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ABSTRACT

Accurately quantifying gene and isoform expression
changes is essential to understanding cell functions,
differentiation and disease. Sequencing full-length
native RNAs using long-read direct RNA sequenc-
ing (DRS) has the potential to overcome many limi-
tations of short and long-read sequencing methods
that require RNA fragmentation, cDNA synthesis or
PCR. However, there are a lack of tools specifically
designed for DRS and its ability to identify differ-
ential expression in complex organisms is poorly
characterised. We developed NanoCount for fast, ac-
curate transcript isoform quantification in DRS and
demonstrate it outperforms similar methods. Using
synthetic controls and human SH-SY5Y cell differ-
entiation into neuron-like cells, we show that DRS
accurately quantifies RNA expression and identifies
differential expression of genes and isoforms. Differ-
ential expression of 231 genes, 333 isoforms, plus
27 isoform switches were detected between undiffer-
entiated and differentiated SH-SY5Y cells and sam-
ples clustered by differentiation state at the gene
and isoform level. Genes upregulated in neuron-like
cells were associated with neurogenesis. NanoCount
quantification of thousands of novel isoforms dis-
covered with DRS likewise enabled identification
of their differential expression. Our results demon-
strate enhanced DRS isoform quantification with
NanoCount and establish the ability of DRS to iden-
tify biologically relevant differential expression of
genes and isoforms.

INTRODUCTION

Cellular fates and functions are underpinned by the expres-
sion of protein-coding and non-coding genes into RNA
(termed the transcriptome). The expression profiles of in-
dividual genes can vary in complex ways to regulate their
functional outputs. Expression of genes can be switched
on or off, increased or decreased, while the RNA products
(transcript isoforms) made from individual genes can also
vary extensively. In humans >90% of protein-coding genes
express multiple RNA isoforms via processes such as alter-
native transcriptional start sites, termination sites and splic-
ing, greatly increasing the diversity of the transcriptome and
proteome within cells (1,2). Expression of different genes
and isoforms drive cellular differentiation programs, con-
trol cell and tissue functions and allow cells to respond to
their environment (3,4). However, aberrant expression con-
tributes to various diseases including neurological disor-
ders, autoimmune disorders and cancer (5–7).

Understanding the dynamic transcriptome requires tech-
niques that can identify differential expression (DE) at both
the gene (DGE) and transcript isoform (DTE/DIE) lev-
els. Differential expression analysis enables comparisons
between different tissues or conditions to identify genes
that play a major role in phenotype determination. Short-
read RNA sequencing (RNA-seq) methodologies are well
validated for identifying differential gene expression but
have limitations in identifying and quantifying both known
and novel alternative isoforms (8,9). This is exacerbated in
complex mammalian transcriptomes which contain large
numbers of highly similar transcript isoforms. A further
limitation of short-read RNA-seq is the need for reverse-
transcription and PCR amplification of RNA samples be-
fore sequencing, which introduces various biases (10).
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Long-read sequencing techniques from Oxford
Nanopore Technologies (ONT) and Pacific Biosciences
have the potential to overcome many of these limitations
(11,12). Long-read methods can sequence entire transcripts
in a single read, potentially allowing the unambiguous
identification of the expressed gene and isoform. How-
ever, initial long-read methods still required PCR and/or
reverse transcription. Recently, ONT developed direct
RNA sequencing (DRS), the first long-read technique to
sequence native RNA molecules (13). DRS does not utilize
any amplification or fragmentation steps and has the po-
tential to quantify both genes and isoforms in an unbiased
manner, while also characterising the RNA modifications
and polyA tail on each RNA. Studies to date have used
DRS to catalogue known and novel transcripts in yeast
(14), Caenorhabditis elegans (15,16), Arabidopsis (17) and
human cell lines (18,19); characterise polyA tail lengths
of individual transcripts (15,18); identify allele specific
gene and isoform expression (18); identify RNA base
modifications (13,18,20,21) and infer RNA structure (22).
Maximum read lengths for DRS were also significantly
longer than for PCR-based long-read cDNA sequencing
(18), demonstrating its potential to sequence long and
complex RNA splice isoforms.

Identification of expression differences between sam-
ples is a standard requirement in the transcriptomics field.
Therefore, DRS needs to accurately quantify RNA and
identify differentially expressed genes and isoforms to be-
come a mainstream transcriptomics technique. The unbi-
ased nature of DRS should allow accurate quantification
and has previously shown good performance on synthetic
control RNAs of known abundance (13,23). However, accu-
rate assignment of DRS reads to the correct transcript iso-
forms remains a challenge (19,23), which limits the accuracy
of isoform quantification and downstream differential ex-
pression analyses. In addition, the ability of DRS to identify
differential gene and isoform expression has largely been
performed on model organisms with much simpler tran-
scriptomes than found in mammals and/or based on ex-
pression fold changes without statistical analysis (14,16,17).
Hence, there is a need for new tools that improve isoform as-
signment and quantification accuracy, as well as to establish
the effectiveness of DRS to identify differential expression
in complex organisms.

Here, we introduce NanoCount, an isoform quantifica-
tion program developed for DRS, which improves isoform
assignment and out-performs other quantification tools.
Using a combination of synthetic spike-in control RNAs
and a neuroblastoma differentiation paradigm, we demon-
strate that DRS accurately quantifies genes and isoforms
and is able to identify biologically relevant differential gene
and transcript isoform expression. We find that variance be-
tween samples is dominated by biological differences, allow-
ing the identification of hundreds of DE genes and isoforms
despite the lower throughput of DRS. We further show that
DRS can identify differential isoform usage (DIU), where
switching occurs between isoforms, often in the absence
of overall changes to gene expression. Lastly, we utilised
NanoCount with FLAIR to discover and quantify the ex-
pression of thousands of novel isoforms in SH-SY5Y (5Y)

cells, confirming the potential of DRS to help fully decipher
the complex transcriptome.

