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Abstract: We formulate gauge theories based on Leibniz(-Loday) algebras and uncover
their underlying mathematical structure. Various special cases have been developed in
the context of gauged supergravity and exceptional field theory. These are based on
‘tensor hierarchies’, which describe towers of p-form gauge fields transforming under
non-abelian gauge symmetries and which have been constructed up to low levels. Here
we define ‘infinity-enhanced Leibniz algebras’ that guarantee the existence of consistent
tensor hierarchies to arbitrary level. We contrast these algebras with strongly homotopy
Lie algebras (L∞ algebras), which can be used to define topological field theories for
which all curvatures vanish. Any infinity-enhanced Leibniz algebra carries an associated
L∞ algebra, which we discuss.

1. Introduction

In this paper we construct the general gauge theory of Leibniz-Loday algebras [1–6],
which are algebraic structures generalizing the notion of Lie algebras. These structures
have appeared in the context of duality covariant formulations of gauged supergravity
[7–10] and of string/M-theory [11–24]. Such gauge theories and their associated tensor
hierarchies (towers of p-form gauge fields transforming under non-abelian gauge sym-
metries) have so far been constructed on a case-by-case basis up to the level needed in a
given number of dimensions. Our goal is to develop gauge theories based on Leibniz(-
Loday) algebras in all generality and to axiomatize the underlyingmathematical structure
that guarantees consistency of the tensor hierarchies up to arbitrary levels. This gauge
theory construction has a certain degree of universality in that it is based on an algebraic
structure encoding the most general bilinear ‘product’ defining transformations whose
closure is governed by the same product, thereby generalizing the adjoint action of a Lie
algebra.

We begin by discussing this notion of universality as a way of introducing Leibniz
algebras. There is a definite sense in which themost general algebraic structures defining
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(infinitesimal) symmetries are Lie algebras; indeed, we usually take the notion of con-
tinuous symmetries and Lie algebras to be synonymous. Let us briefly recall a ‘proof’
of this lore: suppose we are given infinitesimal variations δλφ

i that leave an action I [φi ]
invariant, i.e.,

0 = δλ I [φi ] =
∫

δ I

δφi
δλφ

i , (1.1)

where φi collectively denotes all fields.We can now act with another symmetry variation
and antisymmetrize, which yields

0 = (δλ1δλ2 − δλ2δλ1)I [φi ] =
∫ (

2
δ2 I

δφiδφ j
δλ[1φ

i δλ2]φ
j +

δ I

δφi
[δλ1, δλ2 ]φi

)
.

(1.2)

Since the second variational derivative is symmetric, the first term vanishes and we infer

0 =
∫

δ I

δφi
[δλ1, δλ2 ]φi . (1.3)

But this means that [δλ1 , δλ2 ]φi is also an invariance. Therefore, symmetries ‘close’, so
that we can write

[δλ1 , δλ2 ]φi = δ[λ1,λ2]φi , (1.4)

where we now take the λ to parameterize all invariances of I [φi ] and [·, ·] on the right-
hand side to be defined by this relation. Since the left-hand side of (1.4) is just a commu-
tator, the Jacobi identity [[δλ1 , δλ2 ], δλ3 ]+cycl. = 0 is identically satisifed. It follows that
the antisymmetric bracket [·, ·] on the right-hand side of (1.4) also satisfies the Jacobi
identity and hence defines a Lie algebra.

The above proof has several loopholes. For instance, the bracket (1.4) could be field-
dependent or closure could hold only ‘on-shell’, i.e., modulo trivial equations-of-motion
symmetries. There is a well-developed machinery in (quantum) field theory to deal with
such issues, the BV formalism [25] (which in turn is related to L∞ algebras that in this
paper will play a role in a slightly different context). Here, however, we are concerned
with another, more algebraic loophole: the existence of ‘trivial symmetry parameters’
whose action on fields vanishes, so that the Jacobi identity does not need to hold exactly
for the bracket [·, ·], as long as its ‘Jacobiator’ lies in the space of trivial parameters. We
want to ask: what is the most general bilinear algebraic operation (product) defined on a
vector space that gives rise to consistent symmetry variations that close according to the
same product? We will now argue that such algebraic structures are Leibniz algebras:
they are defined by a bilinear operation ◦, satisfying the identity

x ◦ (y ◦ z) − y ◦ (x ◦ z) = (x ◦ y) ◦ z. (1.5)

Given such a bilinear operation, we can define variations

δx y ≡ Lx y ≡ x ◦ y, (1.6)
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where we introduced the notation Lx to be used below. Now, the Leibniz relation (1.5)
is nothing more or less than the requirement that these are consistent symmetry trans-
formations whose closure is governed by ◦:

[Lx ,Ly]z ≡ Lx (Lyz) − Ly(Lx z)

= x ◦ (y ◦ z) − y ◦ (x ◦ z)

= (x ◦ y) ◦ z

= Lx◦yz.

(1.7)

In this sense, Leibniz algebras are the answer to our question above. In particular, we do
not need to assume that the product ◦ is antisymmetric. If the product is antisymmetric,
the Leibniz relation (1.5) coincides with the Jacobi identity, and hence a Lie algebra
is a special case of a Leibniz algebra. If the product is not antisymmetric, it carries a
non-vanishing symmetric part denoted by {·, ·}. Symmetrizing (1.7) in x, y we infer
L{x,y}z = 0 for any z, which implies that there is a space of trivial parameters, in which
the symmetric part takes values. We will see that the antisymmetric part denoted by [·, ·]
does not satisfy the Jacobi identity, but its Jacobiator yields a trivial parameter.

The reader may wonder what the significance of Leibniz algebras is, given that the
symmetric part {·, ·}, which encodes the deviation from a Lie algebra, acts trivially.
Indeed, we will see that the space of trivial parameters forms an ideal of the antisym-
metric bracket, hence we could pass to the quotient algebra by modding out the trivial
parameters, for which the resulting bracket is antisymmetric and does satisfy the Jacobi
identity. In this sense, it is indeed sufficient to work with Lie algebras. So why should we
bother with Leibniz algebras? The reason is the same as for gauge symmetries in general.
Gauge invariances encode redundancies of the formulation, and hence in principle can
be disposed of by working on the ‘space of gauge invariant functions’ or, alternatively,
by ‘fixing a gauge’. But the fact of the matter is that a redundant formulation is often
greatly beneficial. Typically, a gauge theory formulation is necessary in order to ren-
der Lorentz invariance and locality manifest. Similarly, the Leibniz algebras arising in
gauged supergravity and exceptional field theory are necessary in order to render duality
symmetries manifest. The price to pay is then a yet higher level of redundancy, in which
one not only has equivalences between certain field configurations but also equivalences
between equivalences, etc., leading to the notion of ‘higher gauge theories’. (See [26]
for a recent introduction to higher gauge theories.)

The higher gauge theory structures manifest themselves in the form of ‘tensor hierar-
chies’, which arise when one attempts tomimic the construction of Yang-Mills theory by
introducing one-form gauge fields taking values in the Leibniz algebra. Since the associ-
ated antisymmetric bracket [·, ·] does not obey the Jacobi identity, however, one cannot
define a gauge covariant field strength as in Yang-Mills theory. This can be resolved
by introducing two-form potentials taking values in the space of trivial parameters and
coupling it to the naive field strength. This, in turn, requires the introduction of three-
form potentials in order to define a covariant field strength for the two-forms, indicating
a pattern that potentially continues indefinitely. Thus, the seemingly minor relaxation
of Lie algebra structures given by Leibniz algebras has profound consequence for the
associated gauge theories, leading to a rich structure of higher-form symmetries. In the
case of exceptional field theory, this gives a rationale for the presence of higher-form
gauge fields in M-theory.

A core feature of the tensor hierarchy construction is that familiar relations from
Yang-Mills theory, as closure of gauge transformations for the one-form connection or
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covariance of its naive field strength, only hold ‘up to higher-form gauge transforma-
tions’. The resulting structure closely resembles that of strongly homotopy Lie algebras
(L∞ algebras), in which the standard Lie algebra relations only hold ‘up to homotopy’,
i.e., up to higher brackets that in turn satisfy higher Jacobi identities [27–30]. Indeed,
the relation with L∞ algebras has already been elaborated in a number of publications,
see [31–35]. More generally, in the mathematics literature it is well established that
many algebraic structures or operations have ‘infinity’ versions, in which the standard
relations only hold ‘up to homotopy’. (See, for instance, [36] and [37] for a pedagogical
introduction.) Our goal here is to identify the ‘infinity structure’ that underlies tensor
hierarchies. While L∞ algebras and tensor hierarchies are closely related, it turns out
that by themselves the former do not provide a proper axiomatization of the latter. Fur-
ther structures are needed, beyond the graded antisymmetric brackets of L∞ algebras,
in order to define the most general tensor hierarchies. A first step towards the mathemat-
ical characterization of such structures was taken by Strobl, who introduced ‘enhanced
Leibniz algebras’ [38,39], which extend a Leibniz algebra by an additional vector space,
together with a new algebraic operation satisfying suitable compatibility conditions with
the Leibniz product. This structure is sufficient in order to define tensor hierarchies that
end with two-forms. Here we go beyond this by identifying the mathematical structure
that can be used to define tensor hierarchies up to arbitrary degrees, which we term
‘infinity enhanced Leibniz algebras’. In this we rely heavily on the results obtained in
[22,40].

In the following we briefly display some of our core technical results. As a first step,
the vector space of the Leibniz algebra is extended to a chain complex X = ⊕∞

n=0 Xn

with a degree-(−1) differential D (satisfying D2 = 0), of which the Leibniz algebra
forms the degree-zero subspace X0. While the Leibniz product is only defined on X0,
we postulate a degree-(+1) graded symmetric map • : X ⊗ X → X , satisfying suitable
(compatibility-)conditionswith the differentialD and theLeibniz product, as for instance
{x, y} = 1

2D(x • y) for x, y ∈ X0. Defining the operator ιxu := x • u for x ∈ X0 and
u arbitrary one can then define a Lie derivative with respect to λ ∈ X0 in analogy to
Cartan’s ‘magic formula’ for the Lie derivative acting on differential forms,

Lλ ≡ ιλ D + D ιλ. (1.8)

This Lie derivative satisfies all familiar relations as a consequence of the general axioms
we formulate. One can then define a gauge theory for a set of p-form gauge fields of
arbitrary rank, each form taking values in X p−1. The one-form gauge field taking values
in X0 plays a distinguished role. The resulting formulas can be written very efficiently
in terms of formal sums for the remaining gauge fields A := ∑∞

p=2 Ap, the curvatures
F := ∑∞

p=2 Fp and the Chern-Simons-type forms � := ∑∞
p=2 �p, defined by

�n(A) = (−1)n

(n−1)! (ιA)n−2[d A − 1
n A ◦ A

]
. (1.9)

We will show that the curvatures defined by

F =
∞∑
N=0

(−ιA)N

(N + 1)!
[
(D +D)A + (N + 1)�

]
, (1.10)

where D = d − LA1 is the covariant derivative, satisfy the Bianchi identity

DF + 1
2 F • F = DF . (1.11)
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Writing it out in terms of differential forms, the Bianchi identity takes a hierarchical
form that relates the covariant exterior derivative of the p-form field strength Fp to
the differential D of the (p + 1)-form field strength Fp+1, c.f. (4.38) below. The gauge
covariance of the lowest field strength F2 then implies by induction gauge covariance
of all field strengths.

The rest of this paper is organized as follows. In Sect. 2 we discuss general results on
Leibniz algebras to set the stage for the construction of gauge theories. In order to keep
the paper self-contained and accessible we then present a step-by-step construction of
the associated tensor hierarchy up to some low form-degree. In Sect. 3 we use various
observations made along the way, generalized further to arbitrary degrees, in order to
motivate the general axioms of ‘infinity-enhanced Leibniz algebras’ that will be used in
Sect. 4 to construct exact tensor hierarchies. These are not restricted to finite degrees, and
we prove the consistency of the tensor hierarchy to all orders. This construction is then
contrasted in Sect. 5 with topological field theories based on L∞ algebras, which are
consistent, without the need to introduce infinity-enhanced Leibniz algebras, by virtue of
all field strengths being zero. We conclude in Sect. 6 with a brief summary and outlook,
while the Appendices include some technical details needed for the proof of the Bianchi
identity, as well as a discussion of L∞ algebras associated to Leibniz algebras.

Note added in proof:
During the review stage of this article there have been further developments in the
understanding of infinity-enhanced Leibniz algebras [41,42]. In particular, this gives
an improved motivation for the axioms of infinity-enhanced Leibniz algebras as being
obtained through a derived construction from a differential graded Lie algebra and a
subsequent truncation to spaces of non-negative degree. This is reflected in the new
Sect. 3.2 of this paper.

2. Generalities on Leibniz Gauge Theories

In this section we develop Leibniz algebras and discuss the first few steps needed in
order to define their associated gauge theories. Specifically, this requires an extension
of the original vector space on which the Leibniz algebra is defined by a ‘space of trivial
parameters’ together with a new algebraic operation. Eventually, this construction will
be extended to a graded sum of vector spaces with a differential (chain complex) and a
bilinear graded symmetric operation. The results of this section will motivate the general
axioms to be presented in the next section.

2.1. Leibniz algebras. As outlined in the introduction, a Leibniz (or Loday) algebra is
a vector space V equipped with a ‘product’ or 2-bracket ◦ satisfying for x, y, z ∈ V the
Leibniz identity (1.5), which we here rewrite as

x ◦ (y ◦ z) = (x ◦ y) ◦ z + y ◦ (x ◦ z). (2.1)

This formmakes it clear that the symmetry variations defined by (1.6), i.e., δx y = Lx y =
x ◦ y, act according to the Leibniz rule on the product ◦, hence explaining the name
‘Leibniz algebra’. (Sometimes this is referred to as ‘left Leibniz algebra’. One could
also introduce a ‘right Leibniz algebra’, where a vector acts from the right.) Similarly,
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it follows that the product is covariant under these transformations:

δx (y ◦ z) ≡ δx y ◦ z + y ◦ δx z

= (x ◦ y) ◦ z + y ◦ (x ◦ z)

= x ◦ (y ◦ z)

= Lx (y ◦ z).

(2.2)

Conversely, demanding that the product ◦ defines a symmetry operation that is covariant
with respect to itself uniquely leads to the notion of a Leibniz algebra.

