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Abstract
Smartphones and wearables have become an extension of one’s self, with gestures
providing quick access to command execution, and activity tracking helping users log
their daily life. Recent research in gesture recognition points towards common events
like a user re-wearing or readjusting their smartwatch deteriorate recognition accuracy
significantly. Further, the available state-of-the-art deep learning models for gesture
or activity recognition are too large and computationally heavy to be deployed and run
continuously in the background. This problem of engineering robust yet deployable
gesture recognisers for use in wearables is open-ended. This thesis provides a review
of known approaches in machine learning and human activity recognition (HAR)
for addressing model robustness. This thesis also proposes variations of convolution
based models for use with raw or spectrogram sensor data. Finally, a cross-validation
based evaluation approach for quantifying individual and situational-variabilities is
used to demonstrate that with an application-oriented design, models can be made
two orders of magnitude smaller while improving on both recognition accuracy and
robustness.
Keywords gesture recognition, deep learning, wearables, robustness
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Symbols and abbreviations

Symbols
xt Input sample at time t
ht Hidden state of RNN or LSTM
yt Output at time t
W , U Weight matrices
b Bias vector
σ Non-linearity or sigmoid function
Ii,j,k Input image batch tensor
Ki,j,k CNN kernel tensor
x̄ Mean of variable x
U(a, b) Uniform distribution between [a, b)
N (µ, σ) Normal distribution with mean µ and standard deviation σ

Operators∑
i Sum over index i

x · y Dot product of vectors x and y
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Abbreviations
AHRS Attitude and Heading Reference System
BCE Binary Cross Entropy
CNN Convolutional Neural Network
CSV Comma-Separated Values
DL Deep Learning
FC Fully-Connected
FFT Fast Fourier Transform
GAN Generative Adversarial Network
GAP Global Average Pooling
GPS Global Positioning System
GRU Gated Recurrent Unit
HAR Human Activity Recognition
IMU Inertial Measurement Unit
LGO Leave Group Out
LOCO Leave One Condition Out
LOUO Leave One User Out
LSTM Long Short-Term Memory
LUO Leave User Out
L&H Laput and Harrison
MARG Magnetic, Angular Rate, and Gravity
ML Machine Learning
NOVA Non-Verbal Annotator
OOD Out of Distribution
OVA One-vs-all
PPG Photoplethysmogram
RNN Recurrent Neural Network
ReLU Rectified Linear Unit
SOTA State-of-the-art
STFT Short-time Fourier Transform



1 Introduction
With the advent of deep learning (DL), there has been an ever-increasing applications
of deep learning-based models for the purposes of classification, forecasting, unsuper-
vised learning. These applications have proliferated and penetrated the daily lives
of people from automatic organisation of photo albums, criminal investigation, and
physics simulations to stock market and weather predictions. These use cases have
very real impacts on not just our personal lives but the organisation corporations
and governments as well, emphasising the need for investigating the accuracy and
reliability of such methods.

Machine learning (ML) has been the topic of research for several decades but it
was only recently with the boost in computational resources and research in data-
driven techniques that deep learning has shown tremendous promise. DL models have
shown better performance than traditional machine learning approaches if provided
with large enough and well curated datasets [1]. While traditional approaches rely on
intricate feature engineering and work better on low dimensional data by performing
classification in a higher dimension space, DL approaches can do the heavy lifting of
learning the necessary features automatically from the higher dimensional training
data and then performing classification in a lower dimension latent space. Since
most of the data arduous for classification in the modern world consists of images,
videos, and other higher dimensional data, DL has found popular use in consumer
and industrial applications of image classification and such in recent years.

1.1 Robust Recognition on Smartwatches
A consumer-oriented domain gaining track recently is gesture and human activity
recognition (HAR) on smartphones [2–6] and wearables [7–12], specifically smart-
watches [13–16]. Consumer smartwatches come equipped with several capable sensors
like inertial measurement units (IMU), global positioning system (GPS), photo-
plethysmogram (PPG) sensors enabling a lab-on-a-device type of environment for
both data collection and monitoring a person’s estimated position, posture, and
activity. IMU or magnetic, angular rate, and gravity (MARG) sensor arrays are the
bare minimum requirement for HAR in daily use and are even prevalent in the lower
price bracket of smartwatches and fitness trackers.

The rising popularity of fitness trackers and smartwatches as an extension of the
capabilities of smartphones, has found extensive use in exercise activity tracking like
steps and repetitions counting, calorie expenditure estimates, and activity recognition.
With so many humanly possible activities to keep track of, it becomes a matter of
paramount importance that the recognition algorithm or model is able to robustly
infer the user’s intentions for a seamless experience while being able to reliably reject
unintended gestures or false positives.
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1.2 Deployability of Deep Learning-based models
The success of DL-based models in achieving high classification accuracies comes
with a significant cost on the computational resources required to train, deploy,
and continuously run these models for inference. A typical DL model is tasked
with minimising a certain loss function to fit the ground-truth training data by
backpropagating the gradients through its computational graph. This supervised
learning setup usually uses human-labelled classes which the network is supposed to
predict correctly after the training process. The trained model is then tested and
deployed where the forward pass of the network is used for inference.

Several applications in a deployment scenario require a network’s size to be on the
conservative end with some trade-off on their robustness. The deployability is even
more pressing an issue on low-end hardware devices which can only afford to spare
a miniscule amount of compute operations and battery power. A model should be
able to run continuously on this computationally impoverished setup with a minimal
resource footprint.

1.3 Problem Statement and Contribution
The aim of this thesis is to explore the problem, “is it possible to have a robust
and deployable deep gesture recogniser which is capable of running on a smartwatch
itself”. The definition of robustness can vary under different contexts so the thesis
focuses on the problem of individual and situational variability as a quantification of
robustness in different settings. It has been recently shown that HAR classification
robustness is adversely impacted by a change as simple as re-wearing the smartwatch
[16]. Therefore, it is important to define, quantify, and assess robustness for individual
and situational variability in the context of human-centred applications.

A robust recogniser may be achievable with sufficient complexity in the model but
is it capable of being deployed in a production environment, specifically on low-end
devices like a smartwatch? Deployability of the model is then defined as the size or
compute operations needed for inference on the smartwatch. It has been shown that
even changing the sensor sampling rate can have significant effects on the battery
life of the device [17, 18] and on the classification accuracy [16]. Therefore, there
needs to be a balance between computational complexity — which is also dependent
on the sensor data, and the power consumption on the wearable.

The thesis makes contributions for these two problem statements by addressing
different model designs and training techniques for raw and preprocessed sensor data
that favour deployability and a general sense of robustness for training a non-overfit
and application-oriented classifier. The proposed classifier is presented to work for
gesture, as well as “one-shot” activity recognition for the real-world scenarios of
payment gesture recognition, and steering activity recognition. The thesis further
contributes on model evaluation and interpretability using cross-validation methods
to address individual and situational robustness of gesture and activity recognisers.
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1.4 Research Questions
The thesis approaches this multi-faceted topic of robust gesture and activity recogni-
tion with the following research questions,

1. How does one define robustness in general?

2. What does robustness mean in the context of user experience?

3. How does one quantify robustness in this context?

4. What are the factors that contribute to robustness of a deep learning model?

5. How to train a computationally light deep learning model and measure its
robustness in user-experience?

1.5 Thesis Structure
This thesis has the following structure: Section 2 delves into the literature and the
state-of-the-art (SOTA) methods. Section 3 presents the methodological choices for
the study. Section 5 discusses the results of the experiments defined in Section 4 and
Section 6 finishes with the conclusion and future work.
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2 Background
Recent literature in HAR has shown that the potential solutions to the problem of
gesture and activity recognition can be approached from various angles. This section
dives into the previous works and common techniques used to address HAR and
advances in relevant domains.

Machine learning deals with the algorithmic approaches which adapt and improve
with experience and new data to learn certain tasks. A model of the problem is used
to make decisions using training data as its sample. Supervised machine learning
uses data with ground truth labels and tries to fit the model to output the same
label class for the input data during training. This process benefits substantially
with well-crafted features extracted from the raw data rather than learning with the
raw data itself. Otherwise the model might learn irrelevant relations or patterns in
the dataset introduced due to statistical noise.

Deep learning takes machine learning one step further by automating the process
of feature extraction thereby making it scalable. This also helps break the barriers
of traditional machine learning approaches whose performance saturates due to
scalability issues. Furthermore, advances in computational power during the last two
decades has enabled deep learning to process huge amounts of data with proportionally
large neural networks. DL-based models utilise and exploit patterns in input data
distribution to generate better features at different levels of spatial complexity. This
allows the model to relate the output to the high-dimensional input with minimal
human intervention for crafting features.

2.1 Deep Learning for Activity Recognition
On-device recognition and deployment of deep networks has seen significant progress
in the past decade with ongoing developments of optimised frameworks such as
TensorFlow [19] and PyTorch [20] with recent focus on their mobile variants. These
frameworks have enabled rapid prototyping of deep neural networks in research as
well as in production environments. However, memory footprint, execution time,
power consumption, and scalability remains a bottleneck on resource-scarce devices
resulting in a trade-off between model performance and resource utilisation [21].
With this premise, the need for optimised networks to run on such low-end hardware
is of utmost importance. Model compression helps reduce the storage space and
memory footprint of otherwise large and practically infeasible deployment of networks
for such devices [22]. Techniques like quantisation to train networks with low floating
point precision weights and activations have also shown improved inference and
computation times with virtually no loss in classification accuracies on unoptimised
GPU hardware [23–25].

HAR primarily utilises data from various sensors like IMU, MARG, PPG etc. for
forecasting or recognising user activity. This data is usually treated as a multivariate
time-series streamed from the location of interest to a processing unit which processes
it and uses it for inference. Due to the nature of the dimensionality of the data, a
multitude of deep learning approaches exist for processing and inference.
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2.1.1 Recurrent Neural Networks

Recurrent neural networks (RNN) find common use in time-series data ranging from
stock-market prediction to natural language processing and machine translation. A
vanilla RNN consists of a hidden state ht and takes an input sample xt at time t and
yields an output yt and an updated state ht+1 as shown in Equations 1 and 2. The
hidden state ht is used with the input at the next time-step xt+1 and the process
repeats sequentially. This procedure is commonly described as the “unrolling” of the
RNN as depicted in Figure 1.

ht+1 = σh(Wxhxt + Whhht) (1)
yt = σo(Whyht+1) (2)

ht

xt

yt

wxh

why

whh

(a) RNN loop.

ht

xt

yt

ht+1

xt+1

yt+1

ht-1

xt-1

yt-1

wxh wxh wxh

why why why

whh whh

(b) Unrolled RNN.

Figure 1: Representation of the RNN operations and their “unrolling”.