MATERIALS AND METHODS

Cell culture

Human SH-SY5Y neuroblastoma cells were cultured for
use as a model of neuronal differentiation (Figure 1A) (24).
Undifferentiated SH-SY5Y cells were cultured in growth
media under standard conditions (5% CO2, 37◦C) with
DMEM:F12 (Sigma D6421), supplemented with 10% fe-
tal bovine serum (FBS) (Sigma F9665), 2 mM L-glutamine
and 1% non-essential amino acids. SH-SY5Y differentia-
tions were performed in triplicate. To differentiate the SH-
SY5Y cells, flasks were coated with poly-lysine. Cells were
seeded at 4.4 × 104 cells/cm2 and grown for 24 h in standard
growth medium. The growth media was then exchanged for
differentiation media neurobasal medium (Thermo Fisher
21103049), 2 mM L-glutamine, 1% FBS, 10% B27 supple-
ment (Thermo Fisher 17504044) and 10 mM retinoic acid
(Sigma R2625). Media was replaced after 48 h. After 72 h of
exposure to 10 mM retinoic acid the media was exchanged
to differentiation media without retinoic acid and cells were
allowed to further differentiate for 72 h, including a me-
dia change at 48 h. RNA was then extracted from undiffer-
entiated and differentiated cells with Tri Reagent (Thermo
Fisher 15596026) and RNeasy columns (Qiagen 74106).

Library preparation and sequencing

To prepare RNA for sequencing, Turbo DNase was added
for 30 min at 37◦C in a PCR thermocycler with the lid set
to 50◦C to remove any DNA contamination. Samples were
purified with the RNeasy MinElute Cleanup Kit (Qiagen
74204) and eluted with 15 �l nuclease-free water. Samples
were run on an Agilent 4200 Tapestation to ensure RNA
had a RIN of >9 and quantified via Qubit (Thermo Fisher).
PolyA+ purification was performed with 50 �l of NEXTflex
polyA+ beads on a minimum of 40 �g of total RNA. Con-
firmation of rRNA removal and sample quantification were
performed with Qubit and Tapestation respectively. To min-
imise batch effects, all samples were prepared together.

Sequencing libraries were prepared with the SQK-
RNA001 kit (Oxford Nanopore Technologies, ONT) using
the standard protocol, including the optional reverse tran-
scriptase step. Two different controls were added to each
sample, yeast calibration RNA (supplied by ONT) and syn-
thetic sequin V2 spike-in RNAs (25). The calibration RNA
is from the yeast enolase II (YHR174W) gene and is 1.3
kb in length. RNA sequins provide a quantitative and qual-
itative reference to enable transcriptome analysis. Sequins
are synthetic spliced RNA transcripts for the investigation
of gene and isoform quantification, alternative splicing and
differential expression. RNA sequins consist of 160 iso-
forms from 76 artificial genes that vary in concentration
over 4 orders of magnitude. Sequin controls are available
in two mixes, Mix A and Mix B, which contain the same
synthetic RNA isoforms but at different concentrations. Se-
quins were added to each sample at a concentration of 6%.
Undifferentiated samples (U1, U2) contained sequin Mix
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A, and differentiated samples (D1, D2TR1, D2TR2, D3)
contain Mix B. Sample input was 352.5 ng of polyA+ RNA
and 22.5 ng of sequin RNA. Libraries were sequenced on
the ONT MinION using R9.4.1 flow cells and MinKNOW
(v18.01.6) to generate FAST5 files. FAST5 files were base-
called with Guppy (v3.4.5) (ONT) to create summary text
files and FASTQ files of the reads.

Sequencing metrics and quality control

Initial data analysis was performed to gather general met-
rics on sequencing performance. All analyses were per-
formed on pass reads (quality (Q) score ≥ 7). To ensure the
sequencing was of high quality, EPI2ME (ONT) was used
to determine the sequencing accuracy of the yeast calibra-
tion RNA. All subsequent analyses were performed on pass
SH-SY5Y and sequin reads (hereafter referred to as reads).
Overall data characteristics including median read length;
median quality score; longest read length; total number of
reads; read length and quality scores over run time were per-
forming using NanoPack (26) and pycoQC (27).

Genome and transcriptome alignment

FASTQ files containing ONT pass reads were aligned
to the human (GRCh38) (28) and synthetic (25) sequin
genome and transcriptome using minimap2 (v2.17) (29).
The genome alignments were performed using the splice-
aware mode of minimap2 -ax splice -uf -k14 as recom-
mended. Alignments to the GENCODE (v31) and sequin
transcriptomes were performed using the long-read mode
for ONT data -ax map-ont -N 100 to retain multiple sec-
ondary alignments. When two alignments both have the
same scores, minimap2 assigns the primary one at random.
To maximise the likelihood of identifying the correct iso-
form of origin, we retained many secondary alignments that
were later filtered during quantification.

Development and benchmarking of NanoCount

We developed NanoCount for transcript quantification of
nanopore direct RNA reads (Figure 1B). NanoCount has
been designed to be compatible with minimap2, but is po-
tentially compatible with alternative aligners that can out-
put: (i) multiple alignments per read; (ii) a metric equiv-
alent to the minimap2 alignment score (AS). NanoCount
requires a sorted BAM file of reads aligned to the tran-
scriptome as input. The first steps in NanoCount filter
reads based on optimised (customisable) criteria and defines
the best alignment per read (detailed below). After these
optional filtering steps, NanoCount uses an expectation-
maximisation (EM) algorithm to estimate transcript abun-
dances. Firstly, an initial read/transcript scores hash table
is generated (compatibility index). For each alignment we
define an initial score corresponding to the fraction of the
number of alignments per read. This means that alignments
from multimapping reads are down weighted. Secondly, the
EM loop is initiated, which starts by calculating the tran-
script abundance. For each transcript the abundance is de-
fined as the sum of scores extracted from the current com-
patibility index for alignments mapping to that reference,

divided by the total score for all the alignments. The com-
patibility index is then updated as follows: for each align-
ment we divide the current compatibility score by the sum of
abundance scores of transcripts for which the correspond-
ing read aligns to. This increases the scores of alignments
mapping on abundant transcripts which are more likely to
be true positives. These two steps are repeated until the con-
vergence is reached. The convergence is defined as a low
cumulative transcript abundance difference between two
successive EM rounds (customisable). Finally, NanoCount
computes estimated counts and normalised TPM values
based on the final transcript abundance table.