Wecannowderive some further consequences from theLeibniz relations, in particular
from the closure relation (1.7),

[Lx ,Ly]z = Lx◦yz. (2.3)

Defining

{x, y} ≡ 1
2 (x ◦ y + y ◦ x),

[x, y] ≡ 1
2 (x ◦ y − y ◦ x),

(2.4)

and symmetrizing (2.3) in x, y we have

[Lx ,Ly]z = L[x,y]z, (2.5)

and

L{x,y}z = 0 ∀x, y. (2.6)

Thus, the antisymmetric part defines the ‘structure constants’ of the more conventional
(antisymmetric) gauge algebra, but we will see shortly that it does not satisfy the Jacobi
identity. Indeed, as discussed in the introduction, we infer from (2.6) that in general
there is a notion of ‘trivial gauge parameters’, given by the symmetric part, so that
it is sufficient that the ‘Jacobiator’ is trivial in this sense. We can now prove that the
‘Jacobiator’ of the bracket [ , ] is trivial in that

Jac(x1, x2, x3) ≡ 3[[x[1, x2], x3]] = {x[1 ◦ x2, x3]}. (2.7)

For the proof we suppress the total antisymmetrization in 1, 2, 3. We then need to estab-
lish:

6[x1 ◦ x2, x3] − 2{x1 ◦ x2, x3} = 0, (2.8)

where we multiplied by 2 for convenience. This relation is verified by writing out the
brackets, using total antisymmetry and the Leibniz identity (2.1) in the last step:

6[x1 ◦ x2, x3] − 2{x1 ◦ x2, x3} = 3 (x1 ◦ x2) ◦ x3 − 3 x3 ◦ (x1 ◦ x2)

− (x1 ◦ x2) ◦ x3 − x3 ◦ (x1 ◦ x2)

= 2 (x1 ◦ x2) ◦ x3 − 4 x3 ◦ (x1 ◦ x2)

= 2 (x1 ◦ x2) ◦ x3 + 2 x2 ◦ (x1 ◦ x3) − 2 x1 ◦ (x2 ◦ x3)

= 0. (2.9)

It should be emphasized that the above structure is only non-trivial iff the symmetric
pairing { , } takes values in a proper subspace of V , for otherwise we had with (2.6) that
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∀x : Lx z = 0, i.e., that the product is trivial. If { , } = 0, we have a Lie algebra. More
generally, the above structures define an L∞ algebra with ‘2-bracket’ �2(x, y) = [x, y].
Provided the space of trivial gauge parameters forms an ideal, this follows directly from
Theorem 2 in [45]. In order to prove that the trivial parameters form an ideal we have to
show that the bracket of an arbitrary vector z with {x, y} is again trivial, i.e., writable in
terms of { , }. To this end, we use that the covariance property (2.2) implies the covariance
of the symmetric pairing:

z ◦ {x, y} = {z ◦ x, y} + {x, z ◦ y}. (2.10)

Since this also equals

z ◦ {x, y} = [z, {x, y}] + {z, {x, y}}, (2.11)

we have

[z, {x, y}] = {z ◦ x, y} + {x, z ◦ y} − {z, {x, y}}. (2.12)

This completes the proof that the bracket of a trivial element with an arbitrary vector
z is itself trivial and hence that the space of trivial vectors forms an ideal. Therefore,
as mentioned in the introduction, we could pass to the quotient algebra in which one
identifies two vectors that differ by a ‘trivial’ vector, which then defines a Lie algebra.
In applications, however, this can typically not be done in a duality covariant manner.

It will next turn out to be convenient to parameterize the space of trivial parameters
more explicitly, so that the symmetric part of the product can be viewed as the image
of a linear nilpotent operator of another algebraic operation. Specifically, we introduce
a vector space U and a linear operator D : U → V , so that

{x, y} = 1
2D(x • y), (2.13)

where • is a symmetric bilinear map V ⊗V → U , and the factor of 1
2 is for convenience.

This relation is motivated by ‘infinity’ structures such as L∞ algebras, where a nilpotent
differential on a chain complex governs the homotopy versions of algebraic relations,
and also will turn out to be necessary in order to define tensor hierarchies explicitly. One
can assume (2.13) without loss of generality. For instance, if { , } lives in a subspace of
V , we can takeU to be isomorphic to this subspace andD the inclusion map that views
an element ofU as an element of V . However,D can be more general, and in particular
have a non-trivial kernel. In examples, D typically emerges naturally as a non-trivial
operator.

Let us spell out some further assumptions on the space U and then derive some
consequences of (2.13). First, (2.6) in combination with (2.13) implies LD(x•y)z =
D(x • y) ◦ z = 0 for all x, y ∈ V . We will assume that the space U has been chosen so
as to precisely encode the trivial parameters in that

∀u ∈ U : Du ◦ x = LDux = 0. (2.14)

Immediate corollaries are

∀x ∈ V u ∈ U : {x,Du} = {Du, x} = 1
2 x ◦ Du, (2.15)

and therefore with (2.13)

∀x ∈ V u ∈ U : D(x • Du) = x ◦ Du. (2.16)
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This means that the Leibniz product of an arbitrary vector with any trivial (D exact)
vector is itself D exact and hence trivial. Another consequence is derived by setting
x = Dv in (2.16),

D(Dv • Du) = Dv ◦ Du = 0. (2.17)

Put differently, the • product of twoD exact elements takes values in the kernel of D:

Dv • Du ∈ Ker(D). (2.18)

In the remainder of this subsection we make the assumption that the kernel of D is
trivial in order to exemplify the resulting structures in the simplest possible setting and
to connect to the ‘enhanced Leibniz algebras’ discussed recently in [39]. Put differently,
we assume a structure given by the 2-term chain complex

U
D−→ V, (2.19)

so thatDu = 0 implies u = 0. Although somewhat degenerate, this setup already allows
us to exhibit some features that later will recur in the general context.

Our first goal is to prove that the bilinear operation • is covariant w.r.t. a natural action
of the Leibniz algebra on u ∈ U given by

Lxu ≡ x • Du. (2.20)

Thus, we want to prove that

δz(x • y) ≡ (z ◦ x) • y + x • (z ◦ y) = z • D(x • y). (2.21)

To this end we employ the covariance of the Leibniz product ◦ w.r.t. its own action, as
expressed in (2.2), (2.10), to compute

δz(D(x • y)) = 2 δz{x, y} = 2 z ◦ {x, y} = z ◦ D(x • y) = D(z • D(x • y)),

(2.22)

where we used (2.16) in the last step. Since, by definition of variations, the left-hand
side equals D(δz(x • y)), we have established:

D
(
δz(x • y) − z • D(x • y)

) = 0. (2.23)

Since we assumed the kernel of D to be trivial, (2.21) follows, as we wanted to prove.
We can now prove that the action (2.20) of the Leibniz algebra onU closes according

to the Leibniz product. We first note the general fact that the following combination lives
in the kernel of D:

x • (y ◦ Da) − y • (x ◦ Da) − (x ◦ y) • Da ∈ Ker(D). (2.24)

This is verified by acting with D, using the defining relation (2.13) and writing out the
Leibniz products:

2
({x, y ◦ Da} − {y, x ◦ Da} − {x ◦ y,Da})
= x ◦ (y ◦ Da) + (y ◦ Da) ◦ x − y ◦ (x ◦ Da) − (x ◦ Da) ◦ y

− (x ◦ y) ◦ Da − Da ◦ (x ◦ y)

= (y ◦ Da) ◦ x − (x ◦ Da) ◦ y − Da ◦ (x ◦ y)
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= (y ◦ Da) ◦ x − (x ◦ Da) ◦ y

= 0, (2.25)

where we used the Leibniz algebra relations (2.1) and the properties of trivial parameters
(2.14). This completes the proof of (2.24). Since we assume that the kernel ofD is trivial,
it follows that the expression to the left of (2.24) vanishes. Closure of (2.20) then follows:

[Lz1 ,Lz2 ]u = z1 • D(z2 • Du) − z1 • D(z2 • Du)

= z1 • (z2 ◦ Du) − z2 • (z1 ◦ Du)

= (z1 ◦ z2) • Du

= Lz1◦z2u,

(2.26)

where we used (2.16) in the second line.

2.2. Generalization to non-trivial kernel. We will now relax some of the assumptions
above. First, we allowD to have a non-trivial kernel. This implies that the chain complex
(2.19) has to be extended by an additional space and a new differentialD whose image
parameterizes the kernel of the previous differential. Adopting a notation for vector
spaces labelled by their degree (w.r.t. the grading of the chain complex to be developed
shortly), we consider the complex

· · · → X2
D2−−→ X1

D1−−→ X0 , (2.27)

where we inserted, as a subscript, the space on which D acts. The graded vector space,
together with the linear maps D, forms a chain complex, which means that D2 = 0
or, more precisely, Di ◦ Di+1 = 0.1 Thus, there is a notion of homology: the quotient
space of D-closed elements modulo D-exact elements. In the remainder of this section
we will assume this homology to be trivial, so that any D-closed element is D-exact.
This allows us to derive relations needed for the construction of tensor hierarchies, the
beginning of which will be discussed in the next subsection. In Sects. 3 and 4 below we
will then take these relations to be imposed axiomatically, so that the homology need
not be trivial.

Let us now develop some relations involving elements of the new space X2. From
(2.18) we infer that the symmetric pairing of twoD1 exact elements takes values in the
kernel ofD1. Thus, by the assumption of trivial homology, the result isD-exact — with
respect to the new D2. In analogy to (2.13) we then introduce a new bilinear operation
• to write

∀a, b ∈ X1 : D1a • D1b ≡ −D2(a • D1b) ≡ −D2(b • D1a), (2.28)

where the sign is for later convenience. Moreover, we have introduced on the r.h.s. maps
• : X1⊗X0 → X2 of intrinsic degree+1. The equality of both forms on the r.h.s. follows
from the l.h.s. being symmetric in a, b, so that we can assume that the r.h.s. is also
symmetric. Put differently, we can assume that the antisymmetric part is D exact and
write

a • D1b − b • D1a = D3(a • b), (2.29)

1 As customary, we also denote the composition of maps by ◦. It should always be clear from the context
whether we mean the Leibniz product or composition.
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with a•b ∈ X3 and a new differentialD3 : X3 → X2.More generally, we can anticipate
the existence of a bilinear operation • of intrinsic degree 1 that is graded symmetric,
i.e.,

∀A, B ∈ X : A • B = (−1)|A||B|B • A, A • B ∈ X |A||B|+1. (2.30)

Indeed, according to the grading for a, b ∈ X1 the product needs to be antisymmetric,
in agreement with the implicit definition (2.29).

Our next goal is to define a generalization of the Leibniz action (2.20) that is valid
on the entire chain complex. Specifically, we define a generalized Lie derivative via
‘Cartan’s magic formula’

Lza ≡ z • Da +D(z • a), (2.31)

for z ∈ X0 and a ∈ Xi , i > 0. The complete analogy to Cartan’s formula for Lie
derivatives of differential forms can be made manifest by introducing the map

ιz : Xi → Xi+1, ιz(a) ≡ z • a, (2.32)

for z ∈ X0, because then (2.31) can be written as

Lz = ιz D +D ιz . (2.33)

We will next try to establish standard relations for Lie derivatives, which in turn
requires imposing further relations between D and •. We first show that an element of
the original Leibniz algebra that isD-exact acts trivially according to the Cartan formula
— as it should be in view of the interpretation of X1 as the ‘space of trivial parameters’.
To this end we set z = Db and compute with (2.31)

LDba = Db • Da +D(Db • a) = −D(a • Db) +D(Db • a) = 0, (2.34)

using (2.28) and the graded commutativity of •. (The sign choice in (2.28) was made
such that the trivial parameters of the action given by the Cartan formula are D-exact.)
Another direct consequence of the definition (2.31) is that Lie derivatives commute with
D:

[D,Lx ] = D(ιxD +Dιx ) − (ιxD +Dιx )D = 0. (2.35)

Put differently, D is a covariant operation.
Let us now address the crucial questionwhether the generalized Lie derivatives (2.33)

form an algebra. This can be easily seen to be the case if and only if the Lie derivative
is ‘covariant’ w.r.t its own action. Since, as just established, D is covariant, we expect
that the Lie derivatives close if we assume that the operations • are defined so as to be
covariant. More precisely, we demand that the operation (2.32) transforms covariantly
under the generalized Lie derivatives (2.31) in the sense that

δx (ιy(A)) ≡ ιx◦y(A) + ιy(Lx A) ≡ Lx (ιy(A)). (2.36)

The last equality is the statement of covariance. This can be rewritten as

Lx ιy − ιyLx = ιx◦y . (2.37)

Even shorter, and together with (2.35), we thus have

[Lx ,D] = 0, [Lx , ιy] = ιx◦y . (2.38)
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This is sufficient in order to prove closure of the algebra of generalized Lie derivatives:

[Lx ,Ly]
= Lx (ιyD +Dιy) − (ιyD +Dιy)Lx

= (Lx ιy − ιyLx )D +D(Lx ιy − ιyLx )

= ιx◦yD +Dιx◦y
= Lx◦y .

(2.39)

We recall that Cartan’s formula and hence the above proof only hold when acting on
objects in Xi , i > 0. Of course, for elements in X0 closure follows from the Leibniz
algebra properties.

2.3. Tensor hierarchy at low levels. We will now turn to the formulation of gauge the-
ories based on algebraic structures satisfying the relations discussed in the previous
subsection, exhibiting the first few steps in the construction of a tensor hierarchy. In
this one tries to mimic the construction of Yang-Mills theory: one introduces one-forms
A = Aμ dxμ, with xμ the coordinates of the base ‘spacetime’manifold, but taking values
in a Leibniz algebra instead of a Lie algebra. Following the standard textbook treatment
of gauge theories, we next aim to define covariant derivatives and field strengths. We
can define covariant derivatives for any fields in X by

Dμ = ∂μ − LAμ, (2.40)

with the universal form (2.31) of the generalized Lie derivative. It is a quick computa-
tion using the closure relation (2.39) to verify that the covariant derivative transforms
covariantly, i.e., according to the same Lie derivative (2.31). (For an explicit display of
this proof see eq. (139) in [43].) Moreover, since the • operation is covariant under these
Lie derivatives we immediately have the Leibniz rule:

Dμ(a • b) = Dμa • b + a • Dμb, (2.41)

for arbitrary a, b ∈ X .
For the gauge potential Aμ , we postulate gauge transformations w.r.t. to a Leibniz-

algebra valued gauge parameter λ ∈ X0:

δλAμ = Dμλ ≡ ∂μλ − Aμ ◦ λ. (2.42)

The important difference to Yang-Mills theory originates from the fact that in general
these gauge transformations do not close by themselves. Using the Leibniz algebra
relations and (2.13) we compute for the commutator of (2.42):

[δλ1 , δλ2 ]Aμ = −2 ∂μλ[1 ◦ λ2] + 2 (Aμ ◦ λ[1) ◦ λ2]
= −∂μλ[1 ◦ λ2] − λ[1 ◦ ∂μλ2] + 2{λ[1, ∂μλ2]}
+ Aμ ◦ (λ[1 ◦ λ2]) − 2{λ[1, Aμ ◦ λ2]}

= −Dμ(λ[1 ◦ λ2]) + 2{λ[1, Dμλ2]}
= Dμ[λ2, λ1] +D(λ[1 • Dμλ2]).

(2.43)

The first term on the right-hand side takes the form of δ12Aμ, with λ12 = [λ2, λ1], but
the second term is inconsistent with closure. The notation above suggests already the
resolution: one postulates a new gauge symmetry with a parameter λμ ∈ X1:

δλAμ = Dμλ − Dλμ. (2.44)
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We then have closure according to [δλ1 , δλ2 ]Aμ = Dμλ12 − Dλ12μ, where

λ12 = [λ2, λ1], λ12μ = λ[2 • Dμλ1]. (2.45)

We now turn to the definition of a non-abelian field strength for Aμ, starting from
the ansatz

Fμν = ∂μAν − ∂ν Aμ − [Aμ, Aν], (2.46)

where further (2-form) terms will be added to achieve gauge covariance. The need for
this modification is most efficiently shown by computing the general variation of the
field strength and demanding covariance. Under a general variation δAμ we compute

δFμν = 2 ∂[μ(δAν]) − 2[A[μ, δAν]]
= 2(∂[μδAν] − A[μ ◦ δAν] + {A[μ, δAν]})
= 2 D[μδAν] +D(A[μ • δAν]),

(2.47)

where we used (2.13). Thus, we have succeeded to write δFμν in terms of the covariant
derivative of δAμ only up to D-exact terms. This is now remedied by introducing a
2-form Bμν ∈ X1 and completing the definition of the field strength as

Fμν = ∂μAν − ∂ν Aμ − [Aμ, Aν] +DBμν. (2.48)

It follows with (2.47) that the general variation under δAμ, δBμν takes the form

δFμν = 2 D[μ δAν] +D(
Bμν), (2.49)

where we defined the ‘covariant variations’


Bμν ≡ δBμν + A[μ • δAν]. (2.50)

Wewill see that these covariant variations of higher forms recur in all covariant formulas.
We can now determine the gauge transformations of the 2-forms so that the field

strength transforms covariantly. To this end we use that with (2.39) we have for the
commutator of covariant derivatives:

[Dμ, Dν] = −LFμν ≡ −LFμν
. (2.51)

Note that, due to (2.34), in this formula it is immaterial whether the field strength on
the right-hand side contains the 2-form term in (2.48) or not. Covariance of Fμν under
(2.42) now follows, provided we postulate the following gauge transformations for Bμν ,
written in terms of (2.50),


λBμν = 2 D[μλν] + Fμν • λ. (2.52)

Here we also introduced a new gauge parameter λμ ∈ X1, for which Bμν is the gauge
field. Indeed, with (2.51) and (2.49) we then compute

δλFμν = [Dμ, Dν]λ +D(
λBμν)

= λ ◦ Fμν − 2{Fμν, λ} +D(
λBμν)

= λ ◦ Fμν +D(
λBμν − Fμν • λ)

= LλFμν.

