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Abstract
Runtime monitoring is an effective means to improve the
reliability of systems. In recent years, parametric monitor-
ing, which is highly suitable for object-oriented systems,
has gained significant traction. Previous work on the per-
formance of parametric runtime monitoring has focused on
the performance of monitoring only one specification at a
time. A realistic system, however, has numerous properties
that need to be monitored simultaneously. This paper intro-
duces scalable techniques to improve the performance of one
of the fastest parametric monitoring systems, JavaMOP, in
the presence of multiple simultaneous properties, resulting
in average runtime overheads that are less than the sum-
mation of the overheads of the properties run in isolation.
An extensive evaluation shows that these techniques, which
were derived following a thorough investigation and analysis
of the current bottlenecks in JavaMOP, improve its runtime
performance in the presence of multiple properties by up to
two times and the memory usage by 34%.

Categories and Subject Descriptors D.2.1 [Software En-
gineering]: Requirements/Specifications; D.2.4 [Software
Engineering]: Software/Program Verification; D.2.5 [Soft-
ware Engineering]: Testing/Debugging

General Terms Languages, Performance, Reliability, Ver-
ification

Keywords scalability, parametric monitoring, runtime ver-
ification, runtime monitoring, testing, debugging, aspect-
oriented programming

1. Introduction
Runtime monitoring is an effective technique to increase
software reliability, by enabling more effective testing, de-
bugging, and recovery from incorrect program behavior.

Parametric properties are properties that describe behav-
iors of objects (parameters), which a program should con-
form during its execution. They can describe use protocols
for classes, pre-conditions for using classes, prohibited ac-
tivities, and so fourth. Typestates [30] are a similar concept,
but only allow one single parameter. Parametric properties in
general can describe properties about any number of param-
eters. For example, Figure 1 shows the Map UnsafeIterator
specification from [26], which formalizes the parametric
property concerning Map, Collection, and Iterator param-
eters, that “a map should not be updated while using the it-
erator interface to iterate over its keys or values.” This spec-
ification defines five parametric events with the correspond-
ing AspectJ pointcuts. The property is formalized using an
extended regular expression (ERE), as specified by the ere
keyword. If a program behavior matches this pattern, violat-
ing the property from the Java API documentation, the de-
fined handler containing the user-defined Java code will be
executed; here we simply print out an error message in the
handler. Handler can be any code, from logging to recovery.

Many runtime properties can be enforced with parametric
monitoring. Parametric specifications are especially effec-
tive for formalizing properties that arise in object-oriented
programming. Several parametric monitoring systems such
as Hawk/Eagle [16], J-Lo [8, 9, 29], JavaMaC [25], Java-
MOP [13–15], JPaX [23], Pal [12], PoET [19], PQL [27],
PTQL [21], RuleR [6], QVM [4], SpoX [22], Temporal-
Rover [17], and Tracematches [3, 5] have been proposed in
recent years. Among those systems, JavaMOP is the only
formalism-independent parametric monitoring system.

Designing and developing a system which can efficiently
monitor parametric properties is not trivial. Many advanced
monitoring systems often show prohibitive overhead for
complex specifications or for complex applications. This
is because the parameters are dynamically bound to ob-
jects at runtime, resulting in a potentially unlimited number
of parameter bindings [24]. Since the property needs to be

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4838592?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Map UnsafeIterator(Map m, Collection c, Iterator i) {
creation event getset after(Map m) returning(Collection c) :

(call(Set Map+.keySet()) || call(Collection Map+.values()))

&& target(m) {}

event getiter after(Collection c) returning(Iterator i) :

call(Iterator Iterable+.iterator()) && target(c) {}

event modifyMap before(Map m) :

(call(* Map+.clear*(..)) || call(* Map+.put*(..))

|| call(* Map+.remove(..))) && target(m) {}

event modifyCol before(Collection c) :

(call(* Collection+.clear(..))

|| call(* Collection+.offer*(..))

|| call(* Collection+.pop(..))

|| call(* Collection+.push(..))

|| call(* Collection+.remove*(..))

|| call(* Collection+.retain*(..))) && target(c) {}

event useiter before(Iterator i) :

(call(* Iterator.hasNext(..))

|| call(* Iterator.next(..))) && target(i) {}

ere : getset (modifyMap | modifyCol)* getiter useiter*

(modifyMap | modifyCol)+ useiter

@match {
System.err.println("a violation detected!");

}
}

Figure 1. Map UnsafeIterator specification in JavaMOP

checked for each parameter binding individually, the runtime
and memory overhead of monitoring a parametric property
can be arbitrarily large. There has been a significant amount
of research on improving the runtime and the memory per-
formance of parametric monitoring [5, 11, 24, 28]. Thanks
to these efforts, parametric monitoring has become relatively
practical: in most cases the runtime/memory overhead is
not noticeable; and it generally costs less than 15% runtime
overhead to monitor even complex object systems and/or
parametric properties; and even in extreme cases the run-
time overhead is reasonable [24]. Static optimization tech-
niques, such as [11], can improve performance even further
(but we do not investigate static analyses in this paper). For
the rest of this paper, whenever we say monitoring we mean
parametric monitoring.

