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Abstract
In this research project we investigate the role of responses to anomalous data
during modelling processes. Modelling is seen as a comprehensive practice that
encompasses various aspects of scientific thinking; hence, it is an important style of
scientific thinking, especially if analysed from a process-based perspective. There-
fore, it provides the opportunity to understand the role of anomalous data on
scientific thinking from a broader perspective. We analysed how pre-service biology
teachers (N = 11) reacted to self-generated anomalous data during modelling pro-
cesses induced by investigating a water black box. The videotaped and transcribed
modelling processes were analysed using qualitative content analysis. If anomalous
data were recognised, a majority of explanations were based on methodical issues.
This finding supports results from previous studies investigating responses to first-
hand anomalous data. Furthermore, we found four response patterns to anomalous
data during modelling processes: no recognition, no explanation, methodical expla-
nation, and model-related explanation. Besides, our study indicates by trend a
systematic relation between response patterns to anomalous data and modelling
strategies. Consequently, the improvement of responses to anomalous data could
be a promising way to foster modelling competencies. We are convinced that an
integrated approach to anomalous data and modelling could lead to deeper insights
into the role of data in scientific thinking processes.
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Introduction

One goal of science education is that students should become scientific thinkers in order to
participate in today’s science-based society. Scientific thinking1 is an umbrella term including
practices like asking questions, formulating hypotheses, conducting investigations, and eval-
uating data (Fischer et al. 2014; Hetmanek et al. 2018; Rönnebeck et al. 2016). These practices
of scientific thinking are included in national standards for science education of several
countries (e.g. Australia: VCAA 2016; Germany: KMK 2005; USA: NGSS Lead States
2013). However, scientific thinking cannot be described as one specific construct. Moreover,
practices of scientific thinking can be used differently depending on the style of scientific
thinking that is in focus (Kind and Osborne 2017). Following the theoretical framework of
Lehrer and Schauble (2015), scientific thinking is described as a modelling process that
encompasses various other practices. Data evaluation plays an essential role in the modelling
process, since data represent pieces of information used for building and developing models
(Jeong et al. 2007; Samarapungavan 2018). Data that are not in line with prior expectations,
so-called anomalous data (Chinn and Brewer 2001), have the potential to induce the change of
an initial model about a phenomenon in focus (Dounas-Frazer et al. 2018; Khan 2008; Author
2017). Hence, the evaluation of anomalous data is a core activity in modelling (Giere et al.
2006). However, most research in science education on responses to anomalous data is
conducted with a focus on experimentation as scientific processes (Crujeiras-Pérez and
Jiménez-Aleixandre 2019; Lin 2007) as well as conceptual development (Chinn and Brewer
1998; Hemmerich et al. 2016). Research on the role of anomalous data during modelling
processes on the other hand is limited. Furthermore, studies on modelling competencies show
that pre-service science teachers have difficulties conducting scientific modelling processes
(Krell et al. 2017). The present article combines research on anomalous data and modelling in
order to investigate the role of responses to anomalous data during modelling processes.
Therefore, the aim is to get deeper insights into these scientific processes and, if and how
they might relate to each other. In consequence, the combination of these two research
perspectives offers new implications for science and science teacher education to support
both, handling anomalous data and modelling.

Theoretical Background

The analysis and evaluation of empirical data is a central part of scientific thinking, since it
provides the information needed for gaining knowledge about a phenomenon (Jeong et al.
2007; Samarapungavan 2018). Therefore, data builds the empirical foundation for most
scientific thinking styles, like experimental exploration or modelling (Kind and Osborne
2017). However, how the data is used might differ between the styles. In the case of modelling,
data induce the development of models in science, especially if the data contradict the initial
assumptions within these models (Chinn and Brewer 2001; Dounas-Frazer et al. 2018; Khan
2008; Krell et al. 2017). Since handling data plays such an important role in science, a lot of
research had been done to investigate skills and knowledge that are needed for data evaluation

1 Equivalent to Lehrer and Schauble (2015), we use the term scientific thinking in this contribution instead of
scientific reasoning that is used in other contributions (Krell et al. 2018) for a similar construct. Following Lehrer
and Schauble (2015), reasoning is the argumentative part of scientific thinking and, therefore, scientific thinking
of higher-order.
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in the psychological sciences (e.g. Chinn and Brewer 2001; Jeong et al. 2007;
Samarapungavan 2018) and in science education (e.g. Duncan et al. 2018; Gott et al. 2008).
In addition to investigations on the general practice of handling data, some studies focus
specifically on so-called anomalous data. Anomalous data are defined as evidence that is not in
line with, and would not be predicted by, a person’s mental model (Chinn and Brewer 1998).
Therefore, anomalous data can be a driving force for evaluating and developing existing
theoretical models. However, previous studies on responses to anomalous data show that
students and undergraduates tend to reject or reinterpret the data in order to hold on to their
initial models (Chinn and Brewer 1998; Lin 2007).

Responses to Anomalous Data

The research on responses to anomalous data done by Chinn and Brewer (1998) provide an
empirically tested taxonomy defining eight different types of responses: ignoring, rejection,
exclusion, uncertainty about validity, abeyance, reinterpretation, peripheral theory change,
and theory change. The grouping of reactions to the eight response types is based on how the
reaction fits the criteria: perceiving the data as valid, explaining the anomalous data, and
changing the initial theory. The majority of undergraduates’ reactions showed in a paper-
pencil-instrument was classified into the response rejection that is characterised by questioning
the validity of the data and explaining the anomaly with methodical issues (Chinn and Brewer
1998). A consecutive study supported the taxonomy by investigating eight graders’ responses
show anomalous data (Mason 2001).

