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Abstract: The ubiquitous persistence of plastic waste in diverse forms and different environmental
matrices is one of the main challenges that modern societies are facing at present. The exponential
utilization and recalcitrance of synthetic plastics, including polyethylene terephthalate (PET), results
in their extensive accumulation, which is a significant threat to the ecosystem. The growing amount
of plastic waste ending up in landfills and oceans is alarming due to its possible adverse effects
on biota. Thus, there is an urgent need to mitigate plastic waste to tackle the environmental crisis
of plastic pollution. With regards to PET, there is a plethora of literature on the transportation
route, ingestion, environmental fate, amount, and the adverse ecological and human health effects.
Several studies have described the deployment of various microbial enzymes with much focus on
bacterial-enzyme mediated removal and remediation of PET. However, there is a lack of consolidated
studies on the exploitation of fungal enzymes for PET degradation. Herein, an effort has been made
to cover this literature gap by spotlighting the fungi and their unique enzymes, e.g., esterases, lipases,
and cutinases. These fungal enzymes have emerged as candidates for the development of biocatalytic
PET degradation processes. The first half of this review is focused on fungal biocatalysts involved
in the degradation of PET. The latter half explains three main aspects: (1) catalytic mechanism of
PET hydrolysis in the presence of cutinases as a model fungal enzyme, (2) limitations hindering
enzymatic PET biodegradation, and (3) strategies for enhancement of enzymatic PET biodegradation.

Keywords: plastic; PET; PET-persistence; fungi; fungal enzyme; enzymatic degradation; by-products;
enzyme engineering strategies

1. Introduction

Plastics are synthetic materials of utmost importance in all modern societies. This is
mainly because the robust attributes of plastic products evolved through time, including
durability, weathering resistance, transparency, lightweight, low-price, high stability, and
compact structural characteristics [1]. Undoubtedly, all these characteristics make plastics
a vital entity for many domestic and industrial sectors [2]. Considering this high demand,
over the past five decades, plastic-based products have become indispensable, increasingly
replacing other products of domestic and industrial interests including products made
partly or wholly from glass, metal, and wood. Over a longer time span, man-made
synthetic plastic production has substantially increased up to three-fold in the last twenty-
five years [3]. Regardless of their practical applied aspects, most of the used plastics have
ended up as waste and accumulated in various environments [4]. As a result, plastic
pollution is increasing at an alarming pace and is pervasive in different niches, including
soil, sediments, agricultural land, marine, surface waters, water streams, and sludges [5,6].
Thus, plastic pollution has become a global and ubiquitous problem; urgent, holistic actions
are essential to control and overcome serious damage to the environment and biological
systems [5–7].
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Accumulation of synthetic plastic debris at landfill sites and aqueous environments
poses numerous detrimental effects on the entire ecosystem and its living beings [8–10].
Considering the plastic disposal in the aquatic environment alone, more than 9 million
tons of plastic is dumped in oceans, which is expected to increase to double by 2025 [10,11].
Additionally, some chemicals that are added to plastics during their processing to improve
their characteristics are toxic and hazardous to mammalian and marine life and affect
chemical communication in aquatic ecosystems [12]. Furthermore, while present in the
aquatic environment, plastics can attach to adjacent toxic contaminants such as heavy
metals and organic pollutants creating hazardous entities. These entities, following several
transformation processes, can enter various terrestrial or aquatic food chains and cause se-
vere damage to the biota [13,14]. Eriksen et al. [15] estimated that there were approximately
269,000 tons of plastics submerged in surface waters globally. The presence of smaller
plastic pieces in surface waters tends to result from the low degradability of larger pieces
(macro-plastics) into smaller fragments considered as micro-plastics and/or nano-plastics.
Figure 1 illustrates a schematic representation of various plastic sources, their ultimate
weathering over time into micro-plastic and nano-plastic, and released into rivers, seas, and
oceans. Considering the persistence/occurrence of plastics in the environment, plastics are
divided into the following categories: (1) macro-plastics with particle size ranges >2.5 cm,
(2) meso-plastics with particle size ranges from 2.5 cm to 5 mm, (3) micro-plastics with
particle size ranges between 1 micron to 5 mm, and (4) nano-plastics with particle size
ranges between 1 to 100 nm [16–18]. The reported effects of micro-plastic-based environ-
mental pollutants on aquatic life include nearly 700 species, from tiny zooplankton to the
largest whales. Out of the hundreds of aquatic species that are impacted adversely by
micro-plastic pollution, 17% are IUCN (International Union for Conservation of Nature)
red-listed species, and at least 10% have ingested plastics [19].

