were taken after the initial fill of N6.0 GAr and subsequent
measurements were taken while argon is continually flushed through the detector. Data collection began
only once τ2 exceeded 2000 ns (which approximately corresponds to N6.0 argon gas [45]). A final τ2 lifetime
measurement was taken at the end of each THGEM study, to validate that purity had been maintained
throughout.

4. THGEM Characteristics

Figure 9 shows an example of alpha particle interactions with GAr, as captured by the EMCCD.
This image has been processed, with a background subtraction removing intrinsic sensor noise. The
background image was generated from data taken when the THGEM was fully discharged and unbiased.
Subsequently, a Region Of Interest (ROI) cut was made which contains all of the alpha source S2 tracks -
this ROI is highlighted in red on Figure 9.

4.1. Dielectric Charging Behaviour

For each image, as detailed in Figure 9, the pixel intensities inside the ROI were summed. These
summations were then binned into 1 second intervals shown in Figure 10a and also 20 seconds intervals
shown in Figure 10b. The shorter 1 second intervals better show gain fluctuations throughout the THGEM
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Figure 9. An EMCCD image of approximately 30 alpha particle GAr interactions, induced by a 30 kBq
241Am alpha source, collimated to 500 Bq. The EMCCD was configured in 4x4 binning, with a 50 ms
exposure, and a gain of 1000. This was a direct image taken of the WLS S2 light produced within a Fused
Silica substrate G-THGEM holes, at a field of 1600 V/mm. This image has been background subtracted.
The red overlay is a ROI cut for analysis.

charging process whereas the longer 20 seconds intervals provide improved clarity for charging behaviour
and shape.
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Figure 10. The charging behaviour, manifesting as variation in S2 light intensity, of the various types of
bi-conical hole G-THGEMs and cylindrical hole FR4 THGEM. Figures 10a and 10b represent time binnings
of 1 second and 20 seconds, respectively. All functions in Figure 10b have been fitted using Equation 1, the
parameters of which can be found in Table 3. The data colour is consistent with the legend on Figure 11.
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The most apparent difference in charging behaviour between the G-THGEMs and the traditional FR4
THGEM is that the S2 light intensity of G-THGEMs increases over time, whereas the S2 light intensity
of the conventional THGEM decreases over time. The distinct charging behaviours may be explained
by differences in hole geometry. As a consequence of the abrasive machining process, G-THGEMs have
bi-conical holes. The effect of bi-conical holes on dielectric charging behaviour is well understood for
GEMs [50,51], and the theory can be extended to G-THGEMs. The insulating glass substrate provides a
surface on which electrons may accumulate over time. Consequently, this accumulated charge will distort
the electric field within the G-THGEM hole. In the case of bi-conical holes, this accumulated charge causes
an increase in electric field within the exit side of the hole (closer to the top electrode). This results in an
increase in gain, and therefore increased light production. In contrast, THGEM holes with straight walls
exhibit dielectric charging effects which result in the decrease of THGEM gain (and S2 light intensity) over
time. This is primarily explained by a differential charge distribution along the walls of the holes [52].

All datasets shown on Figure 10b are fitted with Equation 1 [48,49], where G is the total light intensity
per 20 seconds. The parameters of Equation 1 can be found in Table 3. The parameter p0 is the initial gain,
at time T0. The direction and amplitude of charging is governed by p1, where a negative (positive) p1

value represents charging up (down), or more specifically, greater (less) S2 light production over time. The
rate of charging is dictated by parameter p2.

G = p0 + p1e−t/p2 (1)

THGEM Type p0 p1 p2
FR4 circ 1.30 × 109 ± 1.26 × 106 6.60 × 108 ± 1.42 × 107 0.752 ± 0.0210
FS circ 1.02 × 1010 ± 2.36 × 107 −7.48 × 109 ± 4.12 × 107 0.04808 ± 0.00560
BF circ 2.07 × 109 ± 6.63 × 106 −1.30 × 109 ± 1.23 × 107 0.149 ± 0.00346
BF hex 1.49 × 109 ± 3.05 × 106 −7.42 × 108 ± 6.81 × 106 0.162 ± 0.00312

Table 3. A Table of the fit parameters for Equation 1, describing the fits in Figure 10b.