(2.53)
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Next, we have to prove invariance under the new shift transformation w.r.t. λμ ∈ X1.
With (2.44) we compute

δλFμν = −2 D[μDλν] + 2D(D[μλν])
= −2 ∂[μDλν] + 2 A[μ ◦ Dλν] + 2D

(
∂[μλν] − A[μ • Dλν]

) − D(A[μ • λν])
= 2 A[μ ◦ Dλν] − 4{A[μ,Dλν]}
= −2Dλ[ν ◦ Aμ]
= 0,

(2.54)

using D2 = 0 and, in the last step, (2.14).
Having established the covariance (and invariance) properties of Fμν , we next ask

whether there is a covariant 3-form field strength for the 2-form. This 3-form curvature
emerges naturally upon inspecting the possible Bianchi identities for Fμν . In contrast
to the Bianchi identity in Yang-Mills theory based on Lie algebras, the covariant curl
of Fμν in general is not zero but only D-exact, thereby introducing a 3-form that is
covariant (again, up to D-exact terms). Specifically, we have the following generalized
Bianchi identity,

3 D[μFνρ] = DHμνρ, (2.55)

where

Hμνρ = 3
(
∂[μBνρ] − A[μ • DBνρ] − D(A[μ • Bνρ]) − A[μ • ∂ν Aρ] + 1

3 A[μ • Aν ◦ Aρ]
)

= 3
(
D[μBνρ] − �μνρ(A)

)
,

(2.56)

and we introduced the Chern-Simons three-form

�μνρ(A) ≡ A[μ • ∂ν Aρ] − 1
3 A[μ • (Aν ◦ Aρ]). (2.57)

Note that Hμνρ is determined by (2.55) only up to contributions that are D-closed and
hence D-exact. In (2.56) we added a D-exact term in order to build the full covari-
ant derivative. Moreover, we should not expect Hμνρ to be fully gauge covariant, but
only up to D-exact contributions. These, in turn, can be fixed by introducing a 3-form
gauge potential. The proof of the Bianchi identity (2.55) proceeds by a straightforwards
computation, using repeatedly (2.16) and performing similar calculations as above.2

In order to further develop the general pattern of tensor hierarchies, we close this
section by completing the definition of the 3-form curvature by introducing a 3-form
potential taking values in X2. To this end it is again convenient to inspect the general
variation of Hμνρ . First, under an arbitrary variation δAμ, we compute for the Chern-
Simons term3

δ �μνρ(A) = −Dμ(Aν • δAρ) + δAμ • Fνρ − δAμ • DBνρ − 1
3D(Aμ • (Aν • δAρ)),

(2.59)

2 In particular, one has to use the perhaps somewhat surprising relations

3 A[μ ◦ (Aν ◦ Aρ]) = D(A[μ • (Aν ◦ Aρ])), Aμ ◦ DBνρ = D(Aμ • DBνρ). (2.58)

3 Here and in the following total antisymmetrization of form indices is understood.
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where we used the covariance relation (2.36). The general variation of the three-form
curvature is then given by

δHμνρ = 3
(
DμδBνρ − δ�μνρ − δAμ • DBνρ − D(δAμ • Bνρ)

)

= 3
(
Dμ
Bνρ − δAμ • Fνρ − D

(
δAμ • Bνρ − 1

3 Aμ • (Aν • δAρ)
))

. (2.60)

The first two terms on the right-hand side are covariant, but there is also a non-covariant
butD-exact term. Again, this can be remedied by introducing Cμνρ ∈ X2 and defining

Hμνρ ≡ Hμνρ +DCμνρ. (2.61)

The general variation can then be written as

δHμνρ = 3 Dμ
Bνρ − 3 δAμ • Fνρ +D
Cμνρ, (2.62)

with the covariant variation of the 3-form


Cμνρ ≡ δCμνρ − 3 δAμ • Bνρ + Aμ • (Aν • δAρ). (2.63)

With the relations established so far it is now a direct computation to verify gauge
covariance of the field strength under


Cμνρ = 3 Dμ�νρ + 3Fμν • λρ + λ • Hμνρ − Dμνρ,


Bμν = 2 Dμλν + λ • Fμν − D�μν,

δAμ = Dμλ − Dλμ,

(2.64)

where we introduced higher shift gauge parameters �μν ∈ X2, μνρ ∈ X3. We can use
this to quickly verify that there are trivial parameters of the following form

λ = Dχ,

λμ = Dχμ + Dμχ,

�μν = Dχμν + 2 Dμχν − χ • Fμν,

μνρ = Dχμνρ + 3 Dμχνρ − 3Fμν • χρ + χ • Hμνρ.

(2.65)

For this one uses (2.41) and, for the final relation, (2.29).
It should nowbe fairly clear how the pattern continues: at each level (form degree) one

can construct consistent gauge transformations, covariant curvatures, etc., that have the
familiar properties up toD-exact contributions that, in turn, can be fixed by introducing
forms of one higher degree. The exact (or closed-form) formulation of the complete
tensor hierarchy will be developed in the next two sections.

3. Infinity Enhanced Leibniz Algebra

In the previous section we have seen how the step-by-step construction of the tensor
hierarchy proceeds in parallel to the introduction of spaces of higher degree Xn , as well
as differentials D and graded symmetric maps •. In this section we will give a set of
axioms, involving the Leibniz product and the higher structures, that define what we
call an infinity enhanced Leibniz algebra. We will then show that such an algebraic
structure is sufficient in order to construct a tensor hierarchy to all orders. Before listing
the axioms, we will show how they can be motivated from the properties of the original
Leibniz algebra. This will hint to a close relation with differential graded Lie algebras,
that will be discussed as well.
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3.1. Motivation. As discussed in the previous sections, the Leibniz product provides a
natural notion of symmetry transformations (in the following often referred to as Lie
derivative):

δx y ≡ Lx y := x ◦ y, (3.1)

that closes and is covariant, i.e.,

[Lx ,Ly] z = L[x,y] z, Lx (y ◦ z) = (Lx y) ◦ z + y ◦ (Lx z). (3.2)

The trivial action of the symmetric pairing, L{x,y}z = 0, prompts us to introduce the
space X1 and the first bullet operator • : X0 ⊗ X0 → X1 as

x ◦ y + y ◦ x = D(x • y), (3.3)

where the right hand side can be viewed as the definition of • . Since LD(x•y) z = 0 for
any x, y ∈ X0 , one is led to associate triviality of the Lie derivative with D-exactness,
and thus postulate

Du ◦ x = 0, ∀u ∈ X1, x ∈ X0. (3.4)

The Lie derivative is at the core of constructing the gauge theory, in that it defines
covariant derivatives and gauge variations. Since higher form gauge fields are valued in
spaces Xn with n > 0 , it is necessary to extend the definition of the Lie derivative to
spaces of arbitrary degree in a way that preserves closure and covariance. In order to
determine the form of Lx acting on elements of higher degree, we notice that

(x ◦ y) • z + (x ◦ z) • y − x • (y ◦ z + z ◦ y) (3.5)

is D-closed, thanks to the Leibniz property of ◦ . Imposing it to be D-exact amounts to
define the higher bullet • : X0 ⊗ X1 → X2 by

(x ◦ y) • z + (x ◦ z) • y − x • (y ◦ z + z ◦ y) = D(x • (y • z)). (3.6)

This is motivated by the assumption that everything should be writable only in terms of
D and • , and by manifest symmetry in y ↔ z . By defining

Lxa := x • Da +D(x • a), a ∈ Xn, n > 0, (3.7)

this is equivalent to y • z being covariant under Lx . Totally symmetrizing the relation
(3.6), and recalling that • is symmetric for degree-zero objects, we infer

D
[
x • (y • z) + y • (z • x) + z • (x • y)

] = 0, (3.8)

so the expression in parenthesis isD-closed, and we impose it to beD-exact. Since there
is nothing writable in terms of • yielding a degree +3 object from (x, y, z), this amounts
to postulating

x • (y • z) + y • (z • x) + z • (x • y) = 0. (3.9)

By using the notation ιx = x • , we notice that (3.9) can be rewritten in the form

− ιx (y • z) = (ιx y) • z + y • (ιx z), x, y, z ∈ X0 (3.10)
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viewed as a (twisted) Leibniz property of the operator ιx . This suggests the graded
extension

− ιx (a • b) = (ιxa) • b + (−1)|a|a • (ιxb), x ∈ X0, a, b ∈ X (3.11)

to the whole space. Given (3.11), one can act repeatedly with ιxk to prove by induction

(−1)|Xn |+1Xn • (a • b) = (Xn • a) • b + (−1)|a||b|(Xn • b) • a, ∀ a, b ∈ X

(3.12)

with Xn := x1 • (x2 • (...(xn−1 • xn))) an element of degree n − 1 generated by nested
products of degree zero elements xi , thereby suggesting the general relation

(−1)|a|+1a • (b • c) = (a • b) • c + (−1)|b||c|(a • c) • b. (3.13)

Coming back to the properties of theD operator, we see from (3.4) thatDu • Dv is
D-closed for u, v ∈ X1 , since D(Du • Dv) = Du ◦ Dv +Dv ◦ Du . Postulating this
isD-exact amounts to requiring there exists a degree 2 element, depending on u and v ,
whoseD-boundary isDu •Dv ; we can therefore define −u •Dv to be this element, so
that

Du • Dv = −D(u • Dv) = −D(v • Du), (3.14)

where the sign has been chosen such that LDuv = 0 , maintaining triviality of the Lie
derivative along D-exact elements. Antisymmetrizing the above relation one finds that
u • Dv − v • Du is D-closed. Imposing again that it is D-exact allows us to define yet
a higher bullet product • : X1 ⊗ X1 → X3 via

u • Dv − v • Du = D(u • v), (3.15)

suggesting the twisted Leibniz property

− D(a • b) = (Da) • b + (−1)|a|a • Db, |a|, |b| > 0. (3.16)

From the relations (3.11) and (3.16) it is possible to prove covariance of the product a •b
under the action of the Lie derivative when neither a nor b have degree zero, as will be
shown explicitly later. As we have already mentioned, (3.6) ensures covariance of y • z
under the Lie derivative when both y and z have degree zero. On the other hand, when
only one argument has degree zero, (3.11) and (3.16) only allow us to determine

Lx (y • u) + Ly(x • u)

= x • D(y • u) + y • D(x • u) +D
[
x • (y • u) + y • (x • u)

]
= x • Lyu + y • Lxu − x • (y • Du) − y • (x • Du) − D

[
(x • y) • u

]
= x • Lyu + y • Lxu +D(x • y) • u

= [
(Lx y) • u + y • Lxu

]
+

[
(Lyx) • u + x • Lyu

]
,

(3.17)

showing that one needs to demand

D(x[1 • (x2] • u))

= 2 x[2 • D(x1] • u) + x[2 • (x1] • Du) + [x1, x2] • u, |xi | = 0, |u| > 0,

(3.18)

for the product (x • u) to be covariant. Notice that the structures on the right hand side
above are completely fixed by degree and symmetry, and the assumption is actually on
the relative coefficients.
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3.2. Relation with differential graded Lie algebras. Looking at the properties (3.13)
and (3.16) one immediately notices the resemblance with the graded Jacobi identity and
graded Leibniz rule of differential graded Lie algebras. In fact, one can show that this
is precisely the case upon suspension, i.e. degree shifting, of the graded vector spaces
Xn . To start with, we shall define the degree shifted vector space X̃ = ⊕∞

n=1 X̃n and
the suspension s by

s : Xn → X̃n+1, ã := sa,

|ã| = |a| + 1.
(3.19)

The bullet product on X translates, upon suspension, to a graded antisymmetric bracket
on X̃ defined by

[ã, b̃] := (−1)|a|+1s(a • b), (3.20)

which should not be confused with the antisymmetrization of the Leibniz product. The
differential D can also be defined on the suspended spaces by Dã := sDa . Degree
counting shows that the differential, that we still denote byD , retains degree −1 , while
the bracket (3.20) has degree zero.

With these definitions one can show that properties (3.13) and (3.16) become the
usual graded Jacobi identity for the bracket (3.20) and graded Leibniz compatibility of
the differential, namely

[[ã, b̃], c̃] + (−1)|ã|(|b̃|+|c̃|)[[b̃, c̃], ã] + (−1)|c̃|(|ã|+|b̃|)[[c̃, ã], b̃] = 0,

D[ã, b̃] = [Dã, b̃] + (−1)|ã|[ã,Db̃], |ã| , |b̃| > 1.
(3.21)

Finally, the original Leibniz algebra (X0, ◦) can be transported to X̃1 by

x̃ ◦ ỹ := s(x ◦ y), (3.22)

so that the Leibniz property is unchanged. The suspended Leibniz product has intrinsic
degree −1 , and indeed closes on X̃1 .

Even though the differential graded Lie algebra (dgLa) structure appearing in (3.21)
allows for a more familiar interpretation of the properties (3.13) and (3.16), one should
keep in mind that the Leibniz product ◦ is an independent algebraic structure. In par-
ticular, its compatibility properties with the differential and the dgLa bracket, given by
the suspended version of (3.3), (3.4), (3.6) and (3.18), need to be imposed as separate
requirements.

This construction simplifies considerably if one extends the graded vector space X̃
to non-positive degrees and declares the differential and the bracket to be defined on
the whole space, thus making (X̃ , [ , ], D) into a differential graded Lie algebra. In
particular, the newly introduced space X̃0 = s X−1 is a genuine Lie algebra g and the
dgLa bracket gives to all graded spaces X̃n a g−module structure via

ρt̃ ã := [t̃, ã], t̃ ∈ X̃0 , ã ∈ X̃ . (3.23)

The crucial difference of the extended space formulation is that the differential can now
act on the Leibniz space X̃1 = s X0 , yielding a map

D : X̃1 → g (3.24)
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that can be interpreted as an abstract embedding tensor, in the language of gauged
supergravity. This in turn allows one to define the Leibniz product as a derived one via

x̃ ◦ ỹ := −[Dx̃, ỹ], (3.25)

or, before suspension, as x ◦ y := −Dx • y . The graded Jacobi identity and compatibility
ofD are sufficient to prove that the product (3.25) does indeed obey the Leibniz property.
Moreover, the Lie derivative is also universally defined by

Lx̃ ã := −[Dx̃, ã], x̃ ∈ X̃1 , ã ∈ X̃ . (3.26)

Finally, all the compatibility conditions (3.3), (3.4), (3.6) and (3.18) are ensured by the
dgLa structure of the entire vector space, requiring only the graded Jacobi identity and
compatibility of the differential.

At this point it is evident that the dgLa structure on the unbounded space allows for a
more concise construction.However, it should be noted that assuming the existence of the
Lie algebra g and its action on X̃ is not needed in order to construct the tensor hierarchy
and is a considerable piece of extra data to be given as input. Moreover, so far there is no
clear field theoretic interpretation of the spaces in negative degrees. Nevertheless, given
any Leibniz algebra (X0, ◦) it is always possible to define an associated Lie algebra
by modding out the symmetric part of the Leibniz product. This yields a Lie algebra
g0 ∼ X0/D(X1) that, however, almost never coincides with the Lie algebra g = s X−1 ,
but is rather a subalgebra of the latter. For instance, in gauged supergravity the underlying
Lie algebra g is given by the global symmetry algebra of the ungauged phase, while in
double and exceptional field theory such an algebra was identified only recently [5,43].
This shows that augmenting the original graded vector space X to negative degrees and
extending the action of the differential and the bullet requires a significant amount of
extra structure, that is not necessary in order to define a consistent tensor hierarchy.
For this reason, in the present paper we shall investigate tensor hierarchies in terms
of the most minimal set of algebraic structures that guarantee their consistency. We
will consider the graded vector space X concentrated in non-negative degrees, with the
Leibniz algebra (X0, ◦) as a fundamental structure. As discussed in the present section,
the consistency relations (3.3), (3.4), (3.6) and (3.18) cannot be derived, in this case, by
more fundamental ones, and we shall demand them as additional axioms that will be
collected in the next subsection.

