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ABSTRACT2

3

Recognising familiar places is a competence required in many engineering applications that4
interact with the real world such as robot navigation. Combining information from different sensory5
sources promotes robustness and accuracy of place recognition. However, mismatch in data6
registration, dimensionality, and timing between modalities remain challenging problems in7
multisensory place recognition. Spurious data generated by sensor drop-out in multisensory8
environments is particularly problematic and often resolved through adhoc and brittle solutions.9
An effective approach to these problems is demonstrated by animals as they gracefully move10
through the world. Therefore, we take a neuro-ethological approach by adopting self-supervised11
representation learning based on a neuroscientific model of visual cortex known as predictive12
coding. We demonstrate how this parsimonious network algorithm which is trained using a local13
learning rule can be extended to combine visual and tactile sensory cues from a biomimetic robot14
as it naturally explores a visually aliased environment. The place recognition performance15
obtained using joint latent representations generated by the network is significantly better16
than contemporary representation learning techniques. Further, we see evidence of improved17
robustness at place recognition in face of unimodal sensor drop-out. The proposed multimodal18
deep predictive coding algorithm presented is also linearly extensible to accommodate more than19
two sensory modalities, thereby providing an intriguing example of the value of neuro-biologically20
plausible representation learning for multimodal navigation.21
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1 INTRODUCTION
The study of biology and the brain has inspired many innovative and robust solutions to hard problems23
in engineering. Biologically inspired machine learning has great potential for robotics and automation24
Sunderhauf et al. (2018) with significant progress being made in perception Giusti et al. (2016); Eitel25
et al. (2015) and scene understanding Eslami et al. (2018); Badrinarayanan et al. (2017); Gu et al. (2019);26
Sheppard and Rahnemoonfar (2017). Supervised deep learning takes biological inspiration from layered27
neural connectivity, synaptic plasticity, and distributed computation to learn non-linear mappings between28
inputs and desired outputs. These approaches usually rely on biologically implausible learning principles.29
Closer to neurobiology, deep reinforcement learning also leverages these bio-inspired architectural30
properties but instead learns against a task specific cost function Mnih et al. (2015). Both approaches31
require an error signal that is either back propagated or otherwise distributed through the layered network32
weight space during training. Unsupervised learning in neural networks does not typically require a globally33
distributed error signal for training, instead they find and exacerbate patterns in the input space by learning34
correlations or through local competition, typically to enable a useful reduction in dimensionality. These35
low dimensional latent representations of input are often used to perform clustering of complex data36
or serve as efficient pre-processing for a supervised or reinforcement learning back-end. All of these37
approaches to machine learning adopt the same assumed flow of information through the network, namely,38
from sensory input toward an appropriate output representation. The flow of information in a Predictive39
Coding Network (PCN) is both from sensory input to output and the opposite, i.e., each layer in the40
network predicts representations of the previous layer in parallel, ultimately predicting the actual input41
being passed into the lowest layer of the network Rao and Ballard (1999); Spratling (2017). Prior to42
learning layer-wise predictions are randomly initialised, during weight learning and inference they are43
compared to the predictions received from the previous layers. Local learning rules are then applied to44
update weights and infer neural activity in each layer to minimize the error in predictions (which is related45
to the free-energy or ‘surprise’ in the system Friston (2010)) on subsequent exposures to similar input.46
This approach to learning is more biologically plausible as a globally distributed error is not required to47
update the weights, instead local Hebbian-like rules are applied Dora et al. (2018). Moreover, predictive48
coding is also an unsupervised learning approach and, hence, does not require labelled datasets for training.49
It has been used in robotics for learning sensorimotor models Park et al. (2012); Nagai (2019); Lanillos50
and Cheng (2018) and for goal directed planning in visuomotor tasks Hwang et al. (2017); Choi and Tani51
(2018). To the best of our knowledge, it has not been used for place recognition. Place recognition is52
the ability to interpret and recall sensory views of the world to inform an estimate of location or pose,53
with visual place recognition being its most common and well-studied form Lowry et al. (2016). A place54
recognition system is typically decomposed into two sub-systems, an image/sensory processing module,55
and a mapping module which stores either a metric or relative association between sensory views and the56
pose of an agent. In this study we primarily focus on sensory pre-processing for place recognition, our57
interest being in the performance of PCNs to transform samples from co-localised but disparate sensory58
modalities into a representation suitable for efficiently determining proximity between locations in an59
environment. This is interesting for two reasons, firstly, PCN is a mechanistic implementation of the60
parsimonious theory that perception arises from generative, inferential representations of what causes61
sensory inputs to arise Helmholtz (1867); Gregory (1980); Mumford (1992); Pennartz (2015); Friston62
(2010). This framework describes many of the phenomenological and anatomical observations from animal63
behaviour and neurophysiology. By incorporating this model into robots we have the opportunity to64
reproduce these observations in an autonomous agent and thus better understand the principles at work65
in the brain from an algorithmic level of abstraction. Secondly, combining information from different66
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sensory modalities in mobile robots overcomes unimodal aliasing and sensor drop-out but introduces new67
challenges such as dimensionality mismatch and registration Khaleghi et al. (2013). Sensor fusion is a68
well-established field of research with numerous approaches developed and successfully incorporated69
into widespread use. The three predominant approaches of sensor fusion are probabilistic, evidential,70
and model-free/neural networks, with Kalman filtering Roumeliotis and Bekey (1997), Dempster-Shafer71
Theory Murphy (1998), and Variational Auto-Encoders (VAEs) Kingma and Welling (2013); Suzuki et al.72
(2017); Korthals et al. (2019) being prominent examples of the respective approaches. Auto-Encoders are73
well established tools in machine learning for approximating a higher dimensional input space using a74
lower dimensional representation space. A VAE is a generative modelling approach that uses variational75
inference methods for training with large-scale and high dimensional data sets Kingma and Welling (2013).76
More recently, this has been extended for learning bi-directional, joint distributions between different77
sensory modalities Suzuki et al. (2017); Korthals et al. (2019). This allows inferences in one sensory78
modality based on evidence in another modality via a jointly trained generative model. Suzuki et al.79
Suzuki et al. (2017) demonstrated that visual images and textual labels could be associated using a Joint80
Multimodal VAE (JMVAE) such that either modality could be used to reconstruct meaningful inferences81
about the other modality. Korthals et al. Korthals et al. (2019) used a modified version of JMVAE to82
jointly infer coloured geometric objects from visual and LiDAR data gathered from a simulated robot.83
Here we introduce a Multimodal Predictive Coding Network model (MultiPredNet) which is rooted in84
neurobiology and psychology, and utilise JMVAEs with the visual tactile datasets gathered in this study85
as a contemporary machine learning approach for comparison. The MultiPredNet presented here also fits86
the model-free learning category of sensory fusion as, similar to VAEs, it requires a period of training87
before it can be reliably used. Both JMVAEs and MultiPredNet learn the structural properties of the88
sensory information pertaining to the environment in which they are trained, i.e., they are computationally89
equivalent but differ in their algorithmic approach, including the learning rules. In this study we train both90
a contemporary JMVAE and the novel MultiPredNet using visual and tactile sensory data sets sampled91
from a biomimetic robot as it explores the world. The robot head has been physically designed to mimic92
a whiskered rat, with an array of individually actuated tactile whisker sensors and wide angle cameras93
in place of eyes. The dimensionality, timing and registration, or reference frame, of these two sensory94
modalities are different, with the salient information available from each being dependent on the current95
pose of the robot. Intuitively, combining cues from both sensory systems should reduce ambiguity in96
place recognition which ultimately will result in less frequent incorrect re-localisations from a robot pose97
mapping module. We extend this further by testing the ability of JMVAE and MultiPredNet to generalise98
between poses through the representation space itself; in other words, subsuming some of the functionality99
of a mapping module by the sensory preprocessing. To demonstrate the extensibility and applicability of100
MultiPredNet more explicitly to the robot localisation problem we use a simulation of the robot within a101
larger scale environment to reveal examples of loop-closure detection through its integration with a simple102
associative memory. Finally, we compare separate data sets that cover similar regions of the pose space103
to apply more conventional precision-recall curve analysis as a second measure of performance for place104
recognition by MultiPredNet.105