The sequential nature of RNNs has the advantage of utilising temporal context
making them ideal for use in sequences of arbitrary lengths. Vanilla RNNs tend
to be even less popular because of their problems of vanishing gradients over long
sequences of data [26]. More advanced variants like Long Short-Term Memory cells
(LSTM) [27] and Gated-Recurrent Units (GRU) [28] skirt around this issue with the
additional overhead of having to maintain extra internal states. Equations 3 to 8
present the formulation for an LSTM cell.

ft = σ(Wfxt + Ufht−1 + bf ) (3)
it = σ(Wixt + Uiht−1 + bi) (4)
ot = σ(Woxt + Uoht−1 + bo) (5)
c̃t = tanh(Wcxt + Ucht−1 + bc) (6)
ct = ft · ct−1 + it · c̃t (7)
ht = ot · tanh(ct) (8)

where xt is the input at time t, hidden state is ht, forget gate ft, input gate it,
output gate ot, ct cell state, and W , U , and b are the weights and biases. These
operations are summarised in Figure 2.
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σ σ tanh

+

tanh

xt

ht-1

ct-1 ct

ht

ht

σ

x

x

x

Figure 2: Operation flow of an LSTM cell at a single time-step.

However the operations of RNNs on an arbitrary time-series segment tend to be
less parallelisable because of their sequential nature which makes them inherently
slower for both training and inference. However, with an off-device recogniser and
enough resources for streaming the sensor data to a processing unit, this can be
mitigated to some extent. Gesture and activity recognisers in this direction tend to
primarily use LSTMs as base-learners [29, 30] because of their advantages over vanilla
RNNs or some Convolution + LSTM (ConvLSTM) variants utilising intermediate
features [11, 31] but their strength lies in processing temporal signals of arbitrary
lengths.

2.1.2 Convolutional Neural Networks

Convolution neural networks (CNN) use learnable filters or kernels with shared weights
reducing their size significantly in comparison to fully-connected (FC) dense networks.
They work as excellent feature extractors and are used widely in image classification
tasks with the most notable architectures being VGG16 [32] and ResNet50 [33] as
shown in Figure 3.

Taking an example of CNN for image classification, a kernel is slid across the
input image with element-wise multiplication generating an output tensor, called
the output feature, which is then used for further processing or for classification
depending on the depth of the network. An example of the 2D convolution operation,
widely used in image data, is shown in Figure 4 and can be represented by Equation
9. The size of the output feature map is dependent on the size of the kernel used,
the padding applied to the input, as well as the stride of the convolution operation.
This can be calculated by Equation 10 which shows the size of the output along the
horizontal axis (assuming symmetric stride s and padding p).
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(a) Architectures for the VGG and the ResNet [33].
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(b) VGG-16 architecture for image classification.

Figure 3: Architectures of state-of-the-art image classification deep neural networks.

Om,n = conv(I, K)m,n =
∑

i

∑
j

∑
k

Ki,j,k Im+i−1,n+j−1,k (9)

dim(Om,n)x =
[

dim(I)x + 2p − dim(K)x

s
+ 1

]
(10)

The output of the convolution operation typically undergoes an activation function
(ReLU, TanH) and a pooling operation like max-pool or average-pool which take
the maximum value or the average of all values in their scope respectively. These
pooling operations are depicted in Figure 5.

The output of the CNN layers is of sufficiently reduced dimensionality and is
capable of being used with FC layers. This leads to the commonly used notion of
terms like “feature extractor” or “head” for the CNN layers and “classification layers”
for the later FC with CNNs finding rigorous use in transfer learning [34]. A large
network like the VGG16 is trained on a large publicly available dataset like the
ImageNet [35] and the pretrained weights of this model are reused by keeping the
initial convolution layers frozen, allowing them to act as feature extractors. The
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Figure 4: Unpadded 2D convolution operation for image classification tasks. This
process is repeated by striding the kernel across the image.
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(a) Max-pool
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Output feature O'

(b) Average-pool

Figure 5: Common 2D pooling operations (scale factor 2, stride 2) applied on output
features obtained after 2D convolutions.

later FC layers are then trained to fine-tune or adapt to another classification task
for some similar dataset.

Just like with 2D images, CNNs can be used with multichannel 1D temporal
signals as feature extractors. The stride and kernels in this case would be just
along one direction as shown in Figure 6. The main caveat of CNNs is that they
work only for fixed-sized inputs. This is a potential issue for temporal input as it
can of arbitrary length. This has been addressed by taking fixed-sized windows
of a predetermined duration and then using the latent representations with RNNs
[7, 11, 29], with attention [7, 36], or with temporal convolutions [37]. Approaches
using direct CNN outputs from windows for exercise activities have also shown
remarkable classification performance [15] as depicted in Figure 6a. Spectrogram has
also been used to interpret the 1D signals as 2D images with temporal and frequency
components for audio and sensor classification [16, 38–40].

2.1.3 Sensor and Modality Fusion

A device uses multiple sensors that are used in conjunction to provide relevant
measurements. For example, an IMU contains a gyroscope and accelerometer which
output angular velocity and linear acceleration respectively. Just from these measure-
ments from the IMU it is possible to provide estimates of relative direction, device
orientation, and crude position. This process of using multiple sensors to derive
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(a) Convolutions used for processing sensor signal windows [15].
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(b) Unpadded 1D convolution operation for sequential data. This process is repeated by
striding the kernel horizontally across the sequence.

Figure 6: Approaches to directly process the time-series sensor data using CNNs.

meaningful estimates of measurements of the device’s state is called sensor fusion
[41]. These measurements can be complimented by adding new sensors or with the
addition of the same sensor to reduce uncertainty. IMUs are commonly found in
consumer devices like smartphones, smartwatches, fitness trackers, and virtual reality
headsets and are used primarily for estimating orientation. Several sensor fusion
algorithms exist to enable attitude estimation (AHRS) by combining accelerometer
and gyroscope or additionally with a magnetometer like the complementary filter,
extended Kalman filter, Madgwick filter [42], and deep learning-based approaches
like RIDI [43] and RoNIN [44]. Developments in this direction has boosted the
applications of HAR on both smartphones [4–6, 45–48] and smartwatches [49, 50],
and also in novel applications like sign language recognition [51] and gyropens [52].

One of the simplest sensor fusion methods, the complementary filter is shown in
Figure 7. With the help of an accelerometer, one can deduce the angle the device
makes with respect to the ground and using a gyroscope, the angular velocity of the
device can be obtained. However, accelerometer readings have high frequency noise
components while gyroscope measurements accumulate drift on numerical integration.
This is why a low pass and a high pass filter are used on these processed sensor
signals respectively to obtain angle estimates from both. A simple weighted sum then
provides us with a more refined and stable angle estimate. Both of these individual
sensors operate in the device coordinate system, that is, their zero reading is set
from the moment the device is turned on. So for improving the estimate further,
a magnetometer is added which helps the accelerometer by providing the heading
direction in the global coordinate system.

Modality fusion on the other hand uses information from multiple different
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Figure 7: Complementary filter sensor fusion using an IMU/MARG sensor setup.

unimodal representations [53]. Audio-video data and synchronised text is one of
the most commonly applied topics in this domain. These modalities are fused at
different points in the deep network and are therefore classified into early, late, and
mid-level fusion policies [54, 55] as shown in Figure 8 or using advanced cross-modal
preserving methods like tensor fusion [56]. This makes it possible to process inputs
from different sensor sources or with different transformations and preprocessing
applied pre-classification [12].

Modality 1

Modality 2

... Classifier

(a) Early fusion.

Modality 1

Modality 2

Feature
Extractor

Feature
Extractor

Shared
Classifier

(b) Mid-level fusion with shared classifier.

Modality 1

Modality 2

Classifier

Classifier

(c) Late fusion using the outputs of unimodal classifiers.

Figure 8: Different fusion policies for inputs to a multimodal network.
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2.2 Spectrograms
Spectrograms are extremely common in the domain of audio processing for classifica-
tion and chirp detection [57–61]. Owing to the similarity of audio data and motion
sensor data, since both are temporal, sequential, and voltage values, spectrograms
have also been extremely popular for in HAR and gesture recognition [12, 13, 16,
30, 39, 62, 63]. A spectrogram allows the time-series data to be interpreted as an
image which can than be leveraged by using state-of-the-art image classification
network architectures like the VGG16 as shown in a study by Laput and Harrison
to achieve exceptional HAR accuracy [16]. Figure 9 shows Laput and Harrison’s
VGG16 inspired model for HAR.

Figure 9: VGG16-based HAR model proposed by Laput and Harrison.

2.2.1 Spectrogram Generation

A spectrogram is generated by taking a Short-time Fourier transform (STFT) over
a sliding window across a time-series signal. The different parameters chosen for
this process, along with the length and sampling frequency of the signal determine
the output size of the spectrogram. A discrete time STFT for a discrete signal x[n]
is defined by multiplying it with a window function and taking the Fast Fourier
Transform (FFT) of the resulting signal. This window slides along time to give the
STFT of the signal.

X(k, ω) =
∞∑

n=−∞
x[n]w[n − k]e−jωn (11)

k represents the rolling frame along the temporal dimension and ω the frequency
bin from the FFT. The spectrogram then is the power spectral density of this
complex-valued function by taking its squared magnitude.

XP SD(k, ω) = |X(k, ω)|2 (12)
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The sliding window function used in STFT is preferred to have a non-negative
value in the centre which gradually tapers to zero towards the window boundaries.
If non-zero values are present at the boundaries, it leads to harsher artifacts due
to the overlap process. For this reason, a smooth and periodic window function is
preferred [64]. However, this results in a trade-off in the spectral localisation because
the multiplied signal on which the FFT happens appears smoother than the original
signal.

One commonly used window that satisfies these properties is the Hanning window
function which is a weighted cosine dropping smoothly to zero as it approaches the
boundaries. For a window of size nwin and 0 ≤ n ≤ M

w[n] = 1
2

[
1 − cos

( 2πn

nwin

)]
(13)

For simplicity, the number of samples to consider for the STFT while generating
the spectrograms is set equal to the window size for minimising artifacts.

nfft = nwin (14)

The FFT algorithm really benefits in speed if the window sizes are in powers
of 2 with a Big-O complexity of O(n log n) [65, 66]. The number of frequency bins
obtained from STFT is then given by

nbins = nfft

2 + 1 (15)

In an unpadded signal, the centre of the window function corresponds to the
nwin/2

th index in the original signal. This may or may not be desired since there
is a loss of information around the boundaries in the resultant signal. It is more
convenient if the centre value of the window function corresponds to the 1st value of
the original signal. Similarly, the last section of the original signal does not receive
the same number of overlaps if just beginning of the signal is padded. So, a symmetric
padding on both sides of nwin/2. However, this leads to artifacts around the edges of
the spectrogram [64].

The overlap of the time-series data between two consecutive window shifts, usually
described in the form of overlap percentage or hop size, is a critical parameter. The
overlap dictates the trade-off of certainty in time versus frequency. A huge overlap
approaching 100% is analogous to just taking the FFT of the entire signal and results
not only in data redundancy, but also in aliasing. For this reason, an overlap of 50%
is recommended for most periodic windows with an upper limit of 75% [67] for robust
reconstruction and preventing aliasing.