3.3. Axioms. We are now ready to provide the list of structures and axioms defining
what we name an infinity-enhanced Leibniz algebra. In this section we will prove that
the given axioms allow one to define a generalized Lie derivative that acts covariantly
on all algebraic structures, and closes on itself modulo trivial transformations.

An infinity-enhanced Leibniz algebra consists of the quadruple (X, ◦,D, •) . X is an
N-graded vector space, where sometimes we single out the degree zero subspace:

X =
∞⊕
n=0

Xn = X0 ⊕ X̄ . (3.27)

X0 is endowed with a (left) Leibniz product ◦ : X0 ⊗ X0 → X0 , obeying

x ◦ (y ◦ z) = (x ◦ y) ◦ z + y ◦ (x ◦ z). (3.28)
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D is a degree −1 differential acting on X̄ :

... −→ Xn
D−→ Xn−1...

D−→ X1
D−→ X0, D2 = 0, (3.29)

and • is a graded commutative product of degree +1 defined on the whole space X :

• : Xi ⊗ X j → Xi+ j+1, a • b = (−1)|a||b|b • a. (3.30)

This quadruple defines an infinity-enhanced Leibniz algebra provided

1) Du ◦ x = 0, ∀ u ∈ X1, x ∈ X0,

2) D(x • y) = x ◦ y + y ◦ x, ∀ x, y ∈ X0,

3) D(x • (y • z)) = (x ◦ y) • z + (x ◦ z) • y − (y ◦ z + z ◦ y) • x, ∀ x, y, z ∈ X0,

4) D(x[1 • (x2] • u)) = 2 x[2 • D(x1] • u) + x[2 • (x1] • Du)

+ [x1, x2] • u , ∀ x1, x2 ∈ X0, u ∈ X̄ ,

5) D(u • v) +Du • v + (−1)|u|u • Dv = 0, ∀ u, v ∈ X̄ ,

6) (−1)|a|a • (b • c) + (a • b) • c + (−1)|b||c|(a • c) • b = 0, ∀ a, b, c ∈ X.

(3.31)

The generalized Lie derivative is defined as

Lx y := x ◦ y, ∀ x, y ∈ X0,

Lxu := x • Du +D(x • u), ∀ x ∈ X0, u ∈ X̄ .
(3.32)

From axioms 1) and 5) it is immediate thatD-exact degree zero elements generate trivial
Lie derivatives, i.e.

LDua = 0, ∀ u ∈ X1, a ∈ X. (3.33)

Covariance. As the first statement of covariance, we see that the Lie derivative com-
mutes with the differentialD ,[Lx ,D

] = 0, ∀ x ∈ X0. (3.34)

This is obvious by construction when the commutator acts on an element u with |u| > 1 ,
since then Lx = ιxD +Dιx , c.f. (2.35). For |u| = 1 one has[Lx ,D

]
u = x ◦ Du − D(x • Du +D(x • u)) = x ◦ Du − D(x • Du) = 0,

(3.35)

upon using 1) and 2). Covariance of the Leibniz product ◦ itself is just a rewriting of its
defining property:

Lx (y ◦ z) = (Lx y) ◦ z + y ◦ (Lx z). (3.36)

Covariance of the bullet product, i.e.

Lx (a • b) = (Lxa) • b + a • (Lxb), ∀ x ∈ X0, a, b ∈ X, (3.37)

has to be proved in different steps, depending on the degrees of a and b . For a and b in
X0 one has

Lx (a • b) = x • D(a • b) +D(x • (a • b)) = x • (a ◦ b + b ◦ a) +D(x • (a • b))

= (x ◦ a) • b + (x ◦ b) • a = (Lxa) • b + a • (Lxb)
(3.38)
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thanks to 3). In the case a ∈ X0 and b ∈ X̄ we have to use properties 4), 5) and 6) (in
the proof we rename a = y to make clear that it has zero degree):

Lx (y • b) = x • D(y • b) +D(x • (y • b))

= x • D(y • b) + 1
2

[
D(x • (y • b)) +D(y • (x • b))

]

+ 1
2

[
D(x • (y • b)) − D(y • (x • b))

]

= − 1
2 D((x • y) • b) + y • D(x • b) + 1

2 y • (x • Db) − 1
2 x • (y • Db) + [x, y] • b

= {x, y} • b − 1
2 (x • y) • Db + y • Lxb

− 1
2 y • (x • Db)

− 1
2 x • (y • Db) + [x, y] • b

= (x ◦ y) • b + y • Lxb.

(3.39)

For both a and b in X̄ one uses repeatedly properties 5) and 6) to get

Lx (a • b) = x • D(a • b) +D(x • (a • b))

= −x • [Da • b + (−1)|a|a • Db] − D[(x • a) • b + (−1)|a|a • (x • b)]
= (x • Da) • b − (−1)|a|Da • (x • b) + (−1)|a|(x • a) • Db + a • (x • Db)

− D[(x • a) • b + (−1)|a|a • (x • b)]
= (Lxa) • b − D(x • a) • b − (−1)|a|Da • (x • b) + (−1)|a|(x • a) • Db

+ a • (Lxb) − a • D(x • b)

− D[(x • a) • b + (−1)|a|a • (x • b)]
= (Lxa) • b + a • (Lxb),

(3.40)

thus proving covariance (3.37) for arbitrary elements a, b ∈ X .

Closure. Since the Lie derivative will be used to define symmetry variations and covari-
ant derivatives, we have to show that it closes under commutation, namely

[Lx ,Ly
]
a = L[x,y] a. (3.41)

When acting on a degree zero element, this is ensured by the Leibniz property of ◦ , as
displayed in (1.7), which yields (3.41) together with the triviality property L{x,y} = 0 .
In order to prove closure on higher degree elements we need the covariance properties
(3.34) and (3.37) that have just been proven:

LxLya = Lx

[
y • Da +D(y • a)

]

= (x ◦ y) • Da + y • D(Lxa) +D
[
(x ◦ y) • a + y • (Lxa)

]

= Lx◦ya + LyLxa.

(3.42)

We close this section by giving a brief summary of where the algebraic structures
axiomatized here appear in physical models. For instance, in gauged supergravity (see
e.g. [7]) the vector fields take values in some representation R1 of the Lie algebra g
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of global symmetries of the ungauged phase. The Leibniz space X0 is then identified
with the representation space R1, and the so called embedding tensor map ϑ : R1 → g
allows one to define the Leibniz product as x ◦ y = ρϑ(x)y for x, y ∈ R1 . The first bullet
product • is then defined as a projection from the tensor product of two R1 representations
to the R2 ≡ X1 representation carried by the two-forms: • : R1 ⊗ R1 → R2 , and
so on. In double field theory [43] and exceptional field theory [5,22,43] the Leibniz
product is given in terms of generalized Lie derivatives, and both the bullet product
• and differential D are given by algebraic and/or differential operators acting on the
internal space. Similarly, for a 3D gauge theory based on an infinite-dimensional Leibniz
algebra see [44].

4. Exact Tensor Hierarchy

The main goal of this section is to show that the infinity-enhanced Leibniz algebra,
defined in the previous section by the set of axioms (3.31), allows us to construct the
tensor hierarchy to all orders. In particular, wewill show that it is possible to define gauge
covariant curvatures Fp+1 for p-form gauge fields Ap of arbitrary degree. Consistency
of the tensor hierarchy is established by showing that the curvatures obey a set of Bianchi
identities. Indirectly, this establishes gauge covariance.

4.1. General strategy. We start by briefly outlining the general strategy: When con-
structing the gauge theory step by step, as in Sect. 2.3, one starts from the one-form4

A1 = Aμ dxμ , taking values in the Leibniz algebra X0 , and postulates the gauge trans-
formation5 δA1 = Dλ0 − Dλ1 , where the covariant derivative is defined as

D = dxμ Dμ := dxμ (∂μ − LAμ). (4.1)

The naive Yang-Mills curvature F2 = d A1 − 1
2 A1 ◦ A1 transforms covariantly only

modulo a D-exact term: δF2 = Lλ0F2 + D(...) , forcing us to introduce an X1-valued
two-form A2 whose gauge transformation can be adjusted to make the full two-form
curvature F2 = F2 +DA2 covariant, i.e. δF2 = Lλ0F2 . At this point, the most efficient
way to determine the three-form curvature is to take the covariant curl of F2 , yielding
the Bianchi identity DF2 = DF3 with

F3 = DA2 + �3,

�3 = − 1
2 A1 • d A1 + 1

6 A1 • (A1 ◦ A1).
(4.2)

As for the lower order, the curvature F3 is covariant only moduloD-exact terms: δF3 =
Lλ0F3 +D(...) . Again, this can be cured by introducing an X2-valued gauge potential
A3 and fixing its gauge transformation so that F3 = F3 +DA3 transforms covariantly.
The procedure continues in the same way up to the top form, for a given spacetime
dimension, but it becomes very cumbersome quite quickly, as can be appreciated from
the first steps carried out explicitly in Sect. 2.3.

4 From now on, having to deal with forms of arbitrary degree, we use intrinsic differential form notation
with normalization Ap = 1

p! Aμ1...μp dx
μ1 ...dxμp , and different forms are only named by their degree,

so that A2μν = Bμν of Sect. 2.3 and so on. Moreover, we use a slightly different normalization for the �3
Chern-Simons form compared to Sect. 2.3, in order to avoid cluttering formulas with factorial coefficients.

5 As shown in Sect. 2.3 the D-exact part of the gauge transformation is required by closure.
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From the examples at low form degree it is clear that at every order the Bianchi
identities alone fix the next order curvature up to aD-exact term. We aim thus at finding
curvatures Fp = DAp−1 +DAp + · · · that obey Bianchi identities among themselves
for arbitrary form degrees.

In order to do so, we shall first focus on the Chern-Simons-like terms such as the �3
in (4.2). Such composite p-forms, entirely built out of the one-form A1 , appear at every
order in a brute-force calculation of the curvatures:Fp = DAp−1+DAp+�p(A1)+· · · .
Perhaps counter-intuitively, it is the term �p(A1) , rather than DAp−1 , that helps us to
determine the all-order structure of Fp since, as we shall prove in Appendix A , these
pseudo-Chern-Simons forms already obey Bianchi identities. We thus define the pseudo
Chern-Simons (CS) n-form by

�n(A) = (−1)n

(n−1)! (ιA)n−2[d A − 1
n A ◦ A

]
, |�n| = n − 2, (4.3)

where A ≡ A1 and we have introduced the operator

ιAx := A • x . (4.4)

The form index n is related to the powers of A as �n ∼ An−2d A + An such that, for
instance, one has �3 = − 1

2 A • d A + 1
6 A • (A ◦ A), �4 = 1

6 A • (A • d A) − 1
24 A •

(A • (A ◦ A)) and so on. It will be convenient to include the pure Yang-Mills curvature
F2 in this family as �2 = d A − 1

2 A ◦ A ≡ F2 . Notice that the �n have form degree n
and intrinsic degree n − 2 , making them •-commutative, i.e.

�k • �l = �l • �k, ∀ k, l � 2. (4.5)

Moreover, from assumption 6) of (3.31), upon combining internal and form degrees, one
can derive

− ιA(�k • �l) = (ιA�k) • �l + �k • (ιA�l). (4.6)

The crucial property of this family of differential forms is that it closes (quadratically)
under the action of the covariant derivative D = d − LA :

D�n + 1
2

n−1∑
k=2

�k • �n+1−k = D�n+1, n � 2. (4.7)

We will prove (4.7) by induction in Appendix A.

4.2. Curvatures and Bianchi identities to all orders. In this section we are going to
work with arbitrary p-form gauge potentials Ap , defined as differential p-forms over a
spacetime manifold M , taking values in X p−1 , namely

Ap := 1
p! Aμ1...μp (x) dx

μ1 · · · dxμp ∈ �p(M) ⊗ X p−1, (4.8)

where from now on we shall omit the symbol for wedge products.
We are now ready to introduce curvatures Fp+1 ∈ �p+1(M) ⊗ X p−1 for arbitrary

p-form gauge fields as

Fp+1 =
p∑

ki�2

[ p
2

]
∑
N=1

(−1)N−1

N ! ιk1 ...ιkN−1DAkN +
p+1∑
ki�2

[ p+1
2

]
∑
N=1

(−1)N−1

N ! ιk1 ...ιkN−1

(
DAkN + N �kN

)
,

(4.9)
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where Ap with p � 2 are the higher form gauge fields,

�p = (−1)p

(p−1)! ι
p−2
1

(
d A1 − 1

n A1 ◦ A1

)
, p � 2 (4.10)

are the pseudo CS forms just introduced, and we use the shorthand notation

ιk x := Ak • x . (4.11)

The sums
∑n

ki�2 run over all possible {k1, ..., kN } with ki � 2, constrained by∑N
i=1 ki = n . We will prove that the curvatures defined in (4.9) obey the Bianchi iden-

tities

DFn + 1
2

n−1∑
k=2

Fk • Fn+1−k = DFn+1, n � 2, (4.12)

that are the benchmark for proving recursively the gauge covariance of the Fn’s. Before
giving the proof of (4.12) for arbitrary form degree, we spend a few words to justify
the form of (4.9). When constructing the tensor hierarchy step by step, starting from the
one-form, one is led to identify the first few gauge covariant curvatures as

F2 = d A1 − 1
2 A1 ◦ A1 +DA2 = F2 +DA2 ≡ �2 +DA2,

F3 = DA2 + �3 +DA3,

F4 = DA3 + �4 − A2 • �2 − 1
2 A2 • DA2 +DA4,

(4.13)

that immediately suggest to consider

Fn = DAn−1 + �n +DAn + · · · (4.14)

as a starting point for the curvature, which indeed coincides with the N = 1 term of
(4.9). When considering the DAn−1 term, we recall that DA1 is not defined (the pure
Yang-Mills part of F2 is �2) and we formally set DA1 ≡ 0 when necessary. In order
to guess the structure of the extra terms in (4.14) it is useful to push the step by step
procedure a bit further to find

F5 = DA4 + �5 − A2 • �3 − A3 • �2 − 1
2 A2 • DA2 − α A2 • DA3

+(α − 1) A3 • DA2 +DA5. (4.15)

The ambiguity, parametrizedbyα ∈ R , amounts to afield redefinition A5 → A5 + A2 • A3 ,
that we fix by choosing the symmetric point α = 1

2 . One can easily see that, starting
from F5 , analogous ambiguities show up at every level, due to possible field redefi-
nitions of the D-exact term DAn in (4.14). We choose the symmetric point for all of
them by demanding that the coefficients, as displayed in (4.9), do not depend on the set
{ki }Ni=1 of form degrees.

