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Abstract

High-level cognitive abilities such as navigation and spatial memory are thought to

rely on the activity of grid cells in the medial entorhinal cortex (MEC), which encode

the animal's position in space with periodic triangular patterns. Yet the neural mecha-

nisms that underlie grid-cell activity are still unknown. Recent in vitro and in vivo

experiments indicate that grid cells are embedded in highly structured recurrent net-

works. But how could recurrent connectivity become structured during develop-

ment? And what is the functional role of these connections? With mathematical

modeling and simulations, we show that recurrent circuits in the MEC could emerge

under the supervision of weakly grid-tuned feedforward inputs. We demonstrate that

a learned excitatory connectivity could amplify grid patterns when the feedforward

sensory inputs are available and sustain attractor states when the sensory cues are

lost. Finally, we propose a Fourier-based measure to quantify the spatial periodicity

of grid patterns: the grid-tuning index.
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1 | INTRODUCTION

Grid cells are neurons of the medial entorhinal cortex (MEC) that are

tuned to the animal's position in the environment and whose firing

fields form a periodic triangular pattern in space (Hafting, Fyhn, Molden,

Moser, & Moser, 2005). Since their discovery, grid cells are believed to

support high-level cognitive processes, such as navigation and spatial

memory (e.g., Gil et al., 2018; Mathis, Herz, & Stemmler, 2012;

McNaughton, Battaglia, Jensen, Moser, & Moser, 2006; Ólafsdóttir,

Carpenter, & Barry, 2016; Tennant et al., 2018). Yet it remains unclear

how grid-cell activity is formed and how it is processed within the ento-

rhinal cortex (Rowland, Roudi, Moser, & Moser, 2016).

To gain mechanistic insights into the dynamics of grid-cell activ-

ity, recent experimental work has focused on the characterization of

excitatory microcircuits in the superficial layers of the MEC (layers II

and III), where grid cells are most abundant (Boccara et al., 2010). In

particular, recurrent excitation has been described in layer II (Fuchs

et al., 2016; Schmidt et al., 2017; Winterer et al., 2017), where it was

previously thought to be very sparse or absent (Couey et al., 2013;

Dhillon & Jones, 2000; Pastoll, Solanka, van Rossum, & Nolan, 2013).

Anatomically, Schmidt et al. (2017) found that more than one third of

the synaptic targets of a typical layer II principal cell are onto excit-

atory neurons of the same layer. Physiologically, Winterer et al. (2017)

reported a 2.5% connectivity rate among layer II stellate cells and a

3% connectivity rate among layer III pyramidal cells.

Although anatomical and in vitro studies could not assess the spa-

tial tuning of the connected neurons, two lines of evidence suggest

that the observed recurrent excitatory connectivity is relevant for grid

cells in vivo. First, grid-cell firing patterns are functionally coupled, that

is, grids are organized in distinct functional modules with common

scale and orientation (Hafting et al., 2005; Stensola et al., 2012),

and co-modular grids react in concert to external manipulations of
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the environment (Stensola et al., 2012; Yoon et al., 2013). Second, the

spiking activity of grid cells with similar spatial phases is temporally

correlated beyond simple firing-rate covariations (Dunn, Mørreaunet, &

Roudi, 2015; Tocker, Barak, & Derdikman, 2015) and such correlations

persist across network states (Gardner, Lu, Wernle, Moser, & Moser,

2019; Trettel, Trimper, Hwaun, Fiete, & Colgin, 2019). Grid-cell cou-

plings could also arise via disynaptic inhibition (Couey et al., 2013),

a hypothesis which is consistent with the facts that inhibition is pre-

dominantly local and that grid phases cluster in anatomical space

(Gu et al., 2018; Heys, Rangarajan, & Dombeck, 2014). However,

parvalbumin-positive (PV+) interneurons, which provide strong peri-

somatic inhibition to entorhinal principal cells (Beed et al., 2013; Couey

et al., 2013; Fuchs et al., 2016), including grid cells (Buetfering, Allen, &

Monyer, 2014; Miao, Cao, Moser, & Moser, 2017), show neither grid-

phase specific recurrent connectivity nor spatially periodic tuning

(Buetfering et al., 2014). In summary, experimental evidence suggests

that grid cells in the superficial layers of the MEC are strongly

excitatorily connected and that these connections are grid-phase spe-

cific. But what could be the function of such recurrent connections?

Recurrent connectivity is at the core of continuous-attractor net-

work (CAN) models for the origin of grid-cell patterns (e.g., Burak &

Fiete, 2009; Couey et al., 2013; Fuhs & Touretzky, 2006; Guanella,

Kiper, & Verschure, 2007; McNaughton et al., 2006; Navratilova,

Giocomo, Fellous, Hasselmo, & McNaughton, 2012; Pastoll et al., 2013;

Widloski & Fiete, 2014). CAN models assume that recurrent collaterals

generate bumps of neural activity at the population level, and that such

bumps are then translated across the network via self-motion inputs—

thereby forming single-cell grids. The idea that self-motion inputs can

sustain grid patterns is motivated by the facts that mammals can use

path integration for navigation (Etienne & Jeffery, 2004), that speed

and head-direction signals have been recorded within the MEC (Kropff,

Carmichael, Moser, & Moser, 2015; Sargolini et al., 2006), and that grid-

firing fields often persist in darkness (Barry, Ginzberg, O'Keefe, &

Burgess, 2012; Hafting et al., 2005); but see also (Chen, Manson,

Cacucci, & Wills, 2016; Pérez-Escobar, Kornienko, Latuske, Kohler, &

Allen, 2016). Nevertheless, the attractor theory alone cannot explain

how grids are anchored to the environment to avoid path-integration

drifts (Burak & Fiete, 2009), and how grids align and distort in relation

to the geometry of the enclosure (Barry, Hayman, Burgess, &

Jeffery, 2007; Krupic, Bauza, Burton, & O'Keefe, 2016; Savelli,

Yoganarasimha, & Knierim, 2008). Although CANs can be anchored to

the physical space via spatially tuned inputs, for example, place or bor-

der cells (Guanella et al., 2007; Hardcastle, Ganguli, & Giocomo, 2015;

Ocko, Hardcastle, Giocomo, & Ganguli, 2018; Pastoll et al., 2013;

Welinder, Burak, & Fiete, 2008), all these models fall short in explaining

how a path-integrating network may develop in the first place.

Alternatively, grid-cell activity could arise in a feedforward network

prior to the development of the recurrent connections (e.g., Castro &

Aguiar, 2014; D'Albis & Kempter, 2017; Dordek, Soudry, Meir, &

Derdikman, 2016; Mhatre, Gorchetchnikov, & Grossberg, 2012;

Monsalve-Mercado & Leibold, 2017; Stepanyuk, 2015; Weber &

Sprekeler, 2018). In this case, single-cell grids may spontaneously

emerge via three simple ingredients: (a) spatially tuned feedforward

inputs; (b) Hebbian synaptic plasticity; and (c) a cell-intrinsic mechanism

that generates spatial periodicity, for example, firing-rate adaptation

(D'Albis & Kempter, 2017; Kropff & Treves, 2008), phase precession

(Monsalve-Mercado & Leibold, 2017), or excitation/inhibition balance

(Weber & Sprekeler, 2018). A strength of these models is that they

can explain how a grid-cell circuit develops in a self-organized manner.

Additionally, because the feedforward inputs are sensory driven, the

resulting grid patterns are naturally anchored to physical space and fol-

low geometrical deformations of the spatial enclosure.

In this article, we assume that noisy grid patterns initially emerge in a

feedforward circuit. We hypothesize that, after such rudimentary grids are

formed, neurons with similar tuning properties (i.e., grid scale, orientation,

and phase) develop recurrent excitatory connections that improve the

spatial regularity of the feedforward grids. Such an amplification mecha-

nism may be required to improve the periodicity of irregular multi-peak fir-

ing patterns during development (Langston et al., 2010; Wills, Cacucci,

Burgess, & O'Keefe, 2010) and/or to sharpen noisy grid signals that

emerged upstream of the MEC, such as in pre- and parasubiculum

(Boccara et al., 2010). In other words, we propose that recurrent excitation

in the MEC could amplify grid-cell activity, alike feedback connectivity in

V1 was shown to amplify orientation tuning formed by thalamic afferents

(e.g., Ben-Yishai, Bar-Or, & Sompolinsky, 1995; Carandini &

Ringach, 1997; Douglas, Koch, Mahowald, Martin, & Suarez, 1995; Ko

et al., 2013; Lien & Scanziani, 2013; Murphy & Miller, 2009; Somers, Nel-

son, & Sur, 1995; Suarez, Koch, & Douglas, 1995). We further hypothesize

that such a learned recurrent connectivity could support attractor dynam-

ics when the feedforward tuning is lost, thereby providing a basis for the

development of a path-integrating system.

We test these hypotheses in a computational model. First, we

simulate the emergence of a recurrent connectivity structure in a bio-

logically realistic network of noisy grid cells. We show that the learned

recurrent connections could amplify feedforward grids (Section 2.1)

and maintain attractor states in the absence of feedforward tuning

(Section 2.2). To quantify gridness, we introduce a new Fourier-based

measure—the grid-tuning index—and show that it is more convenient

than the classical gridness score (Langston et al., 2010). Next, we

study how the learning and amplification dynamics depend on the

properties of the feedforward inputs (Sections 2.3 and 2.4). Finally,

we present a reduced one-dimensional (1D) model for the recurrent

amplification of grid-cell activity on linear tracks (Appendix A). This

reduced model explains the main features of grid-pattern amplifica-

tion, is analytically tractable, and can be understood intuitively.

2 | RESULTS

To study the amplification of grid-cell activity in the MEC, we model a

firing-rate network comprising a population of NE = 900 excitatory

neurons (E) and a population of NI = 225 inhibitory neurons (I). The

modeled network roughly matches the size of a local microcircuit

within a grid-cell module in MEC layer II, for example, a cluster of

calbindin-positive pyramidal cells or a population of reelin-positive

stellate cells between those clusters (Fujimaru & Kosaka, 1996; Gu
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et al., 2018; Kitamura et al., 2014; Naumann et al., 2016; Ray

et al., 2014). Excitatory and inhibitory neurons are mutually coupled

and recurrently connected locally (Figure 1a, see Section 4.1 for

details). The synaptic connectivity is sparse and initially random. Addi-

tionally, the recurrent excitatory connections are plastic.

We assume that the excitatory cells receive spatially tuned

feedforward inputs. The total feedforward input to each excitatory

cell is a noisy grid as a function of space (three example firing-rate

maps in Figure 1a; see Section 4.2 for details). Such noisy grid pat-

terns could spontaneously emerge in an upstream feed forward net-

work (not shown in Figure 1a) via spatially tuned sensory inputs,

Hebbian synaptic plasticity, and experience (see e.g., D'Albis &

Kempter, 2017; Kropff & Treves, 2008; Weber & Sprekeler, 2018). To

abstract from the specific mechanism that generates this tuning, we

(a)

(c1)

(c2)

(d)

(b1) (b2)

F IGURE 1 Model of recurrent amplification of grid-cell activity. (a) Model schematic. We model the activity of a population of NE = 900
excitatory neurons (E, dark-gray disks) and a population of NI = 225 inhibitory neurons (I, dark-blue disks). The total feedforward input to each
excitatory neuron is a noisy grid as a function of space (three example firing-rate maps at the top, max firing-rates in spikes/s at the top-left corner,
grid-tuning indexes at the top-right corner). The synaptic connectivity is sparse and initially random (10% connectivity in the E ! E pathway, and
40% connectivity in the E $ I and I ! I pathways). The recurrent excitatory weights undergo Hebbian plasticity, whereas all other synapses are held
fixed. (b) Recurrent excitatory connectivity before learning (b1) and after learning (b2). The excitatory connections to nine example principal cells are
shown (small rhombi). Nearby pixels in a synaptic-weight map correspond to cells with similar grid phases. The magenta dot marks the phase of the
total feedforward input. (c) Firing-rate maps of five example excitatory (c1) and inhibitory (c2) neurons at the steady-state of the recurrent dynamics.
Maximal firing rates (in spikes/s) at the top-left corner, grid-tuning indexes at the top-right corner. (d) Distributions of the grid-tuning index for the
feedforward inputs (magenta), the steady-state inhibitory outputs (light blue), and the steady-state excitatory outputs (black). See Section 4 for
further details and Table 1 for parameter values [Color figure can be viewed at wileyonlinelibrary.com]
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model feedforward inputs as periodic grids distorted by a blanket of

spatial noise. The noise models spatial irregularities that could arise

from uneven sensory coverage during learning or from non-grid

spatial inputs (Diehl, Hon, Leutgeb, & Leutgeb, 2017). We assume

that noisy grids have distributed spatial phases but share similar spac-

ing and orientation, alike to grid-cells within a module (Hafting

et al., 2005; Stensola et al., 2012). Note that grid-cell modularity is

assumed to have already emerged upstream (Urdapilleta, Si, & Treves,

2017). Each excitatory neuron in the network is labeled by the spatial

phase of its feedforward input, which we call the preferred phase of a

neuron. With respect to these preferred phases, the recurrent excit-

atory connections are initially random (Figure 1b1).

2.1 | Recurrent amplification of grid-cell activity

We hypothesize that correlations in the feedforward inputs may gen-

erate a structured recurrent connectivity among the excitatory cells,

and that this connectivity could amplify grid patterns. To test this

hypothesis, we simulate the development of the recurrent excitatory

weights under a Hebbian learning rule while a virtual rat performs a

random walk in the environment. The plasticity rule strengthens syn-

apses between neurons that are co-active, but keeps the total synap-

tic strength constant and the individual synaptic weights bounded

(see Section 4.3 for details). Figure 1b illustrates such a learning pro-

cess. Before learning, the recurrent excitatory connectivity is random

(Figure 1b1), and there is no relation between the preferred phase of

an excitatory cell (magenta dot) and the phases of its excitatory inputs

(black pixels). After learning, however, a structure has emerged in the

synaptic weights such that cells with similar preferred phases are

strongly excitatorily connected (Figure 1b2).