2 RESULTS
2.1 Experimental procedure106

2.1.1 Data capture107

The study was conducted using a custom built robotic platform called “WhiskEye”, modelled on previous108
whiskered mobile robots developed in collaboration with biological scientists Prescott et al. (2009);109
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Pearson et al. (2013). The body of WhiskEye is a RobotinoTM mobile platform from Festo Didactic with110
an additional embedded computer and a 3 degree of freedom neck installed as shown in figure 1. The111
head, which was mounted as the end-effector of the neck, has 24 individually actuated artificial tactile112
whisker sensors and two forward facing cameras (eyes). The embedded computer collected all sensory113
data and coordinated the motor action of the platform using the Robot Operating System (ROS) execution114
framework Stanford Artificial Intelligence Laboratory et al. (2018). The actions of the robot were directed115
and controlled using a model of tactile attention distributed across functional models of distinct regions116
of the brain. In brief, the collective behaviour of this model was to direct the nose of WhiskEye toward117
the most salient region of a head centred map of space representing the volume surrounding WhiskEye’s118
head Mitchinson and Prescott (2013). WhiskEye’s whiskers, which occupy this space, can be actively119
rotated around their base mimicking the cyclic whisking behaviour expressed by many small mammals120
such as mice and rats Gao et al. (2001). If a whisker makes contact with a solid object during a whisk121
cycle then the sensory consequences of that collision will be interpreted as a more salient location in the122
head centred map, thus increasing the likelihood of the robot orienting its nose toward the point of contact.123
An orient is enacted when the saliency of a point in the map exceeds a certain level; this can be excited124
by whisker contacts or through a random background noise pattern that increases in relation to the time125
since a previous orient. In this way the robot moves through the world through a sequence of regular126
orients whilst preferentially attending to objects that it encounters with its whiskers. To prevent repetitive127
orienting behaviour a mechanism based on visual inhibition of return was included to temporarily suppress128
the salience of regions in the map that have recently been explored. In addition, there was a low level129
reflexive behaviour built into the whisker motion controllers such that the drive force to each whisker was130
inhibited by deflection of the shaft. This reduces the likelihood of damage and constrains the magnitude of131
deflections measured by the whisker, effectively normalising the sensor range Pearson et al. (2013). The132
data sets that were collected for this study were composed of samples taken from the whisker array and the133
forward facing cameras at the point of peak protraction of the whisker array. Alongside these data were134
stored the robot odometry, motor commands, and ground truth 2D location and orientation of WhiskEye’s135
head as determined by an overhead camera and associated robot mounted markers. For longer duration and136
larger scale experiments a simulation of the WhiskEye platform was instantiated into an on-line robotics137
simulator called the NeuroRobotics Platform (NRP) Falotico et al. (2017). The interface with the NRP is138
based on ROS which enabled the simulated WhiskEye robot to use the same control software and capture139
the same format of sensory data as the physical platform. Gaussian noise was added to the simulated tactile140
sensory responses to match statistics from the physical whiskers and the resolution of the visual frames141
captured from the simulated cameras were scaled appropriately to match.142

143

The physical environment was bounded by a 600mm high ellipsoid shaped perimeter measuring 3m144
by 5m which in turn was bounded by 1.5m high blue partition boards on a smooth grey painted concrete145
floor to minimise distinct visual cues. Within the bounded arena we placed black coloured 600mm high146
boxes and cylinders in various configurations to delineate different environments for gathering training147
and test data sets. The training set was gathered in batches as the robot explored the training arena148
which was then concatenated together into 1270 visual-tactile data points representing 30 minutes of real149
time exploration (nominal whisk rate 1Hz). Test sets were gathered from arenas composes of differently150
configured geometric shapes (Figure 1b) in batches of 73 samples for each set. The trajectory of the robot151
was governed by the attention driven model of control and therefore not repeatable between test runs.152
However, the robot did adopt similar poses at multiple points between the test data sets and training set as153
shown in the quiver plots of figure 2. The simulated environment consisted of 4 interconnected quadrants154
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each the same size as the physical arena but with alternate black and white walls and different coloured155
and configured cylinders and boxes in each quadrant. A training set of 2400 visual-tactile samples and156
6 test sets of 400 samples each were captured as the simulated robot explored in different regions of the157
environment (see figure 3). This simulated arena serves as a controlled intermediate step toward larger158
scale unstructured environments to systematically test the efficacy of MultiPredNet for robot localisation.159
Specifically, we used the simulator here to perform longer duration experiments in order to capture loop160
closure events between data sets as is clear in the quiver plots of figure 3.161