In order to formulate the ansatz for Fn we define a new degree, that we name twist,
given by the difference between form degree and internal degree of a given field. We
recall that gauge fields Ap have internal degree p − 1 , the differential D has internal
degree−1 , and the products ◦ and • have degree zero and +1 , respectively. It is thus clear
that all gauge fields have twist +1 , while all curvatures have twist +2 and the operator
ιk has twist zero. Therefore, the only way to make a twist +2 object from a higher gauge
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field Ap with p � 2 is to act with an arbitrary number of ιki on the building blocksDAp

and DAp .6 As for the vector A1 , a basis of twist +2 forms can be constructed by acting
with an arbitrary number of ιki on the building block

7 �p , finally leading to the ansatz

Fn = DAn−1 + �n +DAn+
n∑

ki�2

[
n
2

]
∑
N=2

ιk1 ...ιkN−1

(
αN DAkN−1+βN DAkN + γN �kN

)
,

(4.16)

where the leading terms can be included as the N = 1 part of the sum for the initial
values α1 = β1 = γ1 = 1 . Despite the usual point of view of seeing DAn−1 as the
leading term of the field strength Fn , it is more convenient to split it as

Fn = �n + 
Fn (4.17)

in order to prove the Bianchi identities, since the pseudo CS forms already obey (4.7),
yielding

DFn = D�n + D
Fn = − 1
2

n−1∑
k=2

�k • �n+1−k +D�n+1 + D
Fn

= − 1
2

n−1∑
k=2

Fk • Fn+1−k +DFn+1

+
n−1∑
k=2

[
�k • 
Fn+1−k + 1

2 
Fk • 
Fn+1−k
]
+ D
Fn − D
Fn+1.

(4.18)

Proving the Bianchi identity (4.12) thus amounts to showing that

D
Fn+1 − D
Fn =
n−1∑
k=2

[
�k • 
Fn+1−k + 1

2 
Fk • 
Fn+1−k
]
, (4.19)

where


Fn = f An + f �
n , with

f An :=
n−1∑
ki�2

∑
N�1

αN ιk1 ...ιkN−1DAkN +
n∑

ki�2

∑
N�1

βN ιk1 ...ιkN−1DAkN ,

f �
n :=

n∑
ki�2

∑
N�2

γN ιk1 ...ιkN−1�kN .

(4.20)

6 In principle one can consider d Ap and LA1 Ap separately, but there is no point in breaking the covariant
derivative.

7 As before, one could consider d A1 and A1 ◦ A1 separately, but there is no advantage in breaking up
F2 = �2 .
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Let us first focus on the term Df An − D f An+1 , for which we have to treat objects of the
form (at fixed N )

∑
ki�2

D[ιk1 ...ιkN−1BkN ],
∑
ki�2

D[ιk1 ...ιkN−1BkN ], (4.21)

where Bk is a k-form of twist +2 . By using the graded Leibniz rule of the covariant
derivative one has

D[ιk1 ...ιkN−1BkN ] =
N−2∑
l=0

(−1)k1+···+kl ιk1 ...ιkl [DAkl+1 • (ιkl+2 ...ιkN−1BkN )]

+ (−1)k1+···+kN−1 ιk1 · · · ιkN−1DBkN .

(4.22)

The term in square brackets can be further manipulated by recursively using the identity

(−1)k ιk( f • g) = (ιk f ) • g + f • (ιkg), (4.23)

that is axiom 6) of (3.31) for f and g with even twist, to get

∑
ki�2

N−2∑
l=0

(−1)k1+···+kl ιk1 · · · ιkl [DAkl+1 • (ιkl+2 ...ιkN−1BkN )]

=
∑
ki�2

N−2∑
l=0

l∑
m=0

(
l

m

)
(ιk1 ...ιkm DAkm+1) • (ιkm+2 ...ιkN−1BkN )

=
∑
ki�2

N−2∑
m=0

[ N−2∑
l=m

(
l

m

)]
(ιk1 ...ιkm DAkm+1) • (ιkm+2 ...ιkN−1BkN )

=
∑
ki�2

N−2∑
m=0

(
N − 1

m + 1

)
(ιk1 ...ιkm DAkm+1) • (ιkm+2 ...ιkN−1BkN ),

(4.24)

finally giving

∑
ki�2

D[ιk1 ...ιkN−1BkN ] =
∑
ki�2

{ N−2∑
m=0

(
N − 1

m + 1

)
(ιk1 ...ιkm DAkm+1) • (ιkm+2 ...ιkN−1BkN )

+ (−1)k1+···+kN−1 ιk1 ...ιkN−1DBkN

}
.

(4.25)

In an almost identical way, by using 5) of (3.31), one proves that

−
∑
ki�2

D[ιk1 ...ιkN−1 BkN ] =
∑
ki�2

{ N−2∑
m=0

(
N − 1

m + 1

)
(ιk1 ...ιkmDAkm+1) • (ιkm+2 ...ιkN−1 BkN )

− (−1)k1+···+kN−1 ιk1 ...ιkN−1DBkN

}
.

(4.26)
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Using the identities (4.25) and (4.26) on Df An − D f An+1 one obtains

Df An − D f An+1 =
n∑

ki�2

∑
N�1

(βN − αN )(−1)k1+···+kN−1 ιk1 ...ιkN−1DDAkN

+
n∑

ki�2

∑
N�2

N−2∑
m=0

[
βN

(
N − 1

m + 1

)

+ αN

(
N − 1

N − 1 − m

)]
(ιk1 ...ιkm DAkm+1) • (ιkm+2 ...ιkN−1DAkN )

+
n−1∑
ki�2

∑
N�2

αN

N−2∑
m=0

(
N − 1

m + 1

)
(ιk1 ...ιkm DAkm+1) • (ιkm+2 ...ιkN−1DAkN )

+
n+1∑
ki�2

∑
N�2

βN

N−2∑
m=0

(
N − 1

m + 1

)
(ιk1 ...ιkmDAkm+1) • (ιkm+2 ...ιkN−1DAkN )

−
n−1∑
ki�2

∑
N�1

αN (−1)k1+···+kN−1 ιk1 ...ιkN−1L�2 AkN ,

(4.27)

wherewe have used D2 = −L�2 . By looking at the right hand side of (4.19) one sees that
there are no terms containing DDAk , hence fixingβN = αN from the first termof (4.27).
Furthermore, by looking at the diagonal terms of the form (ιmDA) • (ιN−2−mDA) and
(ιmDA)•(ιN−2−mDA) , one notices that they are manifestly symmetric (under the

∑
ki )

upon the exchange m → N − 2−m , thereby projecting the corresponding coefficients
to their manifest symmetric part:

(
N − 1

m + 1

)
→ 1

2

[(N − 1

m + 1

)
+

(
N − 1

N − 1 − m

)]
= 1

2

[(N − 1

m + 1

)
+

(
N − 1

m

)]
= 1

2

(
N

m + 1

)
.

After setting βN = αN (4.27) becomes

Df An − D f An+1

=
n∑

ki�2

∑
N�2

N−2∑
m=0

αN

(
N

m + 1

)
(ιk1 ...ιkm DAkm+1) • (ιkm+2 ...ιkN−1DAkN )

+
n−1∑
ki�2

∑
N�2

αN

N−2∑
m=0

1
2

(
N

m + 1

)
(ιk1 ...ιkm DAkm+1) • (ιkm+2 ...ιkN−1DAkN )

+
n+1∑
ki�2

∑
N�2

αN

N−2∑
m=0

1
2

(
N

m + 1

)
(ιk1 ...ιkmDAkm+1) • (ιkm+2 ...ιkN−1DAkN )

−
n−1∑
ki�2

∑
N�1

αN (−1)k1+···+kN−1 ιk1 ...ιkN−1L�2 AkN ,

(4.28)
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that has to be compared to the �-independent part of the r.h.s. of (4.19):

1
2

n−1∑
k=2

f Ak • f An+1−k

=
n∑

ki�2

∑
N�2

N−2∑
m=0

αm+1αN−m−1 (ιk1 ...ιkm DAkm+1) • (ιkm+2 ...ιkN−1DAkN )

+ 1
2

n−1∑
ki�2

∑
N�2

N−2∑
m=0

αm+1αN−m−1 (ιk1 ...ιkm DAkm+1) • (ιkm+2 ...ιkN−1DAkN )

+ 1
2

n+1∑
ki�2

∑
N�2

N−2∑
m=0

αm+1αN−m−1 (ιk1 ...ιkmDAkm+1) • (ιkm+2 ...ιkN−1DAkN ),

(4.29)

thus requiring αN
( N
m+1

) = −αm+1αN−m−1 . By setting cN := N ! αN the requirement
reads cN = −cm+1cN−m−1 , thus fixing cN = (−1)N−1 and

αN = βN = (−1)N−1

N ! . (4.30)

From (4.19) one is left to prove

D f �
n+1 − Df �

n +
n−1∑
ki�2

∑
N�1

αN (−1)k1+···+kN−1 ιk1 ...ιkN−1L�2 AkN

=
n−1∑
k=0

[
(�k + f �

k ) • f An+1−k + (�k + 1
2 f �

k ) • f �
n+1−k

]
.

(4.31)

The term Df �
n is no different from Df An and obeys the same identity (4.25):

Df �
n =

n∑
ki�2

∑
N�2

γN D[ik1 ...ikN−1�kN ]

=
n∑

ki�2

∑
N�2

γN

N−2∑
m=0

(
N − 1

m + 1

)
(ιk1 ...ιkm DAkm+1) • (ιkm+2 ...ιkN−1�kN )

+
n∑

ki�2

∑
N�2

γN (−1)k1+···+kN−1 ιk1 ...ιkN−1D�kN ,

(4.32)



2054 R. Bonezzi, O. Hohm

while one has to be more careful with D f �
n+1 , since the identity (4.26) does not apply

immediately, given that D�2 does not exist. We have instead

−D f �
n+1 = −

n+1∑
ki�2

∑
N�2

γN D[ιk1 ...ιkN−1�kN ]

=
n+1∑
ki�2

∑
N�2

γN

{ N−3∑
l=0

(−1)k1+···+kl ιk1 ...ιkl
[
DAkl+1 • (ιkl+2 ...ιkN−1�kN )

]

− (−1)k1+···+kN−2 ιk1 ...ιkN−2D(AkN−1 • �kN )
}
. (4.33)

At this point one has to treat the kN = 2 term in the sum separately. Using in particular
D(AkN−1 • �2) = L�2 AkN−1 − DAkN−1 • �2 we get

D f �
n+1 = −

n+1∑
ki�2

∑
N�2

γN

N−2∑
m=0

(
N − 1

m + 1

)
(ιk1 ...ιkmDAkm+1) • (ιkm+2 ...ιkN−1�kN )

+
n∑

ki�2

∑
N�2

γN (−1)k1+···+kN−1 ιk1 ...ιkN−1D�kN+1

+
n−1∑
ki�2

∑
N�1

γN+1 (−1)k1+···+kN−1 ιk1 ...ιkN−1 L�2 AkN .

(4.34)

This finally yields

Df �
n − D f �

n+1

=
n+1∑
ki�2

∑
N�2

γN

N−2∑
m=0

(
N − 1

m + 1

)[
ιk1 ...ιkm (DAkm+1−1 +DAkm+1)

] • (ιkm+2 ...ιkN−1�kN )

+
n∑

ki�2

∑
N�2

γN (−1)k1+···+kN−1 ιk1 ...ιkN−1(D�kN − D�kN+1)

−
n−1∑
ki�2

∑
N�1

γN+1 (−1)k1+···+kN−1 ιk1 ...ιkN−1 L�2 AkN

(4.35)

and, demanding that the L�2 terms cancel, fixes

γN = −αN−1 = (−1)N−1

(N − 1)! . (4.36)
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With this value of γN it is easy to see that the first line of (4.35)matches the (�+ f �)• f A

term in (4.31), while the second line is rewritten by using the identity (4.7):

n∑
ki�2

∑
N�2

γN (−1)k1+···+kN−1 ιk1 ...ιkN−1(D�kN+1 − D�kN )

= 1
2

n+1∑
ki�2

∑
N�3

γN−1 (−1)k1+···+kN−2 ιk1 ...ιkN−2(�kN−1 • �kN )

= 1
2

n+1∑
ki�2

∑
N�3

γN−1

N−2∑
l=0

(
N − 2

l

)
(ιk1 ...ιkl�kl+1) • (ιkl+2 ...ιkN−1�kN ),

(4.37)

where we used (4.24) in the last step. With γN = (−1)N−1

(N−1)! it is again easy to see that the

above expression takes care of the final (� + 1
2 f �) • f � term of (4.31), finishing the

proof of the Bianchi identity (4.12).

4.3. Gauge covariance. Here our goal is to use the Bianchi identities

DFn + 1
2

n−1∑
k=2

Fk • Fn+1−k = DFn+1 (4.38)

to prove gauge covariance of the curvatures by induction. It is only at this point that
we demand the differential D to have trivial cohomology. Although it is necessary for
this indirect proof, explicit computations for low degrees show that almost certainly this
assumption is not actually needed, but we leave the necessary explicit formulation of
the gauge transformations to future work.

As before, the lowest case n = 2 is proven directly, which we briefly recall in the
present notation: One starts from

F2 = d A1 − 1
2 A1 ◦ A1, (4.39)

and postulates the gauge symmetry

δA1 = Dλ0 − Dλ1. (4.40)

The general variation of F2 is given by

δF2 = dδA1 − 1
2 (δA1 ◦ A1 + A1 ◦ δA1) = DδA1 + 1

2 D(A1 • δA1), (4.41)

that, upon using (4.40), yields

δF2 = −F2 ◦ λ0 +D
(
1
2 A1 • (Dλ0 − Dλ1) − Dλ1

)

= Lλ0F2 +D
(
1
2 A1 • (Dλ0 − Dλ1) − Dλ1 − F2 • λ0

)

= Lλ0F2 +D
2.

(4.42)



2056 R. Bonezzi, O. Hohm

One now introduces the two-form gauge field A2 and the full two-form curvature as
F2 = F2 +DA2 , obeying

δF2 = δ(F2 +DA2) = Lλ0F2 +D(δA2 + 
2)

= Lλ0F2 +D(δA2 − Lλ0 A2 + 
2)
(4.43)

so that, by adjusting

δA2 = Lλ0 A2 − 
2 − Dλ̃2 (4.44)

it is possible to achieve δF2 = Lλ0F2 . Notice that, by using the explicit form of 
2 we
get the usual transformation


A2 := δA2 + 1
2 A1 • δA1 = Dλ1 + F2 • λ0 − Dλ2, (4.45)

with λ2 = λ̃2 − λ0 • A2 . Suppose next that we have fixed the gauge transformations of
gauge fields Ap with 1 � p � n so that

δFp = Lλ0Fp, for 2 � p � n. (4.46)

We split Fn+1 = Fn+1 + DAn+1 , since Fn+1 only contains gauge fields Ap with p �
n . The Bianchi identity (4.38), thanks to covariance and Leibniz property of the Lie
derivative, ensures that

D(δFn+1 − Lλ0Fn+1) = 0. (4.47)

Assuming that the differential D has trivial cohomology, we can thus write

δFn+1 = Lλ0Fn+1 +D
n+1, (4.48)

and

δFn+1 = Lλ0Fn+1 +D
n+1 +DδAn+1

= Lλ0Fn+1 +D
(
δAn+1 − Lλ0 An+1 + 
n+1

)
,

(4.49)

such that, by fixing

δAn+1 = Lλ0 An+1 − 
n+1 − Dλn+1, (4.50)

the covariance of Fn+1 is established, and hence proven for all n .
As a final comment, we notice that by taking the formal sumof the higher formpotentials,
as well as the pseudo CS forms and curvatures:

A :=
∞∑
p=2

Ap, � :=
∞∑
p=2

�p, F :=
∞∑
p=2

Fp, (4.51)

it is possible to recast the Bianchi identities, as well as the definition of the curvatures,
in the compact form

DF + 1
2 F • F = DF ,

F =
∞∑
N=0

(−ιA)N

N !
[

1
N+1 (D +D)A + �

]
.

(4.52)
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In this paper we have discussed the algebraic structure underlying general tensor
hierarchies purely at the kinematical level, determining gauge covariant curvatures of
arbitrary rank together with their Bianchi identities. In order to provide dynamics to
the above construction,8 natural candidates are action principles (or pseudo-actions sup-
ported by first-order duality relations) of the schematic form

∫ 〈F∧, �MF〉 , where 〈·, ·〉
denotes a suitable inner product andM plays the role of generalized metric built out of
the scalar fields of the theory.