However, these studies provided anomalous data in written text passages as part of paper-
pencil assessments—so-called second-hand data. Evaluating externally presented second-hand
data instead of self-generated first-hand data affects the way the data are perceived and
evaluated (Hug and McNeill 2008). Second-hand data are often seen as authoritative by
students and provide an opportunity to evaluate complex data patterns; hence, second-hand
data promote content-related reasoning. In contrast, first-hand data are more likely to be
evaluated critically by students promoting the discussion about limitations and uncertainties
in data (Hug and McNeill 2008). Furthermore, in the previous studies that focus on how
anomalous data induces conceptual development (Chinn and Brewer 1998; Mason 2001),
participants were primed with a theory that was then challenged by the data. They, therefore,
did not assess participants’ own mental models. Other studies on anomalous data focus on
first-hand anomalous data generated by the participants in laboratory settings (Crujeiras-Pérez
and Jiménez-Aleixandre 2019; Lin 2007; Pickering and Monts 1982; Toplis 2007). In contrast,
anomalous data in laboratory settings do not exclusively address conceptual development; they
also induce critical thinking about the experimentation process and data in general (Lin 2007;
Pickering and Monts 1982). In a study with undergraduates, responses to anomalous data
during an experimentation course with chemical contexts were investigated (Lin 2007). The
findings supported the application of the taxonomy of responses to anomalous data proposed
by Chinn and Brewer (1998) for laboratory settings under the condition of adding uncertainty
of interpretation as an additional category (Lin 2007). However, in line with the previous
findings, most responses were classified into the category rejection, indicating that, indepen-
dent of whether the data are externally given (second-hand) or self-generated (first-hand), the
validity of anomalous data is often in question.

Findings of a recent study (Crujeiras-Pérez and Jiménez-Aleixandre 2019) show another
phenomenon regarding first-hand anomalous data, with many students struggling to recognise
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self-generated anomalous data at all. This finding corresponds to other studies describing
similar difficulties of students to recognise anomalous data during experimentation (Chinn and
Malhotra 2002; Toplis 2007).

However, so far, research on anomalous data focused on either how it can induce concep-
tual development or how anomalous data are handled during experimentation processes that
represent just one of various scientific thinking styles. Furthermore, responses are mostly
investigated post hoc from a product-based perspective by analysing learners’ written expla-
nations (Chinn and Brewer 1998) or laboratory reports (Lin 2007). Therefore, a process-based
analysis of responses to anomalous data during another style of scientific thinking like
modelling (Kind and Osborne 2017) has the potential to provide more holistic insights into
this field of research, especially if modelling is seen as a broader theoretical framework that
encompasses different styles of scientific thinking (Lehrer and Schauble 2015).

Modelling in Science and Science Education

Modelling is a main practice used by scientists to make sense of the world (Giere et al. 2006)
and is, therefore, essential for scientific thinking (Lehrer and Schauble 2015; Passmore et al.
2017). From a theoretical point of view, models are ‘epistemic tools’ for sense-making
(Knuuttila 2011). Meaning that models are developed and applied by scientists to make sense
of phenomena; models in science are hypothetical entities and modelling is the process in that
those entities are developed and evaluated, contrasted with evidence, to explain and predict
natural phenomena. The strategy of scientific modelling can be generally described as follows:
‘The modeler’s strategy is to gain understanding of a complex real-world system via an
understanding of simpler, hypothetical system that resembles it in relevant respects’
(Godfrey-Smith 2006, p. 726). Hence, modelling incorporates investigations into the experi-
ential world, the development of explanations and predictions, and the evaluation of the latter
by means of collecting further evidence. From this perspective, ‘model-based and evidence-
based reasoning are intertwined […]; evidence is used to construct models, and models are
used to inform the search for evidence’ (Dounas-Frazer et al. 2018, p. 6). Modelling can be
conceptualised as a non-linear, cyclical process, which includes activities of exploration,
model development, and model evaluation (Göhner and Krell 2018; Krell et al. 2017;
Clement 2009; Giere et al. 2006).

Several models of the modelling process have been proposed in the educational literature,
which can be used as heuristic tools to structure, analyse, and support the creative and iterative
process of modelling in science (e.g., Clement 2009; Giere et al. 2006; Gilbert and Justi 2016;
Khan 2011; Krell et al. 2017). For the present study, a theoretical framework of the modelling
process was used, which has been developed in previous studies (Göhner and Krell 2018; Krell
et al. 2017) and integrates frameworks of analogical reasoning (Clement 2009) and scientific
reasoning through models (Giere et al. 2006). In this theoretical framework of the modelling
process (Fig. 1), the development of a model is motivated by the perception of a phenomenon.
Subsequently, the phenomenon is modelled through activation of analogies and experiences
that are then used for model development. The evaluation of the developed model includes
comparing to what extent it is in line with the observations. The application of the model
includes the deduction and evaluation of predictions, which are based on the model, using
empirical evidence. This leads to the evaluation of assumptions and to further insights about
the underlying phenomenon. Hence, the modelling process is led by the aim of sense-making
using models as epistemic tools (Gilbert and Justi 2016; Passmore et al. 2014). This theoretical
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description of the modelling process is—of course—highly idealised, but was helpful as an
heuristic framework for data analysis in the present study.