To the best of our knowledge, all earlier efforts on para-
metric monitoring have been focusing on better performance
when monitoring a single specification. In reality, it is quite
likely to have many specifications for a given program. A
natural question then is: can we do better than the sum of
the parts? That is, can we monitor multiple specifications
at the same time with less overhead than the sum of the
overheads of each individual property? Theoretically, if all
specifications are independent from each other without any
overlap in declared events or parameter types, there is no
way to monitor them more efficiently. However, in practice,

there are likely multiple specifications on the same class, of-
ten sharing some events and parameter types. Among 137
specifications from [26], only 42 specifications are totally
independent from all the other specifications.

In this paper, we present scalable parametric monitor-
ing techniques for monitoring multiple simultaneous spec-
ifications more efficiently in the presence of some overlaps
between specifications. The main idea of the scalable tech-
niques is to share resources for monitoring between specifi-
cations, reducing the memory usage and utilizing the caches
more often. Since our scalable techniques are formalism-
independent and address general issues in the indexing tree
technique, they can be applied to other parametric monitor-
ing systems that use similar indexing tree structures. Also,
they are orthogonal to other optimization techniques like
static optimization [10, 11, 18, 27], which reduce runtime
and memory overhead significantly. However, we deliber-
ately disabled static optimizations in this paper to measure
the effectiveness of our scalable techniques properly.

For the evaluation of our work on scalability, we use the
137 specifications from [26]. These specifications are based
on the Java 6 API documentation concerning three main
packages: java.io, java.lang, and java.util. Since there is no
other parametric monitoring tool which is capable of practi-
cally monitoring the 137 specifications simultaneously, we
compare our work on scalability to the previous version
of JavaMOP. The average runtime overhead of the scalable
JavaMOP run on version 9.12 of the DaCapo [7] bench-
mark suite for the 137 simultaneous specifications is 147%,
which is almost half of the 262% overhead that the previous
JavaMOP shows. Moreover, this runtime overhead is smaller
than the sum of the overheads from monitoring them individ-
ually, which is 178% on average, while the previous version
of JavaMOP shows more overhead when running all proper-
ties together than the sum of the overheads when run indi-
vidually, which is 243% on average.

The rest of this paper is structured as follows: Section 2
provides background on parametric monitoring as used in
the previous version of JavaMOP; Section 3 presents a thor-
ough profiling of current runtime overheads from monitor-
ing, and discusses the main current bottlenecks in monitor-
ing; Section 4 discusses our scalable parametric monitoring
techniques in detail; Section 5 presents our evaluation results
for the 137 specifications; Section 6 discusses some ineffec-
tual approaches that we have tried; and Section 7 concludes.

Contributions This paper’s contributions are as follows:

• Thorough Profiling on overhead from monitoring;
• Scalable Monitoring Techniques that reduce runtime and

memory overhead significantly when monitoring multi-
ple specifications simultaneously;
• Large Scale Evaluation that monitors 137 parametric

specifications simultaneously for the first time.
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Figure 2. Overview of the previous monitoring mechanism

2. Background
To explain scalable parametric monitoring techniques, we
first introduce some background on the previous paramet-
ric monitoring algorithm, its implementation, and data struc-
tures for it. A more in-depth discussion of these details
can be found in [24, 28]. In parametric monitoring, a spec-
ification monitors a program execution trace consisting of
parametric events. The specification must hold for each pa-
rameter instance, which is a partial mapping from parame-
ters to objects. A parametric event e with parameter instance
p is denoted as e〈p〉. For example, the Map UnsafeIterator
specification (Figure 1) should hold for all combinations of
a Map instance, a Collection instance, and an Iterator in-
stance that are related by specification events.

We slice the program execution trace for each parameter
instance so that a monitor for each parameter instance can
forget about parameters and focus on the property. In this
way, a monitor is independent from parameters, resulting in
a formalism-independent parametric monitoring system. In
this paper, we omit the detailed algorithm of the parametric
monitoring, but summarize it in Figure 2 since the detailed
algorithm is not required in explaining our work; the inter-
ested readers may refer to [28]. Upon an event, it retrieves
the monitor(s) from the indexing tree. If there is no moni-
tor that can accept a given parametric event, e〈p〉, either an
existing monitor from a subset of p is copied, or if no such
monitor exists and e is a creation event, a new monitor is cre-
ated. For better performance, it uses an indexing cache that
stores the previously accessed monitor(s).
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Figure 3. Some indexing trees for Map UnsafeIterator

The indexing tree is an efficient means to locate the mon-
itors for a given parameter instance. The indexing tree is
implemented as a multi-level map that, at each level, in-
dexes each parameter object of the parameter instance. For
example, Figure 3 shows two indexing trees out of six in
the Map UnsafeIterator specification. The indexing tree for
〈Map, Collection, Iterator〉 (left tree) is a 3-level map.
With a map, a collection, and an iterator, we can retrieve
the related monitor. The indexing tree for 〈Map, Collection〉
(right tree) is a 2-level map. For a map and a collection, this
indexing tree returns a set of monitors, because there can
be multiple monitors for the given map and collection (one
monitor for each iterator).

If an indexing tree stores all parameter objects directly, it
will block them from being garbage collected, leading to a
memory leak. Instead of storing parameter objects directly,
the indexing tree uses the WeakReference class from the Java
API. WeakReference allows a reference to an object that will
not disallow garbage collection for said object. When the
object is garbage collected, the JVM changes the referent
field of all weak references referring to it to null. In this
way, parameter objects can be garbage collected without any
interference from monitoring.

