
Phys. Fluids 33, 127111 (2021); https://doi.org/10.1063/5.0073241 33, 127111

© 2021 Author(s).

An efficient three-dimensional non-
hydrostatic model for undular bores in open
channels
Cite as: Phys. Fluids 33, 127111 (2021); https://doi.org/10.1063/5.0073241
Submitted: 28 September 2021 • Accepted: 21 November 2021 • Published Online: 08 December 2021

Congfang Ai (艾丛芳),  Yuxiang Ma (马玉祥),  Weiye Ding (丁伟业), et al.

ARTICLES YOU MAY BE INTERESTED IN

Grad's distribution functions-based gas kinetic scheme for simulation of flows beyond Navier–
Stokes level
Physics of Fluids 33, 122007 (2021); https://doi.org/10.1063/5.0072061

Graph neural networks for laminar flow prediction around random two-dimensional shapes
Physics of Fluids 33, 123607 (2021); https://doi.org/10.1063/5.0064108

Acoustic particle migration and focusing in a tilted acoustic field
Physics of Fluids 33, 122006 (2021); https://doi.org/10.1063/5.0070700

https://images.scitation.org/redirect.spark?MID=176720&plid=1517092&setID=379031&channelID=0&CID=553971&banID=520430996&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=fd1c72ecb1f3dc5d3ee9f65b5b770b49ce497fc6&location=
https://doi.org/10.1063/5.0073241
https://doi.org/10.1063/5.0073241
https://aip.scitation.org/author/Ai%2C+Congfang
https://orcid.org/0000-0003-4314-0428
https://aip.scitation.org/author/Ma%2C+Yuxiang
https://orcid.org/0000-0003-1222-8259
https://aip.scitation.org/author/Ding%2C+Weiye
https://doi.org/10.1063/5.0073241
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0073241
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0073241&domain=aip.scitation.org&date_stamp=2021-12-08
https://aip.scitation.org/doi/10.1063/5.0072061
https://aip.scitation.org/doi/10.1063/5.0072061
https://doi.org/10.1063/5.0072061
https://aip.scitation.org/doi/10.1063/5.0064108
https://doi.org/10.1063/5.0064108
https://aip.scitation.org/doi/10.1063/5.0070700
https://doi.org/10.1063/5.0070700


An efficient three-dimensional non-hydrostatic
model for undular bores in open channels

Cite as: Phys. Fluids 33, 127111 (2021); doi: 10.1063/5.0073241
Submitted: 28 September 2021 . Accepted: 21 November 2021 .
Published Online: 8 December 2021

Congfang Ai (艾丛芳),1 Yuxiang Ma (马玉祥),1,a) Weiye Ding (丁伟业),2 Zhihua Xie (谢志华),3

and Guohai Dong (董国海)1

AFFILIATIONS
1State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, 116024 Dalian, China
2School of Marine Engineering Equipment, Zhejiang Ocean University, 316022 Zhoushan, China
3Hydro-environmental Research Centre, School of Engineering, Cardiff University, CF10 3AT Cardiff, United Kingdom

a)Author to whom correspondence should be addressed: yuxma@dlut.edu.cn

ABSTRACT

A three-dimensional (3D) non-hydrostatic model is presented to simulate open-channel free-surface flows involving undular bores. The 3D
unsteady mass conservation and momentum equations are solved using an explicit projection method in a nonstandard staggered grid. The
grid system is built from a two-dimensional horizontal structured grid by adding horizontal layers. The model is validated using four typical
benchmark problems, including undular bore development, an undular bore generated by a sudden discharge, and two test cases involving
undular hydraulic jumps. The proposed model results are compared with experimental data and results from other models. Overall, the
agreement between the proposed model results and experimental data is generally good, demonstrating the capability of the model to resolve
undular bores. In addition, the non-hydrostatic pressure field under the undular free surface is revealed, and the efficiency of the proposed
model is presented. It is shown that the proposed model behaves better than a volume of fluid model in terms of efficiency, because the pro-
posed model can use fewer computational grid cells to resolve undular bores in open channels.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0073241

I. INTRODUCTION

It is well known that after the opening of a sluice gate or at the
head of a bore, secondary free-surface undulation may be observed.
This undulation causes a larger leading wave crest and can lead to sig-
nificant engineering and design challenges; in addition, it cannot be
reproduced by classical shallow water models with the hydrostatic
pressure assumption. To obtain better insight into the evolution of
undular bores, many physical experiment (Lin et al., 2020a; 2020b;
Montes and Chanson, 1998; Soares-Fraz~ao and Zech, 2002a; Treske,
1994) have been conducted over a long period of time. In recent years,
numerical models incorporating non-hydrostatic effects (Biscarini
et al., 2010; Biswas et al., 2021; Bristeau et al., 2011; Castro-Orgaz and
Chanson, 2021; Chang et al., 2014; Hatland and Kalisch, 2019; Kim
and Lynett, 2011; Mohapatra and Chaudhry, 2004; Munoz and
Constantinescu, 2020; Soares-Fraz~ao and Guinot, 2008; Soares-Fraz~ao
and Zech, 2002a; Vargas-Magana et al., 2021) have been developed
and successfully applied to simulate undular bores. Most of them are
Boussinesq-type models (Castro-Orgaz and Chanson, 2021; Chang
et al., 2014; Hatland and Kalisch, 2019; Kim and Lynett, 2011;
Mohapatra and Chaudhry, 2004; Soares-Fraz~ao and Guinot, 2008;