An appreciation of modelling and the role of models in science as epistemic tools (meta-
modelling knowledge) is essential for scientific thinking (Giere et al. 2006; Knuuttila 2011;
Schwarz and White 2005). Therefore, this understanding should be fostered in science classes,
in order to enable students to understand the nature of science and its procedures, its
capabilities, and its limitations (Passmore et al. 2017; Schwarz and White 2005). In science
education standard documents and policy papers in various countries (e.g. KMK 2005; NGSS
Lead States 2013), it is demanded that students at school should develop modelling skills and
an understanding of the role of models in science. Consequently, such modelling competencies
also have to be part of science teachers’ professional competencies (Günther et al. 2019; Justi
and van Driel 2005). However, most studies suggest that teachers’ meta-modelling knowledge
is rather limited (Justi and Gilbert 2003; Krell and Krüger 2016). Furthermore, models are
mostly used as explanatory representations and not as epistemic tools in science classes

Fig. 1 Idealised illustration of the modelling process (Krell et al. 2017; cf. Clement 2009; Giere et al. 2006)
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(Campbell et al. 2015; Khan 2011). Hence, understanding and using models as epistemic tools
seem to be challenging for science teachers.

Strategies of Modelling in Science Education

One way to foster the use of models as epistemic tools in science education is to engage
learners in performing modelling processes. However, different strategies of modelling can be
theoretically distinguished, each addressing different epistemic aims (Svoboda and Passmore
2013). In science education, five modelling pedagogies have been proposed (Oh and Oh
2011): exploratory modelling (investigating a pre-existing model), expressive modelling
(developing a model for expressing ideas about a phenomenon), experimental modelling
(deducing predictions from a model and test them empirically), evaluative modelling (com-
paring and evaluating alternative models of/ for the same original), and cyclic modelling
(being engaged in the cyclic process of model development, evaluation, and modification).
Interestingly, expressive and exploratory modelling are the most frequently used pedagogies in
science education (Campbell et al. 2015) and being the ones with a higher focus on using
models as explanatory representations, rather than using models as epistemic tools. This
finding on how modelling is used in science education can be the result of the previously
mentioned lack in teachers’ meta-modelling knowledge. However, empirical and process-
based studies on modelling strategies of science teachers for scientific problem solving are
rather limited (Nicolaou and Constantinou 2014). Recently, author and colleagues (Göhner and
Krell 2018; Krell and Hergert 2020; Krell et al. 2017) analysed pre-service biology teachers’
modelling activities during investigating a black box problem (see supplementary online
material, source 1, for the single modelling activities). Based on the occurrence and transitions
between these activities, the authors identified five different modelling strategies:

(1) Exploration only: Pre-service teachers do not develop a model at all; that is, they only
explore the underlying system (although the task explicitly demanded to develop a
model).
(2a) Focus on exploration: Pre-service teachers engage in activities related to exploration
and model development, but specifically focus on exploration.
(2b) Exploration and model development: Pre-service teachers engage in activities related
to exploration and model development in a rather balanced way, that is, without a specific
focus on exploration.
(3a) Single prediction: Pre-service teachers engage in activities related to exploration and
model development and use their model to predict the system’s behaviour once.
(3b) Repeated prediction: Pre-service teachers engage in activities related to exploration
and model development and use their model to predict the system’s behaviour repeatedly
and cyclical.

Based on a current sample of N = 31, it was found that most pre-service biology teachers (n =
11) did focus on explorationwhen modelling the black box, followed by single prediction (n =
9), repeated prediction (n = 5), exploration and model development (n = 5), and exploration
only (n = 1; Göhner and Krell 2019). That is, 14 of 31 respondents used their models to
evaluate assumptions about the black box. Hence, this process-based study suggests that pre-
service teachers are able to develop and use models as epistemic tools for sense-making in a
problem-based task like investigating a black box.
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Aims and Research Questions

In the present study, we acknowledge the importance of data evaluation, especially the
evaluation of anomalous data, in the process of modelling as one of different styles of scientific
thinking. We aim for more holistic insights into the process of evaluating first-hand anomalous
data by expanding the previously done research that focusses on experimentation as a scientific
thinking style (Crujeiras-Pérez and Jiménez-Aleixandre 2019; Lin 2007). Furthermore, we
look on responses to anomalous data during the modelling process, in contrast to analysing
only the product of the inquiry process. Hence, in order to investigate the role of anomalous
data during these modelling processes, we combine research on responses to anomalous data
and on modelling processes. The key objective of this study is to identify the role of anomalous
data during modelling processes. More specifically, the following research questions are
discussed:

1. Which responses to anomalous data during modelling processes do pre-service science
teachers show?

2. To what extent can pre-service science teachers’ responses to anomalous data be grouped
into response patterns?

3. Which relation can be found between pre-service science teachers’ response patterns to
anomalous data and their modelling strategies?