Most plastic wastes are due to the unnecessary or extensive consumption and dis-
charge of plastics or plastic-based contaminating agents. Thus, it is vital to address global
plastic pollution and minimize the adverse effects by taking holistic measures and strategies
that encompass the entire plastics-based value chain. For instance, the key stakeholders
and social actors, such as industrial sectors, governmental authorities, civil society mem-
bers, academics, and basically, the whole population should step forward to take effective
participation to address this issue [20,21].

2. Synthetic Plastics—Categories and PET

Considering the structural backbone, synthetic plastics have been broadly categorized
into two groups, i.e., (1) plastics with a C–C backbone and (2) plastics with a C–O back-
bone (Figure 2). The first category of plastics is non-hydrolysable, and examples include
polypropylene (PP) and polyethylene (PE), among others. These plastics contribute to 77%
of the global market share. Furthermore, the minimally reactive C–C bonds in the back-
bone of polyesters are considered a significant obstacle to the biodegradation process [22].
The plastic materials in the second category with a C–O backbone are hydrolysable, and
examples include polyethylene terephthalate (PET) and polyurethane (PU) among others
and hold around 18% of the global market share [1,23,24]. Collectively, the global plastic
market was valued at around $568.9 billion in 2019, which increased to $579.7 billion in
2020, and is expected to grow at a compound annual growth rate (CAGR) of 3.4% from
2021 to 2028 [25]. According to one estimate, until 2020, about 300 million tons (Mt) of
plastic wastes was being produced annually, which has now escalated to 400 Mt annually.
Further to this, the annual production of plastics is expected to double by 2035 (approx.
800 Mt) and reach 1600 Mt by 2050 [26,27]. Unfortunately, around 76% of the overall plastic
production is handled as waste. Of this, 9% is recycled, 12% is incinerated, and 79% is
landfilled or released to the environment [1,27].
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Figure 1. A schematic representation of various plastic sources, their ultimate weathering over time 
into micro-plastic and nano-plastic, and transportation into the aquatic environment. Created with 
BioRender.com and extracted under premium membership. 
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PET is the most common single-use plastic among various synthetic plastics and is
considered a thermoplastic polymer resin of the polyester family. PET is a clear, strong,
and lightweight plastic that is widely used for packaging (Table 1) [28–32]. According to
the British Plastic Federation (BPF), over 70% of the soft drinks in the global market are
being packaged in PET bottles [33].

Table 1. Polyethylene terephthalate (PET) packaging products based on end-user consumption.
The global plastic consumption: 367 million tonnes, total PET packaging products consumption:
27 million tonnes in 2020 (7.4%). (Source: Data were extracted and calculated based on refs. [28–32]).

PET Packaging Products Global Consumption in 2020
(Million Tonnes)

Water Bottles 7.02

Carbonated soft drink (CSD) bottles (e.g., Coca Cola, beers) 7.02

Other drinks (e.g., juices, milk) 4.86

Other bottles/containers in form of films and sheets 3.78

Food containers 2.43

Containers for non-food consumer products (e.g., cosmetics) 1.62

Antimony (Sb), a metalloid element, is used as a catalyst in the form of antimony
trioxide (Sb2O3) or antimony triacetate in PET production. The WHO published a risk
assessment for antimony in drinking water [34]. PET toxicity is typically associated with the
leaching of Sb upon exposure to heat [35], thus it deserves careful consideration. Exposing
PET to a thermal environment causes the leaching of antimony significantly, for example,
into bottled water [36], possibly above US EPA maximum contamination levels [37]. As
the presence of leached antimony in bottled water is a serious public health and safety
concern, a detailed analysis of the published data on the presence, concentration, and
leaching of PET is essential [38]. The persistence and toxicity risk aspects of PET additives
are summarized in Table 2 [39–50].

Table 2. Hazardous additives, present in PET products, and their effects.