Soares-Fraz~ao and Zech, 2002a; Vargas-Magana et al., 2021), which
are depth-integrated formulations and incorporate dispersive terms to
account for non-hydrostatic effects. In addition, Bristeau et al. (2011)
derived a two-dimensional vertical (2DV) non-hydrostatic Saint-
Venant system and successfully simulated undular bores generated by
the rapid closing of a sluice gate. With the increase in computational
power, numerical models based on Navier–Stokes equations (NSE)
can also be employed to predict undular bores.

When developing NSE models, one of the primary issues is to
numerically capture the moving free surface. Many famous methods
have been used to simulate this moving boundary, e.g., the arbitrary
Lagrangian–Eulerian method (Hodges and Street, 1999), the marker
and cell method (Harlow and Welch, 1965), the volume of fluid
(VOF) method (Hirt and Nichols, 1981), and the level-set method
(Yue et al., 2003). Currently, a few NSE models (Biscarini et al., 2010;
Marsooli andWu, 2014; Munoz and Constantinescu, 2020) that incor-
porate the VOF method to treat free surfaces have been successfully
applied to simulate dam-break flows involving undular bores.
However, the high computational expense of these models usually hin-
ders their practical applications, especially for large-scale problems.
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Over the past two decades, many non-hydrostatic models have
been developed to simulate open-channel flows (Lee et al., 2006; and
Leupi et al., 2009); dispersive free-surface waves (Ai et al., 2011; 2019;
Stelling and Zijlema, 2003; Wu et al., 2010; Young et al., 2009; Yuan and
Wu, 2006; Zijlema and Stelling, 2005); and oceanic internal waves (Ai
and Ding, 2016; Ai et al., 2021; Fringer, 2006; and Lai et al., 2010).
Non-hydrostatic models also solve the NSE, but employ the free-surface
equation to efficiently track the free-surface motion. The so-called free-
surface equation is obtained by integrating the continuity equation over
the water depth and applying Leibniz’s rule with the kinematic boundary
conditions at the impermeable bottom and the moving free surface. In
contrast to VOF-based NSE models, non-hydrostatic models usually
require much fewer grid cells in the vertical direction to track the free-
surface motion, but they cannot address complicated free surfaces (e.g.,
overturning motions). As presented by Ai et al. (2011), Stelling and
Zijlema (2003), Wu et al. (2010), Yuan andWu (2006), and Zijlema and
Stelling (2005), non-hydrostatic models with a few horizontal layers can
accurately predict a range of short wave motions, where wave shoaling,
nonlinearity, dispersion, refraction, and diffraction phenomena occur. In
view of the capability of non-hydrostatic models to resolve dispersive
free-surface waves, they have the potential to predict undular bores accu-
rately and efficiently. To the best of our knowledge, no applications of
three-dimensional (3D) non-hydrostatic models on the simulation of
undular bores in open channels have been published.

In this paper, we propose a 3D non-hydrostatic model to simu-
late undular bores in open channels. The proposed model is extended
from the previous non-hydrostatic model developed by Ai et al.
(2011), which employs an explicit projection method to solve the
incompressible Euler equations. Variables are defined in a novel non-
standard staggered grid system, which is built from a two-dimensional
(2D) horizontal structured grid, by adding some horizontal layers. The
extension of the previous model is achieved by solving the 3D
Reynolds-averaging NSE instead of Euler equations and employing
eddy viscosity approximations. The resulting model is validated with
four typical benchmark problems: undular bore development, an
undular bore generated by a sudden discharge, dam-break flow over a
triangular bottom sill, and dam-break flow through an L-shaped chan-
nel. The model results are compared with the available experimental
data and other published model results. To demonstrate the model’s
3D feature and the relationship between undular bores and non-
hydrostatic pressures, the non-hydrostatic pressure field under the
undular free surface is presented. The model’s efficiency is evaluated
in the final 3D test case, which is computationally demanding.

One of the major aims of this paper is to validate the proposed
model’s capability to resolve undular bores in open channels. Undular
bores can be formed under a variety of different circumstances. For
example, in open channels undular bores can be induced by a sudden
increase in discharge, the failure of a dam, dam-break waves against
obstacles or closed ends, underwater moving objects, etc. The valida-
tion tests covered several circumstances that lead to the formation of
undular bores. However, the proposed model has the potential to sim-
ulate undular bores resulting frommore varied mechanisms.