Next, we test whether such a connectivity could amplify grid pat-

terns. For simplicity, we first assume that the network's activity remains

close to its steady state while the virtual rat explores the enclosure. This

is because neural integration is typically much faster than systematic

changes in the input activity for typical animals' exploration speeds, and

because the input tuning is assumed to be smooth in space. With these

assumptions, we compute the steady-state activity of the network in all

locations of the environment (10 example firing-rate maps in Figure 1c).

We find that the excitatory neurons display a sharp grid tuning at the

steady-state output (Figure 1c1), which was not present at the

feedforward input (Figure 1a); see also Figure A3 in Appendix A for a

similar effect in the reduced one-dimensional model. By contrast the

inhibitory neurons fire at high rates throughout the environment and

their grid tuning is weak (Figure 1c2).

To quantify the strength of grid tuning, we introduce the grid-

tuning index. The grid-tuning index measures the strength of 60� peri-

odicity of a spatial map from the pattern's spectral amplitude at its

tuning harmonic normalized by the total firing rate in the environment

(see Section 4.5 for details). The index approaches 1 for regular grids

with infinitely small fields, and approaches 0 for completely aperiodic

patterns. As compared to the commonly adopted gridness score

(e.g., Hafting et al., 2005; Langston et al., 2010) the grid-tuning index

has several advantages: (a) it is naturally bounded between 0 and 1;

(b) it is modulated by the dynamic range of the activity; and (c) it can

be computed analytically (see Section 4.5, for a systematic comparison

between the new grid-tuning index and the classical gridness score).

Figure 1d shows the distribution of the grid-tuning index for all

input and output patterns. We note that the excitatory outputs (black)

show larger grid-tuning indexes compared to both feedforward inputs

(magenta) and inhibitory outputs (light blue). Although a periodic

pattern is visible in the inhibitory maps (Figure 1c2), such tuning is

very weak compared to the overall firing rate in the environment and

leads to low grid-tuning indexes (Figure 1d, light blue). This result is

consistent with the experimental observation that parvalbumin-

positive inhibitory neurons in the MEC are not grid tuned (Buetfering

et al., 2014).

To evaluate whether recurrent dynamics is fast enough to

improve grid tuning in more natural settings, we simulate the net-

work's activity for a virtual rat that continuously moves in the envi-

ronment. For clarity, we first simulate a straight virtual-rat trajectory

at constant speed across the enclosure (dashed arrows in Figure 2a).

Figure 2b1 shows the results of this simulation for one example excit-

atory cell. We can see that the output firing rate of the cell (green) is

the result of a weakly grid-tuned feedforward input (magenta), a

strongly grid-tuned recurrent excitation (gray), and a flat recurrent

inhibition (light blue). As a result, the grid tuning is considerably ampli-

fied at the output. We also find that such an amplification persists

when the network's activity is modulated by the so-called theta

rhythm (Figure 2b2)—an oscillation at 4–12 Hz that strongly paces

grid-cell activity in the MEC (Boccara et al., 2010; Hafting, Fyhn,

Bonnevie, Moser, & Moser, 2008). The robustness of this result is

tested by simulating the theta-modulated network's dynamics for a

random walk of the virtual rat across the entire enclosure (see Sec-

tion 4.4 for details on the spatial exploration model). In this scenario,

we find that the excitatory cells have grid-tuning indexes that are

slightly smaller than the ones obtained at the steady-state output, but

considerably larger than the ones at the feedforward input (Figure 2c).

We conclude that a recurrent network with plastic excitatory syn-

apses can spontaneously self-organize to amplify grid-cell activity and

that this amplification can occur within a single cycle of the theta

rhythm.

2.2 | Attractor dynamics in the absence of input
tuning

To outline the relationship between our model and CAN models of

grid-cell activity, we now test whether the recurrent excitatory con-

nections that emerged via Hebbian learning also support attractor

dynamics when the feedforward tuning is turned OFF. To this

end, we simulate the network with fixed synaptic connectivity and in

the absence theta modulation for a straight virtual-rat trajectory.

Figure 3a shows the network's population feedforward input (top

row) and population output (bottom row) at different time points in

the simulation.
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Initially (t < 4.1 s), the feedforward input is weakly grid tuned and,

as a result, a noisy bump of activity is visible at the population input

(Figure 3a, top row). This noisy bump moves across the network as

the virtual rat moves in the arena and is amplified by the recurrent

connections at the population output (Figure 3a bottom row and

Figure 3b, for t < 4.1 s).

At time t = 4.1 s, we set the feedforward input to all the neurons

at the same constant value (5 spikes/s), thereby simulating a temporary

loss of the sensory input tuning. Crucially, after this switch, the output

activity of the network maintains a localized bump of activity for the

entire time interval in which the inputs remain untuned. This behavior

is a defining feature of attractor networks. However, in the absence

of input tuning, the output bump does not stay at the same location,

but slowly drifts across the network and stabilizes at a location that

depends on the particular recurrent connectivity that has been learned

(Figure 3a,b1, from t = 4.1 s to t = 10.9 s). Finally, as soon as the input

tuning is restored (Figure 3 for t > 10.9 s), the output bump rapidly

moves towards the location dictated by the feedforward inputs.

In the absence of input tuning, the output bump drifts on a time

scale of seconds, and the drift speed is highest within the first second

after cue removal (Figure 3b1,b2, top). Yet the network maintains a

memory of the bump location within a time scale of hundreds of milli-

seconds, which is much longer than the time scale of amplification (tens

of milliseconds). Also note that the bump's peak rate settles to a level

that is lower compared to the one in the tuned condition (Figure 3b2,

bottom) and that (for the current choice of parameter values) the bump

vanishes if the feedforward input is set to zero in the untuned condition.

The fact that the output bump drifts away from its original loca-

tion when the input tuning is removed (although the network's

dynamics is fully deterministic) suggests that network may have only a

small set of attractors states. To assess the shape of the network's

attractor landscape, we thus cued all possible locations in phase space

by presenting an artificial feedforward bump to the network for 1 s.

We then removed the cue and recorded the location of the output

bump after 15 s, when the bump had settled. In Figure 3c, we show

the locations where the bump has settled (black dots, attractors) and

the normalized distance traveled by the bump (color coded). We find

that there are typically three to four discrete attractor states in each

network, and that their locations depend on the specific realization of

the recurrent connectivity matrix. Consistently, the bump locations

reached in the simulations of Figure 3a,b with untuned inputs are

predicted by the numerically approximated attractor landscapes and

(a)

(b1)

(b2) (c)

F IGURE 2 Temporal dynamics of grid-pattern amplification. (a) Example of a straight virtual-rat trajectory (dashed arrow) superimposed on
the total feedforward input (left) and steady-state output (right) of one excitatory cell. (b) Time-dependent activity of the excitatory cell in panel
(a) as the virtual rat moves in the arena. The activity is shown both without (b1) and with (b2) theta modulation. Magenta: feedforward input;
gray: total recurrent excitatory input; light blue: total recurrent inhibitory input; green: time-dependent output. The total (excitatory and
inhibitory) recurrent inputs are the weighted sums of the firing rates of the upstream cells. Note that because the total synaptic weight of the
E!I pathway is 0.4 (Table 1), the total inhibitory input is lower than the firing rate of a single inhibitory cell (Figure 1c2). The plots in panels
(b1) and (b2) are on the same scale. The colored ticks in (b2) indicate the zero baseline for the respective curves. We assume a network
integration time constant τ = 10 ms and a theta-modulation frequency fθ = 8 Hz. (c) Distribution of the grid-tuning indexes of all excitatory
neurons (green) for a walk of the virtual rat across the entire environment and theta-modulated activity. The grid-tuning indexes of the
feedforward input (magenta) and steady-state output (black) are also shown for comparison; see also Figure 1d. See Section 4 for further details

and Table 1 for parameter values [Color figure can be viewed at wileyonlinelibrary.com]

1272 D'ALBIS AND KEMPTER

http://wileyonlinelibrary.com


(a)

(b1)

(b2)

(c)

F IGURE 3 Attractor dynamics in the absence of input tuning. (a) Population feedforward input (top row) and population excitatory output
(bottom row) at multiple time points in the simulation (time at the top) as a virtual rat walks at constant speed on a straight path (see also
Figure 2a). Each rhomboidal firing-rate map shows the activity of all excitatory neurons in the network sorted by their preferred grid phase. For
convenience, we assume here an arena with periodic boundaries. In the time intervals [0, 4.1] s and [10.9, 16] s, the feedforward inputs are noisy
grids (input tuning ON, black bars on top). In the time interval [4.1, 10.9] s the feedforward inputs are set to a constant rate of 5 spikes/s (input

tuning OFF, gray bar on top). The recurrent excitatory weights have been learned via Hebbian plasticity (Figure 1b2). (b1) Black: location of the
population-output activity bump along the vertical (Vert., top) and horizontal (Horiz., bottom) coordinate of the phase space for the simulation in
(a). The pink lines indicate the bump locations for networks whose recurrent weights were learned with different input-noise realizations. The
dotted vertical lines indicate the times at which the feedforward tuning is switched OFF and ON. (b2) Black: speed (top) and peak firing rate
(bottom) of the population-output activity bump for the simulation in (a). The pink lines denote the same quantities for recurrent connectivities
learned with different input-noise realizations. The speed was smoothed with a rectangular window of length 600 ms; to exclude boundary
effects due to filtering, the first 600 ms are not shown. (c) Attractor landscapes of 10 networks (Net. 1–10) with recurrent connectivities learned
with different input-noise realizations. The left-most panel (Net. 1, black border) refers to the network shown in (a) and (b) (black lines). The
remaining nine panels (Net. 2–10, pink borders) refer to the networks shown in (b) (pink lines). Each grid phase is color-coded according to the
normalized distance traveled in the absence of input tuning by a bump cued at that phase. The cue was provided for 1 s and the distance traveled
was measured 15 s after cue removal. The black dots denote the attractors of the network, that is, the bump locations reached 15 s after cue
removal. The yellow star and the red circle denote the bump locations right before the input tuning is turned OFF (t = 4.1 s) and turned ON again
(t = 10.9 s) for the simulations in panels (a) and (b). See Section 4 for further details and Table 1 for parameter values [Color figure can be viewed
at wileyonlinelibrary.com]

D'ALBIS AND KEMPTER 1273

http://wileyonlinelibrary.com


by the bump phase at time t = 4.1 s (Figure 3c, yellow stars and red

circles). These results suggest that our network supports attractor

dynamics but does not allow for a continuum of attractor states

as proposed in CAN models of grid-cell activity (e.g., Burak &

Fiete, 2009; McNaughton et al., 2006).

In summary, we have shown that a network of noisy grid cells can

develop structured recurrent connections that amplify grids when the

feedforward tuning is present and support attractor dynamics other-

wise. However, memories about bump locations decay after cue

removal, because the network's attractor landscape is not flat.

2.3 | Effects of input tuning on amplification and
learning

We now study how grid-pattern amplification and learning are

affected by the tuning of the feedforward input. To this end, we vary

the input-tuning strength β, which controls the regularity of the

feedforward grids. For β = 0, input spatial patterns are completely

noisy; for β = 1 they are regular triangular grids (five examples in

Figure 4a1, see Section 4.2, for details). In experiments, the input-

tuning strength could be modulated by the novelty of the environment

or the availability of external sensory cues (e.g., visual landmarks).

In a first set of simulations, we assess the generalization capabili-

ties of the network for different values of the input-tuning strength β

and a fixed recurrent connectivity. This fixed connectivity has been

learned with a reference value of β = 0.35 (Figure 1b2). Five example

steady-state outputs are shown in Figure 4a2. We observe that out-

put patterns are more spatially regular compared to the feedforward

inputs, and that output grid-tuning indexes are larger than the inputs

for all values of β (Figure 4b). We then estimate the improvement in

grid-spatial tuning by computing the grid-amplification index, that is,

the ratio between output and input grid-tuning indexes (Figure 4c).

We observe up to a sixfold amplification for input-tuning strengths

(a1)

(a2)

(b) (c)

F IGURE 4 Effects of input tuning on grid-pattern amplification. (a) Example feedforward inputs (a1) and steady-state outputs (a2) for five

values of the input-tuning strength β (see also triangles in (b)). Maximal firing rates in spikes/s at the top-left corner, grid-tuning indexes at the top-
right corner. Output grid-tuning indexes are computed at the steady-state of the recurrent dynamics with fixed recurrent connectivity (Figure 1b2).
The recurrent connectivity was learned with a reference value of the input-tuning strength β = 0.35 (vertical dashed line in (b)). (b) Input (magenta)
and output (black) grid-tuning index as a function of the input-tuning strength β. Solid lines depict median values, shaded areas span from the first
to the third quartile of the distribution. The vertical dashed line indicates the input-tuning strength β = 0.35 that was used to learn the recurrent
connections. (c) Grid-amplification index as a function of the input-tuning strength β. The grid-amplification index is the ratio between output and
input grid-tuning indexes. See Section 4 for further details and Table 1 for parameter values [Color figure can be viewed at wileyonlinelibrary.com]
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that are lower than the ones experienced during learning (β = 0.35,

dashed lines in Figure 4b,c). Therefore, the recurrent network can

generalize across a wide range of input-tuning strengths (see also

Figure A4b in Appendix A for similar results in the one-dimensional

model).

In a second set of simulations, we study how the input tuning

affects the learning of the recurrent connections (Figure 5). To this

end, we train the network with different input-tuning strengths and

check whether a structure emerges in the synaptic weights. As

expected, the higher the input tuning the clearer the connectivity

structure, that is, cells with similar grid phases develop strong recur-

rent connections (Figure 5a). We quantify this effect by means of the

connectivity-tuning index, which measures the amount of clustering of

the synaptic weights when they are sorted according to grid phase

(see Section 4.6, for details). Figure 5b shows the connectivity-tuning

index as a function of the input-tuning strength β during learning. The

index steeply increases for 0.2 < β < 0.4 and saturates at high values

for β > 0.6.