Mappings in the indexing tree can be broken when pa-
rameter objects are garbage collected and their weak ref-
erences point to null. The Java API provides a way to
queue weak references of garbage collected objects into a
ReferenceQueue object. By using this feature, broken map-
pings can be easily removed from the indexing tree. How-
ever, using this feature slows down the system significantly,
because queuing weak references involves synchronization.
While other general data structures like the Apache Com-
mons Collections Library [20], use this feature, our imple-
mentation of the indexing tree does not use it for the perfor-
mance reasons. Instead of using ReferenceQueue, we iterate
through mappings and remove broken ones. Surprisingly, it-
erating through mappings is significantly faster than using
the queuing feature from the Java API. This self-cleaning
feature of our indexing tree also allows for efficient garbage
collection of unnecessary monitors [24]; when we iterate
through the mappings, we simply check whether any of the
monitors have become unnecessary.
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Overhead Fraction Method Name

355% Original Program
281% MOPSet.event
205% MOPMap.cleanup
130% System.identityHashCode

69% MOPMap.get
67% MOPSet.size
51% MOPMap.endObject
28% Aspect Code
27% MOPMap.full cleanup
22% MOPSet.endObject

Table 1. Overhead distribution when monitoring bloat (total
overhead: 1330%)

3. Overhead Analysis
In this section, we analyze the overhead of monitoring to
find the main bottlenecks in monitoring. For this analysis,
we have selected 9 specifications1 that have caused the most
overhead in previous evaluations. We run the specifications
on the bloat and pmd benchmarks because they have shown
the largest overheads among the benchmarks in our eval-
uation (Section 5). We use the same system settings from
the evaluation, and HPROF, the Heap/CPU profiling tool in-
cluded in the Sun JDK [2] is used to obtain performance
statistics. There are two modes for CPU usage analysis in
HPROF: the CPU Usage Times Profile and the CPU Us-
age Sampling Profile. The CPU Usage Times Profile adds
a considerable amount of overhead, obstructing the analysis
of the actual bottlenecks. Moreover, we do not need to know
the exact time distribution to figure out where bottlenecks
occur. The CPU Usage Sampling Profile, which causes less
performance degradation, is good enough for this analysis.
Since the CPU Usage Sampling Profile does not combine
the results for the same method of different object instances,
we manually combine them and categorize.

Tables 1 and 2 summarize the profiling results for moni-
toring bloat and pmd. The results for bloat show total over-
head of 1330%; that is 1430% total execution time compared
to the original non-monitored bloat. In the same way, moni-
toring pmd shows a total overhead of 831%. Because profil-
ing can change the program behavior, numbers may contain
errors, so they should be considered as rough estimations.

The MOPSet.event entry in Table 1 shows the overhead
spent updating monitor states when events occur. This com-
ponent is formulated from the property of the specifica-
tion, and is already optimized well. MOPMap.cleanup and
MOPMap.full cleanup remove mappings of garbage col-
lected parameter objects and monitors. The difference is
whether it partially or fully scans the map. These cleanup

1 Map UnsafeIterator, Collection UnsafeIterator, Iterator HasNext,
Collections SynchronizedCollection, NavigableMap Modification,
Collections SynchronizedMap, Iterator RemoveOnce,
List UnsynchronizedSubList, Collections SortBeforeBinarySearch

Overhead Fraction Method Name

479% Original Program
90% MOPSet.event
56% MOPMap.cleanup
28% System.identityHashCode
25% MOPSet.size
13% MOPMap.get

8% MOPMap.full cleanup
7% MOPMap.endObject
6% WeakReference 〈init〉
5% MOPSet.endObject

Table 2. Overhead distribution when monitoring pmd (total
overhead: 831%)

Peak Young Garbage Full Garbage
Description Memory Usage Collection Time Collection Time

Original bloat 5MB 6% 2%
Original pmd 21MB 7% 8%

Monitoring bloat 970MB 278% 258%
(out of 1330% overhead)

Monitoring pmd 603MB 172% 181%
(out of 831% overhead)

Table 3. Memory usage analysis

methods are well tuned so that they are unlikely to be im-
proved significantly. The methods MOPMap.endObject and
MOPSet.endObject propagate information about garbage
collected parameters. They consist of simple statements and
have already been thoroughly optimized [24].

System.identityHashCode is the system default hashing
function provided in the Java API, which is based on ref-
erence identity instead of the equals method provided by
classes. It returns the same hash code for objects a and b
if a == b, and tries to return different codes otherwise,
but uniqueness is not guaranteed. Although this is just one
of several statements in the MOPMap.get method that re-
trieves monitor(s) for a parameter instance, it produces more
overhead than all other methods combined. Calling this
method is unavoidable since it is used to retrieve keys in
the MOPMap implementation. However, we need to call
this method as little as possible.