II. MATHEMATICAL MODEL
A. Governing equations

Non-hydrostatic free-surface flows are governed by the 3D
Reynolds-averaging NSE for an incompressible fluid, which are based

on the conservation of mass and momentum and can be expressed as
follows:
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where u, v; and w are the velocity components in the horizontal x, y,
and vertical z directions, respectively; p is the normalized pressure
divided by a constant reference density q0; q denotes the water density;
and Kh and Kv are the horizontal and vertical eddy viscosities, respec-
tively. Finally, t is the time and g is the gravitational acceleration.

Following Casulli (1999), the pressure p is split into its hydro-
static and non-hydrostatic components as follows:

p ¼ g g� zð Þ þ q; (5)

where g is the free-surface elevation and q is the non-hydrostatic pres-
sure component.

Introducing Eq. (5) into Eqs. (2)–(4) results in the following:
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To account for the difference between the horizontal and vertical
grid resolutions, the horizontal and vertical eddy viscosities are
determined by the Smagorinsky model (Smagorinsky, 1963) and the
standard k� emodel (Rodi, 1984), respectively,

Kh ¼ �0 þ CsDð Þ2 2SijSijð Þ1
2; (9)

where �0 is the molecular viscosity, Cs is the model parameter, and
D ¼ ðDxDyÞ1=2 and Dx and Dy are the grid sizes in the x and y direc-
tions, respectively. Sij is the rate of strain,
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Kv ¼ �0 þ cl
k2

e
; (10)

where cl ¼ 0.09. k and e denote the turbulent kinetic energy and dissi-
pation rate, respectively, and are calculated by the following k� e
model (Rodi, 1984):

@k
@t

þ @ ukð Þ
@x

þ @ vkð Þ
@y

þ @ wkð Þ
@z

¼ @

@x
Kv

rk

@k
@x

� �
þ @

@y
Kv

rk

@k
@y

� �
þ @

@z
Kv

rk

@k
@z

� �
þ P � e; (11)

@e
@t

þ @ ueð Þ
@x

þ @ veð Þ
@y

þ @ weð Þ
@z

¼ @

@x
Kv

re

@e
@x

� �
þ @

@y
Kv

re

@e
@y

� �
þ @

@z
Kv

re

@e
@z

� �
þ c1e

e
k
P � c2e

e2

k
;

(12)

where P is the turbulence production term. The turbulence constants
are rk ¼ 1.0, re ¼ 1.3, c1e ¼ 1.44, and c2e ¼ 1.92.

B. Boundary conditions

Boundary conditions are required at all the boundaries of a 3D
domain including the free surface, the bottom, the vertical wall, and
the inflow and outflow boundaries. Only one normal and two tangen-
tial components of the velocities and/or stresses need to be described
at the boundaries to obtain a unique solution.

At the free surface, atmospheric pressure is exerted so that the
following Dirichlet boundary condition for the non-hydrostatic pres-
sure q is imposed:

qjz¼g ¼ 0; (13)

where g is the free-surface elevation.
The kinematic boundary condition at the moving free surface is

expressed as follows:

wjz¼g ¼
@g
@t

þ u
@g
@x

þ v
@g
@y

: (14)

For the impermeable bottom surface z ¼ �dðx; yÞ, the shear stress com-
ponents in the directions x and y, s0x and s0y are computed as follows:

s0x
q

¼ Kv @u
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¼ cbub
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;
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¼ cbvb
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p
;

(15)

where ub and vb are the horizontal velocities at the bottom cell;
cb ¼ cf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2b þ v2b

p
=h, where h ¼ gþ d is the water depth; and cf is

the bottom friction coefficient and is calculated from the
Manning–Strickler formulation as cf ¼ 0:015ðks=hÞ1=3, where the
roughness value ks is calibrated based on the measured data.

The kinematic boundary condition at the impermeable bottom is
expressed as follows:

wjz¼�d ¼ �u
@d
@x

� v
@d
@y

: (16)

Integrating Eq. (1) from the bottom surface z ¼ �dðx; yÞ to the free-
surface g, and subsequently using Leibniz’s rule with Eqs. (14) and
(16), we can obtain the following free-surface equation:

@g
@t

þ @

@x

ðg
�d

udz þ @

@y

ðg
�d

vdz ¼ 0: (17)

For the inflow boundary condition, the horizontal velocity compo-
nents are determined from the inflow hydrograph. An outflow
boundary condition is imposed in the form of an open boundary or
flow depth. An open boundary condition is specified using a zero
gradient condition for the outlet velocities. In the case of a depth
boundary condition, the water depth is given, and the outlet veloci-
ties are determined from Eq. (17). Finally, for vertical walls, the
impermeability condition is specified, i.e., the velocity normal to the
wall is set to zero.