Method

Sampling

Empirically, we draw on the study on pre-service teachers’ modelling strategies (Göhner and
Krell 2018; Krell and Hergert 2020; Krell et al. 2017) and selected 11 pre-service biology
teachers from this study’s sample (currently N = 31). The selection was based on two sampling
criteria: course of studies (undergraduate and graduate pre-service biology teachers) and score
in a scientific reasoning competencies multiple-choice test (low and high; Table 1). Data about
scientific reasoning competencies were gathered from an ongoing longitudinal study at the
university (Hartmann et al. 2015). Low and high scientific reasoning competencies were
defined as x <M−1SD or x >M + 1SD, respectively, based on the sample of the longitudinal
study. Pre-service biology teachers with each combination of the sampling criteria (i.e. four
sampling groups) were selected in order to increase the probability of variation in their
reactions to anomalous data during the modelling processes. We aimed for three participants

Table 1 Study sampling (N= 11) based on the used sampling criteria. Acronyms in parentheses

Scientific reasoning competencies

Low High

Course of studies Undergraduates n = 3 (Angelina, Celine, Jonathan) n = 3 (Jenny, Lauren, Iris)

Graduates n = 2 (Jim, Frida) n = 3 (Cynthia, Floyd, Carlo)
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for each of the sampling cells. Since only two graduate students showed low scientific
reasoning competencies, we got a total sample of 11 participants for the present study.

Procedure

In order to engage pre-service biology teachers in a scientific modelling process, we used a
water black box (cf. Lederman and Abd-El-Khalick 2002). This black box has a funnel on its
top to fill in water and a pipe at the bottom where the water flows out and contains an
arrangement of inner siphons that causes a specific output pattern depending on the amount of
water that is filled in (Krell et al. 2017). The black box approach is established in science
education research to study the processes of scientific thinking (e.g. aspects of nature of
science and argumentation) and modelling (Krell and Hergert 2020; Lederman and Abd-El-
Khalick 2002; Passmore and Svoboda 2012). In such approaches, the black box represents a
natural phenomenon under study, and the exploration of the black box represents the process
of scientific discovery. Hence, it was shown that black box activities are suitable to elicit
modelling processes, with models used as epistemic tools to discover the black box (Author
2017; Passmore and Svoboda 2012). The black box approach was intentionally chosen instead
of an authentic and content-rich scientific problem, in order to reduce the influence of prior
knowledge on the pre-service biology teachers’modelling processes. However, it is recognised
that this might be one limitation of the study since some authors emphasise the important role
of content knowledge for scientific modelling (Ruppert et al. 2017).

The pre-service biology teachers got the task to graphically develop (i.e. to draw) a model
of the inner system of the black box and to think aloud during their modelling process
(Ericsson and Simon 1998). The individual performances are video-taped and fully tran-
scribed. No time constraint was given. The drawings of the participants are defined as the
models in this study; an assessment of mental models was not possible with the applied
methodical setting of videography (Werner et al. 2019).

Because of the specific output pattern and the dependency on the amount of water that is
filled in, pre-service biology teachers have to repeatedly generate data to recognise the output
pattern that gives clues about the inner system of the box. Therefore, participants are likely to
be confronted with self-generated anomalous data several times during the modelling process
(illustration and more detailed description published in Krell et al. 2017).

Data Analyses

In order to answer the first research question, responses to anomalous data during the
modelling processes of pre-service biology teachers were analysed within the methodical
framework of qualitative content analysis (Schreier 2012). For this purpose, a category
system has been developed deductively based on studies about responses to anomalous
data obtained in laboratory settings (Crujeiras-Pérez and Jiménez-Aleixandre 2019; Lin
2007) and about pre-service biology teachers’ modelling activities (Krell et al. 2017).
Data of two pre-service biology teachers were used to inductively refine the category
system, in order to ensure its empirical validity (e.g. by adding new categories or by
differentiating existing categories; Schreier 2012). In order to evaluate the appropriate-
ness of the refined category system, two science education researchers independently
used the category system to analyse reactions to anomalous data of one further case.
Cohen’s kappa (κ = .92) indicated a very good interrater-agreement and, thus, the
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category system’s appropriateness to objectively categorise pre-service biology teachers’
responses to anomalous data during modelling processes. The final category system
(Table 2) differentiates between three types of anomalies during the modelling process.
For each type, a response to the recognised anomaly was coded, exclusively if the
participant previously mentioned an expectation or hypothesis regarding this type of
anomaly.

For type 1 only the recognition of the inconsistency is included into the category system,
since it represents a general confusion that is not explainable with logical reasoning. Type 2
and type 3 contain the categories explanation and change, because these types of inconsis-
tencies are explainable and the pre-service biology teachers can change their expectations as
well as their models.

For data analysis, a three-step strategy of subsumption was used to identify and categorise
situations in the transcripts that show responses to anomalous data in modelling processes
(Schreier 2012):

1. Situations in the modelling processes were identified in which the subjects recognise
the occurrence of anomalous data.

2. Identified situations were categorised using the category system (Table 2) within one of
three types of anomaly indicating an inconsistency between observed data and general
logic (type 1), expected data pattern/single datum (type 2), or developed model (type 3).

3. Categorised situations are coded by answering two central questions (i) Are the anomalous
data explained (referring to methodical issues or with a model)? and (ii) Are the expected
data patterns/developed models changed?

The transcripts were coded by using the MaxQDA software (VERBI Software 2016). After the
coding process, disagreements between the two coders were identified and resolved by
discussion in order to reach a final consensus for further data analysis.