Finally, we assess the network's amplification performance with

such learned connectivities (Figure 5c). For sufficiently strong input-

tuning strength during learning (e.g., β > 0.3), the resulting networks

reach up to a tenfold amplification of the feedforward grids. Note that

because the output grid-tuning index saturates at about 0.6, the grid-

amplification index decays for large input-tuning strengths β after

learning (Figure 5c); see also Figure 4c for a similar effect.

In summary, the recurrent network can strongly amplify grid-cell

activity for a wide range of input-tuning strengths, provided that the

input tuning during learning was sufficiently strong.

2.4 | Effects of noise correlations on amplification
and learning

So far we have studied the amplification of grid-cell activity in a net-

work of noisy grid cells where the input noise was uncorrelated across

neurons. This was a favorable scenario for amplification because

(a)

(b) (c)

F IGURE 5 Effects of input tuning on learning. (a) Recurrent excitatory connectivity learned with five example input-tuning strengths β (see

also triangles in (b)). For each tuning strength, the synaptic weights to nine (out of 900) example excitatory cells are shown (small rhombi). Nearby
pixels correspond to inputs with similar grid phases (see also Figure 1b). (b) Connectivity-tuning index as a function of the input-tuning strength
during learning. The connectivity-tuning index measures the amplitude of the first harmonic of the synaptic weights in phase space (see
Section 4.6, for details). The dashed lines denote the default input-tuning strength (β = 0.35, Figure 1b) and the resulting connectivity-tuning
index (≈0.48). (c) Grid-amplification index as a function of the input-tuning strength during and after learning (mean across neurons). The dashed
lines denote default parameter values. See Section 4 for further details and Table 1 for parameter values [Color figure can be viewed at
wileyonlinelibrary.com]
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uncorrelated noise can be easily averaged out by recurrent dynamics.

In the real biological system, however, correlations across neurons

may exist. In fact, we hypothesized that noisy grids initially emerge by

summation of spatially tuned inputs (e.g., D'Albis & Kempter, 2017;

Kropff & Treves, 2008), and shared feedforward input could generate

correlations across neurons.

To study how input correlations impact amplification and learning,

in what follows we generate feedforward inputs by corrupting regular

grids with correlated spatial noise. Crucially, we assume that noise

correlations depend on the spatial tuning of the cells, that is, cells with

similar preferred phases have strong noise correlations. This is a rea-

sonable assumption because cells with similar preferred phases are

likely to share a large fraction of feedforward inputs, and the noise in

these shared inputs is identical. Formally, the noise autocorrelation at

the population level (across neurons) is assumed to be a von Mises

function of the phase difference Δφ
! between two cells: it peaks at

Δφ
!=0 and decays with spread σφ

! > 0 for larger values of Δφ
! (see Sec-

tion 4.2 for details). The noise-correlation length σφ
! controls the frac-

tion of shared noise that the network receives and it could mirror the

degree of convergent connectivity at the feedforward input.

Figure 6a1 shows five examples of the population feedforward

input with increasing values of the correlation length σφ! . At the popu-

lation level, each rhomboidal map shows the firing rate of all excit-

atory neurons in the network for a particular position of the virtual rat

(a1)

(a2)

(b) (c)

F IGURE 6 Effects of input noise correlations on grid-pattern amplification. (a) Example population feedforward inputs (a1) and population
steady-state outputs (a2) for five input-noise correlation lengths σφ! (see also triangles in (b)). Each firing-rate map depicts the activity of all
excitatory neurons in the network (sorted by grid phase) for a particular position of the virtual rat (here: center of the arena). (b) Input (magenta)

and output (black) grid-tuning index as a function of σφ!. Output grid-tuning indexes are computed at the steady-state of the recurrent dynamics
with fixed recurrent connectivity, as shown in Figure 1b2. The recurrent connectivity was learned with effectively uncorrelated noise across
neurons (σφ! =0:1, vertical dashed line). Simulations were repeated for 10 distinct realizations of the input noise. The results are pooled across
realizations and across neurons. Solid lines depict median values, shaded areas span from the first to the third quartile of the distribution. (c) Grid-
amplification index as a function of σφ!. The dotted lines indicate the value of σφ!≈1:25 for which the noise power at the first harmonic in phase
space is maximal (inset). Inset: Noise power at the first harmonicℋ1 as a function of σφ!. See Section 4 for further details and Table 1 for
parameter values [Color figure can be viewed at wileyonlinelibrary.com]
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in the environment (here: center of the arena), and neurons are

sorted according their preferred grid phase. For σφ
! =0:1 (Figure 6a1,

top left), the noise is effectively uncorrelated across neurons, because

noise correlations are shorter than the phase-sampling interval

2π=
ffiffiffiffiffiffi
NE

p
≈ 0:2. In this case, the population activity resembles a noisy

bump (generated by the weak grid signal) corrupted by salt-and-

pepper-like noise. For increasing values of σφ! , the noise is smoother

and smoother at the population level, meaning that larger and larger

groups of neurons with close-by phases receive common input. For

large values of σφ! (e.g., σφ
! =11:22 in Figure 6a1, top right), the noise

approaches a constant at the population level. Note that a noisy bump

of activity is visible in the centers of the rhomboidal maps for both

small and large correlation lengths, but disappears at intermediate

levels.

Figure 6a2 shows the steady-state output of the network for the

inputs in Figure 6a1. A clear bump of activity emerges at the popula-

tion output for all correlation lengths σφ! (see also Figure A2 in

Appendix B for a similar effect in the reduced one-dimensional model).

However, the bump is distorted for intermediate correlation lengths

(e.g., σφ
! =1:06). This result suggests that the network's amplification

performance is a non-monotonic function of the noise correlation

length σφ! . In fact, when we compute the median grid-tuning index

across all excitatory cells in the network, we find that the index has a

global minimum for σφ
! ≈ 1:25 at the steady-state output (Figure 6b,

black), but remains approximately constant at the feedforward input

(Figure 6b, magenta). Accordingly, the grid-amplification index is a

non-monotonic function of σφ
! and reaches a minimum for σφ

! ≈ 1:25

(Figure 6c, see also Figure A5 in Appendix A for a similar effect in the

reduced one-dimensional model).

This result can be explained as follows. The structured recurrent

connectivity that emerged after learning effectively amplifies the first

harmonic of the population input (see also mathematical results in

Appendix A). This is because the recurrent connections reinforce the

activity of cells with similar phases, which form an activity bump at

the population level (Figure 6a). As a result, the amplification perfor-

mances depend on the noise power at this first harmonic ℋ1, i.e., the

stronger the noise power at harmonic ℋ1 the worse the amplification.

The inset of Figure 6c shows the noise power at harmonic ℋ1 as a

function of the noise correlation length σφ! . For small values of σφ
! , the

noise power is evenly distributed across all frequencies and the power

at ℋ1 is small. As σφ
! increases, the noise power shifts towards the

low frequencies and the power at ℋ1 increases. For σφ
!≈1:25 the

noise power at the first harmonic ℋ1 is maximal (dotted lines), and

the worst amplification performances are obtained. Finally, for large

values of σφ
! , the noise power at ℋ1 decays because only the zeroth

harmonic survives.

So far in this section, we have explored how input noise correla-

tions affect grid-pattern amplification for a fixed recurrent connectivity.

We now study how noise correlations across neurons affect the learn-

ing of the recurrent connections (Figure 7). Figure 7a shows examples

of the recurrent excitatory weights obtained with different noise corre-

lation lengths σφ
! during learning. A phase-dependent connectivity

structure arises for all values of σφ! , but the structure is clearest for

intermediate correlation lengths (e.g., σφ! =1:06 in Figure 7a). Accord-

ingly, the connectivity-tuning index peaks for σφ
! ≈ 1:25 (Figure 7b,

black line). However, at the same correlation length, we have previ-

ously found that the network's amplification performance is minimal

after learning (Figure 6c).

We generalize these findings in Figure 7c, which shows the grid-

amplification index as a function of the noise-correlation length both

during and after learning. We confirm that grid-amplification is lowest

for intermediate correlation lengths after learning. Interestingly, how-

ever, we also find that input-noise correlations are favorable for

learning.

To understand why noise correlations promote structure forma-

tion, recall that we have assumed a noise model where correlations

are highest among cells with similar phases. In this scenario, noise co-

activates cells with close-by phases and, as a result, the connectivity

between those cells is reinforced. This suggests that a structured

recurrent connectivity could emerge even in the absence of a grid sig-

nal during learning. We test this hypothesis by setting the input-

tuning strength β = 0 during learning. As expected, we find that the

connectivity-tuning index becomes large for a wide range of correla-

tion lengths σφ! with a peak at σφ! ≈ 1:25 (Figure 7b, gray line).

Although this result appears counter-intuitive at first, it can be

easily explained as follows. Consider any two excitatory cells in the

network. During an initial learning phase (not modeled here), structure

formation occurs at their feedforward connections and noisy grid pat-

terns emerge. If these two grid patterns have similar phases they may

also share common feedforward inputs. In this case, the feedforward

connectivity (which is fixed across network states) generates activity

correlations that promote future co-activation of the same cells. As a

result, the two cells can form recurrent connections even when sen-

sory signals are turned OFF, for example, during sleep.

In summary, we find that noise correlations across neurons are

detrimental for grid-pattern amplification, and the worst amplification

performance is obtained when the noise correlation length is compa-

rable to the size of an activity bump at the population level. On the

other hand, noise correlations promote the emergence of a structured

recurrent connectivity and a grid signal may not even be necessary for

such learning.

3 | DISCUSSION

Recent experimental findings indicate that entorhinal grid cells are

embedded in highly recurrent excitatory circuits (Fuchs et al., 2016;

Gardner et al., 2019; Schmidt et al., 2017; Trettel et al., 2019; Win-

terer et al., 2017). We proposed that such recurrent connections

could serve to amplify grid-cell tuning, and we supported this hypoth-

esis with a computational model. Assuming that weak, noisy grids

are initially generated by a feedforward mechanism (e.g., D'Albis &

Kempter, 2017; Kropff & Treves, 2008), we showed that Hebbian

synaptic plasticity leads to a tuning of the feedback excitatory con-

nections that amplify periodic patterns for a wide range of inputs. We

quantified this amplification by introducing a novel, Fourier-based
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measure for the periodicity of grid-cell patterns. In our model, inhibi-

tory neurons displayed a very weak grid tuning, and amplification was

fast enough to occur within a single cycle of the theta rhythm. We

also demonstrated that the learned excitatory connectivity could sup-

port attractor dynamics, that is, it could sustain a localized bump of

activity at the population level even in the absence of feedforward

tuning. Finally, we found that noise correlations across neurons

(e.g., due to shared input) hinder grid-pattern amplification during

active exploration, but promote structure formation during learning.

3.1 | Origin of grid patterns and grid modules

A central assumption of our work is that grid-cell activity originates via

a feedforward mechanism prior to the development of the recurrent

connections (e.g., Castro & Aguiar, 2014; D'Albis & Kempter, 2017;

Dordek et al., 2016; Mhatre et al., 2012; Monsalve-Mercado &

Leibold, 2017; Stepanyuk, 2015; Weber & Sprekeler, 2018). Here, we

do not model such a feedforward mechanism explicitly, but we posit

that feedforward connections from spatially selective inputs (e.g., place

cells or spatially irregular cells) have been already tuned to produce

noisy grid patterns. Such noise has been introduced in the model to

account for spatial irregularities resulting from uneven sensory cover-

age during learning and/or distortions due to spatially irregular inputs

(Diehl et al., 2017). In fact, all grid-cell models based on synaptic

plasticity and experience were shown to produce spatial irregularities

(e.g., D'Albis & Kempter, 2017; Dordek et al., 2016; Monsalve-

Mercado & Leibold, 2017; Weber & Sprekeler, 2018), and empirically

observed grid patterns are often distorted or irregular, particularly in

young developing animals (Langston et al., 2010; Wills et al., 2010).

We assumed that recurrent connections develop among co-

modular grids, that is, grids with similar spacing and orientation but

distributed spatial phases. Consistently with this assumption, recur-

rent excitatory connectivity decays sharply with somatic distance

(a)

(b) (c)

F IGURE 7 Effects of input noise correlations on learning. (a) Five examples of the learned recurrent excitatory connectivity as a function of
the noise correlation length σφ!. (b) Connectivity-tuning index as a function of σφ! with signal (black, input-tuning strength β = 0.35) and without
signal (gray, β = 0). The connectivity-tuning index measures the amplitude of the first harmonic of the synaptic weights in phase space. The
dashed lines denote the default correlation length (σφ! =0:1, Figure 1b) and the corresponding connectivity-tuning index (≈0.48). The dotted line
indicates the value of σφ! ≈ 1:25 for which the noise power at the first harmonic is maximal (Figure 6c, inset). (c) Grid-amplification index as a
function of σφ! during and after learning. The index is computed for 10 distinct realizations of the input noise. The results are pooled across
realizations and across neurons. The heat map shows the mean of the distribution. The dotted lines indicate the value of σφ! ≈ 1:25 for which the
noise power at the first harmonic is maximal. See Section 4 for further details and Table 1 for parameter values [Color figure can be viewed at
wileyonlinelibrary.com]
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(Holmgren, Harkany, Svennenfors, & Zilberter, 2003; Perin, Berger, &

Markram, 2011; Stepanyants & Chklovskii, 2005), and anatomically

nearby grid cells are co-modular (Hafting et al., 2005; Stensola

et al., 2012). The mechanisms underlying the formation of such mod-

ules are still debated, but theoretical work suggests that recurrent

excitatory coupling could also support this function (Urdapilleta

et al., 2017). In fact, Urdapilleta et al., 2017 have shown that a

feedforward model where grid scale is controlled by a smooth gradi-

ent of adaptation time constants can generate distinct modules at

discrete spatial scales. In their model, scale modularity and grid

alignment were achieved via recurrent coupling and conjunctive

head-direction selectivity (see also Si, Kropff, & Treves, 2012; Si &

Treves, 2013)—although it was not systematically tested whether grid

phases were uniformly distributed after learning. See also (Kang &

Balasubramanian, 2019) for an alternative explanation of grid-cell

modularity in the context of CAN models.