162

2.1.2 Comparative network model architecture163

The network structure and learning rules for the proposed MultiPredNet and the VAE are presented in164
the materials and methods section. Briefly, the MultiPredNet consists of 3 modules such that one module165
(called the visual module) receives visual data as input, the second module (called the tactile module)166
receives tactile data, and the third module (called multisensory module) receives the concatenated higher167
order representations inferred by the visual and tactile modules (see figure 4). The synaptic weights of the168
three modules are learned using the same Hebbian-like learning rule. The representation inferred from169
the last layer of the multisensory module denotes the joint representation inferred using MultiPredNet.170
We compared the place recognition performance of MultiPredNet with existing VAE approaches for171
inferring multisensory representations, namely Joint Multimodal VAEs (JMVAEs) or more specifically172
a JMVAE-zero and JMVAE-kl Suzuki et al. (2017) as shown in figure 14. JMVAE-zero consists of two173
VAEs for handling visual and tactile inputs respectively. The last layer of the encoders in both VAEs is174
connected to a common layer whose activities are used for multisensory place recognition. JMVAE-kl175
uses the same network architecture as used in JMVAE-zero with two additional VAE encoders that infer176
unisensory representations based on visual and tactile inputs respectively. The multisensory and unisensory177
representations in JMVAE-kl are optimised together to be similar to each other using a Kullback-Leibler178
divergence component in the objective function. This allows JMVAE-kl to generate better crossmodal179
reconstruction in case of sensor drop-out. For a fair comparison, the dimensions of the multisensory180
representations obtained from MultiPredNet, JMVAE-zero and JMVAE-kl were fixed at 100.181

182

2.1.3 Performance metrics183

To quantitatively measure the performance of a place recognition system we need to relate the ground truth184
3D pose of the robot head ((x, y, θhead) relative to a global reference frame) to the representations generated185
by the sensory pre-processing modules. It leads, therefore, that to perform efficient place recognition the186
similarity between representations should correlate with similarity between robot poses. Here we adopt187
a technique from computational neuroscience called Representational Similarity Analysis (RSA) that188
was originally developed to compare measurements from brain activity, behavioural measurements and189
computational modelling Kriegeskorte et al. (2008). For the current study, we computed a Representational190
Dissimilarity Matrix (RDM) for both pose and the generated representations from candidate systems for191
each run of the robot in the testing arena and compared their rank order using Spearman’s rank correlation.192
Briefly, an RDM is a symmetric matrix around a diagonal of zeros with each element encoding the dis-193
similarity of the row sample to the column sample, i.e., the distance from each sample in the data set194
to all the others. Comparing the rank order of the RDMs for ground truth pose against representations195
provides an intuitive measure of performance for place recognition. A second measure of performance196
in this study was the error in inferring the tactile (visual) modality based on the representations inferred197
from the MultiPredNet and JMVAEs in presence of visual (tactile) modality (i.e., by sensor drop-out). This198
experiment was carried out using the physical test data only. To evaluate the extensibility of MultiPredNet199
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and the validity of RSA as a measure of performance for place recognition in larger scale, on-field settings200
we use the simulated data sets and a simple mapping system to reveal loop closure recognition as a201
qualitative demonstration of its performance in robot localisation. This is evaluated further using more202
conventional ROC curve analysis between 2 of the simulated testsets that have similar but not identical203
ground truth trajectories.204

205

2.2 Model performance at place recognition206

The three models, namely MultiPredNet, JMVAE-zero and JMVAE-kl, were trained on the same physical207
data set which was shuffled and decomposed into mini-batches of 10 samples. Each model was trained for208
200 epochs. Once trained, the physical test sets were presented to each model one sample at a time to infer209
corresponding sets of joint latent representations. These were used to estimate RDMs for corresponding210
models which were used to compute the rank order with respect to the RDM of corresponding poses of the211
robot from each of the 4 test sets (see Figure 2 for ground truth poses). Figure 5 contains example RDMs212
displayed as heatmaps from typical instances of each model validated against test set 1. The boxplots213
summarise the statistics of the Spearman’s rank correlation coefficient (ρ) calculated for each sample in214
the test set, with (p < 0.001, N = 73) indicated by the horizontal green line. For control, a random set of215
representations was also compared to reveal the structural relationship that each model has found between216
pose and multisensory view.217
Using the same analysis across all test data sets, N = 292, the average ρ and the percentage of samples218
that scored above statistical significance (p < 0.001, N = 292) were (0.289, 69.17%) for MultiPredNet,219
(0.141, 47.26%) for JMVAE-zero, and (0.140, 49.31%) for JMVAE-kl. Applied to place recognition, a true220
positive correlation between representation distance and pose distance will result in a correct re-localisation.221
Therefore, we can expect the frequency of true positive re-localisations generated by the MultiPredNet to222
be 20− 22% higher than JMVAE.223

224

We next trained a MultiPredNet model on the simulated training set (2400 samples) using the same225
network topology, batch size, learning rates and epochs as adopted for the physical data set model. For226
visual clarity, the RDMs for only the first 100 samples from each of the 6 simulated test sets are shown227
in figure 6, whilst the box plots summarise the statistics of ρ for all samples in each set (n = 400). As228
in the physical tests the above significance positive correlation is clear (mean ρ beneath each boxplot229
p < 0.001, n = 400), suggesting that MultiPredNet can infer structural relationships in the simulated230
sensory modalities appropriate for place recognition as in the physical demonstration.231