While many monitoring components show significant
overhead, it is notable that the original program compo-
nents are also slower when monitoring is present (i.e. 100%).
To understand this situation, we analyze the memory us-
age when monitoring, using Java Management Extensions
(JMX) [1]. Table 3 summarizes the memory usage analysis.
Monitoring triggers huge memory overheads, resulting in
significantly more garbage collection time. With respect to
the original program execution time (100%), in monitoring
bloat, young object garbage collection takes 278% and full
garbage collection takes 258%. In total, garbage collection
takes 536% when monitoring bloat and 353% when moni-
toring pmd. This explains why the original components of
the code run far slower when monitoring is present.
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We must conclude that the main remaining bottleneck
to runtime performance in monitoring is excessive memory
usage. Huge memory overhead causes more frequent and
longer garbage collections, resulting in larger runtime over-
head. We should reduce memory overhead to optimize run-
time performance. For example, in Table 2, WeakReference
object initializations show 6% overhead, while there is no
other class ranked in the result. This is because there is a
very large number of weak references. We need to reduce
the number of objects created for monitoring purposes, es-
pecially weak references.

4. Optimizations for Scalability
The more specifications that we monitor simultaneously,
the more overhead. Our goal is to improve the overhead in
the presence of multiple specifications by finding structures
and parts of the monitoring algorithm that may be shared
between different specifications. If no specifications overlap
with others, in terms of declared events or parameters types,
there is nothing much we can improve. Theoretically, the
overhead in this case will be the sum of overheads from
monitoring them individually. When the memory overhead
is excessive, it can be worse than the sum because of the
garbage collection behavior.

However, in practice, there are generally multiple specifi-
cations for each class, often sharing some events. Among
137 specifications from [26], only 42 specifications are
totally independent from all other specifications. Another
95 specifications share parameters or events with some
of other specifications. By sharing resources between over-
lapping specifications we can achieve a truly scalable para-
metric runtime monitoring system.

In this Section, we explain new techniques for increasing
runtime and memory performance first, then we focus on the
big picture of the new monitoring mechanism, first presented
here, in comparison with the previous monitoring mecha-
nism (Figure 2). Our techniques are formalism-independent
and general so that they can be applied to other parametric
monitoring systems that use similar indexing tree structures.

4.1 Global WeakReference Table
As explained in Section 2, WeakReference is a reference
class that refers to an object without blocking it from
garbage collection. The indexing tree uses weak references
to store parameter objects in its mappings, without blocking
garbage collections. In previous versions of JavaMOP, there
was no collaboration between specifications, so each speci-
fication created a weak reference object for each parameter
object. Thus, multiple weak references were potentially cre-
ated for the same parameter object, if it appeared in different
specifications. There is no need to have multiple copies of
WeakReference; it simply wastes memory.

We introduce a global WeakReference table, implemented
in the class GlobalWeakRefTable, for each parameter type,

which all specifications share. This table takes a parameter
object as an input and outputs a weak reference. If there is no
weak reference in the table for the input object, the table will
create one. Thus, weak references will be created only by
this table and there will be exactly one copy for one parame-
ter object. Also, upon a non-creation event, we can query the
existence of the weak reference without creating one. If there
is no weak reference for the parameter object in the table,
then there is no monitor in any specification for the parame-
ter object. Thus, we can skip the rest of the steps for checking
the existence of monitors for the non-creation event.

The functionality of the GlobalWeakRefTable is similar
to HashMap from the Java API, but its implementation is to-
tally different. If the GlobalWeakRefTable stores keys (pa-
rameter objects) and values (weak references) in its inter-
nal table like HashMap, it will cause memory leaks. Instead,
the GlobalWeakRefTable stores only weak references. Since
weak references can refer to the original objects, we can re-
trieve the weak reference for an object by checking if the
weak reference points to the object.

Although the GlobalWeakRefTable introduces one more
step in the monitoring mechanism, it reduces not only mem-
ory overhead by reducing the number of weak references,
but also runtime overhead. From the analysis in Section 3,
we know that System.identityHashCode() causes the most
runtime overhead in the indexing trees. Instead of calling
this method in each indexing tree, each GlobalWeakRefTable

calls this method and stores the result in weak references
so that indexing trees can reuse it. To allow this, we im-
plement MOPWeakReference, a subclass of WeakReference

which has a hashcode field, and change the indexing tree
to take MOPWeakReference as input rather than parame-
ter objects. With this change, indexing trees no longer
call the System.identityHashCode() method, removing the
main overhead in accessing them. The GlobalWeakRefTable

calls this method at most once for each parameter ob-
ject in an event, minimizing the number of the method
calls to System.identityHashCode().

The GlobalWeakRefTable is essentially the same as the
indexing tree except that it does not return monitors. It
cleans up references to garbage collected objects and ex-
pands the internal data structure just like the indexing tree
does [24]. We can reduce overhead even more by combining
GlobalWeakRefTables with relevant indexing trees, reduc-
ing the number of tables and maps. If there is an indexing
tree that has the same parameter type at the first level as the
GlobalWeakRefTable, they can be combined into one data
structure. In the majority of cases, GlobalWeakRefTables

can be combined with indexing trees. Among the many
GlobalWeakRefTables for the 137 specifications from [26],
there are only two GlobalWeakRefTables that cannot be
combined into indexing trees when monitoring individually,
and all GlobalWeakRefTables can be combined into index-
ing trees when monitoring them simultaneously.
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Figure 4. Indexing trees for Map UnsafeIterator before
combining

4.2 Caches for Global WeakReference Table
Under our new technique, the GlobalWeakRefTable is the
most frequently accessed data structure in monitoring since
all events should query this table before accessing any index-
ing tree. Therefore, it is important to optimize this table. One
natural and common method of optimization is caching. In
the previous approach, there was already an indexing cache
(Figure 2). After adding GlobalWeakRefTables, it caches
not only a monitor but also weak references for the mon-
itor. Thus, it acts as a cache for both the indexing tree
and the GlobalWeakRefTable.