The overlap and hop size are described by the relation

nhop =
[
1 − overlap%

100

]
nfft (16)

Figure 10 shows spectrograms generated with different mentioned parameters.
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Figure 10: Spectrograms generated with different parameters. The original spectro-
gram is generated with nfft = 64, nhop = 16, Hanning window, no padding, and on
linear scale. Each spectrogram shows the effect of changing a single parameter while
keeping the rest same as that of the original.

2.3 Robustness
In applications of HAR using sensor data, it may be more appropriate to evaluate a
technique’s robustness to changing input distributions, noise, and out-of-distribution
(OOD) inputs. Measuring the reliability of such classifiers becomes paramount in
these settings which have frequent changes in situations, tasks, or operators. DL
models in particular have been shown to be less robust to input noise, OOD samples,
and poor features [68–70]. Further, it has been shown that achieving robustness
is at odds with our desire for a recognizer that has high accuracy [71–73]. So, we
have to ensure a balance between the recogniser performance and its robustness to
OOD inputs. Significant efforts have been made to address this problem, general
to DL-based classifiers, by modifying the training methodology [74], encouraging
classification boundary smoothness [72, 75, 76], or by using loss functions which
encourage robustness [77, 78].

The definition of robustness varies with the context and the parameter for which
the variability of the model is trying to be minimised. In a real world HAR scenario,
a typical user is concerned with their perception of the reliability in response to their
input under different situations, i.e., how reliably can the application produce the
same output for similar input under different conditions. Consequently, for a user-
oriented application, it is reasonable to optimise a gesture recogniser for robustness
in recognition accuracy across different demographics and changing situations.

2.3.1 Overfitting and Regularisation

Robustness in DL is primarily concerned with resilience of the network’s predictions
to outliers. These outliers may be from unseen test data with slight distributional
shifts — which is usually the case since test distributions tend to differ from train-
ing distributions [79] or maliciously perturbed samples with the aim of “fooling”
the network to misclassify a negative sample as a positive one especially in user
authentication. The latter acts are commonly known as adversarial attacks and
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Figure 11: Motivation of TRADES algorithm for promoting boundary smoothing
[72]. Left, decision boundaries of a normally trained classifier. Right, smoother
decision boundaries of a classifier trained with taking boundary smoothness into
consideration via TRADES loss function.

the robustness associated with such malicious samples is thereby called adversarial
robustness. A multitude of reasons have been demonstrated to be at play for a
network’s failure for adversarial perturbations like high bias with negative local
effects due to regularisation [80], or more empirically, overfitting [81] which seem
to be contradictory. Yet another study finds that an overfit network is sufficiently
vulnerable for privacy-breach attacks which is shown to be analytically controlling
for overfitting by regularisation and design of the model architecture itself [82].

Overfitting is a concept in statistical models where the underlying decision
function fits too closely to a specific set of data points, generally to the training
set, severely impairing the model’s ability to generalise to unseen test data which
most likely will have a different distribution. A well-fit model on the other hand
helps the model to have relatively lax decision boundaries such that the model is
robust to slight distributional shifts for the test data. This can be achieved by
modifying the training process like early stopping [81], model design choices [82] or
even by accommodating a penalty for sharp decision boundaries during training [72].
Figure 12 shows a representation for the difference between an overfit and a well-fit
multi-class classifier.

Regularisation techniques like dropout in FC have shown significant benefits to
combat overfitting [83]. Due to the enormous size of the FCs, they are severely
prone to overfitting. A viable alternative to using FCs for the flattened feature
vector after CNN feature extraction is by using global pooling, specifically Global
Average Pooling (GAP) which forces the CNNs to be trained in such a way so that
they output feature scores for classification rather than high dimensional features
[84]. Equation 17 and 18 represent the GAP operation for one-dimensional and
two-dimensional convolution features respectively.
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Class 1
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Class 3

(a) An overfit classifier.

Class 1 Class 2

Class 3

(b) A well-fit classifier.

Figure 12: Representation of decision boundaries on the training set for multi-class
classifiers under different fitting conditions for the same set of data points.

x̄n,i = 1
J

J∑
j=1

xn,i,j (17)

x̄n,i = 1
J

J∑
j=1

1
K

K∑
k=1

xn,i,j,k (18)

Further, Training of a deep neural network is typically sensitive to hyperparameter
initialisation. Normalisation methods like batch-norm [85], instance-norm, layer-
norm [86], and group-norm [87] have been shown to provide sufficient robustness
to the choice of hyperparameters. Figure 13 shows the difference between these
normalisation strategies. Although it is still a topic of debate whether the benefits
are due to the improvement in internal covariate shift as initially argued or due to
factors like optimisation landscape smoothing [88, 89].
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C N
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H
,
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Figure 13: Different normalisation strategies for a batch of inputs. N is the number
of samples in the batch, C is the number of channels in a sample and H, W represent
the spatial axes.
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2.3.2 Data Augmentation

Data augmentations are sets of techniques for modifying or slightly perturbing the
ground truth samples in order to improve a model’s ability to generalise better and
to be more robust to slight variations in the input. This is especially helpful when
the training dataset is relatively small or their is a class imbalance which could lead
to bias in the model or poor inference performance at deployment due to overfitting.
Augmentation thus helps to artificially inflate the dataset to mitigate overfitting and
is one of the most popular remedies applied as a method of regularisation [90].

Data augmentation techniques for photographic images are usually in the form
of random cropping, rotating, perspective transforms, filtering, normalisation [91],
adding noise etc. which are nowadays baked into deep learning frameworks for
ease of use. More advanced methods like random erasing [92] and style transfer or
synthetic data generation with Generative Adversarial Networks (GAN) [93, 94] have
successfully demonstrated the advantage in boosting the classifier performance for
their respective tasks.

However, images are inherently different from STFT spectrograms. Spectrograms
have a sequential nature as one traverses along the temporal axis because of the overlap
used during the generation process. Further, the values of the spectrogram are usually
in a log or decibel scale to emphasise a human’s perception of auditory frequencies
or musical notes. Therefore it makes it difficult to use the same augmentations that
are commonly used for spatial image data. Naively applying methods like time-
shift, frequency-shift, and image warping have showed detrimental results on audio
spectrograms by Nanni et al [57]. The same study demonstrates marginally better
performance if appropriate augmentations are applied to the raw audio signal first
and the spectrogram generated afterwards. Further, patch erasing with frequency
and time masking has been shown to improve speech recognition using spectrograms
[95]. Figure 14 shows some of the discussed spectrogram augmentation techniques.

Figure 14: Augmentation strategies applied on the spectrogram data rather than on
the original sound signal [57].

Unlike images and audio, sensor data augmentation has had less exhaustive
research but because of the similarity to audio data, some augmentations may be
directly applicable on sensor data as well like those by Nanni et al. In an HAR study,
Eyobu et al [30] propose downsampling using local averaging and feature shuffling as
a method for augmenting IMU sensor data. SensoryGAN has also been proposed as
an advanced method to generate and augment sensor data for HAR applications [96].
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2.3.3 Cross-validation for Model Evaluation

Classical datasets in ML and DL for classification follow a categorical setup with a
set of data points belonging to a certain class A, then another set belonging to class
B and so on. The division is based on classes, hence, the problem of classification.
The de-facto way to train a model with such a dataset involves splitting the dataset
into three partitions — training, validation, and testing. The model is adjusted
with the training dataset and its performance monitored with the validation dataset
during training. The validation split provides a good estimate of when the model
starts to overfit. The test dataset is then used post-training for a final evaluation of
the trained model on unseen data. This is called the three-way holdout method for
training.

However, it may be more appropriate to partition the dataset into smaller
partitions and cycle those splits as training, validation, and testing one by one to
get a better overview. k-fold cross-validation achieves this by splitting the complete
dataset into k partitions. k − 1 partitions are used for training and the remaining
partition is used for validation [97]. This is repeated k times (folds) with different
combinations of the splits as shown in Figure 15. Performance on the k validation
sets is then used to infer the average model behaviour. This ensures that each sample
in the dataset is used both for training and validation. Despite its advantages, k-fold
cross-validation remains less popular than the hold-out due to its high computational
demands.

Real world data, especially that generated from humans, can have more than one
level of stratification. This hierarchy also means less data per individual class at the
lowest level. This puts into question a model’s performance, ability to generalise,
and robustness under new situations, individuals, and other external factors. The
simple three-way holdout does not provide nearly enough information on model
capabilities and may seemingly suppress or downplay certain situations where the
model fails considerably. k-fold cross-validation can be modified to address these
concerns by instead treating each user or situation as a partition for the method
as shown in Figure 15. Then k-fold can be applied as leave-user-out (LUO) or
leave-group-out (LGO) to aptly reflect the stability of the model under varying strata.
The performance statistics would then reflect the model’s robustness and its potential
capabilities on an unseen group when trained with the complete dataset. A study
by Laput and Harrison [16] has shown this as an important measure for a model’s
performance under such an experimental setup where they portrayed the degradation
of their model’s performance under changing situations — or their model’s robustness
to situational variations.
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3 Research Material and Methods
The aim of this thesis is to deploy a robust recogniser on a smartwatch with a model
architecture that is capable of performing inference on the raw sensor data with
minimum overhead. Considering the meagre computational resources available on a
smartwatch, the preprocessing steps, the preprocessing steps as well as the operations
in the classifier itself have to be minimised as much as possible. Acknowledging the
state-of-the-art results achieved by using high resolution spectrograms by Laput and
Harrison (L&H) [16], a similar architecture is devised but with a smaller footprint.
These architectures can then be benchmarked against the classifier that works on
the raw sensor data and the L&H baseline.

A simpler model, with a smaller number of trainable parameters, is less prone
to overfitting. This translates to smoother, less tight decision boundaries. Further,
architectural decisions on the incorporation of certain layers have a significant impact
on controlling the number of model parameters. With these motivations in mind, an
appropriate pipeline and test-bench are prepared for the training of situational- and
individual-invariant robust gesture and activity recognisers.

3.1 The Dataset
The custom dataset used for the experiments consists of data from 24 participants for
several gestures and activities. The data is recorded using a Ticwatch Pro 3 smart-
watch sampled at approximately 100 Hz and contains sensor data from accelerometer,
gyroscope, and gravity sensor from the Android Sensor API in the Comma-Separated
Values (CSV) format. The annotations from Non-Verbal Annotator (NOVA) [98, 99]
are available as time stamp durations when the gestures or activities occur for each
class and for all levels of stratifications. The sensor data has readings in SI unit and
their coordinate system is shown in Figure 16. Extracts from the CSV file and the
annotation files are shown in Listings 1 and 2 respectively. The start of the gesture
or activity is considered to be between the process of the participant raising their
hand and the end treated as the time between the process of lowering their hand
as shown in Figure 17. The overall dataset structure is shown in Figure 18 and a
description of the files in Table 1.