2.3 Model performance during sensor drop-out232

The models were also evaluated for place recognition in a sensor drop-out scenario. For this purpose, we233
evaluated the place recognition performance of the three models using either visual or tactile input with234
the other sensory modality set to zeros. All three models performed well at place recognition (average235
p < 0.001) across each physical test set when only visual sensory information was available (see Figure 7).236
However, with only tactile sensory information available the JMVAE-zero model could not maintain the237
positive correlation between representations and ground truth pose data above the significance threshold238
in the majority of cases. These results are presented in figure 7, which summarises the Spearman’s rank239
correlations for each model across all 4 test sets with both sensory modes available, only vision, and only240
tactile available. The line plots in the bottom panels track the cumulative number of samples that returned241
an above chance positive correlation (p < 0.001) between pose and representation distance implying242
a positive contribution towards place recognition. In summary, the mean ρ and p < 0.001 percentage243
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scores for each model in the two drop-out conditions, only vision available and only tactile available, were244
(0.294, 72.95%) & (0.279, 69.52%) for MultiPredNet, (0.138, 46.23%) & (0.036, 6.51%) for JMVAE-zero,245
and (0.131, 48.97%) & (0.126, 44.18%) for JMVAE-kl. These results indicate that the MultiPredNet model246
has the potential to correctly re-localise on average 25% more often than both the JMVAE based models in247
the absence of either tactile or visual cues (p < 0.001).248

As these models are generative in nature we can compare their ability to reconstruct the missing modality249
inferred from the conditioned evidence derived from the other. Indeed, the loss function used during250
training of the three models is computed using the reconstruction error. During training the JMVAE models251
generate sensory reconstructions by propagating the joint latent representation through a decoder network252
which is trained end-to-end with the encoder network using back-propagation. In contrast, all layers of253
the MultiPredNet model generate predictions about the activity of neurons in the previous layer of the254
network and the error in these predictions is used to update the weights during training according to a255
Hebbian-like learning rule Dora et al. (2018). In the absence of input in a given sensory modality, the256
joint latent representation inferred using a single modality is propagated backwards, by way of feedback257
projections to the input layer, to reconstruct the sensory input in the missing modality.258

The Mean Squared Errors (MSE) for the tactile and visual reconstructions from each of the network259
models in the three sensory conditions are plotted in figure 8. The results from the JMVAE-kl model260
revealed that it had successfully accommodated a systematic positive off-set in the tactile reconstruction261
which both the JMVAE-zero and MultiPredNet had failed to (See figure 9). With this off-set removed, the262
tactile reconstruction errors from the JMVAE-kl model were still significantly lower than the other two263
(p < 0.001). Another interesting observation was that the JMVAE-kl model performed worse (relative to264
the others) at visual reconstruction when only tactile sensory input was available. However, as with the265
MultiPredNet, it performed consistently at place recognition under this condition on which JMVAE-zero266
failed to maintain as shown in figure 7. This suggests that performance on place recognition (measured by267
ρ) and sensory reconstruction (as measured by MSE) are not correlated.268

269
2.4 MultiPredNet performance at robot localisation in simulated field trials270

To evaluate place recognition by MultiPredNet more explicitly, a simple memory module based on the271
view-cell memory of RatSLAM Milford et al. (2004) was adopted to associate poses with the joint modal272
representations inferred by the MultiPredNet at each sample step. The distance (1− Pearson correlation)273
between the current representation and others already stored in the memory was calculated, if this was274
above a certain threshold (discussed below) then it is considered novel and a new view-cell is added to the275
memory containing the representation and associated pose. If the distance was below the threshold, i.e.,276
they were deemed similar, then a re-localisation event was registered and the representation not stored into277
memory. All 6 simulated test sets were concatenated together into a continuous run of 2400 samples and278
presented to the view-cell memory in sequence. The results shown in figure 12 demonstrate that similar279
poses are recalled from the view-cell memory triggered by similarity in representation. The black asterisks280
in the quiver plot highlight the sample points at which re-localisation events were detected by the view-cell281
memory, note that these occur during loop-closures within and between test sets. This is more clearly282
shown in the plot of the lower panel of figure 12 where the horizontal coloured panes indicate the regions283
of the view-cell memory that are composed of view-cells created during each test set in sequence (blue,284
red, green, magenta, cyan and yellow) with the coloured vertical lines marking the start of each region.285
The black dots indicate the view-cell index address associated with each sample in the concatenated data286
set, re-localisation events, therefore, are indicated by a sharp decrease in view-cell index between samples.287
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This is most evident during sets 2 and 3 (red and green) which include re-localisation events occurring288
during set 3 that reference view-cells created during set 2. Referring back to the quiver plot we can see289
that these relate to the loop-closures that occur in the shared pose space adopted by the robot during the290
acquisition of these 2 test sets. The same phenomenon is seen between sets 5 and 6 (cyan and yellow) and,291
to a lesser extent, between sets 5 and 1 (cyan and blue). Test set 4 (magenta) has multiple re-localisation292
events, however, these are confined to its own region of the view-cell memory which corresponds to the293
unique region of pose space that it represents.294

295

A more quantitative measure for the performance of a system at place recognition can be obtained296
through the analysis of the precision-recall rate Kazmi and Mertsching (2016), Flach and Kull (2015). To297
calculate this we selected test sets 2 and 3 from the simulator as we have seen that they approximately298
share the pose space within the arena during their independent runs with loop-closure events evident from299
the qualitative analysis described above. The distance between representation of each sample in each test300
set to each sample in the other was calculated again using 1− Pearson correlation as the metric of distance.301
The distance in pose between each sample in a set against the pose of all samples in the other set was302
also calculated (Euclidean). These inter test set distance matrices are displayed as heatmaps in figure 13303
allowing us to visualise which regions of both the pose and representation space are similar between the304
2 test sets. Intuitively, regions of low distance in representation space should correspond to an equally305
low distance in pose space to perform place recognition. Putting this into the context of the view-cell306
memory demonstration, a below threshold representation distance should trigger a re-localisation event307
from one test set to the other which should correspond to a similar pose. Therefore, for each sample in308
test set 2 (columns in heatmaps of figure 13) we select the sample from test set 3 (row) with the lowest309
distance in representation space as the candidate classification. If the distance of a classification is below a310
representation threshold we label it as Positive, if higher then it is Negative. The [column, row] coordinates311
of the candidate classifications are relayed to the pose space distance matrix to determine whether they312
were True or False classifications by comparing the pose distance to a threshold which we fixed arbitrarily313
at 0.2. To determine an appropriate representation threshold to maximise performance from this system314
we calculated the peak geometric mean of the Receiver Operating Characteristic (ROC) curve generated315
through a sweep of 1000 threshold values from 0.001 to 1 registering the classifications generated from316
each as True Positive (TP), False Positive (FP), False Negative (FN) or True Negative (TN) accordingly.317
The area under the ROC curve was found to be 0.836 with a peak geometric mean found at iteration 290318
indicating an optimal representation threshold of 0.29 to maximise the classification performance of the319
system. With this threshold the Precision (70.7%), Recall (91.4%) and F1-Score (79.7%) for the classifier320
was calculated.321