Hazardous Additives Chemical Formula Chemical Structure Toxic Effects References

Bisphenol A
(BPA) C15H16O2
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Table 2. Cont.

Hazardous Additives Chemical Formula Chemical Structure Toxic Effects References

Lead chromate
molybdate sulphate red Pb(Cr, Mo, S)O4
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Table 2. Cont.

Hazardous Additives Chemical Formula Chemical Structure Toxic Effects References

1,3,5-tris[(2S and
2R)-2,3-epoxypropyl]-
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Zheng et al. [51] observed that plastic polymers with pure carbon backbones are
particularly resistant to most degradation methods. While this is often true, it is aromatic
polymers that tend to be resistant to degradation, despite the presence of bonds that are
typically readily hydrolyzed [52]. PET is a classic example of such a polymer, i.e., although
the ester bond that is part of PET can be easily broken, PET is resistant to degradation
due to the presence of a high ratio of aromatic terephthalate units [53]. This necessitates
their removal from the environment. For this purpose, numerous methods are used, such
as photo-oxidation, thermal degradation, chemical degradation, and biodegradation of
PET [2,54–56]. However, each of these methods has its own merits and limitations. PET, as a
polyester, is more resistant to biodegradation due to its ester bond group compared to other
polymers. Several new studies on PET biodegradation by microbes, i.e., bacteria and their
enzyme systems have been reported [2,56–58]. A plethora of literature is available on the
bacterial enzyme-assisted degradation of PET [56–58]. However, little is published about
fungal enzyme-mediated PET degradation. So far, there is a lack of robust fungal enzyme-
mediated processes capable of efficiently mitigating the PET plastic-based contamination
effectively and efficiently from ecosystems. For this, there is an urgent need for the
development of sensitive and reliable detection systems that can be applied to the land-
and -water-based plastic contaminants. This will enable the robust identification of plastic
value chain hot spots that pose the most significant environmental problems. Thus, herein,
an effort has been made to cover this literature gap by spotlighting the fungal strains and
their potential enzyme systems as potential robust catalytic tools to degrade PET.

3. Fungal Enzyme-Mediated PET Degradation

Several microorganisms, including fungi and their unique enzyme systems, are capa-
ble of degrading PET (Table 3) [59–76]. Some fungal strains facilitate PET biodegradation
into low molecular weight oligomers or monomers such as bis(2-hydroxyethyl)terephthalate
(BHET) and mono(2-hydroxyethyl)terephthalate (MHET) [77]. The monomeric structural
units of PET are linked by ester bonds, which many fungal hydrolytic enzymes can hy-
drolyze, e.g., esterases, lipases, and cutinases [59–61,73]. Esterases cleave the ester bonds
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(short-chain acyl ester) found in PET monomers and also facilitate the surface modification
of the target PET [73]. Lipases are widely known for their catalytic hydrolysis of PET
fabrics to some extent through enhancing their wettability, and the interfacial activation
phenomenon characterizes them. Cutinases are lipolytic esterolytic enzymes with assertive
catalytic behavior toward PET degradation [69]. Several fungal strains are significant
sources of cutinases. For instance, cutinases from Aspergillus oryzae, Aspergillus nidu-
lans [78], Penicillium citrinum [73], Humicola insolens [70], Fusarium solani [61,75], Fusarium
solani pisi [76], and Fusarium oxysporum [64,65] have shown hydrolyzing activity toward
low-crystallinity (Ic) PET.

Although the ester bond that is part of PET can be easily broken, PET is resistant
to degradation due to the presence of a high ratio of aromatic terephthalate units [53].
The key factors that contribute to PET resistance to degradation include crystallinity, PET
molecular weight, polymeric chain flexibility, surface hydrophobicity, and hydrolysis
reaction temperature [79,80]. The stiffness of PET, due to the aromatic terephthalate
building blocks, is a primary reason for PET’s low biodegradability. Moreover, a high ratio
of aromatic terephthalate units in PET structure reduces chain mobility/flexibility and
limits enzymatic degradation. However, a variety of fungi possess the potential to make
PET more amenable to degradation through their enzyme system. So far, an array of fungal
hydrolytic enzymes has been identified and deployed for various purposes [59,62,64,81].
However, limited studies have been performed on the PET degrading capacity of fungal
hydrolytic enzymes and further use of PET monomers as a carbon source for enzyme
secreting fungi. Thus, a thorough screening of fungal strains is crucial to identify the key
enzymes, with high specific activity and efficiency, involved in plastic degradation at large
and PET degradation in particular. Herein, we have reviewed comprehensively fungal
enzymes capable of degrading PET obtained from different sources, including PET waste
plastic bottles, PET woven fabric, PET films, PET powder, and flakes [59,62,64,81].