1 0.84544194;6.9000516;7.1132083
2 0.8334668;6.557564;7.302415
3 0.81909674;6.550379;7.3886356

Listing 1: Extract from semicolon delimited CSV of accelerometer sensor data. The
three values in each row correspond to the X, Y, and Z -axis values for the sensor.
Each row occurs after 10 milliseconds (100 Hz sampling rate).

1 1.28;2.72;0;1
2 2.72;20.48;3;1
3 20.76;26.44;1;1

Listing 2: Annotation file from NOVA. Each row corresponds to a gesture or activity
instance with start timestamp, end timestamp, class index (internally used by NOVA),
and confidence level (1 for manually labelled data).
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(a) Android smartphone. (b) WearOS smartwatch.

Figure 16: Sensor coordinate systems for the Android Sensors API.

The file naming convention for the annotation files follows the format,

kh008  
user

_ tight03  
instance

_ payment tilt  
experiment

.annotation(∼)

and the corresponding sensor files are named with the convention,

trim  
prefix

_ kh008  
user

_ tight03  
instance

_ Accelerometer  
sensor

.csv

(a) Tight-strap tilt gesture showing higher
activity in gyroscope.

(b) Loose-strap shake gesture showing
higher activity in accelerometer.

Figure 17: Annotation samples showing the starting and ending point of gesture.
From top to bottom — accelerometer X-axis, gravity sensor Z-axis, gyroscope X-axis,
annotation name with levels.

3.1.1 Payment Gesture

The collected gesture data is for two payment gestures — shake and tilt as shown
in Figure 19. For each condition, both the gestures are performed 10 times per
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-...

Driving

Passenger
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Level 1 condition

Level 2 condition
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Major class

Figure 18: Structure of the dataset for a particular user.

Table 1: Description of the files in the dataset.

Extension format Source Description

.csv (Comma-separated
Values)

Data collection
tool

Sensor data in CSV files for the correspond-
ing sensor (accelerometer, gravity, gyroscope).
The data is actually semicolon-separated and
not comma-separated for compatibility with
NOVA.

.annotation (XML) NOVA Describes the annotation labelling scheme.

.annotation (tabular,
text)

NOVA Labels with start and end timestamps (in sec-
onds), label ID from the annotation labelling
scheme, and confidence value (not used).

.nova NOVA NOVA project file for editing and viewing if
required.

sampleRate.txt (tabular,
text)

Annotator Contains the sample rates used for aligning the
different sensor data in NOVA for annotation.

.ftr (Feather) Processing Contain the data frame for the user. “df.ftr”
contains the intermediate multilabel representa-
tion, “mlb_df.ftr” contains the final multi-hot
representation.

.dvc DVC (Data Ver-
sion Control)

Tracks the changes to the files in the dataset
for a git-enabled version control.

participant resulting in a total of 90 instances of each gesture per participant. The
gesture dataset is stratified into two different levels as shown in Table 2.

The “free” condition denotes an instruction for the participant to act out the
gesture as they would naturally and with some intended variability while wearing
the watch at the tight strap level. It sits on the same high priority level as watch
tightness because L&H have previously shown post-watch-removal situations to be
an important factor affecting model robustness. These post-watch-removal situations
could have been at either ends of the tightness spectrum but they more importantly
signify the effect of variability which the “free” class represents well.
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(a) Shake gesture. (b) Tilt gesture.

Figure 19: The gesture motions used as triggers for the intent of performing payment
via the smartwatch.

Table 2: Description of the gesture dataset.

Level Parameter Condition Description

1 Watch tightness Loose Watch worn with loose strap
Tight Watch worn with tight strap
“Free” Gesture performed naturally

2 Body posture Sitting Gesture performed while sitting in a chair
Standing Performed while standing upright
Walking Performed while walking around in the room

3.1.2 Steering Activity

The activity dataset is concerned with recognising the activity of steering while
driving a car. The data has the same sampling rate of approximately 100 Hz and is
recorded with participants driving in an in-lab environment using a gaming steering
wheel while driving on a simulator. The setup is shown in Figure 20. The activity
dataset is stratified similar to the gesture dataset as shown in Table 3.

(a) Steering simulator setup.
(b) Participant using the simulator.

Figure 20: Setup for recording the steering activity with a simulator.
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Table 3: Description of the gesture dataset.

Level Parameter Condition Description

1 Watch tightness Loose Watch worn with loose strap
Tight Watch worn with tight strap
“Free” Gesture performed naturally

2 Driving situation Relaxed Casual driving across the simulator map
Intense Driving to reach destination in a hurry
Parking Parking the car on the street

3.1.3 Rejection class

The dataset further comprises an overall rejection superclass collected in the lab
which contains everyday gestures and activities meant to differentiate intended user
actions from unintended ones. The “everyday” class has no levels of stratification and
is described in Table 4. An additional subclass called “rest” is labelled for durations
where the participant does not perform any significant gesture or activity. However,
these durations of inactivity are treated differently from the “everyday” superclass.

Table 4: Sixteen gesture and activity classes recorded under the “everyday” superclass.

Gesture/activity class Description

cup - shake Shaking a cup to confuse with the payment shake gesture.
cup - tilt Tilting a cup to confuse with the payment tilt gesture.
wave Waving hand to greet someone.
jog Pretending to jog in place.
comb Combing or pretending to comb their hair.
phone Using their mobile phone.
bottle Opening or closing the cap of a bottle.
drink Pretending to drink from a cup.
knife Cutting food with a knife and a fork.
fork Pretending to eat with a fork.
spoon Pretending to eat with a spoon.
burger Pretending to eat a burger.
dust Cleaning the table with a paper towel.
dishes Pretending to wash a plate.
washer Putting utensils into an imaginary dishwasher.
door Opening and closing a door.

3.2 Data preparation
The raw sensor data was provided as three CSV files for each sensor along with
separate files for the labelling scheme and annotations (units in seconds). For
preparing the dataset for use in machine learning, the label files were parsed to obtain
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the row indices of the samples in the CSVs by the simple relation in Equation 19
where i denotes the row index (rounded to the nearest integer) in the CSV file, t is
the timestamp in the annotation file, and fs is the sampling rate for the experiment.

i = ⌊t × fs⌉ (19)

The files are read with Python and an intermediate Pandas dataframe is created
for each user (participant) to help load their data easily. The structure of the
dataframe is shown in Table 5 where user is the code for the participant, sensor file
is the name of the sensor files corresponding to the sample, starts are the starting
indices of the gesture sample for the three sensors — accelerometer, gravity, and
gyroscope. Likewise, ends are the closing indices for the sample, label describes the
experiment the sample belongs to. Label IDs are the class indices used internally by
NOVA. This dataframe is used to obtain a multi-hot encoded dataframe because of
the different levels of stratification in the dataset. For example the tilt sample in
Table 5 belongs to the level 1 “free” strata and to the level 2 sitting body posture.

Table 5: Extract from a participant’s intermediate dataframe.

User Sensor file Starts Ends Label Label IDs

kh026 kh026/trim_kh026_free02 [385, 384, 384] [511, 509, 509] [tilt, free, sit] [1, 2, 5]
kh026 kh026/trim_kh026_free02 [602, 601, 601] [732, 730, 730] [tilt, free, sit] [1, 2, 5]
kh026 kh026/trim_kh026_free02 [731, 729, 729] [849, 846, 846] [tilt, free, rest] [1, 2, 1]

3.2.1 One-vs-all Classification Task

The classification task is devised as a recognition task, whether the performed gesture
or activity was the intended one or not. This is a binary classification task with
the positive class being the intended action and negative class being the rejection
class. For payment gesture recognition, both the “tilt” and “shake” gestures are
merged to form a single payment class. The “everyday” superclass with the “rest”
class for gestures is used to form the rejection class. For steering activity recognition,
the “driving” class forms the positive class and the rejection class consists of the
“passenger” class, the “everyday” superclass, and the “rest” class for activities.

The reason for reducing this multi-class multi-strata classification problem to
a binary classification problem is to be able to assess the network’s capability for
rejecting false positives reliably in sensitive applications like performing payments
under a variety of situations. Unintended triggering of payment will have severe
impact on the user experience and incur financial losses. Narrowing down this
problem in a one-vs-all classifier enables the payment gesture to stand out from
unintended everyday activities. This also helps with ensuring the neural network
has enough samples and variability per class — in this case two classes, to prevent
overfitting.
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3.2.2 Time-series

For classification, approximately three seconds were considered appropriate as the
maximum duration during which a gesture takes, which has also been done previously
for activity recognition by L&H. It is sufficiently long to be able to reliably capture
most gestures generated with intentional hand movements. 304 samples at 100 Hz
are used which represent ≈ 3.04s worth of IMU sensor data. This arbitrary length of
304 is chosen to be able to generate spectrograms of specific dimensions. Labelled
sequences shorter than the length of 304 (≈ 3.04s) are zero-padded on both ends;
the longer sequences are split into chunks of length 304 according to the overlapping
strategy shown in Figure 21. These chunks are then fed to the network as inputs for
training and inference.
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(a) Strategy for creating chunks from a
sample longer than 3.04 s.
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(b) Symmetric zero-padding for samples
shorter than 3.04 s.

Figure 21: Padding and splitting strategies for fixing the input size for use in CNNs.

3.2.3 Spectrograms

Spectrograms help in visualising the evolution of frequencies in a waveform over time.
This is achieved by applying a Short-Time Fourier Transform (STFT) with a sliding
window function over the waveform of interest. Spectrograms have found extensive
use in the field of audio signal processing and can be a useful tool to capture the
periodic nature of human activities.

The 3.04 s long time-series data sequences prepared in Section 3.2.2 are used to
generate spectrograms. A Hanning window function was used for the STFT along
with an FFT length of 64, yielding a total of 33 frequency bins for a resolvable
frequency range of 0-50 Hz from a signal sampled at 100 Hz, which gives a frequency
resolution of ≈ 1.5 Hz. The STFT was calculated without padding to minimise edge
artifacts in the resulting spectrogram. A sliding window overlap of 75% was chosen
to have sufficient resolution along the temporal axis to minimise data redundancy
and unnecessary additional compute STFT operations [17]. This yields 16 rolling
frames for a 304 sample long signal which creates a spectrogram of dimensions 33×16.
The highest frequency bin for the range of 48.5–50 Hz is discarded to conform the
dimensions to powers of 2 for an easier handling of maxpooling operations in the
deep learning network. The spectrogram matrix consists mostly of smaller values
with sparse high values in regions of interest making the pixel distribution of the
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spectrogram heavily skewed and similar to that of a power function as shown in
Figure 22. So, the computed spectrogram is scaled from the amplitude scale to the
logarithmic (dB) scale with the aim of Gaussianising the pixel distribution within a
single spectrogram to enable faster convergence of the network during training [91].
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(a) Linearly scaled spectrogram.
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(b) Log scaled spectrogram.