Table 2 Category system, with codes, subcodes, and explanations

Code Subcode Explanation

Type 1: inconsistency between observed data and general logic
Recognition – AD (type 1) is recognised

Type 2: inconsistency between observed data and expected data pattern/single datum
Recognition – AD (type 2) is recognised
Explanation Methodical Recognised AD is explained with limited own skills,

inaccuracies in measurement, or the nature of the black box
With model Recognised AD is explained by developing an explanatory model

Change – Expectation (concerning data pattern/single datum)
is changed based on AD

Type 3: inconsistency between observed data and developed model
Recognition – AD (type 3) is recognised
Explanation Methodical Recognised AD is explained with limited own skills,

inaccuracies in measurement, or the nature of the black box
With model Recognised AD is explained by developing an explanatory model

Change Modification Developed model is changed to explain AD
Rejection Developed model is rejected

Note: The code descriptions have been shortened. AD, anomalous data
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In order to compare pre-service biology teachers’ responses to anomalous data and group
them into response patterns (research question 2), self-generated visualisations (codelines)
from the data were used (generated with R package ggplot2; Wickham 2016). The grouping of
the response patterns was based on literature (Chinn and Brewer 1998; Crujeiras-Pérez and
Jiménez-Aleixandre 2019). Table 3 shows the four response patterns that were theoretically
expected. The first response pattern is in line with the findings that the recognition of anomaly
in self-generated data is difficult (Crujeiras-Pérez and Jiménez-Aleixandre 2019). Without
recognising the anomalous data, no explanation and no further reaction by the participant are
needed. The second response pattern describes the case that anomalous data are recognised but
no explanation is offered for them (exclusion in the taxonomy of Chinn and Brewer 1998). The
third response pattern bases on findings that recognised anomalous data are mostly explained
with methodical issues (rejection in the taxonomy of Chinn and Brewer 1998), especially in
the case of first-hand data (Crujeiras-Pérez and Jiménez-Aleixandre 2019). Because of this
type of explanation, the validity of the data is in question and, therefore, no further reaction
regarding participants’ expectations and models should occur. The fourth response pattern
represents a response to anomalous data that leads to further steps in the modelling process. It
is equivalent to peripheral theory change and theory change in the taxonomy of responses to
anomalous data (Chinn and Brewer 1998).

For answering the third research question, we compared the response patterns to anomalous
data shown by the pre-service biology teachers with their modelling strategies. The modelling
strategies (exploration only, focus on exploration, exploration and model development, single
predicting, repeated predicting) have been identified in the ongoing study from where we
selected the sample for the present study (Göhner and Krell 2018). For the identification, an
activity-based category system (see supplementary online material, source 1) was used and the
transcripts of the modelling processes were independently coded by two researchers resulting
in acceptable to very high interrater-agreement .5 ≤ κ ≤ .9). Based on this, the codings of
modelling activities and responses to anomalous data were superimposed.

Results

Pre-service Biology Teachers Modelling Strategies

For relating pre-service biology teachers’ responses to anomalous data to their modelling
strategies, the results of the previous mentioned study (Göhner and Krell 2018) are used,
which focusses on the identification of modelling strategies by analysing pre-service biology

Table 3 Theoretically expected response patterns to anomalous data during modelling processes

Response pattern Recognition Explanation Reaction

1 No No No

2 Yes No No

3 Yes Explanation (method) No

4 Yes Explanation (model) Modelling
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teachers’ modelling processes during a black box activity. Table 4 gives an overview of the
five strategies identified for the present sample and exemplifies how they differ regarding the
specific modelling activities. (The resulting sequences of modelling activities are visually
represented as codelines in the supplementary online material, source 2.)

Table 4 Modelling strategies used by the pre-service teachers in the current sample

Modelling strategy nparticipant Description

(3b) Repeated prediction 2 Frida and Jenny explored the black box and developed a model of its
inner system on the board. During the process, they further tested their
model several times by predicting the black box’ behaviour and testing
these predictions. Hence, they used their models as epistemic tools to
evaluate assumptions about the black box.

(3a) Single prediction 2 Iris and Cynthia explored the black box and developed a model of its
inner system on the board. One time during the process, they further
tested their model by predicting the black box’ behaviour and testing
this prediction. Hence, they used their models as epistemic tools to
evaluate assumptions about the black box.

(2b) Exploration and
model development

2 Jonathan and Floyd explored the black box and developed a model of its
inner system on the board. Thereby, they showed activities related to
exploration and model development in a rather balanced way that is
without a clear focus. Hence, they used their models as representations
that is to express their ideas about the black box.

(2a) Focus on exploration 4 Celine, Jim, Lauren, and Angelina explored the black box and developed
a model of its inner system on the board. Thereby, most activities were
related to the exploration of the black box. Hence, they used their
models as representations that is to express their ideas about the black
box.

(1) Exploration only 1 Carlo did not develop a model at all; that is, he did not externalise his
ideas about the inner system of the black box; he only explored the
black box and summarised his observations repeatedly.

Table 5 Absolute frequencies of codes (codings) assigned to situations of recognised anomalous data in the data
material

Codes for responses to anomalous data during modelling processes Codings (nSituations)

Type 1: inconsistency between observed data and general logic
Recognition 4

Type 2: inconsistency between observed data and expected data pattern/single datum
Recognition 46
Explanation Methodical 20

With model 7
Change 2

Type 3: inconsistency between observed data and developed model
Recognition 14
Explanation Methodical 1

With model 6
Change Modification 6

Rejection 4
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Responses to Anomalous Data During Modelling Processes

Findings from the qualitative content analysis show that all three types of situations, in which
anomaly can be recognised, occurred in the transcripts (Table 5). Inconsistencies between
observed data and general logic (type 1) occurred rather seldom (nSituations = 4). Lauren gives an
example of a recognised inconsistency between the observed data and general logic.