Although the indexing cache provides a good cache hit
ratio within a specification, it is not good enough when mon-
itoring multiple specifications. First, since there are multi-
ple events from different specifications for the same object,
it is likely that multiple specifications consecutively access
GlobalWeakRefTables for the same object, when their index-
ing caches miss. Second, the indexing cache is a one-entry
cache which is fragile if more than two objects are frequently
used together in an interleaved way.

To improve the performance upon this observation, we
now use a one-entry level-1 cache to handle the first case and
a multi-entry level-2 cache to handle the second case. On a
query to the table, we first check the one-entry cache and
when it misses, we check the multi-entry cache. However,
if we linearly search in the multi-entry cache, the overhead
will increase linearly with the number of entries in the cache.
Thus, we use a mapping so that we can check only one entry
at a time. Because each instrumentation point tends to ac-
cess the same object consecutively, we index the multi-entry
cache by a few least significant bits of the unique id number
for instrumentation points, provided by AspectJ. In this way,
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Figure 5. Indexing trees for Map UnsafeIterator after com-
bining

the multi-entry cache is implemented efficiently. The ben-
efit of the caches surpasses the overhead from maintaining
the caches in most cases.

4.3 Combining Indexing Trees
The indexing tree is one of the major bottlenecks in terms
of both runtime and memory performance. It contains all
of the mappings from parameter objects to monitors. The
size of the indexing tree grows as the specification creates
more monitors. Additionally, the indexing tree cleans up
mappings of garbage collected parameter objects and mon-
itors by itself. Therefore, we can reduce runtime and mem-
ory overhead by combining indexing trees. We can com-
bine indexing trees if their defined parameter types share the
same prefix. For example, indexing trees for 〈Collection,
Iterator〉 and 〈Collection〉 can be combined but index-
ing trees for 〈Map, Collection, Iterator〉 and 〈Collection,
Iterator〉 cannot be combined since the first parameter
type, Map, appears only in the first.

Combining indexing trees between different specifica-
tions is also possible as long as they satisfy the condition
for combining. However, it is usually inefficient because
there is insufficient mapping overlap between specifica-
tions (Section 6). Thus, we combine indexing trees only
within each specification. Combining indexing trees in each
specification improves not only the performance of moni-
toring multiple specifications but also the performance of
monitoring each specification.

For example, Figure 4 shows all indexing trees for
Map UnsafeIterator before combining them. There are
six indexing trees for:
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1. 〈Map, Collection, Iterator〉
2. 〈Map, Collection〉
3. 〈Map〉
4. 〈Collection, Iterator〉
5. 〈Collection〉
6. 〈Iterator〉

Among six indexing trees, the first three indexing trees can
be combined into one, and the fourth and fifth indexing
trees can be combined as well. As a result, three indexing
trees will remain (Figure 5).

4.4 Specification Activator
In monitoring multiple specifications, such as the 137 speci-
fications from [26], it is common that only some of them are
actively monitored when applied to a given program. This is
because one program generally does not cover every spec-
ification in such a large set of standardized specifications.
When a specification does not have any creation event dur-
ing the execution of a program, it does not need to monitor
the program at all. We keep a boolean value as an activator
for each specification and activate it when there is at least
one creation event. When the specification is not activated,
we ignore all non-creation events, suppressing the unneces-
sary overhead. If there is no creation event at all during the
execution, all non-creation events will be ignored.

This simple technique successfully deactivates unneces-
sary specifications during the execution of a program, re-
ducing unnecessary runtime overhead. Even in monitoring
a single specification, it can effectively remove unneces-
sary overhead. In our evaluation (Section 5), some speci-
fications are effectively deactivated and show no overhead
at all. The overhead of maintaining specification activators
is essentially unnoticeable, far less than the error range of
our evaluation (up to 3%).

4.5 Summary of New Monitoring Techniques
Figure 6 summarizes the scalable parametric monitoring
mechanism using techniques introduced in this section. Com-
pared to the previous monitoring mechanism (Figure2), there
is an activator at the beginning and the GlobalWeakRefTable

before the indexing tree. Also, instead of parameter objects,
it uses weak references in accessing indexing trees.

The main idea of our scalable parametric monitoring is
that the GlobalWeakRefTable allows sharing of weak refer-
ences, reducing memory overhead. Also, caching on this ta-
ble reduces runtime overhead over all specifications using it.
Moreover, there are fewer indexing trees and there is no hash
method call from the indexing tree. Thus, the overhead from
indexing trees has been dramatically decreased. Since the
“Copy State” component and the “Create a New Monitor”
component also access the indexing tree to add new moni-
tors, overheads from both components decrease as well.

event (p1, ..., pn)

Indexing Cachemonitor(s)

GlobalWeakRefTable

Weak
References

Indexing Treemonitor(s)

Copy State
from smaller

parameter instance

monitor(s)

Create a New
Monitormonitor

Update Stop

yes, activate

a creation event?
no

activated?
no

yes

cache hit
monitor exists

cache hit, no monitor

cache miss

found or created

not exist

not exist

found

nothing to copy

a creation event?

yes

no

copied

created

Figure 6. Overview of the scalable parametric monitoring
mechanism

5. Evaluation
In this section, we evaluate JavaMOP with the presented
scalability improvements on 137 specifications from [26].
Even before this work, JavaMOP had the best runtime per-
formance of any monitoring system, while maintaining com-
petitive memory performance [24]. Also, to the best of our
knowledge, there is no other parametric monitoring tool
which is capable of practically monitoring 137 specifications
simultaneously. Thus, we compare our work on scalability to
the previous version of JavaMOP (JavaMOP 2.3).