Figure 22: Pixel distributions for spectrogram values under different scaling and
their visual differences. Both spectrograms were generated from the same signal.

3.3 Neural network design
Recurrent networks find common use in applications of machine learning on sequential
data of arbitrary lengths. Mobile SDKs provide native implementations on the
smartwatch for common layers and operations, like vanilla Recurrent Neural Network
(RNN), CNNs, pooling, normalisations, and activations like Rectified Linear Unit
(ReLU) and TanH. However, vanilla RNNs tend to suffer from the problem of
vanishing gradients over long sequences of data. Recurrent network operations
also tend to be less parallelisable because of their sequential nature, making them
computationally slower for training. CNNs offer a solution around these problems
with the caveat of having a predetermined fixed-sized input. This enables us to
use CNNs for gestures, which tend to be of short durations, by fixing a threshold
duration (in our case, approximately 3 seconds). This also has the added benefit that
CNN based classifiers are easily reusable for transfer learning as feature extractors
for other domains or for subsequent use with recurrent networks with the reduced
latent representations.

We consider the binary classification task of whether a triggered gesture or activ-
ity denotes the positive label (payment for gesture recognition, steering for activity
recognition). Variations of simple CNN-based neural network architectures are de-
signed and proposed with the aim of deployment in ready-to-use application-oriented
scenarios on the low-end hardware of smartwatches. To keep the preprocessing
overhead to an absolute minimum, the “raw” sensor data from the accelerometer,
gyroscope, and the gravity sensors is used as it comes from the smartwatch API.
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3.3.1 Network inputs and CNN features

The proposed base model’s priority is to work on the raw sensor data for recognition.
For the model input, 304 time-series samples representing ≈ 3.04s of IMU data from
each of three sensors (accelerometer, gyroscope, and gravity sensor) having 3-axis
measurements are used. These contribute 3 channels (X, Y, Z) per sensor, resulting
in a total of 9 channelled input data sequence making the input shape 9 × 304. For
the time-series model, this is passed through 3 Convolutional Units (ConvUnits)
where each ConvUnit is defined as a block consisting of a 1D padded convolutional
operation, a 1D batch normalisation, followed by the ReLU activation function. The
design for the ConvUnit is similar to that of a conventional convolutional block of
the ResNet but extending its 2D operations for the 1D sensor signals in our case of
time-series input. The proposed architecture variation utilising the time-series data
is shown in Figure 23a.

This network architecture is extended to 2-dimensions for spectrogram inputs, in
order to compare the proposed approach to Laput and Harrison’s, which represents
the current state-of-the-art. The 9-channel 304 sample long time-series is converted
channel-wise into spectrograms. Each axis of the three sensors results in one spectro-
gram yielding a net input shape of 9 × 32 × 16. To reduce dimensionality across the
2D ConvUnits, a 2 × 2 maxpooling is incorporated but the overall recipe remains the
same as shown in Figure 23b. This architecture is further expanded by building and
training end-to-end a mid-level fusion network with a shared classifier and inputs
as both the time-series and spectrogram modalities. The motivation of using both
modalities is that the resulting network would be able benefit from the information
in both the time and frequency domains as they are correlated [100]. This network,
shown in Figure 23c consists of a time-series head and a spectrogram head which are
the CNN feature extractors from the previously discussed architectures.

3.3.2 CNN feature classification

The use of CNN features has been popularised primarily in transfer learning. This
enables cross-domain learning which can be useful when faced with the issue of having
a smaller dataset. Features learnt from a larger dataset can be reused to help with
and fine-tune to the new domain. Each ConvUnit has 64 kernels for feature extraction
and the size of kernels increases from 3 to 5 to 7 with each successive ConvUnit to
view the signal at different receptive fields. The output of the final ConvUnit is then
passed to a Global Average Pooling (GAP) layer which collapses information along
the temporal dimension, with the idea of forcing the ConvUnits to not work just as
feature extractors but to output feature scores to help the final classification task in
the subsequent layers. GAP also reduces the number of learnable parameters in the
network helping to reduce the model size substantially which minimises the risk of
overfitting when compared to the conventional VGG16-like approach of flattening the
convolutional features as a vector and passing them to fully-connected layers directly;
we also get around the need for using dropout for regularisation because the fully-
connected layers are small enough to avoid overfitting on the low-dimensional dataset
used for training. Finally, the pooled tensor is passed through a fully-connected layer
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(a) 1D convolution based model architecture for time-series inputs.
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(b) 2D convolution based model architecture for spectrogram inputs model.
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Figure 23: Network architectures

which gives the class scores.

3.4 Extending to Activity Recognition
The same network used for payment gesture recognition can be used for activity
recognition by training on the steering data. The activity signals for driving tend to
be longer than the fixed window of 3.04s and so are split into multiple 3.04s using
the splitting strategy discussed in Section 3.2.2. Inference is performed only on a
3.04s sample of steering. This is called the “one-shot” detection for steering activity.
For a more comprehensive, on-the-fly approach, this method can be further extended
to run on multiple incoming 3.04s samples and the inferences can be pooled and a
majority vote or moving average performed to obtain a more concrete prediction over
longer durations as shown in Equation 20 where f represents the neural network,
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xt
(3.04s) is the input sample of 3.04 s duration at time t, and N is the number of

samples to be considered for pooling. Figure 24 depicts this process of voting.

y = 1
N

N∑
t=0

f
(
xt

(3.04s)
)

(20)

3.04s

Majority Positive

Figure 24: The process of majority voting for accommodating longer sensor samples
for activity recognition for the current model designed for 3.04 s duration input.

3.5 Augmentation strategies
3.5.1 Time-series

The time series samples are subjected to random augmentations, each with probability
p = 0.5. These augmentation strategies aim to artificially inflate the dataset and
produce pseudo-realistic perturbations to the raw samples. The factors are chosen
on the conservative end to minimise the effects of distribution shifts when compared
to the clean data [101]. The augmentations are described below and presented in
Figure 26.

• Random time shift: The signal is shifted across the time axis by a minimum
change factor of 1% and a maximum factor of 10% of the sample duration in
either direction. The factor is chosen randomly from an underlying uniform
distribution between the specified limits. So, a factor of +5% means the sample
is shifted by 5% of its length in the positive direction. Equation 22 depicts the
shifting process for an input sample xt shifted by ∆t, sampled from a uniform
distribution U , yielding yt.

∆t ∼ U(−0.1, −0.01) ∪ U(0.01, 0.1) (21)
yt = xt+∆t (22)

• Random frequency shift: Librosa [102] is used to process the time series
sensor signal as an audio signal. The sample is subjected to a time stretch
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function to compress or dilate the signal. The minimum change factor is 0%
and the maximum factor is set to 3% of the sample duration and the value is
drawn from a uniform distribution. A factor of -1% means that the signal is
now shorter by 1% (thereby increasing the motion frequency).

• Random amplification: The values in the sample are multiplied by a random
value between 98% and 102% of the original value as shown in Equation 24.
No changes in sample length occur in this transform.

A ∼ U(0.98, 1.02) (23)
yt = Axt (24)

• Random axis rotation: The accelerometer and gravity sensor channels of the
sample are rotated along the X-axis by an angle between ±3◦. The gyroscope
follows a local coordinate system and does not need to be rotated since it
outputs values in a relative frame of reference unlike accelerations. Figure 25
shows the proposed coordinate augmentation for the sensor signals. Rotation
along X-axis can be represented by the rotation matrix in Equation 26.

θ ∼ U(−3◦, 3◦) (25)

R =

⎡⎢⎣1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎤⎥⎦ (26)

a′ = Ra = R

⎛⎜⎝ax

ay

az

⎞⎟⎠ (27)

Figure 25: Random axis rotation augmentation for the sensor signals on the local
coordinate system of the smartwatch.
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• Random noise: A Gaussian modelled noise is added to the sensor sample.
The noise distribution parameters are estimated by taking extended samples
from a region of no activity in the participant data and is then subjected to a
sixth-order Butterworth filtering process with a cut-off frequency at 25 Hz as
shown in Figure 27. The difference in the filtered and the aligned raw signal
then yields the error signal and thus an estimate of the noise parameters for
modelling the Gaussian noise. This is repeated for all sensors — accelerometer,
gravity, gyroscope, to obtain three Gaussian models for each sensor. The
distributions are N (0, 0.125), N (0, 0.015), and N (0, 0.028) for accelerometer,
gravity, and gyroscope respectively. Equation 29 represents noise addition to a
single channel of accelerometer.

n ∼ N (0, 0.0125) (28)
a′

x = ax + n (29)
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Figure 26: Original time-series sample and the possible augmentations applied to it.
The effects are exaggerated for visualisation.
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Figure 27: Frequency response of the sixth-order Butterworth filter and the filtering
process to estimate sensor noise parameters. Average and standard deviation of the
difference/error signal gives the mean and standard deviation of the Gaussian.

3.5.2 Spectrograms

Spectrogram augmentations can be achieved by two means. One is to augment the
original sensor or audio signal first and then generate spectrograms and the other is
to augment the spectrogram itself as shown by Nanni et al [57]. This thesis follows
the latter approach to ensure independence of the two modalities and incorporates
known augmentation strategies like SpecAugment [95] which have shown promising
results for speech recognition. The augmentations applied are discussed below and
are shown in Figure 28

• SpecAugment: Random patch erasing along the frequency and temporal
axes is performed with a mask width upper bound of 10% of the spectrogram
dimensions. The mask width is drawn from a uniform distribution and one
mask is applied each to the temporal and frequency axes. The mask type is set
to “mean” which replaces the value within the mask with the mean channel
value.

• Random amplification: The same protocol is followed as that for the time-
series sample except for spectrograms, the factor is additive and not multiplica-
tive due to the logarithmic scale of values as shown in Equation 31.

A ∼ U(0.98, 1.02) (30)
yt = xt + log A (31)
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Figure 28: Original spectrogram sample and the augmentations applied to it.

3.6 Quantifying robustness
We have looked at several interpretations of robustness in terms of boundary smooth-
ness, optimisation landscape smoothness, and robustness to adversarial inputs. How-
ever, at a more application-oriented level, robustness in user-experience can be
defined and perceived as an application or service’s reliability of reproducing the
same result under different individuals and conditions. The dataset in Section 3.1
divides the data classes further into per-user basis, as well as under varying situations.
This enables the ability to partition the data into user-specific and condition-specific
chunks for applying a modified k-fold cross-validation resulting in leave-one-user-out
(LOUO) and leave-one-condition-out (LOCO) cross validations.

The LOUO has 24 folds for the 24 participants in the dataset. For each fold, a
model is trained on 23 participants and the remaining participant is used for cross-
validation. Similarly, LOCO has 6 folds for 6 situations in both gesture and activity
cross-validation. The payment gesture recognition setup has three situations for strap
tightness and three of body posture, while steering activity has three situations for
strap tightness and three for driving condition. These cross-validations help to gather
model behaviours extensively for the entire combination of users and situations. The
metrics for all the folds are logged and the mean metric defines the average model
behaviour while the standard deviation of the metrics justifies the model’s robustness
to how an average model performs to an unseen user or situation not in the training
set.This method of evaluation helps to narrow down the particular situations or
individuals for which the model performs poorly.