3 DISCUSSION
The potential for networks trained using predictive coding and Variational Auto Encoders for learning322
joint latent representations of multimodal real-world sensory scenes to perform place recognition has been323
demonstrated. The MultiPredNet model proposed here consistently outperformed the JMVAE-zero and324
JMVAE-kl models in place recognition as evident from the RSA in all 3 test conditions using the physical325
platform (figure 5). Importantly, each model was composed of the same number of layers and nodes,326
trained and tested using the same data sets, and their weight spaces learnt through the same number of327
training epochs. The analysis used to compare performance at place recognition between models serves328
as a proxy to more direct measures of performance at place recognition through navigation. To clarify329
this we have demonstrated that coupling the MultiPredNet to a simple associative memory system and330
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capturing longer duration data sets, enables more conventional metrics for quantifying place recognition to331
be derived. What now remains to be demonstrated is how these metrics compare to other model-free or332
model-based place recognition systems that combine visual and tactile sensory data. Toward this we are333
unaware of any suitable model for comparison other than the ViTa-SLAM system Struckmeier et al. (2019)334
introduced by co-authors in a previous study that inspired this work and as such would be uninformative335
to compare against. What we have shown is that RSA does enable an empirical comparison of complex336
representation spaces to low dimensional pose spaces in an intuitive manner to guide in the evaluation337
of candidate models and to adjust network parameters prior to full integration with a SLAM back-end.338
The MultiPredNet returned the lowest visual sensory reconstruction errors whilst the JMVAE-kl model339
performed best at tactile reconstruction (figure 8, 10 and 11). The Kullback Leibler divergence term340
included in the JMVAE-kl loss function during training was introduced to bring the representation spaces341
of the disparate sensory modalities closer to enable bi-directional multimodal reconstruction. This appears342
to be the case for tactile reconstruction from visual input, however, it did not result in an improved343
performance in place recognition nor did it improve visual reconstruction from tactile as evidenced in the344
lower panel of figure 8 and example reconstructions shown in figure 10. The large offset apparent in the345
tactile reconstruction errors from the JMVAE-zero and MultiPredNet models suggest that these models346
did not accommodate this disparity. However, the MultiPredNet model maintained an above significance347
correlation in place recognition when only tactile information was available, which JMVAE-zero could348
not. Interpreting the representation space of MultiPredNet is, therefore, subject to further investigation,349
which reinforces the position that VAEs are certainly better understood machine learning tools and as350
such are the obvious choice for adoption by robotics engineers. However, PCNs stand as an algorithmic351
level solution to learning that more closely approximates the physiology of a “cortical compute unit”.352
The base compute unit in a PCN is the same throughout the network, referred to by Rao and Ballard as a353
Predictive Estimator Rao and Ballard (1999), wherein only local computation and updates are performed354
during training and inference. By contrast the JMVAE approaches require separate decoder networks for355
training, which are then disregarded during inference if sensory reconstructions are not required. In the356
case of the JMVAE-kl network which learns unimodal representations in parallel to, and in support of, the357
joint modal distribution during training, the additional encoder-decoder network pairs are also disregarded358
during inference. In a purely software-based system this inefficiency is not an issue, however, as we look359
toward the future of embedded machine learning, particularly within robotics and edge based applications,360
we anticipate the increasing adoption of energy efficient hardware platforms, such as neuromorphic devices361
Krichmar et al. (2019). The immediate practical advantage in adopting the PCN approach, therefore, is362
that the algorithm is highly amenable to hardware optimisation through parallel distributed learning and363
processing. Unlike VAE networks, the local learning rule applied at each layer of a PCN requires no global364
back propagation of error in agreement with the physiology of mammalian cortex Roelfsema and Holtmaat365
(2018). Moreover, the basic feedforward-feedback structure of PCNs resemble the core architecture of the366
sensory neocortex Felleman and Van Essen (1991); Bastos et al. (2012); Pennartz et al. (2019). Further,367
the modular nature of the PCN compute unit that encapsulates the encoder-decoder pairing of the VAE368
but at a local level, allows a graceful scaling of the algorithm through simple duplication of the basic unit.369
This principle extends to including additional sensory modalities for joint representation learning, whereby370
any additional modality specific networks could be integrated into the multisensory network with a linear371
increase in complexity. By contrast, the JMVAE-kl approach would require a combinatorial increase in372
encoder-decoder pairs to correctly integrate additional modalities into the joint space. In conclusion, PCNs373
not only offer computational advantages to autonomously learning robots in terms of place recognition,374

Frontiers 9



Pearson et al. MultiPredNet

but also convey a considerable neurobiological plausibility and better scalability as compared to VAE375
approaches.376

4 MATERIALS AND METHODS
4.1 Multi-modal predictive coding network algorithm377

4.1.1 Multimodal Predictive Coding Network Architecture378

The network consists of three modules, namely the visual module, tactile module and multisensory379
module as shown in figure 4a. The visual module processes visual information and consists of a neural380
network with NV layers. Activity of the neurons in the lth layer for the ith input is denoted by a nV (l)381

dimensional vector, yV (l)
i where nV (l) denotes the number of neurons in the lth layer of the visual module.382

Each layer in the network predicts the activity (ŷ) of the preceding layer according to383

ŷ
V (l−1)
i = φ

((
y
V (l)
i

)T
WV

l(l−1)

)T
(1)

where WV
l(l−1) denotes the synaptic weights of the projections between the lth and (l − 1)th layer384

in the visual module and φ is the activation function of the neurons (ReLU). The lowest layer in the385
network predicts the visual input (XV

i ) and other layers predict the activities of neurons in the preceding386
layer. All layers in the network generate these predictions in parallel using Eq. 1. This aspect of the387
network is different from commonly employed feedforward networks in deep learning, where information388
is sequentially propagated from the first to last layer of the network. The tactile module consists of a389
similar neural network with NT layers that processes tactile information. The multisensory module consists390
of a single layer which predicts the activities of neurons in the last layers of both the visual and tactile391
modules. The activity patterns of neurons in this layer are denoted by yDi for the ith input and serve as the392
representations used for place recognition.393