The effect of different crystallinity on the enzymatic degradation could be explained
by the changes in the macromolecular aggregate structures of the polymer. Polymer
molecules generally pack together in a non-uniform manner with a mixture of ordered
regions (crystalline-like) and disordered domains (amorphous-like). In the amorphous
domains, polymer chains are less densely packed than those in the crystalline domains.
The PET containing a high percentage of amorphous domains is more prone to enzymatic
degradation. The enzymatic hydrolytic reactions of PET are supposed to take place under
the temperatures close to the glass transition temperature (Tg) of PET (65~80 ◦C). Under
such reaction conditions, the polymer chains in the amorphous PET domains can gain
enough mobility to access the active sites of PET hydrolases [70,82]. Hence, it is supposed
that faster PET degradation rates could be achieved by increasing the temperatures of
the enzymatic hydrolysis reaction (for heat-tolerant enzymes) up to the glass transition
temperature of PET [83]. Nevertheless, the high-crystallinity PET (30~40%) represents
the amplest types of post-consumer plastic, and methods for lowering the crystallinity
of PET to enhance the enzymatic degradation are of high interest [84]. The enzymatic
degradation of PET is a heterogeneous catalytic process. However, the end products of
the PET hydrolysis differ due to the reaction type, e.g., a catalytic reaction with or without
additional supplementation of natural biosurfactants (i.e., hydrophobins), or synthetic
surfactants (i.e., sodium lauryl sulfate), enzyme source and concentration, incubation
temperature, and reaction period [83,85]. At the same time, robust strategies that assist in
producing or fabricating thermo-stable PET hydrolyzing enzymes are required.
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Table 3. Fungal enzyme-mediated polyethylene terephthalate (PET) degradation.

Enzyme Fungal Strain PET Source Percent PET-Degradation (Transformed Products) Reference

Lipase and Cutinase Aspergillus tamarii and Penicillium crustosum PET films TPA [59]

Lipase Penicillium simplicissimum Post-consumer (PC)-PET TPA, MHET and BHET [60]

Cutinase Fusarium solani PET waste 90% conversion into monomers [61]

NR Aspergillus sp. Waste Plastic bottles 22% weight loss after 6 weeks [62]

Cutinase Fusarium solani Synthetic PET EG [63]

Cutinase Fusarium oxysporum PET woven fabric TPA, MHET and BHET [64]

Cutinase Fusarium oxysporum PET fabrics NR [65]

Cutinase Humicola insolens PET bottles TPA, MHET and BHET [66]

Lipase Candida antarctica PET bottles TPA, MHET and BHET [66]

Lipase Candida rugosa PET film NR [67]

Hydrolase Penicillium funiculosum PET film 0.21% weight loss [68]

Lipase Thermomyces lanuginosus PET fabrics and films TPA, BHET, MHET [69]

Cutinase Fusarium solani PET fabrics and films TPA, BHET, MHET, [69]

Cutinase Humilica insolens NR TPA, EG [70]

Cutinase Fusarium solani NR TPA, EG [70]

Cutinase Fusarium solani PET fabrics NR [71]

Cutinase Fusarium solani PET fabrics TPA [72]

Polyesterase Penicillium citrinum PET pellets/fabrics TPA, MHET, BHET and BA [73]

Hydrolase Fusarium oxysporum LCH I PET fibers TPA [74]

Hydrolase Fusarium solani PET fibers TPA [74]

Hydrolase Fusarium solani Modified PET fabrics NR [75]

Cutinase Fusarium solani PET film MHET [76]