NanoCount incorporates filtering steps to improve tran-
script quantification. By default these are set to pro-
vide highly accurate results based on our benchmark-
ing (Supplementary Table S1) but are user customisable.
NanoCount initially performs basic DRS filtering steps that
discard: reads with a low aligned fraction (<0.5, customis-
able), short alignments (<50 nt, customisable) and nega-
tive strand alignments. Due to the mechanism of DRS, se-
quencing begins at the 3′ end (polyA tail) of RNAs, there-
fore the alignment 3′ end should be close to the tran-
script 3′ end. NanoCount includes a 3′ filtering threshold
(MAX DIST 3 PRIME; default: 50 nt) for the maximum
nucleotide distance of the alignment end to the 3′ tran-
script end. NanoCount also includes an alignment score
(AS) threshold (SEC SCORING THRESHOLD; default:
0.95) which a secondary alignment must meet to be con-
sidered valid. The default requires a secondary alignment
score to be at least 95% of the highest alignment score
for that read. Full documentation is available at: https://
a-slide.github.io/NanoCount/. NanoCount optionally out-
puts a BAM file of the alignments remaining after filtering.
We used NanoCount (v1.0.0) with the above default pa-
rameters to generate all isoform quantification results with
the following command: NanoCount -i file.bam -o output.tsv
-b output.bam –extra tx info. The program is available to
download from: https://github.com/a-slide/NanoCount/.

Full-length transcript identification

A custom script was used to extract data from transcrip-
tome BAM files and identify full-length transcript iso-
forms (https://github.com/josiegleeson/BamSlam). Cover-
age fractions were calculated by dividing the observed
length (alignment length) by the original known transcript
length for each read’s best alignment (highest AS) defined
by NanoCount. Reads were required to cover at least 95% of
their annotated transcript to be classed as full-length. To as-
sess the relationship between secondary alignments per read
with coverage fractions, we used each read’s best alignment
and corresponding coverage fraction. This value was then
compared to that read’s total number of secondary align-
ments to produce correlations.

Comparison of isoform quantification methods

The performance of NanoCount (v1.0.0) was benchmarked
against four other transcript quantification programs that
are compatible with DRS: Salmon (v0.13.1), StringTie2
(v2.1.5), FLAIR (v1.4.0) and LIQA (v1.1.16) (30–33). We
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used the Spike-In RNA Variant Control (SIRV) mixes E0
and E2 (SRR6058583) for our benchmarking dataset (13).
Each SIRV mix contains 69 transcripts from seven human-
like genes. Mix E0 contains all transcripts at equal concen-
trations, whereas mix E2 contains the transcripts in var-
ied concentrations that extend over two orders of magni-
tude. There are three annotations of SIRV transcripts; a
complete annotation of all transcripts (C), an insufficient
annotation which is missing transcripts that are present
in the mix (I) and an over annotation which contains ad-
ditional transcripts that are not present in the mix. For
mix E0, the quantification program that reported the low-
est coefficient of variance (standard deviation/mean) was
considered the best as all transcripts should be given the
same count. For mix E2, performance was measured by
Spearman’s rho correlation between known and measured
abundance. Performance data on each program is con-
tained in Supplementary Table S1. Salmon was run in
three separate modes: default; disabling the error model (–
noErrorModel); and disabling both the error model and
length correction (–noErrorModel, –noLengthCorrection).
The correlations were highest when disabling the error
model, so this mode of Salmon was included for bench-
marking. StringTie2, FLAIR and LIQA were run in their
default modes.

Gene and isoform quantification

FeatureCounts was applied (v1.6.5) (34) to the human or
sequin genome alignments along with GENCODE (v31)
annotations to calculate gene counts with the parameters
-L –primary. NanoCount was used for isoform quantifica-
tion on BAM files of all alignments as described above. Se-
quin genes and isoforms are present at known concentra-
tions over a 32 773 concentration fold range (genes), and
a 229 409 fold range (Mix B isoforms) and with known
fold changes between Mix A and Mix B. To assess the DRS
quantitation, Mix B sequin counts at the gene and isoform
level were compared to observed counts. Only detected se-
quins (count>0) were included in this analysis. Segmental
linear regression (SLR) was used to identify the sequin con-
centration where quantitative measurement began. Crite-
ria for breakpoint were (i) multiple sequin genes/isoforms
at concentration; (ii) ≥50% detection across all replicates
at concentration; (iii) 95% confidence interval of slope be-
fore breakpoint should include 0; (iv) optimal or near opti-
mal SLR goodness of fit. All sequin Mix B genes and iso-
forms detected in at least one replicate were used to calcu-
late Spearman correlations. To assess accuracy for detecting
fold changes, known fold changes between Mix A and Mix
B were compared to observed fold changes. Slopes were de-
termined by linear regression.

Differential expression analysis

Differential expression analysis was performed with DE-
Seq2 (v1.24) (35). Normalised counts for the two techni-
cal replicates, Diff2TR1 and Diff2TR2, were averaged prior
to analysis to produce Diff2 so as not to falsely increase
the statistical power between groups. The counts from fea-
tureCounts and NanoCount were input for gene and iso-

form level analysis respectively. Count matrices were fil-
tered to remove very lowly expressed features (≤5 in to-
tal for each gene/isoform). Counts were normalised for se-
quencing depth within DESeq2 prior to statistical anal-
ysis. Log2 fold changes and adjusted P-values (using the
Benjamini–Hochberg method to correct for multiple test-
ing) were calculated for each annotated gene or isoform
and used to determine statistical significance. A regularised
log transformation was subsequently performed on the
normalised counts for visualisation. The PCA and vol-
cano plots were made using the following code: https://gist.
github.com/stephenturner/f60c1934405c127f09a6.