III. NON-HYDROSTATIC MODEL
A. Grid system

The 3D computational domain is discretized as a 2D structured
horizontal grid with some horizontal layers. In this grid system, the
3D grid projection onto the horizontal plane forms a rectilinear grid
system, which has a set of Nx and Ny cells in the x and y directions,
respectively. In the vertical direction, a boundary fitted grid system is
employed, and the domain is uniformly divided into Nz layers
(namely, the number of vertical grid cells) so that the horizontal levels
zmþ1=2 are computed as follows:

zmþ1=2 ¼ �d x; yð Þ þm g x; y; tð Þ þ d x; yð Þ� �
=Nz; (18)

wherem is the layer index.
Figure 1 shows the arrangement of variables in the grid system.

i and j are the grid indices in the x and y directions, respectively. The
discrete velocities, non-hydrostatic pressure, and water surface eleva-
tion are defined at staggered locations on the x � y plane, while on
the vertical plane (x � z or y � z plane), variables are stored in a
nonstandard staggered way. As presented in Ai et al. (2011), such a
grid arrangement allows the zero pressure boundary condition
[Eq. (13)] to be easily and accurately imposed at the free surface
z ¼ gðx; yÞ and renders the discretized Poisson equation for non-
hydrostatic pressure corrections symmetric and positive definite;
thus, it can be solved effectively using the preconditioned conjugate
gradient method. The definitions for the turbulent kinetic energy k
and dissipation rate e are identical to the position of the vertical
velocity component w.

B. Numerical methods

By including diffusion terms in the momentum equations, the
algorithms described in Ai et al. (2011) can also be employed to
solve Eqs. (1), (6)–(8), and (17). First, based on the vertical
boundary-fitted coordinate system, integrating Eqs. (1) and (6)–(8)
over a horizontal layer m can yields the following semi-discretized
equations:

The continuity equation,

@Dzm
@t

þ @ Dzuð Þm
@x

þ @ Dzvð Þm
@y

þ xmþ1=2 � xm�1=2 ¼ 0: (19)

The horizontal momentum equations,
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The vertical momentum equation,
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where Dzm ¼ zmþ1=2 � zm�1=2; Fu, Fv , and Fw represent the horizon-
tal momentum diffusion terms; and xmþ1=2 is the vertical velocity �c
relative to the layer level zmþ1=2.

In the second step, Eqs. (1) and (20)–(22) are discretized by a
finite difference–finite volume method and then the resulting equa-
tions are solved by an explicit projection method, which can be subdi-
vided into two stages. The finite difference method (Ai et al., 2019;

Asghar et al., 2020; Casulli, 1999) is widely used to solve partial differ-
ential equations based on a structured grid, while the finite volume
method (Ai and Ding, 2016; Fringer et al., 2006) does not require a
structured grid and is usually employed to get conservative schemes.
In the proposed model, the finite volume method is only used to dis-
cretize the horizontal advection terms in Eqs. (20)–(22) to achieve
momentum-conserved schemes.

The first stage is to project intermediate velocities unþ1=2
iþ1=2;j;m;

vnþ1=2
i;jþ1=2;m; and wnþ1=2

i;j;m by means of solving Eqs. (20)–(22), which con-
tain the non-hydrostatic pressure at the previous time level. This
results in the following equations:

unþ1=2
iþ1=2;j;m ¼ adec uð Þ þ diff uð Þ þ fu1g

n
iþ1;j þ fu2g

n
i;j
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n
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wnþ1=2
i;j;m ¼ adec wð Þ þ diff wð Þ þ fw1qni;j;mþ1=2 þ fw2qni;j;m�1=2; (25)

where fu, fv , and fw are the functions of the known values at the previ-
ous time. adecðuÞ, adecðvÞ, and adecðwÞ represent the advection terms
in the corresponding momentum equations, and their finite volume
discretizations can be found in Ai et al. (2011). In addition, diff ðuÞ,
diff ðvÞ, and diff ðwÞ are discretized momentum diffusion terms that
can be easily obtained using the central differencing scheme and are
not provided here for brevity.

In the second stage, the new velocities unþ1
iþ1=2;j;m; v

nþ1
i;jþ1=2;m; and

wnþ1
i;j;m are computed by correcting the projected values after including

FIG. 1. Arrangement of variables in the grid system: (a) x � z plane and (b) x � y plane.
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the non-hydrostatic pressure terms. Similar to Eqs. (23)–(25), expres-
sions for unþ1

iþ1=2;j;m; v
nþ1
i;jþ1=2;m, and w

nþ1
i;j;m can be obtained as follows:
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i;j;m�1=2: (28)

By subtracting Eqs. (23)–(25) from Eqs. (26)–(28), we can obtain the
following expressions:

unþ1
iþ1=2;j;m ¼ unþ1=2

iþ1=2;j;m þ fu3Dqiþ1;j;mþ1=2 þ fu4Dqiþ1;j;m�1=2

þ fu5Dqi;j;mþ1=2 þ fu6Dqi;j;m�1=2; (29)

vnþ1
i;jþ1=2;m ¼ vnþ1=2

i;jþ1=2;m þ fv3Dqi;jþ1;mþ1=2 þ fv4Dqi;jþ1;m�1=2

þ fv5Dqi;j;mþ1=2 þ fv6Dqi;j;m�1=2; (30)

wnþ1
i;j;m ¼ wnþ1=2

i;j;m þ fw1Dqi;j;mþ1=2 þ fw2Dqi;j;m�1=2; (31)

where Dq ¼ qnþ1 � qn is the non-hydrostatic pressure correction
term.