Abbreviations: PET—Polyethylene terephthalate; TPA—Terephthalic acid; MHET—Mono-(hydroxyethyl) terephthalate; BHET—Bis-(hydroxyethyl) terephthalate; EG—Ethylene glycol;
NR—Not reported.
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Tournier et al. [61] engineered PET depolymerases, including fungal Fusarium solani
pisi cutinase (FsC) to break down and recycle plastic bottles. This improved enzyme-
catalyzed PET depolymerization to 90% conversion into monomers in 10 h, with produc-
tivity of 16.7 g of terephthalate/L/h (200 g/kilogram of PET suspension, with an enzyme
concentration of 3 milligrams/gram of PET). During enzymatic treatment, the surface pen-
dant ester linkages on the PET can be easily hydrolyzed to polar hydroxyl and carboxylic
groups, and further decompose to CO2 and water. The catalytic activities of cutinases from
Humilica insolens (HiC) and Fusarium solani (FsC) using low-crystallinity (lc) and biaxially
oriented (bo) PET films, as model substrates, were reported by Ronkvist et al. [70]. During
96 h degradation of lcPET films, FsC resulted in 5% film weight loss at 40 ◦C. Compared to
FsC, HiC-catalyzed lcPET film hydrolysis at 70 ◦C resulted in 97 ± 3% weight loss in 96 h,
corresponding to a loss in film thickness of 30 µm/day. As degradation of lcPET progressed,
the crystallinity of the remaining film increased to 27% due to the preferential degradation
of amorphous regions. The cutinases had about a 10-fold higher activity for the lcPET (7%
crystallinity) than for the boPET (35% crystallinity). Furthermore, for tested cutinases, anal-
ysis of aqueous soluble degradation products showed that they consist exclusively of TA
and EG [70]. Polyesterase from Penicillium citrinum hydrolyzes both PET. From both plas-
tic materials, bis-(2-hydroxyethyl)terephthalate and mono-(2-hydroxyethyl)terephthalate
were released, while only low amounts of TA were liberated [73].

4. Catalytic Mechanism of Cutinases for PET Hydrolysis

Cutinases mediated hydrolytic breakdown of PET into its subunits, e.g., BHET, MHET,
TA, EG, have been identified as the water-soluble products of PET films and fibres [69]. In
the presence of cutinase, PET hydrolysis is catalyzed by endo-type scission that cleaves
internal ester bonds into end-products TA and EG (Figure 3) [86]. The active catalytic site
of fungal cutinase from Fusarium solani includes Ser120, Asp175, and His188. During the
initial reaction, the electrons from the oxygen of Ser120 react with the carbonyl group of
PET, which leads to the formation of serine-terephthalate complex and ether compound.
The fungal cutinase-assisted catalytic reaction causes the breakdown of PET into BHET,
MHET, and TA [87]. The oxygen of the ether compound forms a covalent bond with the
hydrogen of His188 residue of cutinase and forms EG. The oxygen from the Ser120 binds
the hydrogen from the His188, and two molecules of cutinase and TA are released. The
liberated cutinase molecules begin a new catalytic cycle [87].
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5. Limitations Hindering Enzymatic PET Biodegradation

As discussed with the above examples, several fungal enzyme classes, i.e., esterases,
lipases, and cutinases, have been identified with significant PET biodegradation potential
in various routes, including direct or indirect catalytic breakdown (Figure 3). This led to the
formation of PET oligomeric and monomeric units, i.e., BHET, MHET, TA, and EG [69,86,87].
However, some limitations lower or hinder the efficacy of the PET biodegradation process.
For instance, high-crystalline PET has low catalytic turnover due to the limited approacha-
bility of the active sites. Furthermore, the high-crystalline PET has a higher Tg that causes
kinetic uncertainty (enzyme saturation and unexpected alteration in its activity and sta-
bility) and loss of enzyme activity at the temperature above PETs Tg [88]. Thus, there is
a need for high-temperature tolerant enzymes for efficient hydrolysis of high-crystalline
PET. Inhibition by MHET or intermediate metabolites of the catalytic reaction process is
another limitation in the enzymatic PET biodegradation [87–89]. Moreover, the formation
of by-products during the biodegradation or hydrolysis process increases the acidity of the
reaction solution [89], hence slowing down the reaction rate by inactivating the wild-type
enzyme. Owing to these limitations, native wild-type enzymes do not function adequately.
Improved catalytic performance can be accomplished through adopting various strate-
gies, such as screening for high-temperature enzymes from hyperthermophilic strains,
enzyme tailoring, genetic modification of the enzyme-producing strains, and/or deploy-
ing surfactants and additives. Each of these strategies that can assist in enhancing PET
biodegradation is discussed in the following section with relevant examples.
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6. Strategies to Enhance Enzyme-Based PET Biodegradation
6.1. Thermostable Enzymes