Despite similar bi-conical hole geometries, clear differences in dielectric charging behaviours are
discernible between all G-THGEMs. The Borofloat 33 substrate G-THGEMs, with both circular and
hexagonal hole geometries, had similar S2 light production at T0. Additionally, both hole layouts resulted
in maximal charging time, after around 10 mins. This is quantitatively reinforced by their p0 and p2

parameters of 2.07 × 109 and 0.149 (circular) and 1.49 × 109 and 0.162 (hexagonal), respectively. However,
the larger hexagonal holes result in around half the light production in a maximally charged state than
for the circular holes. The ratio of p1 values dictates the relative total S2 light production differences at
maximal charging. Between circular and hexagonal hole layout, Borofloat 33 G-THGEMs, the p1 ratio is
1.8. The reduction in S2 light intensity of the hexagonal hole G-THGEM can be attributed to a reduced
field for larger holes at the same bias.

Although both the Fused Silica and Borofloat 33 G-THGEMs have the same circular bi-conical hole
geometries, a significant difference of the dielectric charging behaviour can be noticed in Figure 10. The
ratio of the charging rate parameters, described by p2, between Fused Silica and Borofloat 33 is 0.32,
leading to the approximately observed charging rate of a third. The ratio of p1 amplitude parameters is
5.8, describing the approximately six fold increase in amplitude after 30 mins of charging when comparing
Fused silica to Borofloat 33. One possible explanation for these dielectric charging behaviour differences
is that Borofloat 33 will typically contain many more impurities than Fused Silica. It is conceivable that
these impurities may create a pathway by which electrons on the surface of the holes can move, thereby
reducing the dielectric charging effect.
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4.2. S2 Light Production THGEM Bias Scan

A THGEM bias scan study was also performed, detailing the S2 light intensity as a function of THGEM
field. Similarly to the method described for the dielectric charging behaviour, a ROI cut was taken around
the alpha particles. This was done for all of the 2000 (background subtracted) EMCCD images collected
for each THGEM type at a given bias. For each event, within this ROI, the pixel intensities were summed
and a distribution produced of the total light intensity, in ADU, for the respective G-THGEMs/THGEM
fields. The results of the study are shown in Figure 11.

Nominal THGEM behaviour can be seen for both the G-THGEMs and the FR4 THGEM. At low field
(below approximately 1000V), the THGEMs are in the linear gain regime, the S2 light production is purely
via electroluminescence. As the field increases, the THGEM enters the electron multiplication regime,
and the S2 light intensity is dominated by exponential effects. The overall THGEM S2 light production
behaviour can be described by Equation 2 (a convolution of both linear and exponential regimes). The fit
parameters for Equation 2, describing the data sets in Figure 11, can be seen in Table 4.

Figure 11. The FR4 THGEM and G-THGEM characterisation plots showing the total light intensity, at a
variety of THGEM fields, for 2000 EMCCD images, each containing approximately 30 alpha tracks. All
functions have been fitted with Equation 2. The parameters of the fits can be seen in Table 4.

I = p0x(1 + p1ep2x) + p3 (2)

THGEM Type p0 p1 p2 p3
FR4 circ 29.7 ± 8.0 2.30 × 10−2 ± 6.3 × 10−3 5.36 × 10−3 ± 2.1 × 10−4 −7.68 × 104 ± 1.831 × 105

FS circ 117 ± 57 5.50 × 10−4 ± 2.47 × 10−4 7.78 × 10−3 ± 3.5 × 10−4 2.97 × 104 ± 8.32 × 104

BF circ 7.15 × 10−3 ± 3.59 × 10−3 1.85 ± 3 × 10−2 8.05 × 10−3 ± 3.0 × 10−4 9.30 × 104 ± 2.21 × 104

BF hex 8.37 ± 5.97 2.35 × 10−2 ± 1.69 × 10−2 5.76 × 10−3 ± 4.0 × 10−4 3.40 × 105 ± 1.39 × 105

Table 4. A table of fit parameters for Equation 2, describing the fits in Figure 11.

By far, the greatest light intensity comes from the Fused Silica G-THGEM. Both Borofloat 33 and
Fused Silica G-THGEMs, which have hole sizes comparable to the FR4, produce increased S2 light intensity
relative to the FR4 THGEM. This can be attributed to the distinct charging characteristics of the G-THGEMs.
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The Borofloat 33 G-THGEM with a hexagonal hole pattern produces the least S2 light intensity. This can
be attributed to a larger hole, meaning that for the same bias the electric field within the hole is lower,
therefore resulting in relatively less gain and thus reduced S2 light intensity.