Differential isoform usage (DIU) analysis was performed
using an R package IsoformSwitchAnalyzeR (36). The
isoform counts from NanoCount were input, along with
the annotation and transcriptome files. The DIU statisti-
cal analysis was performed within IsoformSwitchAnalyzeR
with DEXSeq (v1.32) (37,38) to identify exons (used to in-
fer transcript isoforms) present in different proportions be-
tween groups. Counts were filtered to remove single iso-
form genes and a gene and isoform expression cutoff of 5
was included to filter out lowly expressed features. A cutoff
fraction of 0.1 was used as the minimum difference in iso-
form fraction between conditions to further increase strin-
gency. DEXSeq normalises counts and outputs a table of
isoform fractions and their adjusted P-values for switches.
The coding potential and protein domains of transcripts
were then predicted as part of IsoformSwitchAnalyzeR us-
ing CPAT and PFAM respectively (39,40). Premature ter-
mination codons and nonsense-mediated decay sensitivity
were also predicted as part of the workflow, which enabled
the functional consequences of isoform switches between
conditions to be predicted and plots to be produced of iso-
form switches. Known isoform fractions in sequin data were
calculated by dividing each isoform concentration by its to-
tal gene concentration within each condition. To compare
isoform switches with DGE and DTE in the same genes we
used consistent counts data to calculate adjusted P-values.
DTE results from DESeq2 (described above) were input di-
rectly, while DGE was performed with DESeq2 after col-
lapsing isoform counts to gene counts with IsoformSwitch-
AnalyzeR.

Novel transcript identification

FLAIR (v1.4) was used on the human and sequin primary
genome alignments (BAM converted to BED12 files using
FLAIR script) for novel transcript identification (32). Sam-
ples were first corrected using genome annotations and with
the -n flag enabled to keep read strands consistent after cor-
rection. The two separate corrected PSL files for human and
sequin data were then collapsed into high-confidence iso-
forms. This required that isoforms were represented by at
least five full-length reads (80% coverage and covering 25
bp of the first and last exon). The FLAIR ‘–trust ends’ op-
tion was enabled for long reads and a BED file of CAGE
peak data (41) was input to only retain isoforms with 5′ ends
within 100nt of known transcriptional start sites.

The collapsed isoform GTF files were compared to
annotated transcripts using gffcompare (v0.11.2) (42).
Gffcompare assigns each transcript a class code based on

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkab1129/6439677 by U

niversity of East Anglia user on 02 D
ecem

ber 2021

https://gist.github.com/stephenturner/f60c1934405c127f09a6


Nucleic Acids Research, 2021 5

how it compares to annotated reference transcripts. The
class codes were grouped into the following categories.
Known: full ( = ) or partial (c) intron chain match to anno-
tated transcript isoform. Novel isoforms of known genes:
novel splice isoform (j), splice chain match with additional
terminal exon(s) (k), retained intron isoforms (m,n). Novel
transcripts potentially representing novel genes or tran-
scriptional units: intronic transcript (i), antisense transcript
(x), intergenic transcript (u), 5′ distal overlapping RNA (y),
other exonic overlap (o). Other: including RNA fragments
and potential sequencing artifacts (p,e,s,r). In order to cre-
ate an updated transcriptome and annotation which in-
cluded high-confidence novel isoforms, the FLAIR outputs
were filtered to only include novel multi-exon isoforms (re-
taining isoforms from class codes: j, k, m, n, I, x, u, y, o).
This subset FASTA/GTF file from FLAIR was then com-
bined with the original GENCODE (v31) FASTA/GTF to
create the updated transcriptome and annotation. The 5Y
reads from each sample were then re-mapped to this tran-
scriptome with minimap2 and quantified with NanoCount
as previously described. This new count file was then used as
input for differential isoform expression and usage analyses
as previously described.

Novel isoform validation

First-strand cDNA was synthesized from 2 ug of total SH-
SY5Y RNA using the Maxima H Minus Reverse Transcrip-
tase protocol (Thermo Fisher EP0751) in accordance with
manufacturer’s instructions. Primer pairs were designed us-
ing primer3 (https://bioinfo.ut.ee/primer3/) and are listed
in Supplementary Table S2. PCR conditions were 30 cy-
cles of: 95◦C denaturation for 30 s, 60◦C annealing for 30 s
and 68◦C extension for 30 s. PCR products were run on
a 1.2% agarose gel to validate amplification. PCR prod-
ucts were prepared for sanger sequencing using ×1.8 am-
pure bead cleanup and sequenced using Applied Biosystems
3730XL DNA Analyser. Additionally, we performed ONT
long-read cDNA sequencing on two PCR amplicons. Se-
quencing libraries were prepared with the SQK-LSK109 kit
and samples were barcoded using EXP-PBC096 (ONT). Li-
braries were sequenced on the ONT GridIon using FLO106
flow cells and MinKNOW (v20.10.6). Pass reads (quality
(Q) score ≥ 7) were mapped to the genome using minimap2
(v2.17) and alignments were assembled into transcripts for
visualisation on the UCSC browser

RESULTS

To examine the ability of DRS to identify differential ex-
pression from a complex mammalian transcriptome, we
utilised the well characterised differentiation of the human
neuroblastoma SH-SY5Y (5Y) cell line into neuron-like
cells. Native polyA+ RNA from duplicate samples of undif-
ferentiated and triplicate samples of differentiated 5Y cells
were sequenced on an Oxford Nanopore MinION (Fig-
ure 1A). In addition, a technical replicate of one differ-
entiated sample was prepared to examine variability due
to library preparation and sequencing. Synthetic RNA ‘se-
quin’ spike-in controls (25) (see methods) were included in
all samples to provide positive controls for gene and iso-

form identification, quantification and differential expres-
sion. Sequin RNAs vary in abundance over >4 orders of
magnitude and come in two mixes, each mix contains the
same synthetic RNA isoforms but their concentrations are
offset by known amounts. Mix A was added to undiffer-
entiated 5Y RNA, while Mix B was added to RNA from
differentiated samples. A yeast calibration RNA (see meth-
ods) was also included to enable initial quality control of
sequencing.