Now, 500 ml are coming out. Or what? Please do not. 500 ml came out. […] That is a bit
confusing, because of the system, it cannot change its size. Lauren

This participant was confused about a specific output because he observed a different output
before and thought that this would not be possible because the black box cannot change its
general size.

In the majority of situations, inconsistencies between observed data and the expected data
pattern or single datum (type 2) were identified (nSituations = 46). The participants mostly
explained these situations with methodical issues (nSituations = 20), for example Cynthia with
imprecise measurement:

Because I am a bit messy when I measure and that is why it does not fit completely.
Cynthia

Only in two of the 46 situations in which an inconsistency between the observed data and the
expected data pattern was recognised the assumptions about the black box’ data pattern was
changed (Table 5).

Finally, in 14 situations, the pre-service biology teachers recognised data that were not in
line with their previous developed model (type 3). Interestingly, these anomalous data were
mostly explained with the model (nSituations = 6) rather than with methodical issues (nSituations =
1). However, in half of the situations in which this type of inconsistency was recognised,
participants gave no explanation at all. Nevertheless, the recognition was often followed by the
modification (nSituations = 6; see Jonathan) or the rejection (nSituations = 4; see Cynthia) of the
initial model. In the first example (Jonathan), the earlier ‘one-compartment model’ was
changed into a more complex one to consider the observed data.

It could be a multi-compartment system. And during the first time I had filled only one
compartment. Jonathan

I have to reject the model, because it does not make sense with the other things. Cynthia

Grouping Responses to Anomalous Data into Response Patterns

Based on the comparison of the eleven codelines (supplementary online material, source 3),
we found the theoretically expected response patterns described above (Table 3). However, for
two of the four response patterns, we identified sub-patterns that distinguish between no
reaction to the recognised anomalous data and the rejection of the model because of anomalous
data. Table 6 provides the empirically identified response patterns to anomalous data during
modelling processes, including labelling and absolute frequencies.
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Table 6 Empirically identified response patterns to anomalous data during modelling processes

Response pattern Recognition Explanation Reaction n

No recognition No No No 1 (Celine)
No explanation Yes No No/rejection 2 (Iris, Jim)
Methodical

explanation
Yes Explanation

(only methodical)
No/rejection 3 (Carlo, Cynthia, Lauren)

Model-related
explanation

Yes Explanation
(also model-related)

Modify model 5 (Angelina, Floyd, Frida,
Jenny, Jonathan)

Fig. 2 Codelines of three pre-service biology teachers that exemplify the response patterns: no explanation (Iris),
methodical explanation (Lauren), and model-related explanation (Jenny)
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No recognition of anomalous data was a pattern that was shown by one pre-service biology
teacher (Celine). During her modelling process, Celine did not recognise any anomaly, caused
by an open exploration of the black box without stating any expectations regarding the output
pattern or a hypothetical model. Therefore, no coding with our category system was possible.
Figure 2 gives example codelines for the other three response patterns.

The response pattern no explanation (Fig. 2, first codeline) shows the tendency to recognise
anomalous data without offering any explanation for them during the modelling process.
However, the recognition of an anomaly can still induce the rejection of the model, since for
this kind of reaction, no explanation for the anomalous data is needed.

The response pattern methodical explanation (Fig. 2, second codeline) is assigned to
codelines indicating the recognition of anomalous data (mostly of type 2 inconsistency
between observed data and expected data pattern/single datum) and a tendency to explain
these data with methodical issues. Furthermore, subsequent to methodical explanations,
modelling processes to explain the anomalous data do not occur in this response pattern or
the model is rejected without any explanation (see example in Fig. 2). The rejection of the
model is by trend connected with the recognition of type 2 anomalous data (Online source 3).

The pattern model-related explanation (Fig. 2, third codeline) relates to modelling process-
es in which the participants provided model-related explanations in addition to methodical
explanations and consequently modified the model. Therefore, the modelling process is
continued to explain the recognised anomalous data. Generally, the modification of the model
is often connected to the recognition of inconsistency between observed data and developed
model (type 3 anomalous data).

Relation Between Response Patterns to Anomalous Data and Modelling Strategies

Looking for relations between the identified response patterns to anomalous data and the
modelling strategies of pre-service biology teachers by contrasting them (Table 7), we found—
by tendency—a systematic relation that clusters the pre-service biology teachers in four
groups:

1. Celine, Jim, Lauren, and Carlo: focus on exploration in their modelling processes and did
not explain anomalous data or explained it mostly methodical;

2. Iris and Cynthia: use developed model for a single prediction and did not explain
anomalous data or explained it mostly methodical;

Table 7 The relation between response patterns to anomalous data and modelling strategies

Modelling strategies Response patterns to anomalous data

No
recognition

No
explanation

Methodical
explanation

Model-related
explanation

(3b) Repeated prediction Frida, Jenny
(3a) Single prediction Iris* Cynthia*
(2b) Exploration and model

development
Jonathan, Floyd

(2a) Focus on exploration Celine Jim Lauren Angelina
(1) Exploration only Carlo

*These participants reacted to the anomalous data by rejecting their models
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3. Frida and Jenny: engage in full cyclic modelling and use model for explanation of
recognised anomalous data;

4. Angelina, Floyd, and Jonathan: focus on developing a fitting model and use model for
explanation of recognised anomalous data.