5. Topological Theories Based on L∞ Algebras

Our goal in this section is to relate the infinity enhancedLeibniz algebra introduced above
to the closely related L∞ algebras. It is known that for an ‘enhanced Leibniz algebra’
as defined in [39], consisting of the vector space X0 ⊕ X1 , there is an associated Lie
2-algebra, i.e. an L∞ algebra whose highest bracket is the three bracket l3 . Similarly,
given the structure of an infinity enhanced Leibniz algebra, one can define L∞ algebras
characterized by a nilpotent operator l1 ≡ D , and graded antisymmetric brackets ln
obeying higher Jacobi-like relations. However, we will show that, in contrast to Leibniz
algebras and extensions thereof, the L∞ structure alone is not sufficient to define gauge
covariant curvatures for higher form potentials. It is still possible, by means of L∞
brackets alone, to define field strengths that transform into themselves under gauge
transformations. This allows us to define topological tensor hierarchies, whose field
equations amount to zero curvature conditions.

5.1. Warm-up. We begin with a warm-up example, trying to construct curvatures for
the lowest gauge potentials by means of L∞ brackets. This will show problems already
at the level of the three-form curvature, essentially due to the lack of a proper covariant
derivative. We will then proceed to construct a topological tensor hierarchy to all orders
in terms of a general L∞ algebra, not necessarily based on an underlyingLeibniz algebra.
We consider here a set of differential forms and gauge parameters taking value in an L∞
algebra, with L∞ degree assignments |Aμ| = |λ| = 0 , |Aμν | = |λμ| = 1 and so on.
More specifically, we identify

‘trivial parameters’: χ0, χ1, . . .

gauge parameters: λ0, λ1, λ2, . . .

gauge fields: A1, A2, A3, . . .

field strengths: F2, F3, . . . ,

(5.1)

where now the index denotes the form degree and the L∞ degree can be inferred from
the following diagram:

8 Note added in proof: during the review stage, dynamical field equations were provided in terms of first-
order duality relations in [42], where possible action principles have also been discussed.
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· · · l1−−→ X2[0]
l1−−→ X1[0](χ0)

l1−−→ X0[0](λ0)⏐⏐�d
⏐⏐�d

⏐⏐�d
⏐⏐�d

· · · l1−−→ X2[1](χ1)
l1−−→ X1[1](λ1)

l1−−→ X0[1](A1)⏐⏐�d
⏐⏐�d

⏐⏐�d
⏐⏐�d

· · · l1−−→ X2[2](λ2)
l1−−→ X1[2](A2)

l1−−→ X0[2](F2)⏐⏐�d
⏐⏐�d

⏐⏐�d
⏐⏐�d

· · · l1−−→ X2[3](A3)
l1−−→ X1[3](F3)

l1−−→ X0[3](dF2)

(5.2)

Note that the sequence of gauge parameters, fields, field strengths, respectively, runs ‘di-
agonally’ through the diagram (from north-east to south-west), in principle indefinitely.

We start again, in parallel with the construction of Sect. 2, by postulating the gauge
symmetry for the one-form as

δAμ = ∂μλ − l2(Aμ, λ) − l1λμ. (5.3)

Here l1 is the nilpotent, degree −1 , operator of the L∞ algebra, that is a differential
w.r.t. the l2 bracket:

l1l2(a, b) = l2(l1a, b) + (−1)|a|l2(a, l1b), (5.4)

and can be identified with theD operator of the Leibniz algebra of the previous sections.
The only other L∞ relation needed at this level is

0 = l1 l3(a, b, c) + l3(l1a, b, c) + (−1)|a|l3(a, l1b, c) + (−1)|a|+|b|l3(a, b, l1c)

+ l2(l2(a, b), c) + (−1)|a|(|b|+|c|)l2(l2(b, c), a) + (−1)|c|(|a|+|b|)l2(l2(c, a), b),
(5.5)

recalling that l1 does not act on degree zero elements. By using (5.4) and (5.5) one still
finds that the two-form curvature defined by

Fμν = 2 ∂[μAν] − l2(Aμ, Aν) + l1 Bμν (5.6)

transforms covariantly: δFμν = l2(λ,Fμν) , provided that the two-form gauge field
transforms as

δBμν = 2 ∂[μλν] − 2 l2(A[μ, λν]) + l2(λ, Bμν) − l3(Aμ, Aν, λ) − l1 λμν. (5.7)

This apparently suggests to define a “covariant” derivative: Dμx := ∂μx − l2(Aμ, x)
that allows to rewrite

δAμ = Dμλ − l1λμ,

δBμν = 2 D[μλν] + l2(λ, Bμν) − l3(Aμ, Aν, λ) − l1 λμν,
(5.8)

but is effectively of little use, since Dμ is not a covariant operation in the usual sense.
Indeed, given any element x that transforms covariantly in the sense that

δx = l2(λ, x), (5.9)
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one has

δ Dμx = l2(λ, Dμx) + l1l3(Aμ, x, λ) + l3(Aμ, l1x, λ), (5.10)

which contains bare gauge fields. At this stage, themost general ansatz for the three-form
curvature is

Hμνλ = 3 ∂[μBνλ] + α l2(A[μ, Bνλ]) + β l3(Aμ, Aν, Aλ) + l1 Cμνλ, (5.11)

and using (5.8) one finds the variation

δHμνρ = (α + 3) l2(∂[μλ, Bνρ]) + 3(β − 1) l3(∂[μλ, Aν, Aρ])
+ 2(α + 3) l2(A[μ, ∂νλρ]) + · · ·
+ l1

(
δCμνρ − 3 ∂[μλνρ] + · · · ),

(5.12)

where the omitted terms do not contain derivatives of the gauge parameters. This already
fixes α = −3 and β = 1 , yielding

Hμνλ = 3 D[μBνλ] + l3(Aμ, Aν, Aλ) + l1 Cμνλ. (5.13)

The l1-exact terms in δHμνρ can be absorbed by setting9

δCμνρ = 3 D[μλνρ] + l2(λ,Cμνρ) − 3 l2(λ[μ, Bνρ])
− 3 l3(λ, A[μ, Bνρ]) − 3 l3(λ[μ, Aν, Aρ]) + l4(λ, Aμ, Aν, Aρ),

(5.14)

but one is still left with

δHμνρ = l2(λ,Hμνρ) + 3 l2(λ[μ,Fνρ]) + 3 l3(λ, A[μ,Fνρ]), (5.15)

that is not covariant even in terms of a formal sum of curvatures, due to the bare gauge
field in the last term. However, since δHμνρ is proportional to itself and Fμν , it still
allows for the zero curvature conditions

Hμνρ = 0, Fμν = 0, (5.16)

to be gauge invariant topological field equations.
After this explicit example for the lowest ranks of the tensor hierarchy, we will

now turn to determine the gauge transformations and field strengths for differential
forms Aμ1...μp of arbitrary degree taking values in an L∞ algebra, that are consistent as
topological field equations of the form Fμ1...μp+1 = 0 .

9 To find this one also needs the relation l1 l4(x1, x2, x3, x4) = 4 l2(l3(x[1, x2, x3), x4]) −
6 l3(l2(x[1, x2), x3, x4]) for |xi | = 0 .
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5.2. Differential forms taking values in L∞ algebras. In this sectionwewill only assume
that the field content consists of a set of differential forms of arbitrary degree, taking
values in an L∞ algebra with multilinear, graded antisymmetric, maps ln of intrinsic
degree n − 2, obeying the quadratic relations

N−1∑
n=0

(−1)n(N+1)ln+1lN−n = 0, N = 1, 2, ...,∞, (5.17)

where N is the total number of arguments involved. The left hand side is meant to act
on the graded antisymmetrized tensor algebra so that, for instance, the N = 3 relation
l1l3 + l2l2 + l3l1 = 0 explicitly reads as (5.5). The set of differential forms organizes
naturally in terms of a double grading (p, d) given by the form degree and the L∞
degree, respectively. A generic differential p-form of L∞ degree d will be denoted by

ωd
μ1...μp

≡ ωd
μ[p]. (5.18)

This two-dimensional array has the structure of a bi-complexwith respect to two separate
differentials, the de Rham differential d , increasing the form degree by one, and the
l1 operator, decreasing the L∞ degree by one. The two gradings, in spite of being
independent, can be linked in the tensor hierarchy thanks to the physical interpretation
of the fields: A p-form curvature has L∞ degree p − 2 , F p−2

μ[p] , a p-form gauge field

Ap−1
μ[p] has degree10 p − 1 , a p-form gauge parameter has degree p , ξ

p
μ[p] and so on.

One can notice that a new, diagonal, degree can be defined as the difference between
L∞ and form degree: N := d − p , and that this degree is only sensitive to the physical
role of a given differential form. Indeed, it is immediate to see that every curvature F p−2

μ[p]
has N -degree −2 , every gauge field Ap−1

μ[p] has N -degree −1 and any gauge parameter

ξ
p
μ[p] has N -degree 0 . The main advantage of classifying the fields in terms of the N -
degree (that is identified with their physical interpretation) is that gauge fields (as well
as curvatures, gauge parameters etc.) of arbitrary form degree can be treated on equal
footing, and eventually dealt with at once in a single, string field-like, object. In the
following, we will show that it is possible to define new maps, that we will denote by
�n , that obey the usual L∞ symmetry properties and quadratic relations in terms of the
single degree N . The newmaps differ from the ln’s only by phases that are quite lengthy
to determine. In order to deal efficiently with such phases we introduce anticommuting
generating elements θμ , obeying

θμθν + θνθμ = 0. (5.19)

They differ fromordinary one-formbasis elements dxμ in that they are formally assigned
L∞ degree −1 . By this we mean that they pick up a sign when commuting with a
differential form: θμ ωd

ν[p] = (−1)dωd
ν[p] θμ , where d is the L∞ degree, as well as

when (formally) going through an ln map: θμ ln = (−1)nln θμ . This allows us to define
objects

ωN
p := 1

p! θμ1 ...θμp ωd
μ1...μp

≡ θμ[p] ωd
μ[p] (5.20)

10 This is chosen to give L∞ degree zero to the vector field, its scalar gauge parameter and curvature
two-form.
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that have (so far formally) the N -degree as their L∞ degree. The preciseway to determine
the signs defining the new �n maps is to move all the θ generating elements to the left
and outside the maps according to the above commutation relations, e.g.

�1(ω
N
p ) = �1(θ

μ[p] ωd
μ[p]) := (−1)p θμ[p] l1(ωd

μ[p])

�2(ω
N1
p1 , ωN2

p2 ) = �2

(
θμ[p1] ωd1

μ[p1], θν[p2] ωd2
ν[p2]

)

:= (−1)p2d1θμ[p1]θν[p2] l2
(
ω
d1
μ[p1], ω

d2
ν[p2]

)
.

(5.21)

This allows us to give a precise definition of the �n maps as

�n(ω
N1
p1 , ..., ωNn

pn ) := (−1)� θμ[p1]...θν[pn ] ln
(
ω
d1
μ[p1], ..., ω

dn
μ[pn ]

)
,

� = n
n∑

i=1

pi +
n∑

i=2

i−1∑
j=1

pi d j .
(5.22)

According to this definition, the �n maps are graded antisymmetric w.r.t. the N -degree,
as can be proven by direct computation:

�n(ω
N1
p1 , ..., ωNi

pi , ω
Ni+1
pi+1 , ..., ωNn

pn )

= (−1)n
∑n

k=1 pk+
∑n

k=2
∑k−1

l=1 pk dl θμ[p1]...θν[pi ]θλ[pi+1]...θρ[pn ]

× ln
(
ω
d1
μ[p1], ..., ω

di
ν[pi ], ω

di+1
λ[pi+1], ..., ω

dn
ρ[pn ]

)

= (−1)n
∑n

k=1 pk+
∑n

k=2
∑k−1

l=1 pk dl (−1)1+pi pi+1+di di+1θμ[p1]...θλ[pi+1]θν[pi ]...θρ[pn ]

× ln
(
ω
d1
μ[p1], ..., ω

di+1
λ[pi+1], ω

di
ν[pi ], ..., ω

dn
ρ[pn ]

)

= (−1)1+Ni Ni+1�n(ω
N1
p1 , ..., ωNi+1

pi+1 , ωNi
pi , ..., ω

Nn
pn ).

(5.23)

The n-dependent part of the sign factor in the definition (5.22) (that corresponds to the
formal property of θ ’s picking a phase to go through the maps themselves) is needed in
order to ensure the correct symmetry property of nested �n maps, for instance

�2(�n(ω
N1
p1 , ..., ωNn

pn ), η
Nq
q ) = (−1)1+Nq (

∑
i Ni+n−2) �2(η

Nq
q , �n(ω

N1
p1 , ..., ωNn

pn )),

(5.24)

and in general

�n(ω
N1
p1 , ..., �m(ηM1

q1 , ..., ηMm
qm ), ωNk

pk , ..., ω
Nn−1
pn−1 )

= (−1)1+Nk (
∑

i Mi+m−2) �n(ω
N1
p1 , ..., ωNk

pk , �m(ηM1
q1 , ..., ηMm

qm ), ..., ω
Nn−1
pn−1 ),

(5.25)

thereby confirming that the �n maps have intrinsic degree n − 2 . In order to prove that
the new maps �n obey the same quadratic relations as the ln , but w.r.t. the N -degree, we
have to show that they pick the correct sign under the permutation of arguments between
the two maps involved: The original maps obey the quadratic relations

ln(lm(ω
d1
μ[p1], ..., ω

dm
μ[pm ]), ω

dm+1
μ[pm+1], ..., ω

dn+m−1
μ[pn+m−1])
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+ (−1)1+dmdm+1ln(lm(ω
d1
μ[p1], ..., ω

dm+1
μ[pm+1]), ω

dm
μ[pm ], ..., ω

dn+m−1
μ[pn+m−1]) + · · · = 0.

(5.26)

Multiplying this relation by

(−1)(n+m)
∑n+m−1

i=1 pi+
∑n+m−1

i=2
∑i−1

j=1 pi d j θμ[p1]...θμ[pn+m−1]

one obtains

�n(�m(ωN1
p1 , ..., ωNm

pm ), ωNm+1
pm+1

, ..., ω
Nn+m−1
pn+m−1 )

+ (−1)1+NmNm+1�n(�m(ωN1
p1 , ..., ωNm+1

pm+1
), ωNm

pm , ..., ω
Nn+m−1
pn+m−1 ) + · · · = 0,

(5.27)

thus proving that the �n maps obey the L∞ relations with respect to the N -degree. The
de Rham differential is now written as

d := θμ∂μ (5.28)

and thus possesses N -degree −1 . Accordingly, it obeys a graded Leibniz rule that only
sees the N -degree:

d �n(ω
N1
p1 , ωN2

p2 , ..., ωNn
pn )

= (−1)n
{
�n(dωN1

p1 , ωN2
p2 , ..., ωNn

pn ) + (−1)N1�n(ω
N1
p1 , dωN2

p2 , ..., ωNn
pn )+

... + (−1)
∑n−1

i=1 Ni �n(ω
N1
p1 , ωN2

p2 , ..., dωNn
pn )

}
. (5.29)

In particular, it obeys d�1 +�1d = 0 , that allows one to define a new nilpotent operator:

�̃1 := �1 + d (5.30)

that still obeys the L∞ relations.