4.1.2 Learning Algorithm394

Predictive coding is used to update the synaptic weights and infer neuronal activities in the network. A395
graphical depiction of the inter-layer connectivity is shown in figure 4b. The lth layer in the visual module396
generates a prediction about the neuronal activities in the (l − 1)th layer and also receives a prediction of397
its own neuronal activity from the (l + 1)th layer. The goal of the learning algorithm is to infer lth layer398

neuronal activity (y
V (l)
i ) for the ith input that generates better predictions about neuronal activity in the399

(l − 1)th layer and is predictable by the (l + 1)th layer. For this purpose, yV (l)
i is updated by performing400

gradient descent on the error function401

e
V (l)
i =

(
ŷ
V (l−1)
i − y

V (l−1)
i

)2
+
(
ŷ
V (l)
i − y

V (l)
i

)2
(2)

which results in the following update rule for yV (l)
i402

∆y
V (l)
i = ηy

(
WV

l(l−1)φ
′(ŷ

V (l−1)
i )

(
y
V (l−1)
i − ŷ

V (l−1)
i

)
+
(
y
V (l)
i − ŷ

V (l)
i

))
(3)

where ηy is the rate for updating neuronal activities and φprime is the derivative of the activation function403
used in the predictive coding network. The update rule in Eq. 3 is used to infer neuronal activity in all layers404
of the visual module for all inputs. Weights (WV

l(l−1)) between lth and (l − 1)th layers in the network are405
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updated by performing gradient descent on the error in the prediction generated by the lth layer neurons406
which results in the update rule for weights:407

∆WV
l(l−1) = ηwy

V (l)
i φ′(ŷ

V (l−1)
i )

(
y
V (l−1)
i − ŷ

V (l−1)
i

)T
(4)

where ηw is the learning rate for updating weights. Note that the learning rule is Hebbian-like in the sense408
that weight changes depend on the pre- and post-synaptic activity (pre: yV (l); post: yV (l−1) − ŷV (l−1)).409
The learning approach for the tactile module is identical to the visual module. In case of the multisensory410
module, the representations are inferred based on prediction errors of topmost layers in both the visual and411
tactile modules.412
4.2 Multi-modal Variational Auto-Encoder algorithm413

Both JMVAE-zero and JMVAE-kl extend Variational Autoencoders (VAE) to handle multisensory inputs.414
Therefore, this section first provides a description of the VAE and then presents extensions pertaining to415
JMVAE-zero and JMVAE-kl.416

417
4.2.1 Variational Autoencoders418

A VAE is an autoencoder with an encoder-decoder architecture that allows estimating a latent distribution419
which can be used to sample data from the input space. Given input data x with a distribution of p(x)420
and a prior distribution p(z), the encoder in a VAE estimates an approximate posterior distribution421
qφ(z|x) for the actual posterior p(z|x). Here, φ represents the parameters associated with the encoder. The422
decoder maximizes the likelihood of the data pθ(x|z) given this approximate posterior distribution where θ423
represents the parameters associated with the decoder. To overcome the intractable problem of computing424
the marginal distribution, VAEs are trained to maximize a lower bound for the input data distribution p(x)425
by maximizing the following objective function426

LV AE = −DKL

(
qφ(z|x)||p(z))

)
+ Eqφ(z|x)

(
logpθ(x|z)

)
(5)

where the first term DKL

(
qφ(z|x)||p(z))

)
represents the Kullback-Leibler divergence between the427

approximate posterior and the prior distribution p(z). The second term represents the reconstruction error428
in the output of the decoder. VAE’s represent both qφ(z|x) and p(z) using Gaussian distributions. The429
mean and variance of qφ(z|x) are determined by the output of the encoder. p(z) is assumed to be a standard430
normal distribution N (0, I) where I denotes the identity matrix. This assumption allows VAEs to estimate431
an approximate posterior that is closer to the standard normal distribution. This enables sampling from the432
learned latent distribution to generate samples from the input space.433

434

JMVAE builds upon VAE by enabling inference of joint representations based on input in multiple435
modalities. In this paper, multiple modalities constitute the input from tactile (denoted by w for whisker)436
and vision (denoted by v) sensors on the WhiskEye robot. A straightforward approach for inferring437
multimodal representations using a VAE is to learn a joint approximate posterior distribution qφ(z|w, v)438
using a network as shown in figure 14a. In this approach, a VAE maximizes the following objective function439
to achieve a maximal lower bound on the marginal joint distribution440
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LJM = −DKL

(
qφ(z|w, v)||p(z))

)
+ Eqφ(z|w,v)

(
logpθ(w|z)

)
+ Eqφ(z|w,v)

(
logpθ(v|z)

)
(6)

Equation 6 represents the objective function for JMVAE-zero. It has been shown that JMVAE-zero is441
not able to generate good crossmodal reconstructions when there are large structural differences between442
different modalities Suzuki et al. (2017). To overcome this issue, a better VAE was developed in Suzuki et al.443
(2017) called JMVAE-kl. JMVAE-kl employs a JMVAE-zero with two additional encoders for inferring the444
approximate posteriors for the individual modalities w (denoted by qφw(z|w)) and v (denoted by qφv(z|v))445
as shown in figure 14b. It is trained using an objective function that minimizes the Kullback-Leibler446
divergence between the joint approximate posterior distribution and the approximate posterior distributions447
for individual modalities, given by448

LJM(KL) = LJM − α
(
DKL

(
qφ(z|w, v)||qφv(z|v)

)
+DKL

(
qφ(z|w, v)||qφw(z|w)

))
(7)

where α controls the strength of regularization due to the KL-divergence between the different posterior449
distributions, LJM(KL) encourages inference of similar multimodal and unimodal approximate posterior450
distributions thereby resulting in better crossmodal reconstructions.451
4.3 RSA and statistical measures452

4.3.1 Representational Dissimilarity matrices (RDM)453

To transform the 100-dimensional representations inferred by each network model in response to each454
sample of a test set composed of n samples into an RDM, the dissimilarity distance between each455
representation to all others was calculated. In this case we use 1 - Pearson correlation coefficient as456
preferred by Kriegeskorte Kriegeskorte et al. (2008):457

dx,y = 1−
∑

(xi − x̄)(yi − ȳ)√∑
(xi − x̄)2

∑
(yi − ȳ)2

(8)

where dx,y is the dissimilarity between representation x and y, which in turn will be the index address458
into the n x n symmetric RDM.459