Superimposing the codes given in the analysis of responses to anomalous data and the
codelines of the modelling processes (see online material source 2) gives further insights into
the role of responses to anomalous data during modelling processes for the four groups.
Celine, Carlo, Jim, and Lauren generated data, but did not (exploration only) or only to a minor
extent (focus on exploration) engage in modelling by developing and testing a model. These
four cases did not use their models to predict the black box’ output pattern. The following
excerpts exemplify how they recognised anomalous data regarding the expected data pattern
during the exploration phase of their modelling processes only:

Nothing should happen now. Hm, but it is doing something anyway. That’s strange. I
would estimate, it is something with, that should be 400 ml. […] Okay that is unex-
pected. Carlo

Yes, okay. Now, there were more than 1000. […] Well, probably it was a mistake earlier.
[…] Yes, here was a mistake, because I measured this wrong, I think. Lauren

However, the pre-service biology teachers in this first group mostly did not explain the
anomalous data or if they explained them, they used methodical issues like a lack of
experimental skills and did not integrate the anomalous data into their modelling processes.

Iris and Cynthia used their models for stating predictions (single prediction) going through
the phase exploration, model development, and predicting during their modelling processes.
Furthermore, they recognised anomalous data regarding the expected data pattern only while
exploring the black box activity, while Cynthia explains these anomalies when developing a
model.

That it is like (…) stairs. I do not know. Like this and it always overflows there. […] But,
at this point it does not make sense anymore. That’s strange, how can (…). Something
has to change inside this, so that no stable pattern, or no stable pattern for me, is
perceivable. Cynthia

Both recognised anomalies regarding their developed model when testing their stated predic-
tion once.

I assume, that here the tube goes in. That, so much water is remaining inside, thus the
first 400 ml and the tube cannot overrun at the top. That’s what I assume, because the
second 400 ml flowed through completely. I think when I put 400 ml inside, that 400
will come out again. […] Well, now I’m amazed, because more is coming out than I
have expected. Namely a whole litre. Iris
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Nevertheless, they did not explain this anomaly but still integrated the anomalous data into
their modelling processes by rejecting their developed model.

In contrast, Frida and Jenny engaged in a full cyclic modelling process by using their
developed models to predict the black box’ output pattern (predicting repeatedly) and they
provided model-related explanations for previous recognised anomalous data. While anoma-
lies regarding the expected data pattern are recognised mostly during the exploration phase of
their modelling processes, anomalous data concerning the developed model were recognised
during the phases of exploration and prediction.

Why is nothing coming out now? Why does it store something again? Maybe because it
is not full yet. It always empties itself reaching 1,5. And now it has. Before there were
five inside. No, we had not nothing inside. Again 1 litre. Now, there would be 1 litre
again, theoretically. Now, it should have stored something. But it does not do it. Or?
Now, 500 remained inside that means it is not possible that it splits it somehow. Jenny

In the modelling processes of these two participants, anomalous data and modelling were
intertwined, mostly causing the modification of the model.

However, the other three participants (Angelina, Jonathan, Floyd) that used model-related
explanations also integrated the recognised anomalous data into their modelling processes, but
only for developing a fitting model and not for testing predictions based on their models. In
their modelling processes, this is shown as well by mainly recognising anomalous data
regarding the expected data pattern during the modelling phase of exploration. Only Jonathan
recognised anomalies that were not in line with his model; however, this was based on verbally
externalised analogies and before he tried to develop the model as a graphical representation.

It could be some kind of overflow valve that flows over when reaching a specific value.
[…] So, again 400 ml. It should go short over 800.[…] That’s interesting. 600 came out.
Why are 600 coming out? Jonathan

Discussion

The aim of this research is to investigate the role of responses to anomalous data duringmodelling
processes. Previous research in this field mostly focusses on experimentation as a style of
scientific thinking, not considering that processes of scientific thinking might differentiate
depending on the thinking style in focus (Kind and Osborne 2017). Modelling is a main practice
in science (Giere et al. 2006) and is seen as a comprehensive practice that encompasses various
aspects of scientific thinking (Lehrer and Schauble 2015). Therefore, modelling as a framework
and the used process-based approach to analyse responses to anomalous data provide the
opportunity to understand the role of this kind of data on scientific thinking from a broader
perspective and not only either on conceptual development (Chinn and Brewer 1998; Hemmerich
et al. 2016) or experimentation (Crujeiras-Pérez and Jiménez-Aleixandre 2019; Lin 2007).

For answering our research questions, we analysed how pre-service biology teachers reacted
to self-generated anomalous data during modelling processes induced by investigating a water
black box (Krell et al. 2017). In the first step of data analysis, we explored the responses to
anomalous data, finding that if anomalous data were recognised, the majority of explanations
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were based on methodical issues, like imprecise measurement (Table 5). This finding supports
the results from previous studies that investigated how undergraduates or students respond to
first-hand anomalous data in laboratory settings (Crujeiras-Pérez and Jiménez-Aleixandre
2019; Lin 2007). Furthermore, anomalous data seem to be more salient during the exploration
phase of modelling, since the participants mostly recognised anomalous data regarding the
expected output pattern of the black box (Table 5). This tendency to focus on the data before a
model is developed underlies the importance of knowledge about the phenomenon for model-
ling processes (Ruppert et al. 2017). Based on the responses to anomalous data, we identified
four different response patterns: no recognition, no explanation, methodical explanation, and
model-related explanation. Similar to previous findings (Crujeiras-Pérez and Jiménez-Aleix-
andre 2019), one response pattern (no recognition) indicates the difficulty to recognise anom-
alous data in laboratory settings. In contrast to the study by Chinn and Malhotra (2002), this
finding might not be influenced by some kind of observation bias (Risinger and Saks 2002) that
causes a selective perception during data generation, since the setting of our study with a black
box does not induce a specific expectation based on prior knowledge. In the case of our study,
this response pattern was caused by not having any expectations or developed models and,
therefore, generated data was neither confirming nor anomalous.