Further, the models trained using LOUO can be evaluated on the left-out users in
a stratified manner. This means that instead of using the classes for the left-out users
as one test set, the test set is separated into the separate conditions to paint a clearer
picture of how the model performs for an unseen user under different situations. This
evaluation is coined as the situational robustness of the model for the new user.
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4 Experiments
The proposed model variations are compared with an extensive test-bench reflective
of real life scenarios when the model is subject to deployment. We consider the
binary classification task of intended action recognition.

4.1 Experimental setup
Each network is trained for 60 epochs on batches of size 128 of 3.04s samples with
the Adam optimiser using an initial learning rate of 0.05 and an exponential learning
rate scheduler (γ = 0.9). A random weighted-sampler is used to remove bias against
minority sample classes. The general categorical cross-entropy loss and two logits
for the binary classification task instead of the conventional binary cross-entropy
loss (BCELoss) with a single logit. All networks were trained on a Dell Precision
5820 Ubuntu 20.04 workstation with Intel Xeon W-2133 (12-core 1.2-3.9GHz) and
an NVIDIA TU106 (GeForce RTX 2070). PyTorch 1.8.0 is used as the deep learning
framework along with Tensorboard for monitoring model evolution.

4.2 Cross-validations
Accuracy has been traditionally used as a standard metric for almost all classification
tasks. But for imbalanced datasets or for multiclass problems, accuracy can be
a misleading metric. To address this, we report metrics like precision, recall, the
macro-F1 score, and the balanced accuracy which take into account these issues.
This is especially important for the cross-validation methods used in the experiments
like leave-one-user-out and leave-one-condition-out since a simple accuracy would
suppress the minority class.

We consider both the mean of the metrics and their standard deviations to be
important indicators during our evaluation. A high mean metric value is prioritised
but if two approaches happen to be tied for the same place then we consider the one
with the lower standard deviation to be the better approach.

4.3 Baseline comparison
For a state-of-the-art baseline classifier, the model proposed by Laput and Harrison
(L&H) is used for comparison. The L&H model takes a 3-channel spectrogram as
input of dimensions 256 × 48 from the accelerometer sensor. As mentioned in the
previous section, we change the final layer to output for 2 classes instead of their 25
class for our gesture recognition task.

The L&H dataset is not directly usable on our proposed architectures. This is
because the L&H dataset is provided in the form of 3-channel spectrograms without
the original raw time-series data. Naive downsampling of their spectrograms for use
with our model would not be representative of real-world testing since spectrograms
have both temporal and frequency axes which cannot be scaled independently. Access
to the raw time-series data would have enabled us to generate spectrograms with
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our parameters (Section 3.2.3). However, the parameters they used in their study
can be inferred and their procedure replicated.

The L&H spectrogram generation process for L&H is performed by upsampling
the time-series sequences from 100 Hz to 4 kHz. A cubic interpolation is performed on
the time-series signal and the signal is evaluated at an effective sampling rate of 4 kHz.
Then their steps for spectrogram generation are recreated with an FFT window
size of 4096, a 2.998 s sample interpolated at 4 kHz, and a hop size of 168, yielding
a 2049 × 48 sized spectrogram. Only the bottom 256 bins are kept representing
frequencies from 0–128 Hz at a resolution of 0.5 Hz. We did not have access to the
high sampling rate of 4 kHz for our data collection. Note that due to the property
of the Nyquist sampling rate, it is fundamentally impossible to resample a 100 Hz
signal to 4 kHz by the Fourier method [103]. However, we have tried to circumvent
this problem with interpolation. The spectograms obtained with this method were
visually consistent to those in the original study as can be seen in Figure 29.

(a) 256 × 48 activity
spectrogram from L&H
dataset [16].

(b) 256 × 48 spectro-
gram from 4kHz inter-
polated gesture signal.

(c) 32 × 16 spectrogram from 100 Hz gesture
signal for the 2DConv-based network architec-
ture.

Figure 29: Accelerometer spectrograms for the Laput and Harrison baselines and for
the proposed 2DConv-based architecture. (b) and (c) were generated from the same
gesture signal.

5 Results and Discussion

5.1 Payment Gesture Recognition
Figure 30 summarises the results of the payment gesture cross-validation experiments
for robustness. The result summary is presented as a collection of confusion matrices
to help examine the classifier performance at a glance, with class 0 as the positive
class and class 1 as the rejection or negative class.

5.1.1 User-independent experiments

Following the conventional approach for training a deep learning classifier for unpar-
titioned data, we pool together all participant (or user) data and collapse all levels
of situations (strap tightness, body posture) under their respective superclasses of
payment and rejection. The resulting singular dataset contains samples from all
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Figure 30: Confusion matrices for the payment gesture binary classification experi-
ments for the modality fusion network architecture. If there are multiple folds in
the experiment, then the matrices are averaged across all folds to generate a “net”
confusion matrix.

users and situations. The dataset is randomly shuffled and split into 75% training,
12.5% validation, and 12.5% testing. This experiment aims to demonstrate the
model’s capability to classify new samples from a user who is already present in the
training data. Table 6 shows the results for the experiment for the different model
architectures.

5.1.2 Leave-one-user-out experiments

A classifier, after deployment, seldom is retrained on fresh data. For a classification
task involving participants, it is not always possible to train on a sample size
representative of the target population. Hence, ensuring robustness across users
becomes paramount to mitigate variability that may arise due to individual differences
in performing gestures. To demonstrate how a model (pretrained on a set of users)
performs when used by a new unseen user (not present in the training data), we
perform the leave-one-user-out cross-validation. For each cross-validation fold, data
from one user is held out for testing and the remaining participants are used for



45

Table 6: Binary classification performance on the test set for payment gesture
detection on the user-independent experiments (averaged over 5 independent training
runs).

Model Architecture Accuracy Balanced Acc Macro-F1 Precision Recall

Baseline L&H (nclass = 2) 0.994 ± 0.002 0.993 ± 0.002 0.993 ± 0.002 0.992 ± 0.003 0.993 ± 0.001
Time-series (1DConv) 0.992 ± 0.001 0.991 ± 0.001 0.990 ± 0.001 0.991 ± 0.001 0.990 ± 0.002
Time-series (+ Augment) 0.991 ± 0.001 0.990 ± 0.001 0.990 ± 0.001 0.991 ± 0.001 0.988 ± 0.001
Spectrogram (2DConv) 0.992 ± 0.001 0.991 ± 0.001 0.991 ± 0.001 0.990 ± 0.002 0.992 ± 0.001
Spectrogram (+ Augment) 0.993 ± 0.002 0.992 ± 0.002 0.992 ± 0.002 0.991 ± 0.002 0.992 ± 0.002
Modality fusion (Time 0.995 ± 0.001 0.994 ± 0.001 0.994 ± 0.001 0.994 ± 0.001 0.995 ± 0.001
-series + Spectrogram)
Modality fusion (+ Augment) 0.994 ± 0.000 0.993 ± 0.000 0.993 ± 0.000 0.992 ± 0.001 0.994 ± 0.001

training the classifier. The modality fusion network performs the best on all fronts
for an unseen user as shown in Table 7 with the extra information it gets from both
the temporal and frequency domains.

Table 7: Classification performance on unseen users for payment gesture detection in
the leave-user-out experiments (nfold = 24).

Model Architecture Accuracy Balanced Acc Macro-F1 Precision Recall

Baseline L&H (nclass = 2) 0.979 ± 0.016 0.976 ± 0.018 0.975 ± 0.019 0.972 ± 0.024 0.980 ± 0.014
Time-series (1DConv) 0.976 ± 0.018 0.974 ± 0.018 0.973 ± 0.019 0.973 ± 0.021 0.974 ± 0.019
Time-series (+ Augment) 0.975 ± 0.020 0.972 ± 0.022 0.971 ± 0.023 0.970 ± 0.024 0.974 ± 0.023
Spectrogram (2DConv) 0.976 ± 0.022 0.973 ± 0.023 0.972 ± 0.025 0.969 ± 0.024 0.977 ± 0.024
Spectrogram (+ Augment) 0.974 ± 0.027 0.971 ± 0.028 0.970 ± 0.030 0.967 ± 0.028 0.974 ± 0.031
Modality fusion (Time 0.982 ± 0.016 0.979 ± 0.018 0.979 ± 0.019 0.977 ± 0.024 0.982 ± 0.016
-series + Spectrogram)
Modality fusion( + Augment) 0.979 ± 0.022 0.977 ± 0.023 0.976 ± 0.025 0.974 ± 0.026 0.979 ± 0.025

5.1.3 Situational robustness experiments

We design an experiment similar to the leave-one-user-out where the test dataset for
the left-out user is split into the multiple constituent situations. For the payment
gesture, those situations are for watch tightness (tight, loose, free), and body stature
(sit, stand, walk). The pre-trained network from the leave-one-user-out experiment is
then evaluated against these split datasets and the results are totalled across all user
folds for these six situations. Table 8 shows the modality fusion model is in the lead
again with higher mean metrics and smaller standard deviations in most situations.
Our spectrogram model ranks next at similar but marginally better performance to
the baseline L&H.

5.1.4 Leave-one-condition-out experiments

Finally, we study the scenario of having a missing situation in the training set. To
demonstrate the robustness of the models against unseen conditions, we design a
leave-group-out experiment for the different situations in the dataset. We refer to
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Table 8: Comparison of the classification performance of the models for specific
situations for an unseen user (nfold = 24).