5.3. Topological gauge theory. We are now ready to construct a topological higher
gauge theory with the above ingredients: The gauge fields Aμ[p] can be packaged in a
single string field-like object of N -degree −1

A(x, θ) :=
∞∑
p=1

1
p! θμ1 ...θμp Aμ1...μp (x), NA = −1, (5.31)

and similarly one can define a degree zero gauge parameter

(x, θ) :=
∞∑
p=0

1
p! θμ1 ...θμp ξμ1...μp (x), N = 0, (5.32)

and degree −2 curvature

F(x, θ) :=
∞∑
p=2

1
p! θμ1 ...θμp Fμ1...μp (x), NF = −2. (5.33)
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For the field strength and gauge transformations, we make the ansatz

δA = d +
∞∑
n=1

αn �n(A, ...,A, )

F = dA +
∞∑
n=1

γn �n(A, ...,A),

(5.34)

where the coefficients αn and γn have to be fixed by demanding that the curvatures
transform into themselves. For the gauge variation of the curvature we compute

δF =
∞∑
n=1

(−1)n(n − 1)αn �n(dA,A, ...,A, ) − αn �n(A, ...,A, d)

+
∞∑
n=1

nγn

{
�n(d,A, ...,A) +

∞∑
m=1

αm �n(�m(A, ...,A, ),A, ...,A)
}
, (5.35)

and demanding that the d terms cancel fixes γn = 1
nαn , yielding

δF =
∞∑
n=1

(−1)n(n − 1)αn �n(dA,A, ...,A, )

+
∞∑

n,m=1

αnαm �n(�m(A, ...,A, ),A, ...,A)

=
∞∑
n=1

(−1)n(n − 1)αn �n(F ,A, ...,A, )

+
∞∑

n,m=1

αnαm

{
�n(�m(A, ...,A, ),A, ...,A)

− (−1)n n−1
m �n(�m(A, ...,A),A, ...,A, )

}
.

(5.36)

For the curvature to transform proportionally to itself the last line above has to vanish.
The L∞ relations for N − 1 A’s of degree −1 and one  of degree zero read

N−1∑
k=0

(−1)k(N+1)
[

1
(k−1)!(N−k)! �k+1(�N−k(A, ...,A),A, ...,A, )

+ (−1)k

k!(N−1−k)! �k+1(�N−k(A, ...,A, ),A, ...,A)
]

= 0,

(5.37)
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while the last line of (5.36) can be rewritten as

∞∑
n,m=1

αnαm

{
�n(�m(A, ...,A, ),A, ...,A)

− (−1)n n−1
m �n(�m(A, ...,A),A, ...,A, )

}

=
∞∑
N=1

N−1∑
k=0

αk+1αN−k

{
�k+1(�N−k(A, ...,A, ),A, ...,A)

+ (−1)k k
N−k �k+1(�N−k(A, ...,A),A, ...,A, )

}
.

(5.38)

For this to be proportional to the L∞ relations one has to demand that

αk+1αN−k = f (N )
(−1)Nk

k!(N − 1 − k)! (5.39)

for an arbitrary f (N ) , which can be solved byαn = (−1)
n(n±1)

2

(n−1)! . By choosing the solution
with the minus sign we get

δA = d +
∞∑
n=1

(−1)
n(n−1)

2

(n − 1)! �n(A, ...,A, ),

F = dA +
∞∑
n=1

(−1)
n(n−1)

2

n! �n(A, ...,A),

(5.40)

with the curvature transforming as

δF =
∞∑
n=2

(−1)
n(n+1)

2

(n − 2)! �n(F ,A, ...,A, ). (5.41)

As anticipated in the Introduction, the curvatures are not gauge covariant, due to the pres-
ence of bare gauge fields in (5.41) that cannot be avoided. However, the zero curvature
condition

F = 0 (5.42)

is a consistent, gauge invariant, topological field equation. The curvature obeys the
generalized Bianchi identity

dF +
∞∑
n=1

(−1)
n(n−1)

2

(n − 1)! �n(A, ...,A,F) ≡ 0, (5.43)

that suggests to define a generalized covariant derivative as

Dx := dx +
∞∑
n=1

(−1)
n(n−1)

2

(n − 1)! �n(A, ...,A, x), (5.44)
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such that the Bianchi identity and gauge transformation of A take the form

δA = D, DF ≡ 0. (5.45)

Establishing the form of trivial gauge parameters is facilitated by the identity

D2x =
∞∑
n=2

(−1)
n(n+1)

2

(n − 2)! �n(F ,A, ...,A, x), (5.46)

that generalizes the usual Yang-Mills relation D2 = F . It can be proven by direct
computation:

D2x =
∞∑
n=2

(−1)
n(n+1)

2

(n − 2)! �n(dA,A, ...,A, x) −
∞∑
n=1

(−1)
n(n−1)

2

(n − 1)! �n(A, ...,A, dx)

+
∞∑
n=1

(−1)
n(n−1)

2

(n − 1)! �n(A, ...,A, dx)

+
∞∑

n,m=1

(−1)
n(n−1)+m(m−1)

2

(n − 1)!(m − 1)! �n(A, ...,A, �m(A, ...,A, x))

=
∞∑
n=2

(−1)
n(n+1)

2

(n − 2)! �n(F ,A, ...,A, x)

−
∞∑

n,m=1

(−1)
n(n+1)+m(m−1)

2 (n − 1)

(n − 1)!m! �n(�m(A, ...,A),A, ...,A, x)

+
∞∑

n,m=1

(−1)
n(n−1)+m(m−1)

2 (−1)|x |(n−1)

(n − 1)!(m − 1)! �n(�m(A, ...,A, x)A, ...,A)

=
∞∑
n=2

(−1)
n(n+1)

2

(n − 2)! �n(F ,A, ...,A, x) +
∞∑
N=1

(−1)
N (N−1)

2

×
N−1∑
k=0

(−1)k(N+1)

k!(N − k − 1)!
[

k
N−k �k+1(�N−k(A, ...,A),A, ...,A, x)

+ (−1)k(|x |+1)�k+1(�N−k(A, ...,A, x),A, ...,A)
]

=
∞∑
n=2

(−1)
n(n+1)

2

(n − 2)! �n(F ,A, ...,A, x),

(5.47)

where we denoted the degree of x by |x | and used the L∞ relations in the last line.
As promised, the property (5.46) immediately shows that a gauge parameter of the form
 = D� generates transformations that are trivial on-shell:

δD�A = D2� =
∞∑
n=2

(−1)
n(n+1)

2

(n − 2)! �n(F ,A, ...,A,�)
F=0= 0. (5.48)
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The above construction is closely related to the Alexandrov-Kontsevich-Schwarz-
Zaboronsky (AKSZ) [46] formalism to construct topological sigma models from graded
source manifolds (for a review see e.g. [47]). In particular, the quantity

Q(A) :=
∞∑
n=1

(−1)
n(n−1)

2

n! �n(A, ...,A) (5.49)

appearing in the field equation

F = dA + Q(A) = 0, (5.50)

is related to the power series expansion of the Q-structure of the target space, in AKSZ
terms. The present construction, however, only produces the ghost-number zero classical
fields of the theory. In fact, contrary to the usual AKSZ construction, the oscillators θμ

do not carry ghost number and all component fields ofA are classical gauge fields. One
can indeed think about constructing the entire BV spectrum of the model, by further en-
dowing the θμ oscillators with ghost number, and enlarge the field content by promoting
every component Ap in A = ∑

p Ap to an arbitrary function of θμ .

6. Conclusions and Outlook

In this paper we have developed the general gauge theory of Leibniz-Loday algebras.
We introduced the structure of an ‘infinity enhanced Leibniz algebra’ and proved that
there is an associated tensor hierarchy of p-form gauge potentials that is consistent to
arbitrary levels. Our proposal is that the ‘infinity enhanced Leibniz algebra’ yields the
proper mathematical axiomatization of the notion of ‘tensor hierarchy’ developed in
theoretical physics.

There are numerous potential applications and further extensions of the general frame-
work developed here, which we briefly list in the following:

• Various examples of Leibniz algebras and their associated gauge theories have
alreadybeendiscussed in the recent literature [5,6], notably in [43],where thenotation
of this paper is employed. However, the tensor hierarchies have typically only been
developed up to the form degree needed in order to write a gauge invariant action.
It would be important to use the general mathematical machinery defined here to
construct exact tensor hierarchies. In particular, this would allow one to formulate
dynamical equations in terms of a hierarchy of duality relations between curvatures
and their duals [49].

• Apart from the applications in string and M-theory that motivated the formulation
of Leibniz-Loday gauge theories, it is to be expected that they will play a role in other
areas, too. For instance, it has recently been shown that these structures are needed
for a local formulation of gauge theories based on the algebra of volume-preserving
diffeomorphisms [44], in turn suggesting potential applications in hydrodynamics
[48].

• Another area where applications are quite likely is that of higher-spin gauge theories
as introduced by Vasiliev, whose formulation relies on the unfolded approach, which
is closely related to L∞ algebras [50–52], although interactions are more directly
understood as governed by deformations of associative algebras [52,53]. One may
suspect that the even further generalized algebraic structures discussed here will be
useful for higher-spin gravity, particularly in reference to the issue of modding out
ideals that is crucial for higher-spin theories in arbitrary dimensions [54–57].
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• We believe to have identified a new and rich mathematical structure, but the for-
mulation found here leaves something to be desired. For instance, it would be useful
to understand the infinity enhanced Leibniz algebras as the ‘homotopy version’ of
some simpler algebraic structure — in the same sense that an L∞ algebra is the
homotopy version of a Lie algebra. Moreover, the arguably most efficient and useful
formulation of A∞ or L∞ algebras is in terms of co-derivations on suitable tensor
algebras that square to zero [28]. It would be helpful to find a similar formulation for
the structures identified here.

• An open problem in exceptional field theory, the duality covariant formulation of the
spacetime actions of string/M-theory, is the question of whether there is a ‘universal’
formulation unifying all U-duality groups, combining En(n), n = 2, . . . , 9, into a
single algebraic structure. So far, these theories are based on a split into ‘external’
and ‘internal’ spaces, with the latter governed by the Leibniz algebra of generalized
diffeomorphisms and the former by p-forms building a tensor hierarchy for this Leib-
niz algebra. Is there, perhaps, a formulation without split, based on a larger algebraic
structure from which one would recover the presently understood exceptional field
theories by choosing a Leibniz subalgebra and decomposing according to a Z ⊕ Z

grading as in (5.2)?
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A. Proof of the CS Bianchi Identity

In the construction of gauge covariant curvatures for the tensor hierarchy one is led to
introduce Chern-Simons-like forms that are built from the one-form A1 ≡ A alone, and
are instrumental to prove the Bianchi identities. We define the pseudo Chern-Simons
(CS) n-form by

�n(A) = (−1)n

(n−1)! (ιA)n−2[d A − 1
n A ◦ A

]
, |�n| = n − 2, (A.1)

where ιAx := A • x and we recall that the pure Yang-Mills two-form F2 is included as
�2 . We will now prove the identity (4.7)

D�n + 1
2

n−1∑
k=2

�k • �n+1−k = D�n+1, n � 2, (A.2)

http://creativecommons.org/licenses/by/4.0/
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that was used in Sect. 4 to prove the Bianchi identity for the curvatures. We will prove
(A.2) by induction. To this end, let us define the quantities

ωn := (−1)n

(n−1)! A • (A • (...(A • d A))) ∼ An−2d A, ω2 ≡ d A,

an := (−1)n+1

n! A • (A • (...(A ◦ A))) ∼ An, a2 ≡ − 1
2 A ◦ A.

(A.3)

The pseudo CS form can then be written as

�n = ωn + an, (A.4)

and one has

D�n = dωn +
[
dan − LAωn

]
− LAan , (A.5)

where we grouped terms with two, one and zero spacetime derivatives. Notice that both
ωn and an have form degree n and intrinsic degree n − 2 , making them •-commutative,
i.e.

ωk • ωl = ωl • ωk, ωk • al = al • ωk, ak • al = al • ak, ∀ k, l � 2. (A.6)

From assumption 6) of (3.31), upon combining internal and form degrees, one can derive

− ιA(ωk • ωl) = (ιAωk) • ωl + ωk • (ιAωl), (A.7)

that holds also for (ak, al) and the mixed case (ωk, al) . Finally, by definition, they obey
the recursive relation

ωn+1 = − 1
n A • ωn, an+1 = − 1

n+1 A • an, ∀ n � 2, (A.8)

on which the proof is based. We first show that

dωn + 1
2

n−1∑
k=2

ωk • ωn+1−k = 0, ∀ n � 2. (A.9)

One has

n = 2 dω2 = d2A = 0 (degenerate case)

n = 3 dω3 = − 1
2 d(A • d A) = − 1

2 d A • d A = − 1
2 ω2 • ω2.

(A.10)

Supposing that (A.9) holds for n we can derive

dωn+1 = − 1
n d(A • ωn) = − 1

n ω2 • ωn

− 1
2n A •

[ n−1∑
k=2

ωk • ωn+1−k

]

= − 1
n ω2 • ωn − 1

2n

n−1∑
k=2

[
k ωk+1 • ωn+1−k + (n + 1 − k) ωk • ωn+2−k

]

= − 1
2

n∑
i=2

ωi • ωn+2−i , (A.11)
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thus proving (A.9). By using it in (A.5) we can write

D�n + 1
2

n−1∑
k=2

�k • �n+1−k = dan − LAωn

+
n−1∑
k=2

ωk • an+1−k − LAan + 1
2

n−1∑
k=2

ak • an+1−k, (A.12)

where we repeatedly used (A.4). We now claim that

dan − LAωn +
n−1∑
k=2

ωk • an+1−k = Dωn+1. (A.13)

For the lowest values of n one computes

n = 2 da2 − LAω2 = − 1
2 d(A ◦ A) − A ◦ d A = − 1

2 (A ◦ d A + d A ◦ A)

= − 1
2 D(A • d A) = Dω3 degenerate case,

n = 3 da3 − LAω3 + ω2 • a2 = 1
6 d(A • (A ◦ A)) + 1

2 LA(A • d A) − 1
2 (A ◦ A) • d A

= − 1
3 (A ◦ A) • d A − 1

6 A • (d A ◦ A − A ◦ d A) + 1
2 LA(A • d A)

= − 1
3 (LA A) • d A + 1

3 A • (LAd A) − 1
6 A • D(A • d A) + 1

2 LA(A • d A)

= 1
6 D(A • (A • d A)) = Dω4.

(A.14)

Supposing that (A.13) is valid for n , we deduce

dan+1 − LAωn+1 +
n∑

k=2

ωk • an+2−k = − 1
n+1 d(A • an) − LAωn+1 +

n∑
k=2

ωk • an+2−k

= − 1
n+1 ω2 • an + 1

n+1 A •
[
LAωn +Dωn+1 −

n−1∑
k=2

ωk • an+1−k

]
− LAωn+1

+
n∑

k=2

ωk • an+2−k

= − 1
n+1 ω2 • an − 1

n+1 [LA(A • ωn) + 2 a2 • ωn] + 1
n+1 [LAωn+1 − D(A • ωn+1)]

− LAωn+1

− 1
n+1

n−1∑
k=2

[k ωk+1 • an+1−k + (n + 2 − k) ωk • an+2−k] +
n∑

k=2

ωk • an+2−k

= − 1
n+1D(A • ωn+1) = Dωn+2,

(A.15)

thus proving the relation by induction. The last step is to prove

LAan − 1
2

n−1∑
k=2

ak • an+1−k = −Dan+1. (A.16)
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The lowest values of n give11 (n = 2 is degenerate as usual)

n = 2 LAa2 = − 1
2 LA(A ◦ A) = − 1

2 A ◦ (A ◦ A) = − 1
6 [A ◦ (A ◦ A) + (A ◦ A) ◦ A]

= − 1
6 D(A • (A ◦ A)) = −Da3

n = 3 LAa3 − 1
2 a2 • a2 = − 1

3 LA(A • a2) − 1
2 a2 • a2 = 1

6 a2 • a2 − 1
3 A • Da3

= − 1
3 [LAa3 − 1

2 a2 • a2] + 1
3 D(A • a3) = 1

4 D(A • a3) = −Da4.

(A.17)

Supposing that (A.16) holds for n one has

LAan+1 − 1
2

n∑
k=2

ak • an+2−k = − 1
n+1 LA(A • an) − 1

2

n∑
k=2

ak • an+2−k

= 2
n+1 a2 • an + 1

n+1 A •
[
1
2

n−1∑
k=2

ak • an+1−k − Dan+1
]

− 1
2

n∑
k=2

ak • an+2−k

= 2
n+1 a2 • an + 1

2(n+1)

n−1∑
k=2

[(k + 1) ak+1 • an+1−k

+ (n + 2 − k) ak • an+2−k]

− 1
n+1 [LAan+1 − D(A • an+1)] − 1

2

n∑
k=2

ak • an+2−k

= − 1
n+1

[
LAan+1 − 1

2

n∑
k=2

ak • an+2−k

]
+ 1

n+1 D(A • an+1) = 1
n+2 D(A • an+1)

= −Dan+2,

(A.18)

proving (A.16). Using now the two results (A.13), (A.16) in (A.12) establishes the
relation (4.7).