The goal of the present study was to model a learning process

that occurs within a single grid-cell sub-network, after a modular

structure has already emerged. It remains to be investigated to which

extent our results are robust to non-uniform distributions of grid

phases and broader distributions of grid orientations.

Our modeling assumptions are also supported by the finding that

grid cells in MEC layer II are physically clustered within modules

(Gu et al., 2018; Heys et al., 2014; Kitamura et al., 2014; Naumann

et al., 2016; Naumann, Preston-Ferrer, Brecht, & Burgalossi, 2018;

Ray et al., 2014)—a configuration that is suggestive of a high recurrent

connectivity at the microcircuit level. Notably, the network size

considered in our amplification model roughly matches the number

of cells found in a typical pyramidal-cell patch of the human MEC

(�900 cells; Naumann et al., 2016).

3.2 | Synaptic plasticity and learning

We propose that feedback connections between grid cells become

structured through synaptic plasticity. This is in line with synaptic long-

term potentiation and depression being reported in the entorhinal cor-

tex (Alonso, De Curtis, & Llinas, 1990; De Curtis & Llinas, 1993; Solger,

Wozny, Manahan-Vaughan, & Behr, 2004; Yang et al., 2004; Yun,

Mook-Jung, & Jung, 2002; Zhou, Acker, Netoff, Sen, & White, 2005);

but see also (Deng & Lei, 2007). In our model, a structured recurrent

connectivity emerges after about 10–20 min of a virtual rat continu-

ously exploring an environment. However, because the learning rate is

underconstrained in our model (and we do not consider stochastic spik-

ing dynamics), we cannot predict the actual time needed for learning.

To avoid positive-feedback loops between activity and plasticity,

we turned OFF the recurrent dynamics during learning and disabled

synaptic plasticity during amplification. At this regard, we propose

that neuromodulators, such as acetylcholine, may differentially regu-

late activity and plasticity according to the behavioral state of the ani-

mal, that is, recurrent synapses could be active (but not plastic) during

active exploration, and plastic (but not active) during sleep (see for

example, Hasselmo, 2006).

The hypothesis that recurrent connections could be learned during

sleep is supported by our finding that noise correlations across neu-

rons are sufficient to generate a phase-specific recurrent connectivity

(which leads to amplification) even in the absence of grid tuning at the

feedforward input (Figure 7b). This is because we have assumed that

noise correlations are stronger between cells with similar feedforward

tuning (grid phase in our case)—a scenario that has been observed in

sensory cortices (Kohn & Smith, 2005; Lampl, Reichova, & Ferster,

1999). As a result, even a random activation of the feedforward inputs

could co-activate cells with similar tuning and reinforce their connec-

tions. In summary, once the feedforward connections are in place,

recurrent synapses could develop independently of grid-cell input.

3.3 | The role of inhibition in grid-pattern
amplification

We simulated the amplification of grid-cell activity in a recurrent net-

work comprising both excitatory and inhibitory neurons. We assumed

that inhibition was unstructured, that is, a single interneuron received

input from (and provided output to) a random set of excitatory cells.

This scenario is consistent with experimental data on PV+ interneu-

rons in the MEC, which were found to connect to grid cells in a

phase-unspecific manner (Buetfering et al., 2014). As a result, inhibi-

tory neurons in our model display a very weak spatial tuning, which is

consistent with experimental data (Buetfering et al., 2014).

We propose that inhibition provides a baseline shift to the firing

rates of the excitatory cells, reducing both in-field and out-of-field

activity. In our simulations, such a baseline shift leads to sharper grid

tuning at the output. These results are consistent with experiments

showing that grid cells exhibit higher firing rates and broader grid tun-

ing after inactivation of PV+ interneurons (Buetfering et al., 2014;

Miao et al., 2017).

Due to the random inhibitory connectivity, our network operates

in a Hebbian (or normal) amplification regime, meaning that a tradeoff

exists between the speed of a network's response and the amount of

amplification that can be reached—a phenomenon termed “Hebbian

slowing” (Murphy & Miller, 2009). Yet considering typical grid-spatial

scales, exploration speeds, and network-integration time constants,

we showed that grid-cell activity could be considerably amplified in a

short time frame, for example, within a single cycle of the theta

rhythm (Figure 2).

3.4 | Attractor dynamics in the absence of input
tuning

To outline the relationship between our model and CAN networks

for grid-cell activity, we tested whether the learned recurrent connec-

tivity could support attractor dynamics without spatially tuned

feedforward inputs. We found that the network maintains a localized

activity bump even without input tuning, which is a signature of

attractor dynamics (Figure 3). However, the network exhibits only a
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few discrete attractors rather than a continuum of attractor states as

in an idealized CAN.

This result can be explained by the fact that the recurrent excit-

atory connectivity that emerges via Hebbian learning is noisy (see

Figure 1b2 for an example) and departs considerably from the smooth

bell-shaped profiles typically assumed in CANs. Moreover, random

connectivity with inhibitory neurons introduces further quenched dis-

order that generates local minima in the network's energy landscape

(Itskov, Hansel, & Tsodyks, 2011; Kilpatrick, Ermentrout, & Doiron,

2013; Zhang, 1996; Zhong, Lu, Schwab, & Murugan, 2020). If the

signal-strength during learning is increased (as in Figure 5a), the

learned excitatory connectivity is less noisy and the number of attrac-

tor states slightly increases. However, even with full signal-strength

during learning (β = 1), we find that the network exhibits a low num-

ber of discrete attractors.

Further research is needed to find out whether a larger number

or even a continuum of attractors could be obtained by modifications

of the synaptic plasticity rule, for example, using a less competitive

rule that leads to a broader distribution of synaptic efficacies and

therefore a smoother bump in weight space.

3.5 | The functional role of recurrent connectivity
in the MEC

Recurrent dynamics is at the core of CAN models for the origin of

grid-cell activity (e.g., Burak & Fiete, 2009; Fuhs & Touretzky, 2006;

Guanella et al., 2007; McNaughton et al., 2006). In these models,

however, feedback projections generate spatial selectivity ab initio

rather than “merely” amplifying feedforward tuning. In the following,

we propose a conceptual framework in which CAN and amplification

models can be reconciled.

We hypothesize that during development weakly periodic grid

patterns emerge from a feedforward process driven by spatially selec-

tive inputs and experience. Shortly after the onset of this learning

phase, activity-dependent synaptic plasticity connects cells with simi-

lar grid phases and generates a structured recurrent connectivity alike

to the one obtained in our simulations. We have shown that such a

recurrent connectivity can amplify grids when the feedforward input

is noisy and can maintain a localized bump of activity at the popula-

tion level when the feedforward input is untuned. However, such a

network is not yet capable of path integration.

The same network, however, could now learn to path integrate by

developing synaptic connections with self-motion inputs (e.g., speed

and head-direction cells) under the supervision of feedforward sensory

signals (see, for example, Stringer, Trappenberg, Rolls, & De Araujo,

2002; Hahnloser, 2003; Widloski & Fiete, 2014). As a result, the fully

mature circuit could operate in two different modes: on the one hand, it

could amplify feedforward sensory information when this is available;

on the other hand it could sustain grid patterns by integrating self-

motion signals when no other external sensory cue can be used.

A computational model in which a grid-cell CAN is learned

from spatially selective inputs has been proposed by Widloski and

Fiete (2014). In this model, however, the velocity-integration gain did

not match the feedforward inputs, that is, the dynamics of the mature

network was uncoupled from the external sensory signals. A challenge

for future research is to develop a model in which spatial and

velocity-modulated signals work in a synergistic manner to maintain

reliable spatial representations across sensory conditions.

3.6 | Predictions and conclusions

The central prediction of our work is that Hebbian synaptic plasticity

generates a phase-specific recurrent connectivity between grid cells

after a weak grid tuning has already emerged at the feedforward

input. Indirect experimental evidence suggests that such a structured

recurrent connectivity is indeed present in mature grid-cell networks

(Dunn et al., 2015; Gardner et al., 2019; Tocker et al., 2015; Trettel

et al., 2019; Yoon et al., 2013) but whether this connectivity emerges

through activity-dependent processes is still unclear.

A similar question has been addressed in visual cortex. To study the

emergence of functionally organized cortical circuits, Ko et al., (2013)

characterized the tuning curves of nearby cells in V1 through two-

photon optical imaging in vivo, and subsequently tested for connectivity

patterns between the same cells using whole-cell recordings in vitro. By

repeating the experiment with animals at different developmental stages

and visual experience, the authors found that local recurrent connectiv-

ity in V1 extensively reorganized to match the orientation tuning

inherited from the thalamus (Ko et al., 2013). We suggest that an analo-

gous experimental framework could be used to track the maturation

and tuning of recurrent connectivity in the MEC.

We further predict that feedback excitatory connections amplify

grid patterns, but do not generate them in the first place. This hypoth-

esis could be tested by silencing the output activity of a recurrently

connected grid-cell population while recording excitatory post-

synaptic currents (EPSC) at the feedforward input. We predict that

the feedforward EPSCs shall be already weakly grid tuned. Such an

approach has been proven successful in demonstrating recurrent

amplification in visual cortex (Lien & Scanziani, 2013). However, iso-

lating feedforward and recurrent excitation in sub-populations of

entorhinal neurons may be more difficult than in visual pathways.

Finally, we propose that grid-cell patterns are initially and pre-

dominantly sensory-based representations, whereas path-integration

capabilities develop in a later stage during development. We therefore

predict that path integration shall be disrupted if animals were sensory

deprived for extensive time periods during development. Additionally,

selectively inactivating speed or head-direction cells in the MEC of

young animals shall impair path-integration capabilities but spare the

periodic tuning of entorhinal grid cells.

4 | MATERIALS AND METHODS

In this section, we describe the grid-pattern amplification model in

details. Parameter values are summarized in Table 1.
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4.1 | Model of neural activity

We model a recurrent network comprising a population of NE excit-

atory neurons with firing rates rEi : i= 1,2,…,NE
� �

and a population of

NI inhibitory neurons with firing rates rIi : i=1,2,…,NI
� �

. The two

populations are recurrently connected locally. The external drive to

the network is provided by spatially tuned feedforward inputs {hi :

i = 1, 2, …, NE} that project exclusively to the excitatory population

(Figure 1a).

The network activity follows a classical firing-rate description.

The firing rates of the excitatory neurons are

τ
drEi tð Þ
dt

: = − rEi tð Þ+ F hi tð Þ+
XNE

j=1

wEE
ij rEj tð Þ−

XNI

j=1

wEI
ij r

I
j tð Þ

 !
ð1Þ

where τ > 0 is the integration time constant of the network, hi ≥ 0 is

the total feedforward input to neuron i, wEE
ij ≥0 is the synaptic weight

from excitatory neuron j to excitatory neuron i, and wEI
ij ≥0 is the syn-

aptic weight from inhibitory neuron j to excitatory neuron i. The acti-

vation function

F xð Þ : = rmaxtanh x=rmaxð Þ for x>0

0 otherwise

�
ð2Þ

bounds the firing rates between 0 and rmax > 0. Similarly, the firing

rates of the inhibitory neurons are

τ
drIi tð Þ
dt

: = −rIi tð Þ+ F
XNE

j=1

wIE
ij r

E
j tð Þ−

XNI

j=1

wII
ij r

I
j tð Þ

 !
ð3Þ

where wIE
ij ≥0 is the synaptic weight from excitatory neuron j to inhibi-

tory neuron i and wII
ij ≥0 is the synaptic weight from inhibitory neuron

j to inhibitory neuron i. Note that in the simulations of Figure 2b,c, we

introduce theta modulation by multiplying the feedforward inputs hi

in Equation (1) by the function

θ tð Þ : = cos 2πfθtð Þ+1½ �=2 ð4Þ

where fθ = 8 Hz is the frequency of the theta rhythm.

The synaptic connectivity is sparse and initially random, that

is, each presynaptic neuron is connected to a random subset of

postsynaptic neurons in the target neuronal population. The connec-

tivity rates are set by the parameters fEE, fEI, fIE, and fII, where fBA is

the connectivity rate from neuronal population A to neural popula-

tion B. Similarly, the total connection strengths are set by the

parameters wEE
tot , w

EI
tot , w

IE
tot , and wII

tot . The initial synaptic weights are

set by dividing the total connection strength by the number of con-

nected neurons.

4.2 | Model of input spatial tuning

The feedforward input hi to excitatory neuron i = 1, 2, …, NE is tuned

as a function of the location x
!
of a virtual rat in the environment:

hi : = h φ!i , x
!� �

: = βg φ!i, x
!� �

+ 1−βð Þξ φ!i, x
!� �

+H
h i

+
ð5Þ

where g φ
!
i , x
!� �

is a spatially periodic grid signal with phase φ
!
i , and

ξ φ
!
i , x
!� �

is a blanket of spatial noise impinging to neuron φ
!

i . The

TABLE 1 Parameters of the two-dimensional grid-amplification
model

Neural activity

NE 900 Number of excitatory neurons

NI 225 Number of inhibitory neurons

τ 10 ms Network integration time constant

rmax 100 s−1 Maximal firing rate

fEE 0.1 Connectivity rate of the E ! E connection

fEI 0.4 Connectivity rate of the I ! E connection

fIE 0.4 Connectivity rate of the E ! I connection

fII 0.4 Connectivity rate of the I ! I connection

wEE
tot 2 Total synaptic strength of the E ! E

connection

wEI
tot 0.4 Total synaptic strength of the I ! E

connection

wIE
tot 10 Total synaptic strength of the E ! I

connection

wII
tot 1 Total synaptic strength of the I ! I

connection

Input spatial tuning

rav 5 s−1 Average input rate in the arena

β 0.35 Input-tuning strength

μT 0.5 m Average grid spacing of the inputs grids

σT 0.03 m Standard deviation of the input-grid spacings

μγ 0 Average grid orientation of the input grids

σγ 0.03 Standard deviation of the input-grid orientations

σφ
! 0.1 Noise correlation length across neurons

σ x
! 0.3 Noise correlation length in space

Synaptic plasticity

η 2 × 10−5 Learning rate

Spatial exploration

L 2 m Side-length of the arena

v 0.25 m/s Running speed of the virtual rat

σθ 0.7 Standard deviation of running directions

Derived quantities

wmax ≈0.02 Maximal synaptic strength of the E ! E

connections

Note: The table reports the default parameter values for all numerical sim-

ulations of the 2D grid-amplification model.
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parameter 0≤ β ≤1 sets the input-tuning strength, H is a constant, and

the function [x]+ is a static non linearity, that is, [x]+ = x if x>0, and

[x]+ = 0 otherwise. The value of H is determined numerically such that

the total input
P

i,x
!h φ

!
i, x
!� �

remains constant for each input-tuning

strength β.