Model Architecture Metric Tight strap Loose strap Free condition Sitting Standing Walking

Baseline L&H Accuracy 0.989 ± 0.013 0.985 ± 0.015 0.973 ± 0.028 0.974 ± 0.028 0.980 ± 0.021 0.986 ± 0.013
(nclass = 2) Balanced Acc. 0.982 ± 0.019 0.976 ± 0.022 0.956 ± 0.038 0.965 ± 0.031 0.972 ± 0.023 0.980 ± 0.018

Macro-F1 0.981 ± 0.021 0.976 ± 0.023 0.953 ± 0.045 0.963 ± 0.034 0.971 ± 0.025 0.979 ± 0.019

Time-series (1DConv) Accuracy 0.973 ± 0.019 0.980 ± 0.022 0.976 ± 0.021 0.980 ± 0.013 0.987 ± 0.011 0.985 ± 0.011
Balanced Acc. 0.957 ± 0.028 0.969 ± 0.034 0.967 ± 0.021 0.971 ± 0.019 0.980 ± 0.016 0.978 ± 0.016
Macro-F1 0.955 ± 0.032 0.968 ± 0.036 0.965 ± 0.023 0.971 ± 0.020 0.979 ± 0.017 0.978 ± 0.017

Time-series (+ Augment) Accuracy 0.986 ± 0.012 0.981 ± 0.021 0.970 ± 0.028 0.970 ± 0.041 0.979 ± 0.016 0.984 ± 0.014
Balanced Acc. 0.979 ± 0.017 0.971 ± 0.021 0.950 ± 0.048 0.961 ± 0.036 0.969 ± 0.024 0.977 ± 0.021
Macro-F1 0.978 ± 0.018 0.968 ± 0.036 0.965 ± 0.023 0.971 ± 0.020 0.979 ± 0.017 0.978 ± 0.017

Spectrogram (2DConv) Accuracy 0.990 ± 0.013 0.985 ± 0.018 0.972 ± 0.029 0.978 ± 0.022 0.982 ± 0.017 0.987 ± 0.015
Balanced Acc. 0.984 ± 0.020 0.976 ± 0.027 0.956 ± 0.042 0.970 ± 0.026 0.975 ± 0.022 0.980 ± 0.021
Macro-F1 0.983 ± 0.022 0.975 ± 0.029 0.951 ± 0.050 0.968 ± 0.029 0.974 ± 0.024 0.979 ± 0.023

Spectrogram (+ Augment) Accuracy 0.989 ± 0.018 0.986 ± 0.018 0.969 ± 0.038 0.976 ± 0.024 0.981 ± 0.023 0.988 ± 0.014
Balanced Acc. 0.982 ± 0.027 0.979 ± 0.025 0.952 ± 0.051 0.966 ± 0.029 0.974 ± 0.027 0.982 ± 0.020
Macro-F1 0.981 ± 0.028 0.978 ± 0.027 0.947 ± 0.060 0.964 ± 0.031 0.973 ± 0.028 0.982 ± 0.021

Modality fusion (Time Accuracy 0.994 ± 0.006 0.989 ± 0.009 0.976 ± 0.033 0.981 ± 0.025 0.987 ± 0.023 0.991 ± 0.007
-series + Spectrogram) Balanced Acc. 0.990 ± 0.010 0.982 ± 0.014 0.963 ± 0.042 0.974 ± 0.026 0.982 ± 0.022 0.987 ± 0.011

Macro-F1 0.990 ± 0.011 0.982 ± 0.014 0.958 ± 0.053 0.973 ± 0.029 0.981 ± 0.025 0.986 ± 0.011

Modality fusion Accuracy 0.993 ± 0.008 0.988 ± 0.014 0.972 ± 0.036 0.980 ± 0.027 0.984 ± 0.023 0.990 ± 0.010
(+ Augment) Balanced Acc. 0.988 ± 0.014 0.981 ± 0.020 0.957 ± 0.047 0.973 ± 0.027 0.978 ± 0.024 0.985 ± 0.015

Macro-F1 0.988 ± 0.014 0.980 ± 0.022 0.952 ± 0.058 0.972 ± 0.030 0.976 ± 0.026 0.985 ± 0.015

this as the leave-condition-out experiment. For the payment scenario, we have six
situations but they are not fully independent. The first level of the variation in
the payment dataset is the watch strap tightness while the second level is the body
posture. However, variation in watch tightness and body posture occurs together.
So, the experiment is split into two parts for a total of six leave-condition-out folds
as follows.

• Watch tightness: The dataset has the body posture situations collapsed and
merged giving a three-situation dataset of watch strap tight, loose, and free.
A leave-group-out cross-validation is performed on these three situations, e.g.,
train on tight and loose and validate on free. This part yields three folds for
the experiment.

• Body posture: Similarly, the watch strap tightness situations are collapsed
which gives a dataset for sitting, standing, and walking. This, again, yields
three leave-group-out folds for the experiment. As shown in Table 9, the
modality fusion model outperforms all the other approaches.

5.2 Steering Activity Recognition
The same CNN-based models are trained for activity recognition on 3.04 s samples
for a “one-shot” detection of steering recognition. The positive class consists of
the steering activity while the negative class is the combination of “passenger”,
“everyday”, and “rest”. Likewise, the same cross-validation methods are used to
measure the effectiveness and performance of the models in an activity recognition
setup. The training and evaluation methodology is the same as that of gesture
recognition in Section 5.1 unless stated otherwise. Figure 31 summarises the cross-
validation results for the “one-shot” steering recognition.



47

Table 9: All-user classification performance on unseen situations in the leave-condition-
out experiments (nfold = 6).

Model Architecture Accuracy Balanced Acc Macro-F1 Precision Recall

Baseline L&H (nclass = 2) 0.991 ± 0.011 0.985 ± 0.019 0.984 ± 0.020 0.976 ± 0.030 0.994 ± 0.008
Time-series (1DConv) 0.989 ± 0.010 0.982 ± 0.017 0.981 ± 0.018 0.976 ± 0.029 0.987 ± 0.007
Time-series (+ Augment) 0.989 ± 0.009 0.982 ± 0.016 0.982 ± 0.016 0.977 ± 0.025 0.988 ± 0.008
Spectrogram (2DCOnv) 0.990 ± 0.014 0.983 ± 0.024 0.982 ± 0.027 0.975 ± 0.039 0.991 ± 0.010
Spectrogram (+ Augment) 0.989 ± 0.014 0.982 ± 0.024 0.981 ± 0.026 0.974 ± 0.038 0.990 ± 0.011
Modality fusion (Time 0.992 ± 0.011 0.987 ± 0.018 0.986 ± 0.020 0.981 ± 0.030 0.992 ± 0.030
-series + Spectrogram)
Modality fusion 0.991 ± 0.011 0.986 ± 0.018 0.986 ± 0.019 0.981 ± 0.028 0.991 ± 0.008
(+ Augment)

5.2.1 User-independent experiments

The dataset is randomly shuffled and split into 75% training, 12.5% validation, and
12.5% testing. The user-independent results are summarised in Table 10. Aug-
mentations seem to help improve the average performance of the recogniser in the
traditional three-way hold-out experimental setup.

Table 10: Binary classification performance on the test set for steering activity
recognition on the user-independent experiments (averaged over 5 independent runs).

Model Architecture Accuracy Balanced Acc Macro-F1 Precision Recall

Baseline L&H (nclass = 2) 0.922 ± 0.006 0.909 ± 0.006 0.909 ± 0.006 0.909 ± 0.009 0.910 ± 0.009
Time-series (1DConv) 0.936 ± 0.006 0.930 ± 0.006 0.929 ± 0.006 0.935 ± 0.006 0.924 ± 0.007
Time-series (+ Augment) 0.942 ± 0.003 0.932 ± 0.004 0.931 ± 0.004 0.938 ± 0.004 0.926 ± 0.004
Spectrogram (2DConv) 0.954 ± 0.003 0.947 ± 0.003 0.947 ± 0.003 0.947 ± 0.003 0.947 ± 0.004
Spectrogram (+ Augment) 0.958 ± 0.001 0.951 ± 0.001 0.951 ± 0.001 0.949 ± 0.003 0.952 ± 0.001
Modality fusion (Time 0.964 ± 0.004 0.957 ± 0.005 0.957 ± 0.005 0.958 ± 0.003 0.956 ± 0.006
-series + Spectrogram)
Modality fusion 0.973 ± 0.002 0.969 ± 0.003 0.969 ± 0.003 0.970 ± 0.004 0.969 ± 0.003
(+ Augment)

5.2.2 Leave-one-user-out experiments

Leave-one-user-out experiment results for steering recognition are summarised in
Table 11. Augmentations appear to slightly hurt the robustness of the recogniser
in a user-invariability test. However for spectrograms, the robustness has improved
with a slight trade-off in recognition accuracy. Spectrograms appear to be the better
modality than the raw sensor data for activity recognition when it comes to individual
robustness.

5.2.3 Situational robustness experiments

Robustness of steering recognition under varying watch conditions and driving
situations is presented in Table 12. Augmentations seem to slightly improve the
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Figure 31: Confusion matrices for the steering activity binary classification experi-
ments for the modality fusion network architecture. If there are multiple folds in
the experiment, then the matrices are averaged across all folds to generate a “net”
confusion matrix.

recogniser performance and robustness across several situations for the unseen user
but the effect is marginal.

5.2.4 Leave-one-condition-out experiments

Following the same experimental methodology as in payment gesture recognition, the
performance of the models when subjected to new unseen conditions is discussed in
Table 13. Augmentations tend to have minimal impact on the conditional robustness
of the classifier. The modality and the corresponding network architecture appear to
play a larger role in affecting the recogniser robustness. Spectrogram modality again
outperforms the raw time-series for activity recognition. This was not the case in
gesture recognition where both performed equally well in almost all cross-validations.
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Table 11: Classification performance on unseen users for steering activity recognition
in the leave-user-out experiments (nfold = 24).

Model Architecture Accuracy Balanced Acc Macro-F1 Precision Recall

Baseline L&H (nclass = 2) 0.882 ± 0.042 0.867 ± 0.044 0.863 ± 0.046 0.867 ± 0.046 0.867 ± 0.046
Time-series (1DConv) 0.897 ± 0.045 0.884 ± 0.054 0.881 ± 0.055 0.891 ± 0.057 0.877 ± 0.057
Time-series (+ Augment) 0.895 ± 0.047 0.881 ± 0.055 0.878 ± 0.057 0.888 ± 0.056 0.875 ± 0.059
Spectrogram (2DConv) 0.936 ± 0.027 0.926 ± 0.027 0.924 ± 0.029 0.924 ± 0.028 0.929 ± 0.032
Spectrogram (+ Augment) 0.935 ± 0.024 0.925 ± 0.026 0.924 ± 0.027 0.924 ± 0.028 0.926 ± 0.028
Modality fusion (Time 0.950 ± 0.024 0.942 ± 0.027 0.942 ± 0.028 0.941 ± 0.031 0.944 ± 0.027
-series + Spectrogram)
Modality fusion 0.951 ± 0.024 0.944 ± 0.026 0.942 ± 0.027 0.943 ± 0.028 0.944 ± 0.028
( + Augment)

Table 12: Comparison of the classification performance of the models for specific
situations for an unseen user (nfold = 24).