Both Fused Silica and Borofloat 33 G-THGEMs were found to be more resilient to damage than FR4,
where irreparable carbonisation can occur after repeated discharges. As noted previously, carbonisation
has the potential to severely degrade the performance of the THGEM. Nominally, the highly conducting
copper electrode of classical THGEMs can allow a large current flow during discharges. The resistive
nature of the ITO electrode coating of the G-THGEMs may possibly be quenching sparks by limiting
current flow [34].

With regards to G-THGEM applications within TPCs, the benefits of increased S2 light intensity are
obvious. Firstly, for the same applied bias, increased light intensity could possibly result in a lowered
energy threshold of a TPC. Functioning at a lower bias, while giving comparable light intensity, reduces
the possibility of discharges, both directly on the THGEM and on connectors, feedthroughs or cabling.
Detector stability is an important consideration for long-term, large-scale experiments.

5. Outlook and Future Developments

The overarching aim of this investigation was the assessment of a new manufacturing process for
G-THGEMs, in the context for applications within large-scale LArTPCs, and potentially beyond into
dark matter and medical research. Within this paper, three G-THGEMs were produced using a novel,
patent pending, masked abrasive machining technique. This manufacturing method gives unprecedented
versatility to the substrates and electrodes materials, together with hole shape and pattern. For first
characterisation (and comparison with an FR4 THGEM), a selection of G-THGEMs were produced with
unique behaviours. Variations in glass substrate (either Borofloat 33 or Fused Silica) were studied, as
well as two distinct hole patterns (circular or hexagonal). A transparent ITO electrode was used for all
G-THGEMs.

General reported issues with current THGEM technologies in LArTPC applications, can be
summarised as the following: material bowing, limited stiffness and substrate thickness variations all
resulting in field non-uniformities, contamination due to the porous nature of FR4, and discharges affecting
long term stability. In addition, secondary problems arise when considering quality assurance for the
scale of production required for a kiloton scale experiment, such as DUNE - in particular, selection of
FR4 substrates with suitable thickness variations and consistent hole formation from mechanical drilling.
Furthermore, current FR4 THGEMs are unsuitable for use within the dark matter community due to
inadequate substrate radiopurity. G-THGEMs have the potential to alleviate many of these concerns, while
maintaining quality control and quality assurance manufacturing required for large-scale experiments.

Characterisation of the G-THGEMs (compared to a conventionally manufactured FR4 THGEM)
determined that for the same hole configuration, at the same bias, G-THGEMs have increased S2 light
production. Furthermore, the bi-conical shape of the G-THGEM holes produced by the abrasive machining
process leads to an increasing S2 light intensity over time as the G-THGEMs charge up. Cylindrical holes,
typical of conventional THGEMs, result in the decrease of light intensity over time.

The masked abrasive machining process allows for unprecedented customisation of G-THGEMs.
The substrate, electrode, hole shape, size and pattern can all be varied, selecting for certain desirable
mechanical and behavioural properties. For example, within this experiment, Borofloat 33 and Fused Silica
glass were both investigated. Borofloat 33 is relatively low-cost, whereas Fused Silica is radiopure and may
have the potential for use within dark matter TPCs. Both of these glasses boast flexural moduli of between
64 and 72 GPa, making them almost 3 times stiffer than FR4 (23 GPa). In addition, glass substrates are
available with thickness variations better than < 1.5%, a marked improvement on the typically achieved
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5% for FR4 substrate THGEMs. Finally, the observed discharge behaviour of G-THGEMs was different to
typical THGEMs. As ITO is resistive, discharges are localised to the region and the amount of current flow
is limited. This has an effect of quenching sparks, potentially reducing damage to the device. Additionally,
carbonisation, a known problem with FR4, does not occur with glass substrates.

The manufacturing technique and results discussed within this paper represents an encouraging
first demonstration of the feasibility of masked abrasively machined G-THGEMs. While still in their
infancy G-THGEMs, are a promising avenue for exploration. The abrasive machining technique allows for
unprecedented versatility in THGEM design, allowing configurations suitable for a range of applications.
Further development is ongoing, including the production of a larger G-THGEMs for incorporation into
dual-phase LArTPCs. Specifically, production will include larger 54 × 54 cm2 G-THGEMs for use in the
ARIADNE detector, as well as sixteen 50 × 50 cm2 G-THGEMs for large scale demonstrations at the CERN
Neutrino Platform [53].

6. Patents

K. Mavrokoridis, A. Roberts and The University of Liverpool, 2020, Gas Electron Multiplier, Patent
Pending, GB2019563.2
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