Sequencing metrics and read assignment

DRS generated 6.5 million reads in total, of which 4.4 mil-
lion (∼68%) were pass reads with a quality score >7. Yeast
calibration RNA generated 325k pass reads which had a
median read length of 1.3 kb, which was consistent with the
known length of this control and a median accuracy of 91%.
There were ∼4.1 million pass reads from 5Y cells and RNA
sequins (hereafter referred to as “reads”). Reads had a me-
dian length of 1004 nucleotides and a median quality score
of 10 across all samples (Figure 1C, Table 1).

Reads from each sample were aligned using minimap2
(29) to the human and sequin reference genome and tran-
scriptome. The aligned lengths had an overall median of
991 nucleotides (Supplementary Figure S1A), demonstrat-
ing almost the entire length of the reads aligned. Ninety
eight percent of reads aligned to the genome and transcrip-
tome, meaning almost all reads were assigned to a gene and
transcript isoform (Table 1). Most reads only had a single
primary genomic alignment. Similar to previous findings
(19), >70% of reads had one or more secondary transcrip-
tomic alignments, largely reflecting the increased difficulty
of assigning reads to specific isoforms (Supplementary Fig-
ure S1B).

To improve isoform assignment and subsequent isoform
quantification we developed NanoCount (see Methods).
NanoCount performs DRS specific filtering steps to im-
prove transcript assignment prior to quantifying DRS reads
using an expectation-maximisation algorithm (Figure 1B).
NanoCount filters alignments based on two key parame-
ters, read 3′ end position and alignment score (AS). As DRS
reads always start at the RNA 3′ polyA tail, there should
be close agreement between the 3′ end of a read and the
3′ end of the transcript it aligns to. In addition, alignment
scores identify the best matching alignments and allow sep-
aration of close matching putative primary and secondary
alignments from lower quality secondary alignments. After
testing a number of parameters and parameter combina-
tions (Supplementary Table S1) we used NanoCount to dis-
card read alignments with 3′ ends >50nt away from the tran-
script 3′ end and secondary alignments with an AS <95%
that of the best alignment (highest AS), as these likely rep-
resent misalignments or reads from unannotated isoforms.
Examples of how NanoCount filters alignments are shown
in Supplementary Figure S2.

Filtered read alignments from NanoCount greatly im-
proved transcript assignment, increasing reads with a single
primary alignment two-fold to 56% and decreasing reads
with five or more secondary alignments by >80% (Supple-
mentary Figure S1B). We identified expression of 17 263
human genes (65% of protein coding genes) and 41 703 hu-
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Figure 1. Experimental overview and DRS read metrics. (A) Experimental overview. Cultured SH-SY5Y cells were differentiated in triplicate and RNA
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Table 1. Direct RNA sequencing alignment metrics (pass reads)

Undiff1 Undiff2 Diff1 Diff2TR1 Diff2TR2 Diff3 Overall

Number of reads 468 790 778 037 518 176 806 067 867 371 634 226 4 072 667
Median read length (nt) 989 1009 922 994 1041 1042 1004
Median read quality score 9.8 10.2 9.9 10.0 10.0 9.9 10.0
Longest alignment length (nt) 13 439 15 081 12 600 13 739 13 624 14 362 15 081
Reads aligned to genome (%) 97.5 97.8 97.8 98.1 98.2 98.1 98.0
Reads aligned to transcriptome (%) 97.7 97.8 98.0 98.3 98.4 98.3 98.2

man isoforms (41% of protein coding isoforms), as well as
42 (55%) and 70 (44%) sequin genes and isoforms.

Genome and transcriptome coverage

One of the main advantages of nanopore sequencing is the
potential to generate long reads that comprise full-length
transcripts. However, both RNA degradation and ONT
software limitations reduce the extent to which DRS reads
represent full-length transcripts (18). Sequin RNAs are in-
vitro transcribed and so are not vulnerable to degradation
by cellular RNases during RNA extraction. As such they
should provide some indication of how much degradation is
present in cellular RNA (even when RNA integrity appears
high) versus how many incomplete transcripts are due to
degradation during library preparation and/or sequencing
limitations.

We examined read coverage across gene bodies. DRS re-
quires an intact 3′ end, which is sequenced first (13) and
we observed corresponding high coverage at the 3′ end
(Figure 1D). Gene body coverage then progressively de-
creased towards the 5′ end, consistent with previous studies
(19,43).

To assess the fraction of transcripts covered by reads and
the proportion that represent full-length transcripts a cover-
age fraction was calculated. We utilised the best alignment
for each read (to GENCODE (v31) or the sequin transcrip-
tome) after NanoCount filtering. We defined coverage frac-
tion as the observed transcript length (alignment length)
divided by the original known transcript length. The me-
dian coverage fraction for 5Y RNA was 0.88 (0.97 for se-
quin RNA), demonstrating that most reads covered a high
proportion of the original RNA transcript. Alignments to
longer transcripts were less likely to be full-length, consis-
tent with previous studies (14) (Figure 1E, Supplementary
Figure S3A). In addition, the number of secondary align-
ments correlated with the coverage fraction (–0.23 for 5Y
and –0.70 for sequins) (Supplementary Figure S3B,C), con-
firming that improved sequencing coverage at the 5′ end
would further decrease secondary alignments and improve
quantification.

We classified alignments that covered at least 95% of
their assigned transcript isoform as full-length (14). In to-
tal, 53% of sequin reads were full-length compared to 38%
of 5Y reads (Figure 1F). In comparison, using the primary
alignments from minimap2 without NanoCount filtering
gave a median 5Y coverage of 0.74, with 46% of sequin
reads and 29% of 5Y reads being full-length. These results
demonstrate the benefit of read filtering and improved tran-
script assignment. However, while a significant proportion
of reads are full-length, there is considerable room for im-

provement through sequencing software advances and by
preventing degradation during RNA extraction and library
preparation.