Model Architecture Metric Tight strap Loose strap Free condition Intense Parking Relaxed

Baseline L&H Accuracy 0.903 ± 0.045 0.893 ± 0.050 0.896 ± 0.047 0.905 ± 0.042 0.899 ± 0.046 0.904 ± 0.041
(nclass = 2) Balanced Acc. 0.831 ± 0.092 0.792 ± 0.128 0.841 ± 0.052 0.821 ± 0.115 0.812 ± 0.092 0.846 ± 0.055

Macro-F1 0.819 ± 0.093 0.779 ± 0.126 0.829 ± 0.059 0.809 ± 0.114 0.809 ± 0.094 0.829 ± 0.064

Time-series(1DConv) Accuracy 0.919 ± 0.038 0.901 ± 0.039 0.913 ± 0.039 0.919 ± 0.034 0.921 ± 0.034 0.911 ± 0.041
Balanced Acc. 0.852 ± 0.111 0.792 ± 0.131 0.863 ± 0.070 0.836 ± 0.119 0.860 ± 0.095 0.844 ± 0.111
Macro-F1 0.844 ± 0.111 0.785 ± 0.130 0.853 ± 0.071 0.827 ± 0.118 0.850 ± 0.096 0.830 ± 0.099

Time-series(+ Augment) Accuracy 0.917 ± 0.043 0.902 ± 0.038 0.910 ± 0.039 0.919 ± 0.035 0.921 ± 0.035 0.911 ± 0.040
Balanced Acc. 0.850 ± 0.116 0.797 ± 0.131 0.857 ± 0.067 0.836 ± 0.119 0.859 ± 0.096 0.844 ± 0.088
Macro-F1 0.841 ± 0.116 0.789 ± 0.130 0.847 ± 0.070 0.826 ± 0.118 0.849 ± 0.098 0.829 ± 0.098

Spectrogram (2DConv) Accuracy 0.953 ± 0.028 0.942 ± 0.033 0.949 ± 0.032 0.954 ± 0.030 0.949 ± 0.029 0.954 ± 0.032
Balanced Acc. 0.900 ± 0.093 0.847 ± 0.142 0.916 ± 0.044 0.886 ± 0.013 0.890 ± 0.093 0.917 ± 0.047
Macro-F1 0.895 ± 0.095 0.842 ± 0.142 0.910 ± 0.050 0.881 ± 0.128 0.885 ± 0.095 0.910 ± 0.055

Spectrogram (+ Augment) Accuracy 0.952 ± 0.024 0.943 ± 0.030 0.947 ± 0.028 0.951 ± 0.026 0.948 ± 0.025 0.954 ± 0.029
Balanced Acc. 0.895 ± 0.091 0.847 ± 0.141 0.910 ± 0.040 0.879 ± 0.125 0.887 ± 0.091 0.914 ± 0.050
Macro-F1 0.891 ± 0.092 0.843 ± 0.141 0.906 ± 0.045 0.875 ± 0.125 0.882 ± 0.092 0.908 ± 0.055

Modality fusion (Time Accuracy 0.965 ± 0.020 0.954 ± 0.026 0.964 ± 0.022 0.965 ± 0.023 0.964 ± 0.020 0.966 ± 0.042
-series + Spectrogram) Balanced Acc. 0.917 ± 0.094 0.863 ± 0.146 0.938 ± 0.037 0.900 ± 0.129 0.915 ± 0.094 0.934 ± 0.042

Macro-F1 0.914 ± 0.095 0.859 ± 0.014 0.935 ± 0.041 0.897 ± 0.130 0.911 ± 0.095 0.930 ± 0.048
Modality Fusion Accuracy 0.966 ± 0.021 0.956 ± 0.028 0.964 ± 0.022 0.965 ± 0.024 0.966 ± 0.020 0.967 ± 0.023
(+ Augment) Balanced Acc. 0.919 ± 0.096 0.866 ± 0.147 0.939 ± 0.033 0.899 ± 0.128 0.920 ± 0.094 0.935 ± 0.043

Macro-F1 0.916 ± 0.097 0.862 ± 0.147 0.936 ± 0.037 0.896 ± 0.129 0.917 ± 0.096 0.930 ± 0.051

5.3 Model comparison
In Table 14, we compare the model sizes, their footprint, and their number of
parameters to gauge the deployability of these architectures on the low-end hardware
of wearable devices. It can be seen that the proposed models not only are highly
accurate and robust to both situational and individual variations but also require
minimal computational resources, which is desirable for deployment on smartwatches.

5.4 Discussion
Prior literature, the experimental methods, and the presented results together help
to answer the research questions formulated in Section 1.

1. How does one define robustness in general?
Robustness, in general, is defined as the stability of an algorithm to produce
consistent results to perturbed inputs. This perturbation can be due to variation
in the environment, in the process of data collection, processing, noise, or
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Table 13: All-user classification performance on unseen situations in the leave-
condition-out experiments (nfold = 6).

Model Architecture Accuracy Balanced Acc Macro-F1 Precision Recall

Baseline L&H (nclass = 2) 0.971 ± 0.005 0.941 ± 0.011 0.937 ± 0.012 0.906 ± 0.016 0.976 ± 0.011
Time-series (1DConv) 0.961 ± 0.014 0.922 ± 0.032 0.921 ± 0.033 0.923 ± 0.044 0.921 ± 0.020
Time-series (+ Augment) 0.958 ± 0.013 0.916 ± 0.031 0.916 ± 0.032 0.921 ± 0.044 0.912 ± 0.020
Spectrogram (2DConv) 0.981 ± 0.008 0.962 ± 0.017 0.960 ± 0.019 0.938 ± 0.026 0.986 ± 0.008
Spectrogram (+ Augment) 0.980 ± 0.008 0.961 ± 0.016 0.958 ± 0.018 0.935 ± 0.025 0.986 ± 0.008
Modality fusion (Time 0.985 ± 0.007 0.970 ± 0.016 0.969 ± 0.017 0.952 ± 0.024 0.989 ± 0.010
-series + Spectrogram)
Modality fusion (+ Augment) 0.985 ± 0.010 0.969 ± 0.022 0.968 ± 0.023 0.950 ± 0.032 0.988 ± 0.011

Table 14: Comparison of the properties of network architectures and their inputs.

Model Architecture Sensor sample Input Number of Size Training Total
rate (Hz) dims parameters (MB) time (s) MFLOPs

Baseline L&H (nclass = 2) 4000 [3, 256, 8] 23, 667, 062 91 825 1907.66
Time-series(1DConv) 100 [9, 304] 51,394 0.2 130 31.16
Spectrogram (2DConv) 100 [9, 32, 16] 308, 802 1.2 178 44.56
Modality fusion (Time-series 100 [9, 304], 360, 194 1.2 197 59.90
+ Spectrogram) [9, 32, 16]

intentional interference. Robustness in an algorithm or model allows for some
leeway and assurance to the user that they will not obtain a wildly different
output for a slightly out-of-distribution input.

2. What does robustness mean in the context of user experience?
In the context of user experience, robustness can be broadly categorised into
two components — situational, and individual. Situational robustness is the
algorithmic stability of a model to be invariant to changes in the environment
or situation. This may or may not be under the direct control of the user. If
the same user is displaced from one environment to another then a situationally
robust algorithm should be stable in both environments.
On the other hand, individual robustness is the model’s stability to be invariant
to change in the user themselves. If the user of the device is changed and
the new user performs a similar input command then an individually robust
algorithm will have stable output for both the new and old users.

3. How does one quantify robustness in this context?
Robustness in the context of user experience can be quantified by evaluation the
model or algorithm using different variants of cross-validation methods which
fix one part of the input and cycle through the rest to iteratively generate a
outputs for all the possible relevant conditions. Performing a statistical analysis
of the model performance under these situations then portrays the robustness
of the model. For example, a perfectly individually robust model would be
invariant to change in users and would produce the same output for same or
similar input from all users.
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4. What are the factors that contribute to robustness of a deep learning model?
From prior research and our empirical analysis, the model size and complexity,
the type of operations, initial state of the optimiser, model hyperparameters,
and quality of the training dataset are all contributing factors to the robustness
of a DL model. Some of these factors appear to affect robustness more than the
rest as is seen in our experiments where model complexity and input modality
was a more contributing factor than the preconceived notion of an improved
distribution from the augmented input.

5. How to train a computationally light deep learning model and measure its
robustness in user-experience?
For deployment, an application-oriented method of design should be followed
to approach a low computational complexity. One such approach is to train a
difficult-to-overfit classifier which is presented in this thesis to ensure the model
does not overfit on the training data resulting in poor inference performance.
Use of model pruning, and compression techniques can also be used to further
lighten the model. Further, the deployed network is to be trained on all the
available training data but for evaluating and measuring its robustness, it should
be trained in the computationally intensive way of performing cross-validations
to ensure that the model can perform reasonably well in all real-world scenarios.
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6 Conclusions
The thesis shows that robust and deployable DL models for gesture and activity
recognition are possible for devices with low-end hardware like smartwatches. A
cross-validation type of method to evaluate individual and situational variability
in a multi-strata dataset and helps to quantify user-perceived robustness. Further,
designing appropriate variations of common neural network architectures plays a
major role in improving the performance and the robustness of gesture recognition.
Augmentation strategies can help improve the performance of the classifier in certain
situations, particularly in activity recognition where it really shines, but it is less of
a determining factor when targeting robustness for HAR.

The proposed models achieve upwards of 95% on challenging recognition tasks
across different users and situations. The dataset used guarantees a rich data
distribution which is exploited by architectural design to mitigate overfitting — a
pressing problem on smaller, low-dimensional datasets, improving generalisability over
the state-of-the-art. Moreover, the impact of using correlated features or modalities
is demonstrated to increase the performance and robustness of the recogniser even
further. The payment gesture recogniser using a multi-modal approach dwarves the
state-of-the-art in an application-oriented non-academic setup in both performance
and robustness. The same is also demonstrated to be true for activity recognition.

From a deployability point-of-view, the proposed architectures are shown to
require almost two orders of magnitude less compute operations than the previous
state-of-the-art while improving the performance at best and no loss in performance
at worst. While prior methods required hacking the device to obtain higher sensor
sampling rates, our approach works on out-of-the-box OS APIs which favours less
power consumption. The small size guarantees minimal preprocessing requirements
and offers huge savings in terms of computational resources and more importantly,
batter life in wearables enabling the recogniser to be run fully “offline” without being
tethered to a smartphone to offload the recognition task. This also opens the door
for these architectures to be further fine-tuned with model pruning or compression.

The proposed methods of robustness quantification and evaluation, along with
the model architectures provide a minimum viable solution for gesture and activity
recognition and also help to narrow down the specific cases where the recogniser fails
frequently. In future work, the simpler task of binary recognition can be extended to
multi-class classification. Owing to the small size of our model, it opens opportunities
to use the model as a one-vs-all (OVA) classifier unit which can then be extended to
multi-class problems with ensembling methods. On-device learning or fine-tuning
and transfer learning utilising the CNN layers of the proposed models are also
exciting directions for future research in expanding the approach to domains like
instrumentation and controls. We are positive that improvements in the dataset, for
example, more participants, strata, and in-the-wild collection of data can further
improve the benchmark results of the proposed methods.
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A Payment Gesture

A.1 Leave-one-user-out
The following plots show LUOU confusion matrices for testing on payment gesture
recognition. Each matrix belongs to one of the 24 participants in the dataset.

Figure A1: LOUO confusion matrices for all 24 participants for the payment gesture.
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B Steering Activity

B.1 Leave-one-user-out
The following plots show LOUO confusion matrices for testing on steering activity
recognition. Each matrix belongs to one of the 24 participants in the dataset.

Figure B1: LOUO confusion matrices for all 24 participants for the steering activity.
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