Substitution of the expressions for unþ1
iþ1=2;j;m; v

nþ1
i;jþ1=2;m; and wnþ1

i;j;m
from Eqs. (29)–(31) into the finite difference approximation of Eq. (1)
yields the Poisson equation for Dq, which can be symbolically written
as follows:

ADq ¼ b; (32)

where A is a symmetric and positive definite matrix with dimension
ðNxNyNzÞ � ðNxNyNzÞ; Dq is a vector of the calculated non-
hydrostatic pressure correction; and b is a known vector related to the
intermediate velocities.

After the non-hydrostatic pressure correction Dq is obtained by
solving Eq. (32), the new velocity field is readily determined from Eqs.
(29)–(31).

In the final step, the new free-surface elevation is obtained by
applying finite volume discretization to solve Eq. (17). Meanwhile,
the relative velocity xkþ1=2 is calculated from Eq. (19), which can
also be discretized using a finite volume method. More details
regarding the discretization of Eqs. (17) and (19) can be found in Ai
et al. (2011).

After the new velocities unþ1
iþ1=2;j;m; v

nþ1
i;jþ1=2;m; and wnþ1

i;j;m and the
new free-surface elevation gnþ1

i;j are obtained, the k� e model [Eqs.
(11) and (12)] is solved using a discretization method similar to Eq.
(8). Then, the horizontal and vertical eddy viscosities are calculated
from Eqs. (9) and (10). Notably, to describe the wet–dry fronts, a novel
wet–dry algorithm proposed by Ai and Jin (2012) is implemented at
the beginning of each time step. Details regarding the wet–dry algo-
rithm can be found in Ai and Jin (2012) and are not provided here for
brevity. The main solution procedure is summarized in Fig. 2, in
which the computational grid and the initial values of the variables are
first configured at the initialization step.

IV. APPLICATIONS

In this section, the proposed model’s capability is examined using
four laboratory experiments involving undular bores in open channels.
The former three test cases are 2DV problems, while the last case is a
3D example in which the proposed model’s efficiency is tested. In all
the computations, both the horizontal grid sizes and the number of
horizontal layers are specified by grid sensitivity analysis. For all the
test cases, five horizontal layers are employed in the vertical direction,
and Cs is taken to be 0.1.

A. Development of an undular bore

In the first example, the growth of an undular bore in a weakly
non-hydrostatic system is considered. Soares-Fraz~ao and Guinot
(2008) noted that as a traveling long wave steepens, it may eventually
form a bore. This process can be accurately reproduced by Boussinesq-
type models (Chang et al., 2014; Peregrine, 1966; Soares-Fraz~ao and
Guinot, 2008) but cannot be captured by classical shallow water mod-
els. In this study, the proposed non-hydrostatic model is used to inves-
tigate undular bore development. Following Peregrine (1966), the
initial water depth and velocity field are expressed as follows:

h xð Þ ¼ 1
g

u xð Þ
ffiffiffiffiffiffiffi
gh0

p
þ 1
4
u2 xð Þ

� �
þ h0; (33)

u xð Þ ¼ 1
2
u0

ffiffiffiffiffiffiffi
gh0

p
1� tanh x=að Þ½ �; (34)

where h0 ¼ 1.0m is the undisturbed initial water depth; u0 ¼ 0.1m/s
is the velocity of the incoming wave; and a ¼ 5.0m is a parameter
describing the shape of the incoming wave. All of the boundaries are
vertical walls.

FIG. 2. Flow chart for the main solution procedure.
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In the simulation, the initial conditions [Eqs. (33) and (34)] are
specified in a flat rectangular channel, which is 120m long in the x
direction and is discretized by a grid size of Dx ¼ 0.05m. The origin
of the x axis is located 50m downstream of the upper end of the chan-
nel. The time step is set to 0.05 s and the roughness value is set to
ks ¼ 3.0 � 10�4. Comparisons of the free-surface profiles between the
two sets of Boussinesq model results, the present model results, and
the measured data at four different times are plotted in Fig. 3. The
Boussinesq model, which was proposed by Soares-Fraz~ao and Guinot
(2008), solves one-dimensional Boussinesq equations using a hybrid
finite volume scheme with MUSCL4 reconstruction. The smooth
particle hydrodynamics (SPH)-Boussinesq model employs the SPH
method to solve the Lagrangian form of the 2D Boussinesq equations.
The proposed model accurately reproduces the growth of the undular
bore compared with the measured data and agrees well with both
Boussinesq models, demonstrating the ability of the developed

non-hydrostatic model to resolve undular bore development. To dem-
onstrate the advantage of the proposed 3D model, Fig. 4 depicts the
normalized non-hydrostatic pressure field obtained by the proposed
model at different times. During the development of the undular bore,
both the positive and negative non-hydrostatic pressure values become
increasingly strong. Under the wave crest, the non-hydrostatic pres-
sure is always negative, while a stronger and positive pressure can be
observed in front of the crest.