B. L∞ Algebra from Infinity Enhanced Leibniz Algebra

Having discussed topological higher gauge theories based on a general L∞ algebra, we
will show here how to construct a family of L∞ algebras from the data (◦,D, •) of an
infinity enhanced Leibniz algebra. Rather than discussing the most general L∞ algebra
that can be constructed this way, we will make the choices that yield the simplest form
for the ln brackets, and present them explicitly, acting on elements of arbitrary degree
in the graded vector space X , up to the four-bracket l4 .

From now on we are going to distinguish elements x, y, z, ... in the X0 subspace (that
is the only one endowed with the Leibniz product ◦) from elements of higher degrees in
X̄ = ⊕∞

n=1Xn , that will be denoted as un , with degree |un| = n > 0 . The degree −1
nilpotent operator l1 of the L∞ algebra will be identified throughout this section with
the D operator of the Leibniz algebra, l1 := D, that does not act on the subspace X0 .
l2 brackets and N = 2 relations

11 Recall that, by using the Leibniz property, one has (A ◦ A) ◦ A = 2 A ◦ (A ◦ A) .
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We start from the l2 bracket acting on two degree zero elements x and y , that is
completely fixed, up to an overall normalization, by degree and antisymmetry:

l2(x, y) := [x, y] ≡ 1
2 (x ◦ y − y ◦ x). (B.1)

SinceD does not act on X0 , there is no nontrivial N = 2 relation at this level. The most
general ansatz for the remaining l2 brackets is given by

l2(x, un) := kn Lxun + jn D(x • un), l2(un, x) := −l2(x, un), n > 0,

l2(un, um) := Anm (un • Dum − (−1)nmum • Dun), Anm = Amn, n,m > 0,
(B.2)

and is determined by degree and graded antisymmetry. The above brackets have to obey
the N = 2 relation l1l2 = l2l1 , that takes the explicit form

Dl2(x, un) = l2(x,Dun), Dl2(un, um) = l2(Dun, um) + (−1)nl2(un,Dum).

(B.3)

By using covariance of the Lie derivative and nilpotency of D one finds

Dl2(x, un) = kn LxDun,

l2(x,Dun) =
{

1
2 LxDun, n = 1
kn−1 LxDun + jn−1D(x • Dun) = (kn−1 + jn−1)LxDun, n > 1,

(B.4)

from which one concludes that

k1 = 1
2 , kn = kn−1 + jn−1 = ... = 1

2 +
n−1∑
k=1

jk, n > 1, (B.5)

with all the jk parameters left free. We see that at each stage one has to single out the
special cases of one (or multiple) un elements having degree +1 , since the corresponding
Dun terms have degree zero, and thus have brackets of a different form. The same
happens in order to verify the second relation in (B.3):

Dl2(un, um) = −[1 + (−1)n+m] Anm Dun • Dum,

l2(Dun, um) − (−1)nml2(Dum, un)

=
⎧⎨
⎩

−2 j1Dun • Dum, n = m = 1
−[ jm + (−1)m A1m−1]Dun • Dum, n = 1,m > 1[
An−1m + (−1)n+m An m−1

]
Dun • Dum, n,m > 1

(B.6)

where we used LDu = 0 and the twisted Leibniz property 5) of (3.31). The above result
enforces A11 = j1 and

[1 − (−1)m] A1m = jm + (−1)m A1m−1, m > 1,

[1 + (−1)n+m] Anm = −[An−1m + (−1)n+m An m−1], n,m > 1.
(B.7)

The first equation is solved by

A1n = (−1)n jn+1 + [1 + (−1)n] jn+2, n � 1, j2 = − j1, (B.8)
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where j2 = − j1 is required from matching A11 = j1 with the first equation for m = 2 ,
and the general solution for A1n is found upon splitting the first equation above for the
cases of even and odd values of m . Similarly, one can split the second equation into

An m−1 = An−1m, n + m odd ,

An m−1 + An−1m = −Anm, n + m even .
(B.9)

The first case yields

n + m even → Anm = An−1m+1 = ... = A1 n+m−1 = − jn+m (B.10)

that, used in the second equation, gives

n + m odd → Anm = −An−1m+1 + 2 jn+m+1. (B.11)

This imposes the simultaneous conditions

n + m odd → Anm = jn+m + 2 jn+m+1 = − jn+m, (B.12)

determining the most general solution for the l2 brackets:

j2k = − j2k−1, k � 1, j2k−1 are free parameters

kn = 1
2 + 1+(−1)n

2 jn−1, n � 1,

Anm = − jn+m, n,m � 1.

(B.13)

Rather than using the general solution (B.13), in the following we will fix the free
parameters jn = 0 for all n � 1 yielding the simplest set of l2 brackets:

l2(x, y) = [x, y] = 1
2 (Lx y − Lyx), x, y ∈ X0,

l2(x, un) = 1
2 Lxun, n > 0,

l2(un, um) = 0, n,m > 0.

(B.14)

Before moving to the l3 brackets, we use (B.14) to compute the Jacobiators, i.e. the
failure of the graded Jacobi identity:

Jac(x1, x2, x3) := 3 l2(l2(x[1, x2), x3]) = 1
2 D[x[1 • (x2 ◦ x3])],

Jac(x1, x2, un) := l2(l2(x1, x2), un) + 2 l2(l2(un, x[1), x2]) = 1
4 L[x1,x2]un, n > 0,

Jac(x, un, um) := l2(l2(un, um), x) + 2 l2(l2(x, u[n), um)) = 0, n,m > 0,

Jac(un, um, ul) := 3 l2(l2(u[n, um), ul)) = 0.

(B.15)

To derive the first relation we have used the identity

x[1 ◦ (x2 ◦ x3]) = 1
2 (x[1 ◦ x2) ◦ x3] = 2 [[x[1, x2], x3]] = 1

3 D(x[1 • (x2 ◦ x3])),
(B.16)

that originates from the Leibniz property, and we have used the shorthand notation
[nm) and [nml) for total graded antisymmetrization with strength one, i.e. T[nm) :=
1
2 (Tnm − (−1)nmTmn) and so on.

l3 brackets and N = 3 relations
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The first Jacobiator in (B.15) uniquely fixes the three-bracket on three degree zero
elements x1, x2 and x3 from the N = 3 relation

Dl3(x1, x2, x3) + Jac(x1, x2, x3) = 0, (B.17)

to be

l3(x1, x2, x3) = − 1
2 x[1 • (x2 ◦ x3]). (B.18)

For elements of higher degree, graded antisymmetry and the properties 5) and 6) of
(3.31), together with |l3| = +1 fix the most general ansatz to be

l3(x1, x2, un) := αn [x1, x2] • un + βn x[1 • Lx2]un + γn D(x[1 • (x2] • un)), n > 0,

l3(x, un, um) := anm u[n • Lxum) + bnm u[n • (x • Dum))

+ cnm D(u[n • (um) • x)), n,m > 0,

l3(uk, un, um) := Aknm u[k • (un • Dum)), k, n,m > 0.

(B.19)

The relevant N = 3 relations to be satisfied read

Dl3(x1, x2, un) + l3(x1, x2,Dun) + 1
4 L[x1,x2]un = 0, n > 0,

Dl3(x, un, um) + 2 l3(x,Du[n, um)) = 0, n,m > 0,

Dl3(uk, un, um) + 3 l3(Du[k, un, um)) = 0, k, n,m > 0.

(B.20)

In order to compute the above expressions from the ansatz (B.19), one has to treat
separately the cases of one or more u’s having degree +1 , just as it has been shown
explicitly for the l2 bracket. A straightforward but tedious computation shows that the
only free parameter left, after imposing (B.20), is γ1 . Instead of showing the entire proof,
we rather choose γ1 = 0 , that gives the simplest realization of the brackets, and show
that this choice is indeed consistent with (B.20). With γ1 fixed to zero, the l3 brackets
read

l3(x1, x2, x3) = − 1
2 x[1 • (x2 ◦ x3]),

l3(x1, x2, un) = − 1
6 [x1, x2] • un − 1

6 x[1 • Lx2]un, n > 0,

l3(x, un, um) = 1
6 u[n • Lxum), n,m > 0,

l3(uk, un, um) = 0, k, n,m > 0.

(B.21)

For any n > 0 one has

Dl3(x1, x2, un) = − 1
6 D

{[x1, x2] • un + x[1 • Lx2]un
}
, (B.22)

and

l3(x1, x2,Dun) = − 1
6 [x1, x2] • Dun − 1

6 x[1 • Lx2]Dun, (B.23)

where, for n > 1 , this is computed from l3(x1, x2, un−1) with un−1 = Dun , while
for n = 1 we used l3(x1, x2, x3) with x3 = Du1 . Summing the two contributions one
obtains

Dl3(x1, x2, un) + l3(x1, x2,Dun)

= − 1
6 L[x1,x2]un − 1

6

[
x[1 • D(Lx2]un) +D(x[1 • Lx2]un)

]
= − 1

6 L[x1,x2]un − 1
6 Lx[1Lx2]un = − 1

4 L[x1,x2]un,
(B.24)
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thus proving the first of the relations (B.20). Similarly, for any n,m > 0 one has

Dl3(x, un, um) = 1
6 D

[
u[n • Lxum)

]
, (B.25)

while, for n,m > 1 one has

2 l3(x,Du[n, um))
[nm)= 1

6

[
Dun • Lxum − (−1)(n−1)mum • LxDun

]
[nm)= 1

6

[
Dun • Lxum + (−1)nun • LxDum

]
[nm)= − 1

6 D
[
un • Lxum

]
(B.26)

thus proving the relation for n,m > 1 . When n = 1 and m > 1 one obtains the same
result:

l3(x,Du1, um) − l3(x, u1,Dum) = − 1
12 LxDu1 • um + 1

12 Du1 • Lxum

− 1
12

[
u1 • LxDum + (−1)mDum • Lxu1

]
= t f rac112

[
Du1 • Lxum − u1 • LxDum

]
− (−1)m 1

12

[
Dum • Lxu1 + (−1)mum • LxDu1

]
= − 1

12 D
[
u1 • Lxum − (−1)mum • Lxu1

]
,

(B.27)

with the first term computed from l3(x1, x2, um) for x2 = Du1 . Similarly, the same is
also obtained for n = m = 1 :

2 l3(x,Du(1, u2)) = − 1
6 LxDu(1 • u2) +

1
6 Du(1 • Lxu2)

= 1
6

[
Du(1 • Lxu2) − u(1 • LxDu2)

]
= − 1

6 D
[
u(1 • Lxu2)

]
,

(B.28)

where both |u1| = |u2| = 1 and we used the subscripts to distinguish the elements,
rather than denoting the degree. Finally, the last relation in (B.20) does not need any
computation to be proved, since either every term is identically zero or, if any element
of degree one is present, the corresponding degree zero object Du only acts through a
Lie derivative, and thus vanishes. With this we have thus proved that (B.21) provides a
consistent set of three-brackets on the entire space.

l4 brackets and N = 4 relations
As the last explicit realization of the ln brackets, we will now show that, given the

two- and three-brackets as in (B.14) and (B.21), all the four brackets l4 vanish. The
abstract N = 4 relation reads l1l4 − l4l1 = l2l3 − l3l2 so, rather than giving a general
ansatz for the l4 maps, we will prove that l2l3 = l3l2 on the entire space. From the initial
relation

Dl4(x1, x2, x3, x4) = 4 l2(l3(x[1, x2, x3), x4]) − 6 l3(l2(x[1, x2), x3, x4]) = 0

(B.29)

one can then prove recursively that all l4 maps vanish. In order to prove l2l3 = l3l2 , we
start indeed with all four elements in X0 , giving

4 l2(l3(x[1, x2, x3), x4]) − 6 l3(l2(x[1, x2), x3, x4])
[1234]= Lx4

[
x1 • Lx2x3

]
+ [x1, x2] • [x3, x4] + 2 x3 • [x4, [x1, x2]]

[1234]= −Lx1

[
x2 • Lx3x4

]
+ (Lx1x2) • (Lx3x4) + x2 • [x1 ◦ (x3 ◦ x4)] = 0,

(B.30)
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that proves l4(x1, x2, x3, x4) = 0 . The next quadratic relation reads (antisymmetrization
[123] is understood)

l2(l3(x1, x2, x3), un) − 3 l2(l3(x1, x2, un), x3) − 3 l3(l2(x1, x2), x3, un)

− 3 l3(l2(x1, un), x2, x3)

= t f rac32Lx3l3(x1, x2, un) +
1
4

{[(x1 ◦ x2) ◦ x3 − x3 ◦ (x1 ◦ x2)] • un

+ (x1 ◦ x2) • Lx3un

− x3 • L[x1,x2]un + (x2 ◦ x3) • Lx1un + x2 • Lx3Lx1un
}

= t f rac32Lx3l3(x1, x2, un) +
1
4

{[x3 ◦ (x1 ◦ x2)] • un + (x1 ◦ x2) • Lx3un

+ (x3 ◦ x1) • Lx2un + x1 • Lx3Lx2un
}

= 3
2 Lx3l3(x1, x2, un) +

1
4 Lx3

{
(x1 ◦ x2) • un + x1 • Lx2un

} = 0,

(B.31)

proving l4(x1, x2, x3, un) = 0 . Next, when two elements have degree higher than zero
one has

2 l2(l3(x1, x2, un), um) + 2 l2(l3(x1, un, um), x2)

− l3(l2(x1, x2), un, um) + 4 l3(l2(x1, un), x2, um) − l3(l2(un, um), x1, x2)

= Lx1l3(x2, un, um) − 1
6 un • L[x1,x2]um + 2 l3(x1,Lx2un, um)

= Lx1l3(x2, un, um) − 1
6 un • L[x1,x2]um + 1

6 Lx2un • Lx1um

− (−1)mn 1
6 um • Lx1Lx2un

= Lx1l3(x2, un, um) − 1
6 Lx1

[
un • Lx2um

] = 0

(B.32)

with [12] and [nm) left implicit, yielding l4(x1, x2, un, um) = 0 . The last two cases,
namely l4(x, uk, un, um) and l4(uk, ul , um, un) do not need any computation, since any
term in l2l3 and l3l2 vanishes identically. This finally proves that, with the choice (B.14)
and (B.21) for the lower brackets, all the l4’s vanish. Moreover, it can be shown that
the l4 brackets vanish for any choice of the l3’s, provided that the l2 maps are given by
(B.14).

We summarize here the list of non-vanishing L∞ brackets explicitly constructed from
the Leibniz algebra thus far:12

l2(x, y) = [x, y], x, y ∈ X0,

l2(x, un) = 1
2 Lxun, n > 0,

l3(x1, x2, x3) = − 1
2 x[1 • (x2 ◦ x3]),

l3(x1, x2, un) = − 1
6 [x1, x2] • un − 1

6 x[1 • Lx2]un, n > 0,

l3(x, un, um) = 1
6 u[n • Lxum), n,m > 0.

(B.33)

Having shown that all l4 brackets vanish does not mean that higher brackets vanish, and
indeed one can prove that there is no allowed choice of coefficients for which all l5 maps
are zero. In particular, the richer structure on the Leibniz side hints at the existence of
special points in the “moduli space” of L∞ maps, for which infinitely many brackets
vanish, even though the L∞ algebra is not truncated to a finite degree.

12 Note added in proof : In the meantime, it was shown in [41] how to construct the associated L∞ brackets
in general by using the derived bracket construction.
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