Accurate expression quantification of DRS with NanoCount

We tested the performance of NanoCount against other
transcript quantification programs, including Salmon,
StringTie2, FLAIR and LIQA (19,23,32–33,33), using
SIRV RNA spike-in DRS data (Materials and Methods). In
the SIRV mix E0 where all isoforms are present in the same
concentration, NanoCount quantification consistently dis-
played the least variability between measured isoform abun-
dances (Figure 2A, C, Supplementary Figure S4, Supple-
mentary Table S1). This was maintained for the over anno-
tated (O) and insufficiently annotated (I) sets, which repre-
sent more realistic situations where either only a subset of
annotated transcripts are expressed (O), or, un-annotated
novel transcripts are present in the data (I). For SIRV
mix E2 where transcript concentrations vary, NanoCount
also had the best overall performance (Figure 2B, D, Sup-
plementary Figure S4, Supplementary Table S1). The im-
proved NanoCount performance, especially in the over (O)
and insufficient (I) annotations, suggests alignment filtering
is an important step for accurate transcript assignment and
quantification for genes with high levels of isoform com-
plexity. Like Salmon and StringTie, NanoCount has a very
short run-time, with all three programs completing isoform
quantification within 10 s (real-time) (Supplementary Ta-
ble S1).

To confirm the quantitative accuracy of DRS and its
potential to detect differential expression we used sequin
spike-ins, which are better suited for testing DE. Quantifi-
cation was performed with featureCounts for alignments
to the genome (34), and NanoCount for alignments to the
transcriptome respectively, and compared with known se-
quin input concentrations (Figure 2C, D, Supplementary
Table S3). Measured sequin abundance was highly corre-
lated with known abundance at the gene and isoform level
(Spearman’s correlation of 0.96 and 0.90 respectively, both
P < 0.0001, two-tailed). Results showed DRS could detect
but not quantitate sequins at very low concentrations due to
sequencing depth. Therefore a segmental linear regression
was utilised to help identify the concentration where quan-
titative measurement began. This revealed a slope close to
1 above the cutoff for genes and isoforms. These findings
demonstrate the ability of DRS to accurately quantify de-
tected genes and isoforms and the improved isoform quan-
tification produced by NanoCount. Therefore, we utilised
NanoCount quantification for all subsequent transcript-
level analysis.
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Figure 2. Comparison of methods for quantifying DRS spike-in controls. (A–D) Comparison of NanoCount, Salmon and StringTie2 for quantification
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Identification of differential expression with direct RNA se-
quencing

We next asked if DRS could detect systematic expression
level changes between conditions using principal compo-
nent analyses (PCA). Comparison of Mix A and B sequins
demonstrated sequin mixes separated on PC1 (Figure 3A,
Supplementary Figure S5), which explained a very high pro-
portion of the variance (83% at the gene level and 74% at
the transcript isoform level). Similarly, endogenous 5Y sam-
ples separated by differentiation state along PC1, which ex-
plained 82% of the variance at the gene and 79% at the iso-
form level (Figure 3B). Technical replication produced al-
most identical samples, further confirming little technical
variability from library preparation and sequencing (Sup-
plementary Figure S5 and S6). Together the sequin and 5Y
results illustrate that DRS can robustly identify differences
in expression between samples at both the gene and isoform
level and that the measured expression changes are reflective
of the biological changes between samples.

We performed DGE and DTE using DESeq2 (35). We
identified seven sequin genes and nine sequin isoforms as
differentially expressed (adj-P < 0.05). All were true pos-
itives suggesting high accuracy in the results (Figure 3C,
D, Supplementary Table S4). There are 47 sequin genes
and 83 sequin transcripts potentially detectable as differen-
tially expressed (fold change �= 0), however only 18/24 of
these genes and transcripts passed our filtering thresholds
for analysis. This suggests the high specificity, but lower sen-
sitivity may be due to low overall read counts. To examine if
DRS accurately identified changes in sequin concentrations
between Mix A and B, even if significance was not reached,
we examined the correlation between observed and known
log2 fold changes of sequin genes and isoforms and also per-
formed a linear regression to estimate the quantification ac-
curacy of fold change measurement (Figure 3C, D). Corre-
lations between observed and known log2 fold changes were
high, 0.90 for genes and 0.87 for isoforms, and the slopes
were 0.96 for genes and 0.73 for isoforms (both significant
at P < 1 × 10–12). The significant linear relationships and
strong correlations at both the sequin gene and isoform level
demonstrates DRS accurately detected changes in expres-
sion between groups. The lower values for isoforms may
be due to lower reads counts for isoforms than genes and
the increased difficulty in unambiguously assigning reads
to specific isoforms (Supplementary Figure S1B).

Applying the DE analysis on 5Y samples identified 231
annotated genes and 333 transcript isoforms as DE between
undifferentiated and differentiated samples (adj-P < 0.05)
(Figure 3E, Supplementary Figure S7, Supplementary Ta-
ble S5). Genes significantly upregulated in differentiated
samples (n = 118) were used in a gene ontology analysis us-
ing PANTHER (44). The most significant GO terms were
predominantly associated with neuronal development and
developmental processes more generally, with the GO term
‘neurogenesis’ (GO:0022008) the most associated (adj-P =
2.9 × 10–8) with differentiated 5Y cells (Figure 3F). GO
analysis for upregulated isoforms (n = 197) gave similar re-
sults, including terms associated with nervous system de-
velopment (Supplementary Table S6). These results validate
the ability of DRS to identify biologically relevant changes
in gene expression.