B. Undular bore generated by a sudden discharge

Soares-Fraz~ao and Zech (2002a) presented an experiment that
investigates the formation of an undular bore generated by a sudden

FIG. 3. Comparisons of the free-surface profile between the two sets of
Boussinesq model results, the proposed model results, and the measured data at
(a) t ¼ 6.39 s, (b) t ¼ 9.58 s, (c) t ¼ 12.77 s, and (d) t ¼ 15.96 s.

FIG. 4. The normalized non-hydrostatic pressure field q (m2/s2) at (a) t ¼ 6.39 s,
(b) t ¼ 9.58 s, (c) t ¼ 12.77 s, and (d) t ¼ 15.96 s. (The vertical scale has been
amplified by a factor of 20.)
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release of water. The experiment has been widely used to validate
Boussinesq-type models (Kim and Lynett, 2011; Soares-Fraz~ao and
Guinot, 2008; Soares-Fraz~ao and Zech, 2002a). A similar test case
regarding an undular bore that formed due to the closing of a sluice
gate was also employed to test the 2DV non-hydrostatic Saint-Venant
model proposed by Bristeau et al. (2011). In this study, we conduct the
numerical simulation on an undular bore generated by a sudden dis-
charge and compare the numerical results with experimental data
from Soares-Fraz~ao and Zech (2002a). Figure 5 shows a schematic
view of the experiment. In the experiment, a sluice gate separates the
upstream reservoir from the horizontal channel. Initially, the gate is
closed and the water in both regions is at rest. The water depth in the
downstream channel is 0.251m. When the gate is opened rapidly, a
bore forms and travels downstream. Following Soares-Fraz~ao and
Guinot (2008), the sudden release of the gate was modeled by impos-
ing a unit discharge of Q ¼ 0:059 m2/s at the channel’s upstream
boundary. A constant water depth h ¼ 0:251 m was specified at the
channel’s downstream boundary.

In this computation, a uniform horizontal grid size Dx
¼ 0.025m and a time step of Dt ¼ 0.02 s are chosen. The roughness
value ks is set to 3.0 � 10�4. Comparisons of the time histories of the
water depth between the two sets of numerical results and the experi-
mental data are plotted in Fig. 6. The proposed model results are quite
similar to the Boussinesq model results (Soares-Fraz~ao and Guinot,
2008) and underpredict the leading wave crest at locations C5–C1 and
slightly overestimate it at location C0. However, the proposed model
makes good predictions of the propagation of the leading wave crest
and captures the primary feature of the undular bore generated by a
sudden discharge, which is characterized by a series of solitary-like
waves with gradually damping amplitudes. Figure 7 depicts the nor-
malized non-hydrostatic pressure field obtained by the proposed
model at t ¼ 15 s. The non-hydrostatic pressure varies between a posi-
tive and a negative value below the undular water surface. Moreover,
as the amplitude damps, the non-hydrostatic pressure becomes weak.

C. Dam-break flow over a triangular bottom sill

When a dam-break flow encounters a bottom sill, a negative bore
behind the sill will be formed and propagate upstream.Many research-
ers have investigated this process using laboratory experiments
(Morris, 2000; Ozmen-Cagatay and Kocaman, 2011; Soares-Fraz~ao,
2007) or numerical simulations based on VOF models (Biscarini et al.,
2010; Munoz and Constantinescu, 2020; Marsooli and Wu, 2014;

Ozmen-Cagatay and Kocaman, 2011). In this study, the proposed
model results are compared with the experimental data published by
Soares-Fraz~ao (2007). The channel geometry and the locations of
gauging points are presented in Fig. 8. The channel is 5.6m long and
the initial water depth in the 2.39m long upstream reservoir is
0.111m. The symmetrical triangular sill is 0.065m high and has bed
slopes of6 0.14. The water depth downstream of the sill is maintained
at 0.02m. Both the start and the end of the channel are vertical walls
as shown in Fig. 8.

In this computation, a grid size of Dx ¼ 0.005m and a time step
of Dt ¼ 0.001 s are used. Three roughness values ks ¼ 1.5� 10�3,
3.0� 10�3, and 6.0� 10�3 are considered in this study. Figure 9 shows
comparisons of the time histories of the water depth between the three
sets of proposed model results and experimental data. Overall,
the model results with ks ¼ 3.0� 10�3 are better than those with ks
¼ 1.5� 10�3 and 6.0� 10�3 and are in good agreement with the
experimental data. Especially at Gauging point G3, the model accu-
rately records the propagation and reflection of several undular bores
during the first 45 s after the dam break. As described in the
experiment by Soares-Fraz~ao (2007), these bores are put down to the
multiple wave reflections in the channel upstream of the sill between
the wall at the upstream boundary and the triangular sill. To reveal the
role of non-hydrostatic pressures in the development of undular bores,
the normalized non-hydrostatic pressure fields during the first 15 s are
depicted in Fig. 10, in which the origin of the x coordinate is located at
the upstream boundary of the channel. Figures 10(a)–10(c) show a
bore that reflects against the sill and propagates upstream with a free-
surface undulation, while Figs. 10(d)–10(f) show an undular bore that
reflects against the upstream wall and then travels back toward the sill.
The non-hydrostatic pressure also varies between positive and negative
values below the undular water surface. Moreover, whether the bore
propagates upstream or downstream, as the first wave amplitude
damps, the non-hydrostatic pressure below becomes weak.