460

The RDMs for pose were constructed using the Euclidean distance between each 3D pose sample to all461
others in the test set. For correctness the orientation and position components of the poses (xrot and xtrans)462
were independently scaledBregier et al. (2018):463

dx,y = a||xrot − yrot||+ b||xtrans − ytrans|| (9)

For the scaling factors a and b for rotation and translation respectively, we found that a = 0.3 and b = 1464
to be appropriate in all experiments.465
4.3.2 Representational Similarity Analysis (RSA)466

The vector of representational dissimilarity distances and accompanying vector of pose distances for467
each sample in the test set were sorted into rank order and compared using Spearman’s rank correlation468
coefficient (ρ):469
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ρ = 1− 6
∑
d2i

n(n2 − 1)
(10)

where di is the difference between the rank order in pose against representation distance, and n being the470

number of samples in the test set. The significance tests (p-values) were taken from t = ρ
√

n−2
1−ρ2 which471

approximately follows Student’s t with n− 2 degrees of freedom under the null hypothesis.472
473

4.3.3 Precision-Recall analysis474

To build the ROC curve the True Positive Rate (TPR) and False Positive Rates (FPR) were calculated at475
each iteration of representation threshold to be tested as follows:476

TPR =
TP

TP + FN
FPR =

FP

FP + TN
(11)

Where the cumulative True Positive (TP), False Positive (FP), True Negative (TN) and False Negative (FN)477
scores from each iteration were used .478
The geometric mean was calculated at each iteration as follows:479 √

TPR ∗ (1− FPR) (12)
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Figure 1. The WhiskEye robot (a) has 24 actuated tactile whiskers and camera eyes on its head mounted
at the end a 3 dof neck and omnidrive Robotino body. Simultaneous visual frames (panel c, left and right
eye cameras) and tactile samples are taken at the point of peak whisker protraction as indicated by the
black vertical dashed lines in the plots of panel d. The example time series data shown in panel d are taken
from a single whisker through 7 whisk cycles with only the final 3 whisks making contact with an object.
The red dashed trace in the lower plot is the drive or desired protraction angle of the whisker scaled to ±1
of the full whisk angle range of ±80 degrees of rotation. The solid red line is the measured protraction
angle of the whisker (θwhisk) which can be inhibited by contacts as is clear on the 5th whisk. The blue
trace in the upper plot is the x- and the green the y-deflection of the whisker scaled to ±1 of maximum
deflection magnitude. The three positive whisker contacts are clear in the final three whisks of this sample.
The x, y and θwhisk samples taken at the point of peak protraction for all 24 whiskers constitute the tactile
‘view’ of the robot at that instance. The experimental arena shown in panel b, was populated with matt
black cylinders and boxes, the configuration was changed between collecting data to train the networks and
for testing.

Frontiers 17



Pearson et al. MultiPredNet

-0.4 -0.2 0 0.2 0.4 0.6 0.8

x-displacement (m)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

y
-d

is
p
la

c
e
m

e
n
t 
(m

)

Figure 2. Quiver plots of the poses of WhiskEye’s head (defined as x,y position and head direction) at
each sample point taken for the training set (black) and for each of the test sets (red, cyan, magenta, green)
used to evaluate the models. Each test set was recorded from a different initial pose of WhiskEye and
in the arena populated with different object configurations to test for generalisation. The right panel is a
scaled view of the region indicated by the blue dashed rectangle in the left panel. The bold black rectangle
enclosing the sample points in the left panel indicates the boundary walls of the arena. The arena measured
3.5m by 2.25m
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10 m

7 m

Figure 3. Simulated WhiskEye in the NeuroRobotics Platform. Top panel) Quiver plot of head poses
(x, y, θ) at sample points taken as the training set (black) and 6 test sets (blue:1, red:2, green:3, magenta:4,
cyan:5, yellow:6) The arena walls and coloured objects have been superimposed onto the quiver plot for
reference. Lower panels) Screen shots taken from the simulator showing the arena and simulated WhiskEye
robot as it explores the arena. The tactile attention model used to control the physical platform is the same
as used in the simulator.
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Figure 4. Multimodal predictive coding network architecture. a) The network consists of 3 neural network
modules; the Visual and Tactile modules taking visual and tactile input from the WhiskEye robot with
NV and NT layers respectively; and the Multisensory module consisting of a single layer that predicts the
activities of the neurons in the last layers of both the visual and tactile modules. Note that each layer in the
Visual and Tactile modules are also predicting the activities of neurons in their preceding layers as shown
in panel b, passing prediction errors forward through the network
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Figure 5. Representational Similarity Analysis of three trained network models to measure performance at
place recognition across a small example test set. The top row presents the Representational Dissimilarity
Matrices (RDM) generated from (left to right) MultiPredNet, JMVAE-zero, JMVAE-kl and random
representations in response to visual and tactile samples taken from physical test set 1 (73 samples). The
RDM on the far right was generated from the associated ground truth 3D poses of WhiskEye’s head
(x, y, θhead) for each sample in the test set. The boxplots in the lower panel summarise statistics of the
Spearman’s rank correlation coefficient (ρ) calculated between the pose and representation distances across
the test set for each model as shown in the coloured line plots in the panel to the right (cyan: MultiPredNet,
red: JMVAE-zero, black: JMAVE-kl, and magenta: Random). The Green horizontal line indicating 99%
significance above chance (p < 0.001, N = 73)
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Figure 6. Representation Similarity Analysis applied to each of the 6 test sets sampled from the simulator
and inferred by a trained MultiPredNet Model using same network topology as for physical data sets. Top
row) Representation Dissimilarity Matrices (RDMs) for the first 100 samples of pose from each set (1 to 6
left to right). Middle row) RDMs for the first 100 inferred joint latent representations from each set. Lower
panel) Box plots summarising the Spearman’s Rank coefficient (ρ) calculated for the full 400 samples of
each test set. The colour of each box plot is the same colour as quiver plots for each test set shown in figure
3, with the black dashed line indicating significance (p < 0.001, n = 400). The mean value of ρ for each
set is printed beneath each box plot for clarity.