4.2.1 | Grid signal

The grid signal g φ
!
i , x
!� �

is obtained by superimposing circularly

symmetric Gaussian functions Gi x
!� �

: = exp − x
!��� ���2= 2σ2i

	 
� �
at the

vertices of a periodic triangular lattice. Formally, neuron i has grid

vertices

p
! ið Þ

ab : =
Ti

2π
au
!

1 + bu
!
2 + φ!i

� �
with a,b�Z ð6Þ

where Ti is the grid spacing and

u
!
1 : =2π

cos π=6+ γið Þ
sin π=6 + γið Þ

 �

and u
!
2 : =2π

cos π=2+ γið Þ
sin π=2 + γið Þ

 �

ð7Þ

are the unit vectors of a triangular lattice with period 2π and orien-

tation γi. The grid phases φ
!
i are evenly sampled in the rhombus

spanned by the unit vectors u
!

1 and u
!
2 . The grid spacings Ti are nor-

mally distributed with mean μT and standard deviation σT. The grid

orientations γi are normally distributed with mean 0 and standard

deviation σγ. The field sizes σi≔ Ti/3 are proportional to the grid spac-

ings Ti. The grid signal is sampled within a square enclosure of side

length L.

4.2.2 | Spatial noise

The noise term ξ φ
!
i, x
!� �

in Equation (5) is a stationary Gaussian ran-

dom field with zero mean and autocorrelation C Δφ!,Δx
!� �

, where Δφ
!

is the difference between two grid phases and Δx
!

is the difference

between two spatial locations. We assume the following noise-

correlation structure:

C Δφ
!,Δx

!� �
=KCφ

! Δφ
!� �

Cx
! Δx

!� �
ð8Þ

where Cφ
! sets the noise correlations across neurons, Cx

! sets the noise

correlations in space, and K scales the noise variance. We define

Cφ
! Δφ

!� �
: = exp

P2
n=0cos Δφ

!�k!n

� �
−3

σ2
φ
!

0B@
1CA with k

!
n : =

cos nπ=3ð Þ
sin nπ=3ð Þ


 �
ð9Þ

where σφ > 0 sets the noise-correlation length across neurons. Simi-

larly, we define

Cx
! Δx

!� �
: = exp

P1
n=0cos Δx

!�m!n

� �
−2

σ2
x
!

0@ 1A with

m
!

n : = 2π
L

cos nπ=2ð Þ
sin nπ=2ð Þ

 �

ð10Þ

where σ x
! >0 sets the noise-correlation length in space. Note that the

noise variance C 0
!
, 0
!� �

=K is fixed and independent of the parameters

σφ! and σ x
!. We set the noise variance al to the variance of the grid sig-

nal, that is, K = g φ
!, x

!� �2� �
φ
!,x

!
− g φ

!, x
!� �D E2

φ
!,x!

.

4.2.3 | Experiments in the absence of input tuning

In Figure 3 we probe the network dynamics with spatially untuned

feedforward input. In the simulations of Figure 3a,b, in the untuned con-

dition, the feedforward input is set to a constant value rav = 5 s−1, which

equals the average feedforward rate during tuning. In Figure 3c, the

attractor landscapes are approximated by computing the distance trav-

eled by an output population bump in the untuned condition, after a

cue bump has been presented for 1 s. The cue bump is a von Mises

function is phase space:

B φ
!� �

: =Bmaxexp

P2
n=0

cos φ
!�k!n

� �
−3

σ2B

0BBB@
1CCCA with k

!
n : =

cos nπ=3ð Þ
sin nπ=3ð Þ

 �

ð11Þ

where σB =0:1 sets the bump width and the scaling factor

Bmax ≈ 25:8 s−1 is chosen such that the mean feed-forward input is

rav. The cue bump is presented in all possible phases (NE = 900) and

the distance traveled by the output bump is recorded 15 s after cue

removal.

4.3 | Model of synaptic plasticity

The recurrent excitatory weights wEE
ij are plastic according to the

Hebbian rule:

dwEE
ij

dt
: = η rEi −rav

	 

rEj −rav
� �

with 0≤wEE
ij ≤wmax ð12Þ

where η � 1 is a small learning rate, rEi ≥0 is the firing rate of excit-

atory neuron i, and rav > 0 is the average input firing rate in the envi-

ronment. Additionally, at each time step, the weights are additively

normalized to ensure that the total input and output weight of each

neuron is kept constant during learning, that is,

XNE

j=1

wEE
ij =

XNE

i=1

wEE
ij =wtot

EE : ð13Þ
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At the initial condition, a random subset of fEENE < NE excitatory

weights are set to the upper bound wmax =wtot
EE= fEENEð Þ. During learn-

ing, the synaptic weights are updated every 30ms while a virtual rat

explores a square enclosure for 1,000 s. The weight constraints

0≤wEE
ij ≤wmax are enforced at each time step of the simulation. To

avoid positive feedback loops between neural and weights' dynamics,

we silence the recurrent input whenever synaptic plasticity is active.

4.4 | Model of spatial exploration

The virtual rat explores a square enclosure of side-length L with an

isotropic random walk at constant speed v. Virtual-rat trajectories xt

are sampled from the stochastic process

dXt

dt
: = v cos θtð Þ, sin θtð Þ½ � with θt = σθWt, ð14Þ

where the angle θt sets the direction of motion and Wt is a standard

Wiener process. The parameter σθ controls the tortuosity of the tra-

jectory. At the boundaries of the environment, the component of the

movement direction perpendicular to the boundary is inverted. Spatial

locations in the arena are discretized in 1002 square bins. The random

walk is updated every 30ms of the simulation.

4.5 | Grid-tuning index

The grid-tuning index measures the strength of triangular periodicity

of a 2-dimensional (2D) signal. The index is bounded between 0

and 1. It reaches 0 when the signal is completely aperiodic and it

reaches 1 when the signal is composed of infinitely small bumps of

activity that lie on a periodic triangular lattice with 60� symmetry.

To compute the grid-tuning index, we first compute the 2D auto-

correlation of the input firing-rate map r x
!� �

. We then estimate the

grid spacing Test as the mean distance of the six autocorrelation peaks

closest to the origin, and the grid orientation as the angle to the hori-

zontal axis of the autocorrelation peak in the first quadrant. Next, we

scale and rotate the input pattern r x
!� �

to obtain a normalized pattern

rnorm x
!� �

that has a standard orientation of 0� and a grid spacing of

L/n where n is the closest integer to L/Test, i.e., we rescale the pattern

such that it fits an integer number of times n in the arena. Note that in

the limit of n = 1, we abort the procedure and we set the grid-tuning

index to 0.

The grid-tuning index is obtained from the 2-dimensional Fourier

series of the normalized pattern rnorm x
!� �

computed on a triangular

lattice with 60� symmetry. Formally, we define the 2-dimensional

Fourier series of a function f x
!� �

on a lattice ℒ as:

bf a,bð Þ : =
ð
C
dx
!
f x

!� �
exp − j a u

!�
1�x

!
+ bu

!�
2�x

!� �h i
ð15Þ

and

f x
!� �

=
1
VC

X∞
a= −∞

X∞
b= −∞

bf a,bð Þexp j a u
!�

1�x
!
+ bu

!�
2�x

!� �h i
ð16Þ

where j=
ffiffiffiffiffiffiffi
−1

p
is the imaginary unit, a, b� Z, bf a,bð Þ�C, and C is a pri-

mary cell with area VC of the lattice ℒ with unit vectors u
!
1, u

!
2 . The

vectors u
!�
1, u

!�
2 are the unit vectors of the reciprocal lattice:

u
!�

1, u
!�
2

h i
: =2π u

!
1, u

!
2

h i−>
ð17Þ

where A−> is the transpose of the inverse of A. To compute the grid-

tuning index, we take the Fourier series of the normalized pattern

rnorm x
!� �

on a lattice with unit vectors of length L:

u
!

1 : = L
cos π=6ð Þ
sin π=6ð Þ

 �

= L

ffiffiffi
3

p
=2

1=2

" #
and u

!
2 : = L

cos π=2ð Þ
sin π=2ð Þ

 �

= L
0

1


 �
,

ð18Þ

which yields

u
!�

1 =
4π
L
ffiffiffi
3

p 1

0


 �
, u

!�
2 =

4π
L
ffiffiffi
3

p −1=2ffiffiffi
3

p
=2


 �
, and VC : =det u

!
1, u

!
2

h i
= L2

ffiffiffi
3

p
=2:

ð19Þ

We define the grid-tuning index G as the average Fourier ampli-

tude at the nth harmonic ℋn≔ {(n, 0), (0, n), (n, n)} normalized by the

total firingratebrnorm 0,0ð Þ:

G : =
1

3brnorm 0,0ð Þ
X

a,bð Þ�ℋn

jbrnorm a,bð Þ j : ð20Þ

In the following paragraphs, we compare the grid-tuning index G
to a gridness score commonly adopted in the literature (Langston

et al., 2010). The gridness score is computed from the 2D-

autocorrelation of the firing-rate map r x
!� �

cropped within rings

centered in the origin with inner radius Rin and outer radii Rout
i

� �
.

The inner radius Rin is the smallest distance at which the radial profile

of the autocorrelation becomes negative; the outer radii Rout
i

� �
are

increased within a set range (see below). From the ith autocorrelation

ring, we compute gi≔min[ρi(60) + ρi(120)]−max[ρi(30) + ρi(90) + ρi(150)]

where ρi(φ) is the Pearson's correlation coefficient between the original

ring and the ring rotated by φ degrees. The gridness score is the maxi-

mal gi that is obtained across rings of different outer radii. Langston

et al. (2010) vary the outer radius from a minimum of Rin + 10 cm to a

maximum of L−10 cm where L is the width of the arena. However,

because the fixed 10 cm offset does not generalize well across scales,

we vary the outer radius between 0.5Test and 2Test where Test is the

estimated grid spacing, that is, the mean distance of the six autocorre-

lation peaks closest to the origin.

In Figure 8a, we compare the grid-tuning index and the gridness

score for the simulations in Figure 1. We find that the two measures

are positively correlated for the feedforward inputs (Spearman's rank

correlation R = 0.54, p < 10−4), excitatory outputs (R = 0.52, p < 10−4),
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and inhibitory outputs (R = 0.25, p < 10−3). However, the gridness-

score distributions are broader and show larger overlaps compared to

the corresponding grid-tuning-index distributions (Figure 8a, compare

top and right panels).

We also note that for the inhibitory outputs gridness scores are

large but grid-tuning indexes are small (Figure 8a). This difference

arises from the inhibitory outputs often showing triangular periodicity

with low modulation depths, that is, with small differences between

maximal and minimal firing rates in the arena (see example firing-rate

maps in Figure 1c2). In fact, the grid-tuning index increases linearly as

a function of modulation depth, but the gridness score remains con-

stant (Figure 8b).

Next, we compare grid-tuning index and gridness score across dif-

ferent input-tuning strengths, that is, the relative strength of the grid

signal compared to the noise (see also Section 4.2 and Figure 5). As

expected, both measures positively correlate with the input-tuning

strength (Figure 8c). However, the gridness score (but not the grid-

tuning index) saturates at its maximum already for intermediate input-

tuning strengths, for example, for strengths larger than 0.5.

The two measures also display different trends as a function of

the size of the grid fields: for larger grid fields, the grid-tuning index

decreases, but the gridness score increases (Figure 8d). Finally, for grid

spacings that are large compared to the size of the environment

(Figure 8e), both measures decay. Yet they do so in a different man-

ner: the gridness score decreases smoothly, whereas the grid-tuning

index jumps to 0 whenever the spectrum of the spatial map is domi-

nated by the first harmonic, that is, when the closest integer to L/Test

equals 1.

In summary, the grid-tuning index is sensible to the modulation

depth of the firing-rate pattern, increases for smaller grid fields,

and has a larger dynamic range as compared to the measure

proposed by (Langston et al., 2010). For these reasons, we think that

our measure is better suited to quantify “gridness” than the classical

score.

4.6 | Connectivity-tuning index

The connectivity-tuning index measures the strength of the first

harmonic of the recurrent excitatory weights wEE
ij . To formally

define this index, we first introduce the excitatory input-weight

function

(a)

(b) (c)

(d) (e)

F IGURE 8 Comparison between
the grid-tuning index and the gridness
score. (a) Bottom-left: grid-tuning
indexes and gridness scores of the
feedforward inputs (magenta),
excitatory outputs (black), and
inhibitory outputs (blue) for the results
in Figure 1. Distributions of grid-tuning
indexes and gridness scores are shown

at the top and right panels,
respectively. Triangles indicate median
values. (b–e) Bottom: grid-tuning
indexes (red) and gridness scores
(orange) of 400 grids with different
modulation depth (b), input-tuning
strength (c), grid-field size (d), and grid
spacing (e). Top: six example grids with
parameter values indicated by the
black triangular markers in the bottom
panels. Grids are generated as
described in Section 4.2. Patterns in
(b)–(e) have common spacing and
orientation. Patterns in (b), (d), (e) have
input-tuning strength β = 1. The
modulation depth is the difference
between the maximal and minimal
firing rate in the arena [Color figure can
be viewed at wileyonlinelibrary.com]
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W i φ
!
j

� �
: =wEE

ij ð21Þ

where φ
!
j is the grid phase of presynaptic neuron j. We then compute

the 2-dimensional Fourier series bW i a,bð Þ of W i φ
!
j

� �
on a lattice ℒ

with unit vectors (Equation (15)):

u
!
1 : =2π

cos π=6ð Þ
sin π=6ð Þ


 �
=2π

ffiffiffi
3

p
=2

1=2

" #
and

u
!