D. Dam-break flow through an L-shaped channel

The proposed model has been validated by three 2DV problems,
so the final example is focused on a 3D test case. The dam-break
experiment in an L-shaped channel, which was conducted by Soares-
Fraz~ao and Zech (2002b), is employed; this experiment has been used
as a benchmark test for the validation of classical shallow water models
(Gottardi and Venutelli, 2004; Liu et al., 2013; Ortiz, 2014) and VOF
models (Biscarini et al., 2010; Munoz and Constantinescu, 2020). Kim

FIG. 5. Experimental setup for the undular bore generated by a sudden discharge.
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and Lynett (2011) also employed a Boussinesq-type model to investi-
gate the non-hydrostatic effects in this dam-break process.

The dam-break experiment was conducted in a domain consist-
ing of a rectangular reservoir connected to an L-shaped channel. Both
the reservoir and the channel are horizontal and connected by a dam.
The geometry of the experimental layout and the locations of the
gauging points are presented in Fig. 11. Following Kim and Lynett
(2011), the bottom surface of the reservoir is identical to the channel
bed elevation. Initially, the water depth in the reservoir is 0.2m, and
the channel is dry. All the boundaries are vertical walls except the end
of the channel, which is an open boundary.

In the horizontal plane, according to an analysis of the computed
results’ sensitivity to the horizontal grid spacing, grid sizes Dx ¼ Dy
¼ 0.01m are used in this computation. The total grid cells are there-
fore 93 850 � 5¼ 469 250. The time step is set to 0.002 s, and the total
simulation time is up to 40 s. The roughness value ks is calibrated to be
3.0 � 10�3. During the simulation time, the dam-break wave propa-
gates toward the downstream channel and collides with the channel
bend boundaries; then, a hydraulic jump forms in the bend region and
propagates upstream with a free-surface undulation. Comparisons of
the time histories of the water depth between the two sets of numerical
results and experimental data at different gauging points are plotted in
Fig. 12. The Boussinesq model results from Kim and Lynett (2011) are
only available for Gauging points P2–P6. For all the gauging points,
the proposed model results are similar to the Boussinesq model results
and both model results are in reasonable agreement with the measured
data. Both model results show a large wave crest at Gauging point P4.
The reason for this crest is that wave breaking may occur when the
dam break wave first encounters the channel bend boundaries and
both models cannot address wave breaking accurately without the
incorporation of a wave breaking algorithm.

3D view plots of the water depth, which describe the formation
of the hydraulic jump and its propagation upstream into the reservoir,
are illustrated in Fig. 13. At t ¼ 6.0 s, the water depth in the bend
increases, and a hydraulic jump gradually forms. Hereafter, the

FIG. 6. Comparisons of the time histories of the water depth among the Boussinesq model results published by Soares-Fraz~ao and Guinot (2008), the proposed model results,
and the experimental data. (a) Location C5, (b) Location C4, (c) Location C3, (d) Location C2, (e) Location C1, and (f) Location C0.

FIG. 7. The normalized non-hydrostatic pressure field q (m2/s2) at t ¼ 15 s.
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hydraulic jump propagates upstream with a free-surface undulation.
At t ¼ 17.0 s, the undular hydraulic jump has just arrived at the
reservoir.

This computation was conducted on a desktop computer with an
Intel(R) Core(TM) i7-7700K CPU. The CPU is a four-core processor
with a base frequency of 4.2GHz and total RAM of 32 GB. The pro-
posed model was implemented using C# multithread technology. The
CPU time was approximately 4.8 h. In addition, Munoz and
Constantinescu (2020) employed the pressure-Poisson solver (a VOF
model) in STAR-CCMþ to simulate a similar test case on a four-core
PC with 16 GB of RAM per core, but they used 9 000 000 grid cells to
discretize the computational domain. The simulation time is 14 s, and

FIG. 8. Sketch of the geometry for dam-break flow over a triangular bottom sill.

FIG. 9. Comparisons of the time histories of the water depth between the three
sets of the present model results with different roughness values and measured
data. (a) Gauging point G1, (b) Gauging point G2, and (c) Gauging point G3.

FIG. 10. Normalized non-hydrostatic pressure fields q (m2/s2) after the dam break
at (a) t ¼ 4 s, (b) t ¼ 7 s, (c) t ¼ 9 s, (d) t ¼ 10 s, (e) t ¼ 13 s, and (f) t ¼ 15 s.
(The vertical scale has been amplified by a factor of 10.)
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FIG. 11. The layout of the dam-break flow through an L-shaped channel.