This is a provisional file, not the final typeset article 22



Pearson et al. MultiPredNet

0 50 100 150 200 250

Sample number

-0.4

-0.2

0

0.2

0.4

0.6

0.8

S
p
e
a
rm

a
n
s
 R

a
n
k
 c

o
e
ff
ic

ie
n
t

Both

0 50 100 150 200 250

Sample number

Vision only

0 50 100 150 200 250

Sample number

Tactile only

MultiPredNet

JMVAE-zero

JMVAE-kl

MultiPredNet JMVAE-zero JMVAE-kl
-0.4

-0.2

0

0.2

0.4

0.6

0.8

S
p
e
a
rm

a
n
s
 R

a
n
k

0 50 100 150 200 250
0

50

100

150

200

250

p
 <

 0
.0

0
1

MultiPredNet JMVAE-zero JMVAE-kl

0 50 100 150 200 250
0

50

100

150

200

250

MultiPredNet JMVAE-zero JMVAE-kl

0 50 100 150 200 250
0

50

100

150

200

250

Figure 7. Spearman’s Rank correlation coefficient (ρ) to measure performance at place recognition by 3
trained models across all 4 physical test sets when both sensory modalities are available (left column), only
vision available (middle column) and only tactile available (right column). The top row of panels trace
ρ with the coloured horizontal lines indicating the mean value for each model and green line indicating
significance (p < 0.001, N = 292). The middle row of traces show the cumulative number of samples
across the test set that scored an above chance positive correlation in each of the sensory conditions. The
statistics for ρ across each model is distilled into boxplots in the bottom row, again with the green line
indicating significance.
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Figure 8. Sensory reconstruction errors from the 3 trained model networks in response to all 4 concatenated
test sets under 3 test conditions; Both visual and tactile sensory data available; Visual data available and
tactile masked; and Tactile data available with visual data masked. The top panel box plots summarise
statistics of the mean squared error between actual tactile sensory data and the reconstructed tactile
impressions generated by each of the networks. The middle panel applied the same analysis to the visual
reconstructions with the average MSE for each model in each of the conditions summarised in the table
beneath (bold highlighting lowest error condition)
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Figure 9. Tactile and Visual reconstruction errors from each sample in all test sets inferred by the
MultiPredNet, JMVAE-zero and JMVAE-kl models with the tactile (and visual respectively) sensory input
obscured. Note the systematic offset in tactile reconstruction error from the MultiPredNet and JMVAE-zero
model as indicated by the mean of the Mean Squared Error (MSE) across all samples (horizontal coloured
lines).
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Figure 10. Example frames captured by the eye camera that are presented as visual input to the trained
models with their subsequent reconstructions in the 2 sensory drop-out conditions. The Ground truth
images in the left column were taken at the sample number indicated to the left of each panel with each
reconstruction from the models presented in that row. The reconstructions are qualitatively similar in their
quality across all 3 models, however, MultiPredNet did return the lowest mean squared reconstruction
errors in all conditions as shown in figure 8.
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Figure 11. Example tactile information captured from the whisker array at point of peak protraction at the
sample points in the test set as indicated by the number on the left of each row. The first 24 values in each
sample is the protraction angle of each whisker (θwhisk) in the array with the remaining 48 values indicating
the magnitude of deflection experienced by each whisker in the x and y dimensions (refer to figure 1 for
description). As in figure 10, the plots in each row to the right of the ground truth were reconstructed by
the different trained models under test during the 2 drop-out conditions. The JMVAE-kl model performed
best at tactile reconstruction in all conditions (see figure 8) as is clear from these indicative examples. Both
MultiPredNet and JMVAE-zero failed to accommodate the systematic off-set in deflection angle which
JMVAE-kl has, i.e., nominally zero in the last 48 values of reconstructed vector.
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Figure 12. View-cell memory sequentially presented with representations generated from all 6 simulated
test sets to associate poses with proximal representations. Top panel) Colour coded quiver plots of ground
truth poses of the simulated WhiskEye head during each of the 6 test sets (1 =blue, 2 =red, 3 =green,
4 =magenta, 5 =cyan & 6 =yellow). The black asterisks indicate samples which triggered a re-localisation
event in the view-cell memory, i.e., the representation of that sample was close to a previous representation
stored in the view-cell memory. Lower panel) Graph of view-cell index against sample number from the
concatenated 6 test sets (n = 2400). The coloured horizontal bars highlight the region within the view-cell
memory that store representations encountered during a particular test set (colour matched to test sets).
The vertical coloured lines set the start of each new region in the view-cell memory. Re-localisation events
are marked by a step decrease in view cell index between samples, significantly, samples from test set 3 are
triggering re-localisation events that reference to view-cells created in test set 2.
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Figure 13. Precision-recall curve analysis applied to simulated test sets 2 and 3 (see figure 3) classifying
for place recognition through the representation space of the trained MultiPredNet. Top left) Heatmap
summarising the distance in pose space from each sample in test set 2 against each sample in test set 3. Top
right) Heatmap of distances in representation space between samples in test set 2 against all samples in
test set 3. White dots in the heatmap indicate classification points for each sample (n = 400) selected as
the lowest distance in representation space between the 2 test sets. These points have been translated into
the pose distance heatmap to determine a true or false classification. Lower left plot) Receiver Operating
Characteristic (ROC) curve summarising impact of representation threshold for determining positive versus
negative classifications. Lower right plot) Geometric mean of the ROC curve at each threshold iteration with
the peak highlighted by the vertical dashed line. The confusion matrix contains the summed classification
classes when using the optimal representation threshold determined from ROC curve with the Precision,
Recall and F1-Score for the classifier calculated from them.
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Figure 14. Architectural diagrams of the encoder networks of the two JMVAE models; (a) JMVAE-
zero, and (b) JMAVAE-kl. Both networks attempt to represent the two input modalities (visual p(v) and
tactile p(w)) as a joint multimodal latent representation qφ(z|v, w). This is done by minimising both
the reconstruction error for each modality, and the KL-divergence (DKL) between a standard normal
distribution and the joint multimodal distribution. The resulting continuous distribution is encoded by the
activity of two parallel layers of nodes representing the mean and variance (µ, σ2) of each latent dimension.
The JMVAE-kl model trains 2 further encoders, one using only visual input qφv(z|v) and the other only
tactile qφw(z|w), such that the KL-divergence measures between the unimodal and multimodal approximate
distributions can be included into the loss function during training.
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