5.1 Experimental Settings
For our evaluation, we used a Pentium 4 2.66GHz / 2GB
RAM / Ubuntu 9.10 machine and Sun JVM 1.6.0 10. For
instrumenting benchmark programs with JavaMOP moni-
toring code, we used version 1.6.11 of the AspectJ com-
piler (ajc). We monitor 137 specifications for version 9.12
of the DaCapo (DaCapo 9.12) benchmark suite. We also
present the result from the bloat benchmark in the old ver-
sion of the DaCapo (DaCapo 2006-10) benchmark suite,
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java.io java.lang java.util All
# of specs 30 49 58 137

Previous Scalable Previous Scalable Previous Scalable Previous Scalable
Orig (sec) Sum Together Sum Together Sum Together Sum Together Sum Together Sum Together Sum Together Sum Together

bloat 14.4 6 -2 -3 -3 289 327 300 339 1203 1493 719 632 1498 1950 1016 1033
avrora 13.9 7 8 0 5 19 10 12 9 468 336 273 215 494 364 285 235
batik 3.5 0 4 0 2 0 3 0 1 50 37 53 26 50 40 53 26

eclipse 79.5 0 -1 0 2 0 1 42 1 0 1 7 0 0 -2 49 2
fop 2.0 8 7 18 7 96 56 52 55 584 450 380 380 688 N/A 450 N/A
h2 18.7 0 0 13 2 17 24 34 19 71 54 86 47 88 73 133 62

jython 13.6 10 -1 0 1 27 21 18 18 112 90 79 75 149 121 97 95
luindex 2.9 9 5 5 5 5 5 12 3 3 5 5 4 17 9 22 12
lusearch 25.3 14 13 17 16 28 34 21 32 29 26 30 30 71 75 68 79

pmd 8.4 0 -1 0 3 -3 8 0 4 858 898 657 476 855 988 657 486
sunflow 32.5 0 1 0 0 0 1 0 1 4 8 13 6 4 10 13 7
tomcat 14.1 0 -1 0 0 0 0 0 0 0 0 0 -1 0 0 0 1

tradebeans 45.7 40 12 11 2 33 3 26 1 51 1 50 3 124 -1 87 2
tradesoap 95.0 0 2 11 0 16 2 9 1 12 0 4 0 28 0 24 0

xalan 20.9 6 12 -7 30 -17 -12 -32 -16 38 52 31 61 27 34 -8 24

Table 4. Average percent runtime overhead for Previous JavaMOP (JavaMOP 2.3) and Scalable JavaMOP (JavaMOP 3.0)
(convergence within 3%, N/A: instrumentation crashes)

because it generates large overheads and it is missing in
the new version. We used the default data input size, and
the -converge option so that the execution time result con-
verges within 3%. AspectJ instrumentation can cause the
code to run differently, sometimes resulting in negative over-
heads even without monitoring. Also, monitoring affects the
garbage collection behavior with more memory pressure, of-
ten improving garbage collection time; this also accounts
for the negative overheads.

All 137 specifications from [26] are based on the Java
6 API documentation concerning three main packages: 30
specifications for java.io, 49 specifications for java.lang,
and 58 specifications for java.util. Some specifications are
related to the end of the program execution. However, two
versions of DaCapo iterate a benchmark program in one
execution until the execution time converges. Therefore, we
modified those specifications slightly so that they catch the
end of iteration of a benchmark program.

5.2 Results and Discussions
Table 4 and 5 summarize the results of the evaluation
on the two versions of JavaMOP. Monitoring 137 specifi-
cations simultaneously is a considerably challenging task.
While monitoring 137 specifications with bloat, there are
839,575,093 events and 27,826,935 monitors created. With
pmd, there are 68,438,904 events and 9,510,880 moni-
tors created. Also, in JavaMOP 2.3, 129 indexing trees are
required, but the indexing tree combination technique (Sec-
tion 4.3) reduces the number of indexing trees to 105.
Therefore, it is not surprising to see a huge overhead. Al-
though the previous version of JavaMOP was the most
efficient parametric monitoring system until this paper,
it shows more than 100% overhead on five benchmarks
out of 15, including fop.

For fop, the instrumentation crashes because the added
instrumentation results in a method larger than the 64KB

limit for Java methods. The method size was already too big
before the instrumentation, and our instrumentation makes
it exceed the limit. In regular programming, the limit of
64KB seems reasonable; any method over 64KB should
be re-designed and divided into several methods. However,
for procedurally generated code, this limit imposed by Java
seems too harsh. While we were unable to obtain overhead
for fop with 137 simultaneous specifications in either ver-
sion of JavaMOP, we do have numbers for monitoring the
specification of each package separately.