FIG. 12. Comparisons of the time histories of the water depth among the Boussinesq model results published by Kim and Lynett (2011), the present model results, and the
experimental data. (a) Gauging point P1, (b) Gauging point P2, (c) Gauging point P3, (d) Gauging point P4, (e) Gauging point P5, and (f) Gauging point P6.
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the corresponding CPU time for the VOF model is approximately
20 h. Notably, in a similar test case considered by Munoz and
Constantinescu (2020), the reservoir’s bottom surface is 0.33m lower
than the channel bed elevation, and both the size of the reservoir and
channel are slightly different from those used in this study. Moreover,
only the outer-bank free-surface profiles along the channel are avail-
able. Therefore, a comparison of numerical results between the pro-
posed model and the VOF model is not provided here.

V. CONCLUSIONS

This paper proposes a 3D non-hydrostatic free-surface model
that simulates undular bores in open channels. This model utilizes an

explicit projection method to solve the 3D Reynolds-averaging NSE,
which are discretized using a finite difference–finite volume method
in a nonstandard staggered grid. The 3D grid system is constructed
from a horizontal structured grid by adding some horizontal layers.
The horizontal and vertical eddy viscosities are calculated based on
the Smagorinsky model (Smagorinsky, 1963) and the standard k� e
model (Rodi, 1984), respectively, to consider the difference between
the horizontal and vertical grid resolutions. The proposed model
results have been compared with available experimental data and
results from other models. Generally, good agreement between the
proposed model results and the experimental data has been
achieved, demonstrating the capability of the proposed model to
resolve undular bores in open channels.

Particularly, for the former three test cases in which wave
breaking may not occur, the non-hydrostatic pressure field under
the undular free surface is revealed by the proposed model.
Regarding the development of an undular bore, it is found that a
negative non-hydrostatic pressure is distributed below the wave
crest, while in front of the crest, the non-hydrostatic pressure field is
positive. Moreover, with the development of the undular bore, both
the positive and negative values become increasingly strong. The
undular bore generated by a sudden discharge is characterized by a
series of solitary-like waves with gradually damping amplitudes.
Under free-surface undulation, the non-hydrostatic pressure varies
between positive and negative values, but both values become weak
as the wave amplitude damps. Regarding the dam-break flow over a
triangular sill, the non-hydrostatic pressure field below the undular
bore is very similar to that presented in the previous test case.
During the propagation of the undular bore, the first wave amplitude
damps gradually and the non-hydrostatic pressure below the undu-
lar bore becomes weaker.

For the last test case, wave breaking may occur when the dam-
break wave first encounters the channel bend boundaries. For this rea-
son, the proposed model without a wave breaking algorithm predicts a
larger leading wave crest at the gauging point near the channel bend
boundaries. However, the proposed model accurately predicts that the
hydraulic jump propagates upstream with free-surface undulation. In
addition, a comparison of computational time between the proposed
model and a VOFmodel indicates that the proposed model’s efficiency
may be better than that of VOF models because the proposed model
can employ fewer computational grid cells to resolve undular bores in
open channels.
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FIG. 13. 3D view plots of the water depth at different times: (a) t ¼ 6.0 s, (b) t
¼ 12.0 s, and (c) t ¼ 17.0 s.
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NOMENCLATURE

d bottom surface (m)
g gravitational acceleration (m s�2)
i grid index in the x direction
j grid index in the y direction
k turbulent kinetic energy (N m)

Kh horizontal eddy viscosity (m2 s�1)
ks roughness value (m)
Kv vertical eddy viscosity (m2 s�1)
m grid index in the z direction

NSE Navier–Stokes equations
Nx number of cells in the x direction
Ny number of cells in the y direction
Nz number of cells in the z direction
p normalized pressure (m2 s�2)
P turbulence production term (N m s�1)
q non-hydrostatic pressure component (m2 s�2)
Sij rate of strain (s�1)
t time (s)
u velocity component in the x direction (m s�1)
ub velocity component in the x direction at the bottom cell

(m s�1)
v velocity component in the y direction (m s�1)

vb velocity component in the y direction at the bottom cell
(m s�1)

�0 molecular viscosity (m2 s�1)
VOF volume of fluid method

w velocity component in the z direction (m s�1)
zmþ1=2 layer level (m)

Dq non-hydrostatic pressure correction term (m2 s�2)
Dx grid size in the x direction (m)
Dy grid size in the y direction (m)

Dzm layer thickness (m)
e turbulent dissipation rate
g free-surface elevation (m)
q water density (kg m�3)
q0 constant reference density (kg m�3)
s0x shear stress component in the x direction (m2 s�2)
s0y shear stress components in the y direction (m2 s�2)

xmþ1=2 vertical velocity relative to the layer level zmþ1=2

2D two-dimensional
2DV two-dimensional vertical
3D three-dimensional
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