Hyperthermophile microbial strains with optimal activity and stability temperatures
of >80 ◦C are important sources of high-temperature thermostable enzymes, so-called
“thermo-zymes” (enzymes resistant to irreversible inactivation at high temperatures).
Thermo-zymes are considered ideal candidates for catalytic processes that need to be
operated at high temperatures. Several adaptive strategies can be followed to screen
or synthesize enzymes giving them functionality in a high-temperature environment.
Engineering high-temperature enzymes for robust catalytic transformation reactions are
well covered in the literature [90–93], thus it is not the focus of this review. Screening
thermophiles and engineered high-temperature enzymes, several other methods, such
as the exploitation of ionic liquids, or deployment of suitable modifiers such as Ca2+,
and various immobilization methods using robust support matrices have been adopted
to increase the thermostability of PET hydrolases [94–96]. Thus, these thermophilic PET
hydrolases could efficiently be used for PET biodegradation purposes. For example, the
thermo-stability and catalytic activity of PET-degrading cutinase-like enzyme, Cut190,
was boosted by high concentrations of Ca2+, which is essential for efficient enzymatic
hydrolysis of amorphous PET [96]. The Cut190, a member of the lipase family, encompasses
an α/β hydrolase fold and a Ser-His-Asp catalytic triad, thus hydrolyzing the inner block
of PET [96].

6.2. Use of Surfactants and Additives

The catalytic turnover of enzyme-based reactions can be facilitated/boosted by using
various surfactant molecules or surface-active additives in the enzymatic hydrolysis. Sur-
factants stabilize the enzymes, thereby effectively preventing enzyme denaturation during
hydrolysis, which is a significant limitation of enzymatic PET biodegradation. The supple-
mented surfactant molecules tend to bind with the enzymes and alter the secondary and
tertiary structures or flexibility of the enzyme, thereby shielding the enzyme kinetic prop-
erties [97]. Furthermore, the integration of surfactant molecules in the reaction medium
can additionally improve the dispersibility of PET particles and thus may increase the
accessibility of the substrate to enzymes. As mentioned earlier, the limited accessibility to
substrate-binding active sites of the enzymes causes low activity for PET hydrolysis. This
phenomenon may be ascribed to the hydrophobic force that prevents the enzyme from
directly accessing the substrate [69,98]. The accessibility of the substrate to enzymes is very
important as the presence of hydrophobic forces between the PET surface and reaction
substrate is one of the significant limitations of the entire PET biodegradation process [99].

One considerable way to tackle this issue of surface hydrophobic/hydrophilic balance
and substrate accessibility is the interfacial activation employing surfactant [69]. Hence,
increasing the surface hydrophilization of PET near the substrate-binding region should
promote cutinase-PET interactions, in the presence of surfactants, which is essential for
its enzyme-assisted biodegradation. The ends of polymer chains on the PET surface are
expected to protrude or form a loop [83]. Surface hydrophilicity could be increased through
the hydrolysis of these loops to carboxylic acid and hydroxyl residues. The overall PET
degradation can be further escalated by PET surface modification that is performed by
the available microbial culture or its PET hydrolytic enzymes. PET surface properties
can be improved by introducing surface-active additives to the PET surface to increase
its hydrophilicity. In this context, the PET biodegradation potential of fungal cutinase
from Fusarium solani pisi was induced by using various surfactants, including sodium
dodecyl sulfate or sodium lauryl sulfate (SDS), Triton X-100, Tween 20, and sodium tau-
rodeoxycholate (TDOC) at different concentrations in the presence of 20 mM Tris–HCl
buffer of pH 8 [100]. Furthermore, various substrates, i.e., p-nitrophenyl butyrate (pNPB),
p-nitrophenyl palmitate (pNPP), tributyrin, and triolein were also used to initiate the
reaction. The results showed 73.65% PET biodegradation by Fusarium solani pisi cutinase
that released soluble hydrolysis products, i.e., BHET, MHET, TA, and 1,2-ethylene-mono-
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terephthalate-mono(2-hydroxyethyl terephthalate) (EMT). The released hydrolysis prod-
ucts were detected and confirmed by LC-MS analysis [100]. Likewise, the incorporation of
additive molecules, such as hydrophobins which are cysteine-rich surface-active proteins
produced by filamentous fungi, has also been used to increase enzymatic PET hydroly-
sis [101–103]. Espino-Rammer et al. [101] tested two hydrophobins (HFBs), HFB4 and
HFB7 of Trichoderma spp., to enhance the rate of enzymatic hydrolysis of PET. Both HFB4
and HFB7 displayed a dosage-dependent stimulation effect on PET hydrolysis by cutinase
from Humicola insolens. Moreover, the simultaneous addition of Humicola insolens cutinase
(final concentration, 0.2 mg/mL) and HFB4 (concentrations from 0.05 to 50 mg/liter) to
PET resulted in stimulation of the cutinase activity. This was observed by measuring the
released soluble hydrolysis products, TA and MHET [101].