2 : =2π
cos π=2ð Þ
sin π=2ð Þ


 �
= 2π

0

1


 �
: ð22Þ

The connectivity-tuning index C is computed by averaging across

all postsynaptic neurons i the amplitude of the first harmonic of W i

normalized by the total input weight bW i 0,0ð Þ:

C : = 1
NE

XNE

i=1

1

3 bW i 0,0ð Þ
X

a,bð Þ�ℋ1

bW i a,bð Þ
��� ��� ð23Þ

where ℋ1 ≔ {(1, 0), (0, 1), (1, 1)} is the first harmonic.
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APPENDIX A: One-dimensional grid-amplification model

Here, we formulate a minimal mathematical model for the recurrent

amplification of grid-cell activity on linear tracks. This model captures

the main features of grid-pattern amplification, is analytically tracta-

ble, and can be understood intuitively.

We model the activity of a recurrent network as a virtual rat runs

at constant speed on a one-dimensional linear track. The feedforward

inputs are noisy grids as a function of space. All input grids share the

same spatial frequency, but have different spatial phases. Hence, each

neuron in the network is identified by the spatial phase φ of its

feedforward input h. We term this phase the preferred spatial phase of

a neuron (Figure A1a,b).

Output activity

We assume that all preferred phases φ are evenly sampled in the

range [−π, π]. Therefore, in the limit of a large number of neurons, the

output activity of the network obeys

τ
d
dt

v φ,xð Þ : = −v φ,xð Þ+ F h φ,xð Þ+
ðπ
−π
dφ0M φ−φ0ð Þ vðφ0,xÞ

� �
ðA1Þ

where x is the position of the virtual rat on the track, h(φ, x) is the

total feedforward input to neuron φ, the function M(φ − φ0) sets

the connection strength from neuron φ0 to neuron φ, the variable

τ > 0 controls the integration time constant of the network, and F

is the neuronal activation function. We use a linear activation

function F(x) ≔ x in Figures A2, A3, A4a, A5a, A6, and in all analyt-

ical derivations (Appendix B). We use a threshold-linear activation

function F(x) ≔ [x]+ where [x]+ = x if x > 0, and [x]+ = 0 otherwise in

Figures A4b and A5b. We consider a finite number N = 200 of neu-

rons in all numerical simulations. Parameter values are summarized in

Table A1.

Compared to the two-dimensional (2D) network model in Sec-

tion 2 (see Section 4.1 and Equations (1)–(3)), we made the following

simplifications: (a) the two populations of NE excitatory and NI inhibi-

tory neurons with rates rEi and rIi are replaced by a single population of

infinitely many units with activity v(φ, x); (b) the connectivity matrices

WEE
ij ,W

IE
ij ,W

EI
ij , and WII

ij are replaced by a single connectivity function

M; (c) The connectivity function M is already tuned with respect to

the preferred phases of the cells, that is, synaptic plasticity and learn-

ing are not modeled here.

Recurrent connectivity

We assume that neurons with similar preferred phases are

strongly excitatory connected, whereas neurons with dissimilar phases

are weakly excitatory connected or inhibited:

M φ−φ0ð Þ : = Mmax

π
cos φ−φ0ð Þ ðA2Þ
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where Mmax > 0 sets the maximal connection strength in the net-

work, and the factor 1/π is for mathematical convenience

(Figure A1c). Such a connectivity resembles the one emerging via

Hebbian synaptic plasticity in the 2D model of Section 2

(Figure 1). Note, however, that the connectivity function M in

Equation (A2) takes both positive and negative values, that is, it

models the compound effects of both excitatory and inhibitory

synapses.

Input spatial tuning

The total feedforward input h to a neuron with preferred phase

φ is

h φ,xð Þ : =Bg φ,xð Þ+ 1−Bð Þξ φ,xð Þ with g φ,xð Þ : = cos 2πfx+φð Þ ðA3Þ

where g is the input grid signal, ξ is the input noise, and the parameter

0 ≤ B ≤ 1 scales the input-tuning strength. Note that the 1D input-

tuning strength B in Equation (A3) corresponds to the input-tuning

strength β in the 2D model (Equation (5)).

The input noise ξ(φ, x) is a two-dimensional Gaussian random field

with zero mean and autocorrelation Cξ(τφ, τx). We consider noise auto-

correlation functions of the form:

Cξ τφ,τx
	 


: = ξ φ,xð Þξ φ+ τφ,x+ τx
	 
� �

φ,x ðA4Þ

=
1
2
M τφ;σφ
	 
M 2πτx=L;σxð Þ ðA5Þ

where M τ,σð Þ : = exp cos τð Þ−1ð Þ=σ2� �
is a von Mises function

with spread σ >0, and the factor 1/2 ensures that signal and noise

have equal variance. The parameters σφ and σx control the noise cor-

relation lengths across neurons and across space, respectively. See

also Equations (8)–(10) for similar correlation functions in the 2D

model.

For σφ ! 0, the noise is uncorrelated across neurons. For increas-

ing values of σφ, larger and larger groups of neurons receive correlated

activity, and correlations are stronger between neurons with nearby

phases. Similarly, for σx ! 0, the noise is uncorrelated across spatial

locations, and for larger values of σx it becomes increasingly smooth in

space. Note that we consider only fully separable autocorrelation

functions Cξ, meaning that correlations across space and neurons are

orthogonal. Also note that the input-noise variance Cξ(0, 0) = 1/2 is

independent of the correlation lengths σφ and σx.

F IGURE A1 One-dimensional grid-amplification model. (a) Cartoon of the modeled neuronal network. Each neuron receives a total
feedforward input h(φ, x), which is a noisy grid in space (x) with phase φ. Neurons (disks) are arranged according to the grid phase φ of their total
feedforward input (preferred phase). Colored disks indicate neurons with preferred phases φ1 = 0 (magenta), φ2 = π/2 (orange), and φ3 = π (green).
The recurrent connectivity is defined by the functionM, which depends only on the phase difference φ − φ

0
between two neurons.

(b) Feedforward inputs to the network. The black traces show the total feedforward input h to three example neurons with preferred phases
φ1 = 0, φ2 = π/2, and φ3 = π. The colored traces indicate the underlying grid-tuning function g with phases φ1, φ2, and φ3 (Equation (A3), see
colored disks in panel (a). (c) Recurrent-connectivity function. The parameter Mmax > 0 scales the maximal connection strength in the network
(Equation (A2)) [Color figure can be viewed at wileyonlinelibrary.com]

TABLE A1 Parameters of the one-dimensional grid-amplification
model

Neural activity

N 200 Number of neurons (only for numerical

simulations)

L 5 m Length of the circular track

τ 10 ms Network integration time constant

f 1 m−1 Grid spatial frequency

Mmax 2/3 Maximal connection strength (linear model)

B 0.4 Input-tuning strength

σφ 2π/N ≈ 0.03 Noise correlation length across neurons

σx 0.1 Noise correlation length in space

Derived quantities (linear model)

Apop 9 Population level amplification at the first

harmonic

Acell ≈7.9 Single-cell amplification at the tuning

harmonic Lf

Anoise ≈1.2 Single-cell amplification at non-tuning

harmonics

Note: The table reports the default parameter values for all numerical sim-

ulations and analytical calculations of the 1D grid-amplification model.

Note that in Figures A4b and A5b, we use a nonlinear activation function

F(x) ≔ [x]+ and a maximal connection strength Mmax = 6.
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Network activity at the population and single-cell levels

To quantify grid-pattern amplification, we study the network's

activity at two different levels: the population level and the single-cell

level. We thus introduce the following notation. We call h(φ, x0)

the population feedforward input to the network for the virtual rat

being at location x0 on the track, and we call h(φ0, x) the single-cell

feedforward input to a neuron with preferred phase φ0. Consistently,

we call v(φ, x0) the population output at location x0, and v(φ0, x)

the single-cell output of neuron φ0. In what follows we study amplifi-

cation at the population level (Section A.1) and at single-cell level

(Section A.2).

A.1 | Amplification at the population level

In Appendix B (Section B.1), we solve the network dynamics in Equa-

tion (A1) in the linear regime, that is, with activation function F(x) ≔ x.

There we show that, if the recurrent connections are not too strong

(Mmax < 1), the population output v(φ, x0) converges to a stable fixed

point v∞(φ, x0) at any spatial location x0 on the track. Importantly, at

the steady-state output, the recurrent connections amplify the power

of the population input at the first harmonic by a factor

Apop =
A15ð Þ 1

1−Mmaxð Þ2
> 1: ðA6Þ

Figure A2 shows an example of this effect. Because the

feedforward input is assumed to be weakly grid-tuned, a noisy activity

bump is already present at the population input (Figure A2a1), and

the input power is dominated by the first harmonic (Figure A2a2).

At the output (Figure A2c), the first harmonic of the population

input is amplified by a factor Apop = 9 whereas all other harmonics

are left unchanged (Figure A2c2). This effect is quantified by the

power of the equivalent population feedforward filter of the network

(Figure A2b), that is, the ratio of the population output and input

power spectra at steady state (Section B.1). Note that, at the popu-

lation level, the amplification factor Apop depends only on the maxi-

mal connection strength Mmax, that is, it is independent of the

parameters B, σφ, and σx that control the input spatial tuning. See

also Figure 6a for an example of population-level amplification in

the 2D model.

(a1) (b1) (c1)

(a2) (b2) (c2)

F IGURE A2 Amplification at the population level. (a) Population feedforward input h(φ, x0) to the network for the virtual rat being at location
x0 = 0 on the track. (a1) Example of the population input h(φ, x0) (black line) for a single realization of the input noise. Note a noisy bump of activity
centered at preferred phase φ = 0. The gray line indicates the underlying input tuning. (a2) Gray bars: power spectrum of the signal in (a1) (the first

10 harmonics are shown). Black squares: average power spectrum estimated from 80 realizations of the input noise. Black line: analytical power
spectrum (Section B.1, Equations (A26), (A27), and (A29)). (b) Equivalent population feedforward filter of the network (b1) and its power spectrum (b2).
The black lines in (b1) and (b2) show the analytical solutions in Equations (A16) and (A15), respectively. Gray bars in (c2) are obtained by dividing the
power spectrum in (c2) (gray bars) by the power spectrum in (a2) (gray bars). Black squares in (b2) are obtained by dividing the average power spectrum
in (c2) (black squares) by the average power spectrum in (a2) (black squares). (c) Population steady-state output v∞(φ, x0) of the network (c1) and its
power spectrum (c2). The analytical power spectrum in (c2) (black line) is derived in Section B.1 (Equation (A32)). Note that the first harmonic of the
population input is amplified by a factor Apop = 9 at the steady-state output. See Table A1 for parameter values
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A.2 | Amplification at the single-cell level

We now illustrate that the recurrent dynamics also improves the grid

tuning at the single-cell level (Figure A3). Because the feedforward

input is assumed to be weakly grid-tuned with spatial frequency

f = 1 m−1 on a track of length L = 5 m (Figure A3a1), the input power

spectrum is dominated by the tuning harmonic Lf = 5 (Figure A3a2).

Crucially, this harmonic is also amplified at the steady-state output

(Figure A3c). Single-cell amplification is quantified by the power of the

equivalent single-cell feedforward filter of the network, that is, the ratio

of the single-cell output and input power spectra at steady state

(Figure A3b2). In the example of Figure A3, the feedforward input is

amplified by a factor Acell ≈ 7.9 at the tuning harmonic and by a lower

factor Anoise ≈ 1.2 at all other frequencies (Equation (A70)). See also

Figure 1 for an example of single-cell grid-pattern amplification in the

2D model.

A.2.1 | Effects of input tuning on grid pattern amplification

We now study how amplification at the single-cell level depends on

the tuning of the feedforward inputs (see also Section 2.3 and

Figure 4 for the corresponding results in the 2D model). To this

end, we vary the input-tuning strength B (Equation (A3)) between 0

(pure noise) and 1 (pure grid), and we compute the one-dimensional

(1D) grid-tuning index at both the feedforward input and steady-

state output. We define the 1D grid-tuning index as the power of

the neural activity at the tuning harmonic (Lf = 5) normalized by the

power at the zeroth harmonic (see also Section 4.5 for an analo-

gous definition of the grid-tuning index in the 2D model).

Figure A4a1 shows the 1D grid-tuning index as a function of the

input-tuning strength B. The 1D grid-tuning index is larger at the

steady-state output compared to the feedforward input for all

values of B > 0, consistently with the results obtained in 2D.