Differential isoform usage (DIU) analysis between samples

Along with DE of genes and transcript isoforms, changes
in isoform usage (DIU) can also be physiologically relevant
and reveal important distinctions between cell types and
in disease (45). DIU involves isoform switches or changes
in isoform proportions and can occur even when there is
no change in expression at the gene level. As the results
of DTE often largely reflect those of DGE, complexity at
the isoform level can be masked (46). Our results demon-
strated DRS can perform quantitative sequencing of full-
length isoforms and hence should be well suited to revealing
this complexity.

Transcript counts were used to identify isoform switching
using DEXSeq within the IsoformSwitchAnalyzeR pack-
age (36). After filtering out lowly expressed genes and iso-
forms, and isoform fraction changes of less than 0.1, 5513
5Y isoforms and 28 sequin isoforms were included for
analysis. We identified 27 endogenous genes (44 isoforms)
and one sequin gene (adj-P < 0.05) that contained iso-
form switches between undifferentiated and differentiated
5Y cells (Supplementary Table S7). The sequin isoform
(adj-P = 6.5 × 10–18) was a true positive for DIU, with a
similar observed difference in isoform fractions (0.90) to
the known difference (0.88) (Figure 4A). Only three genes
and 19 isoforms with DIU also showed DGE or DTE re-
spectively, confirming how complexity at the isoform level
can be masked and the importance of separately identify-
ing DIU. To identify the potential consequences of isoform
switching, the open reading frames, coding potential and
protein domains were predicted for each isoform. Conse-
quences ranged from changes to non-coding 5′ transcrip-
tional start sites and 3′UTRs to alterations in coding re-
gions and protein domains or switches between coding and
non-coding isoforms.

DIU identified in endogenous 5Y genes included ex-
amples which matched the known biology and expression
changes in neuroblastoma cells. KCNQ2 forms a multimeric
potassium channel and expresses multiple mRNA isoforms
encoding functionally variant proteins. The short isoform
ENST00000344425 (protein isoform 6) lacks much of the
cytoplasmic C-terminal region and can alter channel prop-
erties to suppress the potassium current (47). It is the dom-
inant isoform in undifferentiated IMR-32 neuroblastoma
cells and also expressed in developing brain. In contrast,
the long isoform ENST00000626839 (protein isoform 2), is
the major protein isoform in adult brain and up-regulated
in differentiated IMR-32 cells (47). While we find no over-
all change in the expression level of KCNQ2 in 5Y cells, we
identified an expression shift from the short to the long iso-
form upon differentiation, as would be expected from pre-
vious findings (Figure 4B). Together these results demon-
strate long-read DRS can identify and quantify biologically
relevant changes in isoform usage.

Discovery and differential expression of novel isoforms

A key advantage of long-read sequencing is its ability to
discover novel transcript isoforms (15,18). We used FLAIR
(32) with stringent settings (see Methods) to identify a high-
confidence set of 20 740 unique human isoforms (Figure 5A,
Supplementary Table S8). Comparison to reference anno-
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Figure 3. Identification of differential gene and isoform expression. (A, B) Principal component analysis (PCA) of sequin (A) and SH-SY5Y (B) gene
and isoform expression between undifferentiated and differentiated SH-SY5Y cells. All plots show the first two principal components. SH-SY5Y shows
endogenous expression only. Sequins were added to undifferentiated (Mix A) and differentiated (Mix B) SH-SY5Y RNA and plots reflect measured
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Figure 5. Identification and quantification of novel isoforms with FLAIR and NanoCount. (A) FLAIR annotation of SH-SY5Y isoforms compared
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full-length or partial-length exact matches to existing annotations; novel isoform, transcripts from known genes with novel exon junctions or retained
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Arrows indicate significant differential expression of isoforms upregulated in differentiated samples after quantification with NanoCount. Novel isoform
2 (orange) is the most significant differentially expressed novel isoform and shows a novel 3′ terminal exon and exon skipping. TSS: transcription start site.

tations using gffcompare (42) demonstrated the most abun-
dant category (62.5%) was comprised of full-length matches
to annotated isoforms (Supplementary Table S9). Novel
isoforms of known genes (33.5%) were also frequent and
largely consisted of novel splice isoforms as opposed to
transcripts with retained introns. Previous long-read stud-
ies using DRS with FLAIR observed higher percentages
of novel isoforms (∼50%) but used less stringent settings
(18,19).

We validated an example novel isoform identified by
FLAIR in DEAF1, a transcription factor essential for ner-

vous system development (48,49) (Figure 5B). In agree-
ment with the individual DRS reads, FLAIR identified the
canonical isoform (ENST00000382409) and also provided
evidence that two other GENCODE transcripts are incom-
plete isoforms that instead use the standard 5′ initiation
site. We validated the most abundant novel DEAF1 isoform
and confirmed inclusion of an exon similar to that from
ENST00000527658 (Supplementary Figure S8).

Given the high error rate of DRS, we used the sequin data
to estimate what proportion of novel isoforms identified
with FLAIR might be false positives, as all sequin isoforms
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are annotated and therefore should be classed as known.
FLAIR identified 48 unique sequin isoforms, only one of
which was classed as novel, suggesting stringent FLAIR
settings produce accurate isoforms from direct RNA data
(Supplementary Table S9).

To quantitate and identify DE of novel 5Y isoforms we
incorporated our high-confidence FLAIR novel isoforms
into an updated transcriptome annotation, re-mapped the
reads and quantified expression using NanoCount, identi-
fying the expression of 5421 novel isoforms. We then ap-
plied the same DTE analysis to detect DE of known and
novel transcripts isoforms. We found 326 differentially ex-
pressed isoforms, 40 of which were novel (Supplementary
Table S10). The most significant novel transcript showing
DE was an isoform of the DLK1 gene, which was upreg-
ulated in differentiated cells (Figure 5C). Measured fold
changes for the 333 isoforms DE in the original analysis
were highly correlated (R2 = 0.99) with the updated anal-
ysis and 247 isoforms were DE in both, demonstrating high
consistency between the analyses and supporting the inclu-
sion of novel isoforms via this method.