6.3. Enzyme Tailoring and Genetic Modification

The above-discussed shortcomings of enzymes can be overcome via enzyme tailoring
and genetic modification practices. In addition, the tailored or genetically engineered
enzyme-based catalysis offers multi-benefits, such as mild processing for complex and
stable compounds, e.g., PET, and the capability to diminish reaction by-products or limit
the generation of intermediate secondary products (that resist the enzymatic PET biodegra-
dation) [22,91,93]. Moreover, the genomic modification settings/protocols that could
enhance the PET biodegradation potential of enzymes, i.e., esterases, lipases, cutinases,
and others need to be improved/modified. Several strategies, such as random mutagenesis
and site-directed mutagenesis, genome editing, computational genomics and advanced
computational modeling, structure-guided protein tailoring, and directed evolution are
among the recent strategies that have been implemented to address the catalytic limitations
of enzyme engineering (Figure 4) [22].
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Several PET-degrading enzymes, including cutinases, have been immobilized using
different support matrices. Nevertheless, these engineered enzyme-based catalytic systems
have been used in other applications rather than in PET hydrolysis. Hence, there are limited
reports on PET hydrolysis using immobilized fungal hydrolases/cutinases. For example,
Nikolaivits et al. [104] engineered cross-linked enzyme aggregates (CLEAs) of cutinase from
Fusarium oxysporum. As discussed above, cutinases have been reported for PET biodegra-
dation, hence, this CLEAs-cutinase from Fusarium oxysporum could also be used for PET
hydrolysis. In another study, Su et al. [105] used Lewatit VP OC 1600 (a macro-porous
divinylbenzene-crosslinked methacrylate esters resin) as solid support to immobilize three
cutinases, i.e., cutinase from Aspergillus oryzae, cutinase from Humicola insolens (a ther-
mophilic fungus), and cutinase from Thielavia terrestris. Essentially, the solubility and
rigidity of PET polymers increase and decrease, respectively, in organic solvents, thereby al-
lowing easy access of the engineered enzymes to ester bonds of PET for efficient hydrolysis.
Hence, this immobilized HiC could also be used for the hydrolysis of PET [89].

7. Conclusions and Future Considerations

The continuous and rapid development of the plastic industry has raised environ-
mental issues globally, clearly evident from the massive PET waste bioaccumulation in
the landfills, seas, and oceans. Traditional methods (incineration and landfilled) to recycle
PET waste are still problematic because of the fatal consequence on aquatic animals and
humans. Finding an effective and environment-friendly strategy for PET waste green
recycling is in high demand. The discovery of new PET degrading microorganisms, mixed
culture of fungal strains, and/or their genetically engineered robust enzyme systems,
could be an effective strategy toward a green recycling scheme for PET waste. Moreover,
studying their molecular mechanisms extensively via solving their crystal structure will
widen this research area to move forward with industrial applications. The utilization of
alternative and more dynamic chassis for enhancing PET biocatalysts production needs
further investigations. The deployment of interdisciplinary and ground-breaking fungal
strategies for PET biodegradation will reduce plastic waste pollution and help to clean the
biosphere for a better tomorrow.
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