In general, our findings regarding the first and second research questions show that
responses to anomalous data occur differentially during a databased modelling activity in
contrast to analysing products from experimentation processes. Depending on the phase the
participants were in the modelling process, either exploration, model development, or predic-
tion (Fig. 1), they responded either by explaining anomalies with methodological issues or they
explained it conceptually by using their developed models. Hence, using databased modelling
as style of scientific thinking seems to encompass typical responses to anomalous data that have
been described from research on first-hand and second-hand anomalous data (Chinn and
Brewer 1998; Crujeiras-Pérez and Jiménez-Aleixandre 2019; Hug and McNeill 2008).

Interestingly, we found by tendency a systematic relation between the response patterns to
anomalous data and the modelling strategies of the pre-service biology teachers, indicating that
model-related explanations for anomalous data are related to more sophisticated modelling
strategies (predicting repeatedly, predicting once). In these cases, perceived anomalous data is
included in the development and modification of the models in order to explain the anomalies.
During the exemplary modelling processes of these strategies, handling anomalous data
occurred in all three phases of modelling (exploration, development, and prediction, see Fig.
1). However, some participants showing these modelling strategies still connect anomalous data
and modelling processes, but by rejecting a model without explaining the anomalous data. In
contrast, participants that rely mostly onmethodical explanations for anomalous data did indeed
develop models but did not connect them with the recognised anomalies. During their model-
ling processes, this is indicated by handling anomalous data mainly during the modelling phase
of exploration. Therefore, explanations based on methodical issues seem to hinder the connec-
tion between the evaluation of anomalous data andmodelling. This is in line with findings from
research on conceptual development showing that the induction of theory change, or in our case
model change, by using anomalous data is difficult (Chinn and Brewer 1998). However, from a
perspective on experimentation practices, a critical evaluation of methodical causes for anom-
alous data is important for reflecting aspects of validity and reliability (Gott et al. 2008) and
especially first-hand data is qualified for inducing such reflections (Hug and McNeill 2008).
Therefore, the reflective use of the response pattern model-related explanation that integrates
questions of methodical issues may support the connection between the evaluation of
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anomalous data and modelling processes. Additionally, difficulties in developing and changing
models in order to explain recognised anomalous data might be caused by a lack of knowing
alternative theories (Hemmerich et al. 2016) hindering creativity during the modelling process.

Of course, there are some methodologically caused limitations of this study. First, we
conducted a qualitative study by analysing responses to anomalous data during modelling
processes of a small sample of pre-service biology teachers; therefore, generalisation is
strongly limited and further research is needed. Second, our study was contextualised in the
rather abstract context of modelling a black box. This has the advantage of reducing the
influence of prior knowledge, but, on the other hand, might be criticised as rather artificial (cf.
Ruppert et al. 2017). We propose to replicate the findings within more concrete scientific
contexts, since this could influence the strength of the expectations on the data and the
developed models (Chinn and Brewer 1998; Ruppert et al. 2017). Additionally, considering
the influence of experimentation skills like the use of the control of variables strategy might
give further insights, especially for responses to anomalous data in laboratory settings.
Furthermore, the procedure of this study defines the drawings of the participants as models.
Interpreting drawings as externalisations of mental models is discussed as a fruitful approach
in addition to the assessment of mental models with interviews or questionnaires (Meister et al.
2018). However, using for example retrospective interviews in a subsequent study would
provide further evidence for a valid interpretation of the drawings (Werner et al. 2019).

Implications

Keeping the abovementioned limitations in mind, our study indicates by trend a systematic
relation between response patterns to anomalous data and modelling strategies. Consequently,
the improvement of responses to anomalous data could be a promising way to foster modelling
competencies and vice versa. In order to gain a more holistic understanding on how our
findings that focus on competences of scientific modelling can contribute to conceptual
science learning, further research that investigates these processes and their interdependence
should be conducted using different authentic and content-rich scientific contexts (Ruppert
et al. 2017). However, generally our findings suggest to explicitly broach the issue of
anomalous data during modelling processes in science education, in order to promote respon-
dents to further evaluate their models and appreciate their role as epistemic tools for sense-
making. For example by reflecting about anomalous data and motivate to generate and explain
anomalous data with students (Crujeiras-Pérez and Jiménez-Aleixandre 2019). Since
explaining anomalous data conceptually and not only by using methodological issues seems
to be mostly difficult, providing alternative explanations could be a fruitful approach
(Hemmerich et al. 2016). For this, framing handling anomalous data with modelling processes
is helpful, since the existence of alternative models for one phenomenon is one of the key
aspects of understanding models as epistemic tools (Gilbert and Justi 2016; Schwarz and
White 2005). We are convinced that an integrated approach to anomalous data and modelling
could lead to deeper insights into the role of data in scientific thinking processes.
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