Finally, we also investigated switching (DIU) of novel iso-
forms using the process described previously. We found one
gene that contained a significant novel isoform switch. A
novel isoform of the RET proto-oncogene showed a de-
creased fraction of expression (–20%) in differentiated 5Y
cells, whereas a known isoform of this gene had an upreg-
ulated fraction of expression (+12%) (Supplementary Ta-
ble S7). These results demonstrate that the combination of
FLAIR and NanoCount enables the identification of differ-
ential expression in novel isoforms.

DISCUSSION

To enable wide uptake in the transcriptomics field, DRS
needs to quantify RNA expression accurately and iden-
tify differential expression between tissues, developmen-
tal stages and disease states. To facilitate this process, we
developed NanoCount for the accurate quantification of
transcript isoforms and performed an in-depth analysis of
DRS using synthetic spike-in RNAs and human SH-SY5Y
(5Y) neuroblastoma cells. We demonstrated that DRS can
robustly identify differential expression between synthetic
RNA mixes and human cell types and produce biologi-
cally relevant information. Combined with improved iso-
form quantification, the identification of differential expres-
sion of both genes and known and novel isoforms confirms
the widespread potential for DRS in transcriptome profil-
ing.

The key challenges with DRS are sequencing depth and
correct isoform assignment. The former is due to the modest
number of reads generated per DRS sequencing run (0.5–
2 million on a MinION flowcell). This makes it challeng-
ing to detect and quantify many lowly expressed genes and
isoforms. The challenge of correct isoform assignment has
been previously noted (19,23) and is due to the high (∼10%)
error rate, the large proportion of non-full-length reads and
the high similarity of many gene isoforms. Although RNA
extracted from 5Y cells was of very high quality (RIN >
9), it remains challenging to sequence a high proportion
of full-length transcripts. DRS starts at the 3′ end of tran-

scripts (13), therefore many incomplete reads are largely
consigned to 3′UTRs and cannot specify the expressed iso-
form. For this reason, we do not recommend using pri-
mary alignments alone for transcriptomes with a large pro-
portion of close secondary alignments, as this causes many
reads to be specifically assigned to incorrect isoforms. Ex-
emplifying this, >70% of reads had secondary transcrip-
tome alignments. NanoCount helps to overcome this chal-
lenge by taking into account the unique properties of di-
rect RNA reads. NanoCount performs a DRS specific fil-
tering step that eliminates many incorrect alignments prior
to transcript quantification, enabling it to estimate isoform
abundances more reliably.

Previous studies have demonstrated DRS is a highly ac-
curate method for quantifying expression of spike-in con-
trols (13,23) and could identify differential gene expres-
sion in yeast (14). DGE and/or DTE have recently been
reported in C.elegans and Arabidopsis with DRS (16,17).
However, these have almost exclusively been identified from
fold changes alone or using a relaxed statistical threshold,
leaving the capability of DRS to identify differential expres-
sion in a robust manner uncertain. In addition, the human
transcriptome is vastly more complex than that of simpler
model organisms (50). Despite the modest read depth ob-
tained, we found DRS was sensitive enough to detect sig-
nificant expression differences in 231 genes and 333 iso-
forms along with 27 genes containing isoform switches dur-
ing 5Y differentiation. We used our sequin controls to vali-
date a close relationship between known and measured fold
changes even if the significance threshold for DE wasn’t
reached. Hence, we expect that the majority of 5Y results
represent true positives, but that the results are likely miss-
ing a number of DE genes and isoforms that would be re-
vealed with higher sequencing depths.

Despite the quantification improvements enabled by
NanoCount, methodological improvements to increase the
proportion of full-length transcripts will also be crucial to
maximising correct transcript assignment. To this end DRS
methods that enrich for RNAs with a 5′ cap have recently
been introduced, allowing for the targeted sequencing of
full-length RNAs with intact 3′ and 5′ ends (51–53). An-
other recent DRS study reported that approximately 20%
of reads are truncated during sequencing due to signal noise
(18). The truncation of reads due to software limitations is
another obvious avenue for improvement, along with pre-
venting RNA degradation during library preparation, for
maximising full-length transcripts. The continued develop-
ment of new chemistries and algorithms by ONT will also
result in improved coverage towards the 5′ ends of tran-
scripts, as well as increases in read depth and accuracy.

A key advantage of DRS is its ability to sequence tran-
scripts as they exist in the cell, improving the detection of
novel transcript isoforms and RNA modifications. In con-
trast, Illumina short-read sequencing can perform poorly
in resolving transcript isoforms, especially those resulting
from alternative splicing (8). FLAIR (32) identified ∼20
000 isoforms in 5Y cells, 34% of which were novel isoforms
of known genes or potentially novel transcriptional units.
By updating our transcriptome annotations to include the
novel high-confidence isoforms from FLAIR, we were able
to quantify them with NanoCount and detect their differ-
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ential expression. Comparison to sequin controls supported
the accuracy of FLAIR isoforms identified with our strin-
gent settings, however, some caution should be taken in ex-
trapolating the sequin results due to the lower complexity
of the sequin transcriptome compared to the human one.
The high number of novel transcript isoforms detected in
this study and others indicates that the annotation of the
human transcriptome is far from complete and that DRS
combined with tools such as FLAIR and NanoCount can
play an important role in discovering and quantifying these
novel isoforms.

In summary, the applicability of DRS to gene expression
profiling was demonstrated using synthetic controls and hu-
man cell populations. We introduced NanoCount for im-
proved isoform quantification and show that DRS identi-
fies biologically relevant changes in gene and isoform ex-
pression in complex transcriptomes. The long read lengths
generated by the technique provide a clear advantage for
isoform quantification, however several aspects of DRS re-
quire improvement before it can truly outweigh other se-
quencing technologies. In conclusion, DRS is a promising
method to decipher the complex expression and splicing
patterns that characterise the transcriptome and to iden-
tify differentially expressed isoforms contributing to devel-
opment and disease.
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