Table 4 shows the average percent runtime overhead of
the two versions of JavaMOP. It shows the sum of overheads
for monitoring each specification individually, and the over-
head of monitoring them simultaneously, for each bench-
mark. To avoid the error accumulation, we exclude over-
heads under 3% for the summation. Overall, Scalable Java-
MOP shows significantly less runtime overhead than the pre-
vious version of JavaMOP. In monitoring multiple specifica-
tions, the previous version of JavaMOP shows higher over-
heads than the sum of overheads in many places. This is be-
cause heavy memory pressure from multiple specifications
triggers garbage collection more often. However, Scalable
JavaMOP shows much less overhead than the sum of over-
heads in most cases.

The previous JavaMOP shows 1950% overhead when
monitoring all 137 specifications for bloat, while the sum
of overheads is 1498%. For pmd, it shows 988% overhead
when all specifications are monitored, while the sum of over-
heads is 855%. However, Scalable JavaMOP shows 1033%
and 486% overheads for bloat and pmd, respectively, when
all specifications are monitored. These overheads are almost
half of what the previous version showed. Also, they are less
than the sums of overheads in the Scalable JavaMOP, which
are 1016% and 657%, respectively. Note that Scalable Java-
MOP also improves the runtime performance of monitoring
a single specification, resulting in smaller sums.

8



java.io java.lang java.util All
# of specs 30 49 58 137

Previous Scalable Previous Scalable Previous Scalable Previous Scalable
Orig Sum Together Sum Together Sum Together Sum Together Sum Together Sum Together Sum Together Sum Together

bloat 4.9 5.0 5.7 5.0 4.9 559.2 626.5 586.9 626.8 330.2 1011.2 131.7 282.1 884.6 ≥1500 714.5 1466.4
avrora 4.7 4.7 4.5 4.7 4.4 10.9 12.3 7.3 12.5 44.8 73.1 29.5 53.9 51.0 737.2 32.1 198.4
batik 77.3 77.3 76.3 77.3 79.2 77.3 75.1 77.3 72.5 99.2 166.2 88.3 101.7 99.2 166.7 88.3 105.6

eclipse 101.0 101.0 100.0 101.0 99.4 101.0 103.2 101.0 109.1 101.0 113.8 101.0 104.8 101.0 108.0 101.0 113.5
fop 23.9 22.9 25.8 22.0 25.9 79.0 73.2 55.8 58.0 341.4 402.6 255.3 185.2 395.5 N/A 285.5 N/A
h2 267.1 267.1 265.3 267.1 260.9 303.5 327.1 308.0 357.7 2307.9 1176.0 1468.6 957.1 2344.3 1343.5 1509.5 1118.4

jython 21.9 22.1 23.0 21.9 22.9 57.0 76.1 69.2 86.5 91.8 191.8 81.1 71.2 127.1 240.2 128.4 141.2
luindex 6.8 5.7 7.9 8.1 7.0 8.1 18.8 7.0 19.7 6.4 8.8 6.7 12.8 6.6 20.8 8.2 20.8
lusearch 4.6 4.4 4.7 4.0 4.6 4.4 7.5 5.1 7.0 4.8 4.5 5.1 4.9 4.4 7.4 5.0 8.3

pmd 22.3 22.3 25.1 22.3 26.3 87.1 38.5 68.9 38.0 430.5 1474.9 405.4 424.0 495.3 1457.4 452.0 450.8
sunflow 4.5 4.5 4.5 4.5 5.0 4.5 6.6 4.5 6.3 4.7 5.5 4.3 4.4 4.7 7.5 4.3 7.0
tomcat 11.7 11.7 11.7 11.7 12.3 11.7 11.8 11.7 12.3 11.7 11.4 11.7 11.7 11.7 11.9 11.7 11.5

tradebeans 62.9 64.3 63.3 67.6 63.2 66.6 63.1 65.8 63.1 66.3 63.0 64.4 63.9 71.4 63.1 72.0 62.9
tradesoap 63.9 63.9 64.2 63.9 64.1 69.6 62.1 66.0 64.4 68.3 65.4 66.0 65.4 74.0 64.7 68.1 61.4

xalan 4.9 4.9 5.0 5.0 4.9 20.4 21.4 21.3 21.9 4.9 5.0 4.6 4.9 20.4 22.9 21.1 23.7

Table 5. Peak memory usage (in MB) for Previous JavaMOP (JavaMOP 2.3) and Scalable JavaMOP (JavaMOP 3.0) (during
5 iterations, N/A: instrumentation crashes)

Table 5 summarizes the peak memory usage during 5 it-
erations. In a similar way to the runtime result, it shows the
sum of memory overheads from monitoring each specifica-
tion individually. In the sum of the peak memory usage, the
original peak memory usage is counted only once. For ex-
ample, on bloat, which shows 4.9MB peak memory usage,
if two specifications show 5.5MB and 6.2MB peak mem-
ory usage, respectively, the sum of peak memory usage is
6.8MB. Overall, the Scalable JavaMOP shows significantly
less memory overhead than the previous version of Java-
MOP. Similar to runtime performance, Scalable JavaMOP
uses less memory, not only when monitoring multiple speci-
fications simultaneously, but also when monitoring them in-
dividually. In monitoring specifications individually, in total,
Scalable JavaMOP uses 25% less memory than the previ-
ous version. In monitoring multiple specifications simulta-
neously, for avrora and pmd, Scalable JavaMOP shows 3.7
times and 3.2 times less peak memory usage than the previ-
ous version, respectively. Also, in total, Scalable JavaMOP
uses 34% less memory than the previous version, in moni-
toring multiple specifications simultaneously.