(a1) (b1) (c1)

(a2) (b2) (c2)

F IGURE A3 Amplification at the single-cell level. (a) Single-cell feedforward input h(φ, x0) to a cell with preferred phase φ0 = 0. (a1) Single-
cell input h(φ, x0) (black line) for one example realization of the input noise. The gray line indicates the underlying input tuning. (a2) Gray bars:

power spectrum of the trace in (a1) (the first 10 harmonics are shown). Black squares: average power spectrum estimated from 80 realizations
of the input noise. Black line: analytical power spectrum (Section B.2, Equations (A38), (A39), and (A42)). (b) Equivalent single-cell feedforward
filter of the network (b1) and its power spectrum (b2). The black lines in (b1) and (b2) depict the analytical solutions in Equations (A73) and
(A70), respectively. Gray bars in (b2) are obtained by dividing the power spectrum in (c2) (gray bars) by the power spectrum in (a2) (gray bars).
Black squares in (b2) are obtained by dividing the average power spectrum in (c2) (black squares) by the average power spectrum in (a2) (black
squares). (c) Single-cell steady-state output v∞(φ0, x) (c1) and its power spectrum (c2). The analytical power spectrum in panel (c2) (black line) is
derived in Section B.2 (Equations (A61), (A62), and (A68)). The power of the single-cell feedforward input is amplified by a factor Acell ≈ 7.9 at
the tuning harmonic Lf = 5 (Equation (A71)) and by a factor Anoise ≈ 1.2 at all other frequencies (Equation (A67)). See Table A1 for parameter
values
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To quantify the improvement in spatial tuning, we compute

the 1D grid-amplification index A as the ratio between the output

and input 1D grid-tuning indexes. In Appendix B, we derive

(Equations (A75) and (A76))

A=
Acell

Anoise
=
B2 L

4 Apop=Anoiseð Þ+ 1−Bð Þ2Sξcell Lfð Þ
B2 L

4 + 1−Bð Þ2Sξcell Lfð Þ
ðA7Þ

where Sξcell Lfð Þ is the single-cell power of the input noise ξ at the tuning

harmonic Lf. For B = 0, we obtain A=1 , meaning that without a

feedforward grid signal single-cell amplification is not possible

(Equation (A7) and Figure A4a2). Conversely, for any B>0, we obtain

A>1 , and the stronger the grid signal the larger the amplification.

Finally, for B!1, the amplification index A approaches the asymptote

Apop/Anoise, where the factor Apop is directly related to the maximal

connection strength Mmax (Equation (A6)), and the factor Anoise

depends on the noise correlations across neurons (see next section).

We now compare these results (Figures A4a1,a2) with the ones

obtained in the 2D model (Figure 4b,c). We observe that by increasing

the input-tuning strength B, the grid-tuning index grows without

bounds in the 1D model (Figure A4a1), but saturates in the 2D model

(Figure 4b). As a result, the grid-amplification index is monotonic in

1D (Figure A4a2), but non-monotonic in 2D (Figure 4b). This is

because in 2D (but not in 1D) a nonlinear activation function

constrains the neural activity to non-negative values. In fact, by simu-

lating the network activity of the 1D model with a threshold-linear

activation function F(x) ≔ [x]+ (Equation (A1)), we recover the non-

monotonic behavior of the grid-amplification index observed in 2D

(compare Figure A4b1,b2 with Figure 4b,c).

A.2.2 | Effects of input correlations on grid-pattern amplification

In Section 2.4 of the main text (2D model), we showed that grid-

pattern amplification crucially depends on the input-noise correla-

tions across neurons. Here, this effect is reproduced in the 1D model

and explained analytically. Figure A5a1 shows the 1D grid-tuning

index as a function of the noise-correlation length σφ across neurons

(Equation (A5)). Noise correlations across neurons do not affect the

single-cell tuning at the feedforward input (Figure A5a1, magenta

(a1) (a2)

(b1) (b2)

F IGURE A4 Effects of input tuning on grid-pattern amplification. (a) 1D grid-tuning index (a1) and 1D grid-amplification index (a2) as a
function of the input-tuning strength B using a linear activation function F(x) ≔ x (Equation (A1)). In panel (a1), the 1D grid-tuning index is shown

at the feedforward input (magenta) and steady-state output (black). Solid lines: analytical solutions (Equations (A38) and (A61)). Squares:
numerical estimations computed by averaging 80 realizations of the input noise. The dashed vertical lines indicate the default input-tuning
strength B = 0.4 used in Figures A2 and A3. In panel (a2), the 1D grid-amplification index A is defined as the ratio between output and input 1D
grid-tuning indexes. Solid line: analytical solution (Equation (A7)). Squares: numerical estimation. The dotted horizontal line indicates the value of
Apop/Anoise≈7.5. (b) Same as in (a), but constraining the neural activity to be non-negative, that is, using a threshold-linear activation function F
(x)≔ [x]+ and increasing the maximal connection strength to Mmax = 6 (Equations (A1) and (A2)). See also Figure 4b,c for similar plots in the 2D
model [Color figure can be viewed at wileyonlinelibrary.com]
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line), but control the single-cell tuning at the steady-state output

(Figure A5a1, black line); see also Figure 6b for similar results in 2D.

As a consequence, the 1D amplification index A is a non-monotonic

function of σφ (Figure A5a2) and has a minimum at σφ≈0.8, where the

first harmonic of the population input noise Sξpop 1ð Þ is maximal (inset

of Figure A5a2, see also Figure 6c for similar results in 2D).

The dependency of the amplification index A on the noise corre-

lation length σφ can be also understood analytically. Equation (A7)

shows that the 1D grid-amplification index A is inversely related to

the factor Anoise. In Appendix B (Equation (A67)), we derive

Anoise = 1 +
Apop−1
π=2

Sξpop 1ð Þ ðA8Þ

where Sξpop 1ð Þ is the power of the population-input noise at the first

harmonic. For uncorrelated noise (σφ!0) or fully correlated noise

(σφ�1), the noise power at the first harmonic is minimal (Sξpop 1ð Þ�1,

inset of Figure A5a2) and Anoise approaches 1. In this scenario, the

amplification index A is maximal and approaches Acell (Equation (A7)).

By contrast, for σφ≈0.8, the first harmonic of the input noise Sξpop 1ð Þ

and the factor Anoise are maximal, and the amplification index A is

minimal. Finally, we simulate the 1D model with a threshold-linear

activation function to mimic the nonlinear activation used in 2D. This

leads to results (Figure A5b1,b2) that are qualitatively similar to the

ones obtained in the linear 1D model (Figure A5a1,a2) and the

nonlinear 2D model (Figure 6c).

Finally, we study how single-cell amplification depends on the

noise correlation length σx in space (see also Equation (A5)). Equa-

tion (A7) shows that the amplification index A is a function of Sξcell Lfð Þ,
which is the single-cell power of the input noise ξ at the tuning har-

monic Lf. Because Sξcell Lfð Þ depends on σx (see also Equation (A42) in

Appendix B), the index A also depends on σx. Note, however, that this

dependency is weighted by the input-tuning strength 0≤B≤1

(Equation (A7)). For B!1, the feedforward input approaches a per-

fect grid, the noise power approaches zero, and A is effectively inde-

pendent of σx (Figure A6, right panel with B = 0.8). As B decreases,

however, the noise power increases and A becomes weakly modu-

lated by σx, see, for example, Figure A6 with B = 0.4 which was used

in Figures A2, A3, and A5. For small values of B, the amplification

index A is modulated by the noise-correlation length σx in space

(a1) (a2)

(b1) (b2)

F IGURE A5 Effects of noise correlations across neurons on grid-pattern amplification. (a) 1D grid-tuning index (a1) and 1D grid-amplification
index (a2) as a function of the noise-correlation length σφ using a linear activation function F(x) ≔ x (Equation (A1)). In panel (a1), the 1D grid-
tuning index is shown at the feedforward input (magenta) and steady-state output (black). Solid lines: analytical solutions (Equations (A38) and
(A61)). Squares: numerical estimations computed by averaging 80 realizations of the input noise. The dashed vertical lines indicate the default
correlation length σφ = 2π/N ≈ 0.003 (Figures A2 and A3), which corresponds to effectively uncorrelated noise. The dotted vertical line indicates
the value of σφ ≈ 0.8 at which the first harmonic of the population input noise Sξpop 1ð Þ is maximal. In panel (a2), the 1D grid-amplification index is
defined as the ratio between output and input 1D grid-tuning indexes. Solid line: analytical solution (Equations (A7) and (A8)). Squares: numerical
estimation. Inset: first harmonic of the population input noise Sξpop 1ð Þ as a function of the noise correlation length σφ. (b) Same as in (a), but using a
threshold-linear activation function F(x) = [x]+and increasing the recurrent-connection strength to Mmax = 6 (Equations (A1) and (A2)). See also
Figure 6b,c for similar plots in the 2D model [Color figure can be viewed at wileyonlinelibrary.com]
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almost as much as it is modulated by the noise-correlation length σφ

across neurons (Figure A6, left panel with B = 0.2). Note, however,

that for B = 0 the amplification index A=1 is independent of both σx

and σφ (Equation (A7)).

Finally, we find that for any B > 0 the amplification is minimal at

the value of σx where the noise power Sξcell Lfð Þ is maximal (Figure A6,

dotted vertical lines). In fact, in this case, the single-cell grid signal g

(φ0, x) and the single-cell input noise ξ(φ0, x) maximally overlap in fre-

quency domain, which is the worst-case scenario for amplification

(see also Equations (A39) and (A42) in Appendix B).

APPENDIX B: Derivations for the one-dimensional

grid-amplification model

Here, we provide the analytical derivations for the reduced 1D

grid-amplification model in Appendix A. There we model the activity

of a recurrent neural network that receives weakly grid-tuned

feedforward inputs for a virtual rat running on a linear track. We

recall that all input grids have the same spatial frequency f but differ-

ent spatial phases φ. Assuming a linear activation function, the output

activity v of a neuron with input phase φ is (Equation (A1) with

F(x) ≔ x)

τ
d
dt

vðφ,xÞ : = −vðφ,xÞ+ hðφ,xÞ+
ðπ
−π
dφ0Mðφ−φ0Þ vðφ0,xÞ ðA9Þ

where x denotes a position on the track, h is the total feedforward

input, the function M sets the recurrent connection strength, and

τ > 0 controls the integration time constant of the network.

B.1 | Amplification at the population level

First, we study the network activity at the population level (see also Sec-

tion A.1). To this end, we apply the complex Fourier series transformation

~fk : =
ðπ
−π
dφf φð Þexp − jkφð Þ , fðφÞ= 1

2π

X∞
k = −∞

~fk expðjkφÞ ðA10Þ

at both sides of Equation (A9):

τ
d
dt

~vk xð Þ= − 1− ~Mk

� �
~vk xð Þ+ ~hk xð Þ ðA11Þ

where ~vk�C , k�Z, and j =
ffiffiffiffiffiffiffi
−1

p
is the imaginary unit. We note that

the Fourier coefficients ~Mk are the eigenvalues of the dynamical sys-

tem in Equation (A9), and the corresponding eigenfunctions are the

elements of the Fourier basis ek(φ) = exp(jkφ).

Equation (A11) shows that for ~Mk <18k, the output activity v con-

verges to a stable fixed point v∞ with Fourier coefficients

~v∞k xð Þ= 1

1− ~Mk

~hk xð Þ= ~F
pop
k

~hk xð Þ ðA12Þ

where the coefficients

~F
pop
k : =

1

1− ~Mk

ðA13Þ

define the equivalent population feedforward filter of the network.

Using the definition of the connectivity function M φð Þ : = Mmax
π cos φð Þ

in Equation (A2), we derive

~Mk =
Mmax for j k j =1
0 otherwise

�
and ~F

pop
k =

1
1-Mmax

for j k j =1
1 otherwise

8<: ðA14Þ

where Mmax > 0 is the maximal connection strength in the network.

From Equation (A14), we compute the power spectrum

~F
pop
k

��� ���2 = Apop for j k j =1
1 otherwise

�
with Apop : =

1

1−Mmaxð Þ2
ðA15Þ

F IGURE A6 Effects of noise correlations in space and across neurons on grid-pattern amplification. The 1D grid-amplification index A
(Equation (A7)) is plotted as function of the noise-correlation length in space (σx) and across neurons (σφ) for three values of the 1D input-tuning
strength B (values at the top). The dashed lines denote default parameter values. The dotted horizontal lines denote the value of σφ≈0.8 for
which the first harmonic of the population-input noise Sξpop 1ð Þ is maximal. The dotted vertical lines denote the value of σx≈0.2 for which the
tuning harmonic Lf of the single-cell input-noise Sξcell Lfð Þ is maximal. Ampl., Amplification [Color figure can be viewed at wileyonlinelibrary.com]
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of the equivalent population feedforward filter

FpopðφÞ =
A10ð Þ 1

2π

X∞
k = −∞

~F
pop
k expðjkφÞ =

A15ð Þ
ffiffiffiffiffiffiffiffiffi
Apop

p
−1

π
cosðφÞ+ δðφÞ ðA16Þ

where δ is Dirac's delta.

B.1.1 | Population-level power spectra

We now compute the population-level power spectra of the

feedforward input h and of the steady-state output v∞ (see also Sec-

tion A.1 and Figure A2). We recall that the feedforward input h is a

weighted sum of a grid signal g and a noise term ξ (Equation (A3))

hðφ,xÞ : =Bgðφ,xÞ+ 1−Bð Þξðφ,xÞ with gðφ,xÞ : = cosð2πfx+φÞ ðA17Þ

where the parameter 0 ≤ B ≤ 1 controls the input-tuning strength. We

also recall that the noise ξ has autocorrelation (Equation (A5))

Cξ τφ ,τx
	 


: = ξ φ,xð Þξðφ+ τφ, x+ τxÞ
� �

φ,x ðA18Þ

=
1
2
Mðτφ;σφÞMð2πτx=L;σxÞ ðA19Þ

where angular brackets denote statistical expectation and

Mðτ,σÞ: = exp cos τð Þ−1
σ2

� �
ðA20Þ

is a von Mises function with spread σ > 0. In Equation (A19), the

parameters σφ > 0 and σx > 0 control the noise-correlation length

across neurons and across space, respectively.