Monitoring a large number of specifications shows dif-
ferent memory usage from monitoring a single specification.
During monitoring process, a large number of objects is gen-
erated for the purposes of monitoring. Many of these mon-
itoring objects must be garbage collected. Since the JVM
controls the garbage collection throughput so that it does
not overwhelm the entire execution time, the garbage col-
lection might not be able to clean up all garbage objects on
time. This can cause parameter objects to live longer than
usual, delaying accompanied monitoring resources from be-
ing garbage collected. In this case, the JVM simply con-
sumes more memory as long as there is more space left.
After reaching the memory limit, it starts spending more
time for garbage collection. This explains for avrora and
others, why monitoring multiple specifications simultane-

ously shows more peak memory usage than the sum of peak
memory usages of individual monitoring and the sum of
peak memory usages of monitoring specifications in each
package. For example, for avrora and the Scalable Java-
MOP, monitoring all specifications in java.io, java.lang,
and java.util shows 4.4MB, 12.5MB, and 53.9MB, but
monitoring all of the specifications simultatenously shows
198.4MB memory usage at peak.

6. Ineffectual Approaches
In this section, we discuss some ineffectual approaches that
we have tried while improving the scalability of parametric
monitoring. Although they turn out to be ineffectual in para-
metric monitoring, some of them might be useful in different
settings or they might inspire new effectual ideas.

Combining Indexing Trees between Specifications As
mentioned in Section 4.3, we combine indexing trees only
within each specification. If we combine indexing trees for
different specifications, as well, we can reduce the number of
indexing trees even more. However, there is a lot of wasted
space in the combined indexing tree. For example, an index-
ing tree A maps p1 to m1 and p2 to m2, and another indexing
tree B maps p2 to m3 and p3 to m4. The combined indexing
tree of A and B will map p1 to (m1,∅), p2 to (m2,m3),
and p3 to (∅,m4). All empty spaces indicated by ∅ will be
wasted while the indexing trees A and B do not have empty
space. More memory overhead from wasted space triggers
more garbage collection, slowing down the monitoring.

Enhanced Indexing Cache The indexing cache provides
faster retrieval of monitors from the indexing tree. There
are several ideas to improve its hit ratio. We can apply a
multi-entry cache from Section 4.2. Also, we can cache
not only monitors but also lack thereof to save searching
the indexing tree for nothing. However, since the index-
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ing cache provides already a high hit ratio and the cost
to access the indexing tree is already decreased by the
GlobalWeakRefTable, these enhancements to the indexing
cache do not improve the performance. Certainly those ideas
increase cache hit ratio, but their benefits are cancelled out
by the overheads necessary to support them.

Indexing Tree Cleaning by GlobalWeakRefTables Since
we can manage all weak references for each parameter
type in one place, the GlobalWeakRefTable, we can let
the GlobalWeakRefTable clean up the indexing trees. In
this way, we can remove garbage collected parameter ob-
jects from all indexing trees at once, eliminating the need
for partial cleanups. Note that partial cleanups could occur
even when there is no garbage collected parameter object.
We can also have a bit map in the weak reference to in-
dicate to which indexing trees the referent belongs so that
we need check only the indexing trees that actually con-
tain it. However, this approach only moves cleanup costs
from indexing trees to the GlobalWeakRefTable, showing
no improvement. The cleanup by the GlobalWeakRefTable

is more effective because it knows which weak references
should be removed. However, cleaning up from outside of
the indexing tree costs more because we must locate the
entry before we can remove it.

Statistics-Based Indexing Tree Cleaning As mentioned
previously, partial cleanups at indexing trees can occur even
when there are no garbage collected parameter objects. Since
we have the GlobalWeakRefTable, we can keep statistics
about garbage collected parameter objects and use it for
deciding whether to trigger a partial cleanup. However, in
most cases, there are garbage collected parameter objects.
Saving a relatively small number of partial cleanups does
not compensate the overhead necessary.

Event Activator Similar to the specification activator
(Section 4.4), non-creation events can be skipped if there
is no monitor created for the parameter of the event. How-
ever, this approach does not improve the performance be-
cause the specification activator already works effectively
and the GlobalWeakRefTable already returns no weak refer-
ence if there was no creation event for the parameter object.
Thus, this approach only introduces an overhead of main-
taining activators (boolean variables), although the overhead
is too small to be notable.

7. Conclusion
Parametric monitoring is a technique for improving the re-
liability of software that has received an ever increasing
amount of attention. Previous work on parametric monitor-
ing has focused on the performance of monitoring single
properties in isolation. Realistic uses of monitoring, how-
ever, involve monitoring many properties simultaneously, as

the large number of properties from [26] can attest. In this
paper we have improved the efficiency of JavaMOP with re-
spect to monitoring multiple simultaneous properties; as an
added bonus, we also improved performance in the case of
a single property. We preformed a thorough analysis of the
remaining bottlenecks in the JavaMOP system, and we ad-
dressed those that could be addressed without adding more
runtime overhead than they save. The cases that were inef-
fectual, presented in this paper, show that sometimes it is
more expensive to address an inefficiency than to let it be.
The remaining cases produced real, tangible performance
enhancements, in some cases halving overhead in a system
that was already heavily optimized.
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