Population-level input power spectrum

We define the population-level input power spectrum

Shpop kð Þ : =
ðπ
−π
dτCh

pop τð Þexp − jkτð Þ with k�Z ðA21Þ

where

Ch
pop τð Þ: = h φ,xð Þ h φ+ τ,xð Þh iφ ðA22Þ

=
A17ð Þ

B2 g φ,xð Þg φ+ τ,xð Þh iφ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≕Cg

pop τð Þ
+ 1−Bð Þ2 ξ φ,xð Þξ φ+ τ,xð Þh iφ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≕Cξ
pop τð Þ

8x ðA23Þ

is the population-level autocorrelation of the feedforward input h

(Equation (A17)). Because signal and noise are independent and zero-

mean, the cross terms of the product in Equation (A22) vanish. In

Equation (A23), the functions Cg
pop τð Þ and Cξ

pop τð Þ are the population-

level autocorrelations of the input signal g and the input noise ξ, which

are independent of the virtual-rat position x on the track:

Cg
pop τð Þ= 1

2π

ðπ
−π
dφg φ,xð Þg φ+ τ,xð Þ =

A17ð Þ cos τð Þ
2

ðA24Þ

and

Cξ
pop τð Þ =

A18ð Þ
Cξðτ,0Þ =

A19ð Þ1
2
Mðτ;σφÞ: ðA25Þ

From Equations (A21) and (A23), we find that the population-level

power spectrum Shpop of the feedforward input h is a weighted sum of

the population-level power spectra Sgpop and Sξpop. That is,

Shpop kð Þ=B2Sgpop kð Þ+ 1−Bð Þ2Sξpop kð Þ ðA26Þ

where

Sgpop kð Þ : =
ðπ
−π
dτ Cg

pop τð Þ exp − jkτð Þ =
A24ð Þ π=2 for j k j =1

0 otherwise

�
ðA27Þ

and

Sξpop kð Þ : =
ðπ
−π
dτ Cξ

pop τð Þexp − jkτð Þ ðA28Þ

=
A25ð Þ1

2
~Mðk;σφÞ: ðA29Þ

In Equation (A29), ~M k,σφ
	 


is the kth harmonic of the com-

plex Fourier series (Equation (A10)) of the function M τ;σφ
	 


(Equation (A20)). That is,

~Mðk;σφÞ : =
ðπ
−π
dτMðτ;σφÞexp − jkτð Þ= πexp −

1
σ2φ

 !
Ik

1
σ2φ

 !
ðA30Þ

where

Ik zð Þ : = 1
π

ðπ
0
dθexp zcos θð Þ½ � cos kθð Þ ðA31Þ

is the kth-order modified Bessel funpaction of the first kind.

Population-level output power spectrum

In Equations (A12)–(A15), we showed that at the steady-state output

the input power Shpop is amplified by a factor Apop at the first harmonic.

Therefore, the population-level power spectrum at the steady-state

output is

Sv
∞

pop kð Þ= ApopS
h
pop kð Þ for j k j =1

Shpop kð Þ otherwise:

(
ðA32Þ
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B.2 | Amplification at the single-cell level

To quantify grid-pattern amplification at the single-cell level, we now

compute the single-cell power spectra at the feedforward input h and

steady-state output v∞ (see also Section A.2 and Figure A3).

B.2.1 | Single-cell power spectra

Single-cell input power spectrum

We define the single-cell input power spectrum

Shcell kð Þ : =
ðL=2
−L=2

dτ Ch
cell τð Þexp −

j2πkτ
L

� �
ðA33Þ

where L is the length of the track and

Ch
cell τð Þ: = h φ,xð Þ h φ,x+ τð Þh ix ðA34Þ

=
A17ð Þ

B2 g φ,xð Þg φ,x + τð Þh ix|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≕Cg

cell τð Þ
+ 1−Bð Þ2 ξ φ,xð Þξ φ,x + τð Þh ix|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≕Cξ
cell τð Þ

8φ ðA35Þ

is the single-cell autocorrelation of the feedforward input h. In Equa-

tion (A35), the functions Cg
cell τð Þ and Cξ

cell τð Þ are the single-cell auto-

correlations of the input signal g and the input noise ξ, which are

independent of the preferred phase φ:

Cg
cell τð Þ= 1

L

ðL=2
−L=2

dx gðφ,xÞg φ,x+ τð Þ =
A17ð Þ cosð2πfτÞ

2
ðA36Þ

and

Cξ
cell τð Þ =

A18ð Þ
Cξð0,τÞ =

ðA19Þ1
2
Mð2πτ=L;σxÞ: ðA37Þ

From Equations (A33) and (A35), we obtain

Shcell kð Þ=B2Sgcell kð Þ+ 1−Bð Þ2Sξcell kð Þ ðA38Þ

where

Sgcell kð Þ : =
ðL=2
−L=2

dτCg
cell τð Þ exp −

j2πkτ
L

� �
=
A36ð Þ L=4 for j k j = Lf

0 otherwise

�
ðA39Þ

and

Sξcell kð Þ : =
ðL=2
−L=2

dτ Cξ
cell τð Þ exp −

j2πkτ
L

� �
ðA40Þ

=
A37ð Þ1

2

ðL=2
−L=2

dτM 2πτ
L

;σx

� �
exp −

j2πkτ
L

� �
ðA41Þ

=
L
4π

~Mðk;σxÞ: ðA42Þ

Steady-state output

To compute the single-cell output power spectrum, we first compute

the steady-state output v∞. In Section B.1 (Equation (A12)), we

derived the Fourier coefficients

~v∞k xð Þ= ~F
pop
k

~hk xð Þ ðA43Þ

where

~F
pop
k =

A15ð Þ
ffiffiffiffiffiffiffiffiffi
Apop

p
for j k j =1

1 otherwise

(
ðA44Þ

are the Fourier coefficients of the equivalent population

feedforward filter Fpop (Equations (A14) and (A15)). By back-

transforming Equation (A43) to phase domain, we obtain

(Equation (A10))

v∞ φ,xð Þ=
ðπ
−π
dτh τ,xð ÞFpop φ−τð Þ ðA45Þ

=
A17ð Þ

B
ðπ
−π
dτg τ,xð ÞFpop φ−τð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≕ gout φ,xð Þ

+ 1−Bð Þ
ðπ
−π
dτ ξ τ,xð ÞFpop φ−τð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≕ ξout φ,xð Þ

ðA46Þ

where gout is the output signal and ξout is the output noise. The output

signal

gout φ,xð Þ= 1
2π

X∞
k = −∞

~gk xð Þ~Fpopk expðjφkÞ =
A44ð Þ ffiffiffiffiffiffiffiffiffi

Apop

p
g φ,xð Þ ðA47Þ

has single-cell autocorrelation

Cgout

cell τð Þ= 1
L

ðL=2
−L=2

dxgout φ,xð Þgout φ,x+ τð Þ =
A47ð Þ

ApopC
g
cell τð Þ: ðA48Þ

Output noise

We now compute the autocorrelation of the output noise ξout:

Cξout ðτφ,τxÞ: = ξout φ,xð Þξout φ+ τφ,x+ τx
	 
� �

φ,x ðA49Þ

=
1
2π

ðπ
−π
dφ

1
L

ðL=2
−L=2

dxξout φ,xð Þ ξout φ+ τφ,x+ τx
	 
 ðA50Þ

=
ðπ
−π
dφCξðτφ−φ,τxÞ

ðπ
−π
dφ0Fpop φ0ð ÞFpop φ+φ0ð Þ ðA51Þ

where in Equation (A51) we used the definition of the output noise

ξout (Equation (A46)) and the definition of the input-noise autocorrela-

tion Cξ (Equation (A18)). Equation (A51) shows that Cξout is obtained

by convolving the input-noise autocorrelation Cξ with the autocorrela-

tion of the population filter Fpop:
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ðπ
−π
dφ0 Fpop φ0ð ÞFpop φ+φ0ð Þ= 1

2π

X∞
k = −∞

~F
pop
k

��� ���2exp jkφð Þ ðA52Þ

=
A12ð ÞApop−1

π
cosðφÞ+ δðφÞ: ðA53Þ

Therefore, from Equations (A51) and (A53), we obtain

Cξout ðτφ,τxÞ=Cξðτφ,τxÞ+ Apop−1
π

ðπ
−π
dφCξðτφ−φ,τxÞcosðφÞ: ðA54Þ

Plugging Equation (A19) into Equation (A54) yields

ðπ
−π
dφCξðτφ−φ,τxÞcos φð Þ= 1

2
M 2πτx

L
;σx

� �ðπ
−π
dφMðτφ−φ;σφÞcos φð Þ ðA55Þ

=
1
2
M 2πτx

L
;σx

� �
cosðτφÞ ~Mð1;σφÞ: ðA56Þ

Finally, using Equations (A19) and (A56) in Equation (A54) yields

Cξout ðτφ ,τxÞ=
1
2
M 2πτx

L
;σx

� �
Mðτφ;σφÞ+ Apop−1

π
cosðτφÞ ~Mð1;σφÞ


 �
:

ðA57Þ

Equation (A57) shows that the recurrent dynamics affects the

noise correlations across neurons (τφ) but not across space (τx)

Single-cell output power spectrum

Here, we compute the single-cell output power spectrum

Sv
∞

cell kð Þ : =
ðL=2
−L=2

dτ Cv∞

cell τð Þ exp −
j2πkτ
L

� �
ðA58Þ

where the single-cell autocorrelation of the steady-state output is

Cv∞

cell τð Þ : = v∞ðφ,xÞ v∞ φ,x+ τð Þh ix ðA59Þ

=
A46ð Þ

B2 gout φ,xð Þgout φ,x+ τð Þ� �
x|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≕Cgout

cell
τð Þ

+ 1−Bð Þ2 ξ φ,xð Þξ φ,x+ τð Þh ix|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
≕Cξout

cell
τð Þ

8φ:

ðA60Þ

Using Equation (A60) in Equation (A58) yields:

Sv
∞

cell kð Þ=B2Sg
out

cell kð Þ+ 1−Bð Þ2Sξoutcell kð Þ ðA61Þ

where Sg
out

cell is the single-cell power spectrum of the output signal and

Sξ
out

cell is the single-cell power spectrum of the output noise. We

derive

Sg
out

cell kð Þ : =
ðL=2
−L=2

dτCgout

cell τð Þexp −
j2πkτ
L

� �
=
A48ð Þ

Apop Sgcell kð Þ: ðA62Þ

To compute the power spectrum Sξ
out

cell , we first compute the

single-cell autocorrelation

Cξout

cell τð Þ : = ξout φ,xð Þ ξout φ,x+ τð Þ� �
x ðA63Þ

=
A49ð Þ

Cξout 0,τð Þ ðA64Þ

=
A57ð Þ1

2
M 2πτx

L
;σx

� �
1+

Apop−1
π

~M 1;σφ
	 

 �

ðA65Þ

=
A37ð Þ

AnoiseC
ξ
cell τð Þ ðA66Þ

where

Anoise: =1+
Apop−1

π
~M 1;σφ
	 


=
A29ð Þ

1 +
Apop−1
π=2

Sξpop 1ð Þ: ðA67Þ

Therefore, the single-cell power spectrum of the output noise

reads

Sξ
out

cell kð Þ: =
ðL=2
−L=2

dτCξout

cell τð Þexp −
j2πkτ
L

� �
=
A66ð Þ

AnoiseS
ξ
cell kð Þ: ðA68Þ

Equations (A62) and (A68) show that the power of the input sig-

nal is amplified by a factor Apop (Equation (A15)) whereas the power

of the input noise is amplified by a factor Anoise (Equation (A67)).

Therefore, at the single-cell level, the effects of the recurrent connec-

tions on the network activity are summarized by the power ~F
cell
k

��� ���2 of

the equivalent single-cell feedforward filter Fcell. That is

~F
cell
k

��� ���2: = Sv
∞

cell kð Þ
Shcell kð Þ =

B2ApopS
g
cell kð Þ+ 1−Bð Þ2AnoiseS

ξ
cell kð Þ

B2Sgcell kð Þ+ 1−Bð Þ2Sξcell kð Þ
ðA69Þ

where in Equation (A69) we used Equations (A38), (A61), (A62), and

(A68). Because the grid signal g has power only at the tuning frequency

k = Lf (Equation (A39)), we can rewrite Equation (A69) as follows:

~F
cell
k

��� ���2: = Sv
∞

cell kð Þ
Shcell kð Þ =

Acell for k = Lf

Anoise otherwise

�
ðA70Þ

where

Acell: =
B2ApopS

g
cell Lfð Þ+ 1−Bð Þ2AnoiseS

ξ
cell Lfð Þ

B2Sgcell Lfð Þ+ 1−Bð Þ2Sξcell Lfð Þ
: ðA71Þ

Equation (A70) shows that, at the single-cell level, the input

power is amplified by a factor Acell at the tuning harmonic k = Lf, and

by a factor Anoise at all other frequencies. From Equation (A70), we

derive

Fcell xð Þ= 1
L

X∞
k = −∞

~F
cell
k exp

j2πkx
L

� �
ðA72Þ
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=
ffiffiffiffiffiffiffiffiffiffiffiffi
Anoise

p
δ xð Þ+ 2

L

ffiffiffiffiffiffiffiffiffi
Acell

p
−

ffiffiffiffiffiffiffiffiffiffiffiffi
Anoise

p� �
cos 2πfxð Þ: ðA73Þ

B.2.2 | One-dimensional amplification index

To quantify grid tuning at the single-cell level, in Appendix A we

define the 1D grid-tuning index as single-cell activity power at the

tuning harmonic (Lf) normalized by the single-cell activity power at

the zeroth harmonic. We then measure the improvement in grid tun-

ing by computing the 1D amplification index

A : =
Sv∞cell Lfð Þ=Sv∞cell 0ð Þ
Shcell Lfð Þ=Shcell 0ð Þ ðA74Þ

where the nominator is the 1D grid-tuning index at the steady-

state output v∞ and the denominator is the 1D grid-tuning

index at the feedforward input h. From Equation (A74), we

derive

A=
Sv∞cell Lfð Þ=Shcell Lfð Þ
Sv∞cell 0ð Þ=Shcell 0ð Þ =

A70ð Þ Acell

Anoise
: ðA75Þ

Finally, by using Equations (A39) and (A71) in Equation (A75), we

obtain:

A=
Acell

Anoise
=
B2 L

4 Apop=Anoiseð Þ+ 1−Bð Þ2Sξcell Lfð Þ
B2 L

4 + 1−Bð Þ2Sξcell Lfð Þ
: ðA76Þ
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