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Abstract
Visual-inertial odometry (VIO) and visual-inertial simultaneous localisation and
mapping (VISLAM) enables mobile robots to localise without relying on global
navigation satellite systems (GNSS) or heavy sensors. They enable mobile robots,
especially payload critical robots, such as drones, to perform autonomous tasks
with limited resources. Localisation of drones for outdoor applications using visual
and inertial sensor fusion is of particular interest, since it widens the use cases and
reliability of autonomous drones in different flying conditions and environments. The
goal of this thesis is to identify suitable VIO/VISLAM algorithms, and to develop a
platform for localising a drone for outdoor applications. A stereo camera and IMU
sensor suite was developed to collect visual-inertial data, since suitable off-the-shelf
systems were not available. Three state-of-the-art VIO/VISLAM algorithms, FLVIS,
ORB-SLAM3 and VINS-Fusion, were evaluated with outdoor drone datasets of
varying flight altitudes of 40, 60, 80 and 100 m and speeds of 2, 3 and 4 m/s. The
estimation results were compared with the ground truth and were quantitatively
evaluated. VINS-Fusion estimated the trajectories most accurately among the three
algorithms with an absolute trajectory error of 2.186 m and a relative rotation error of
0.862◦ at an altitude of 60 m for a trajectory of length 800 m. System configurations,
algorithm parameters, external conditions, and scene content impacted the estimation
results. These factors, further developments and future scopes are discussed along
with the obtained results.
Keywords vio, vislam, drone, stereo-vision
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Abbreviations

ATE absolute trajectory error
BRIEF binary robust independent elementary features
BVLOS beyond visual line of sight
DLT direct linear transform
FAST features from accelerated segmented test
FPS frames per second
GNSS global navigation satellite system
GPIO general-purpose input/output
GSD ground sample distance
IMU inertial measurement unit
LIDAR light detection and ranging
ORB oriented FAST and rotated BRIEF
PnP perspective-n-point
RE relative error
ROS robot operating system
RPE relative pose error
RTK real time kinematics
SfM structure from motion
SIFT scale invariant feature transform
SLAM simultaneous localisation and mapping
SSH secure shell
SURF speeded up robust features
VIO visual-inertial odometry
VISLAM visual-inertial SLAM
VO visual odometry
VSLAM visual SLAM



1 Introduction
Over the last decade, unmanned aircraft systems (UAS, drones) have gained much
popularity and are being used in various fields. Although remote controlled flights are
currently common, autonomous flights and beyond visual line of sight (BVLOS) flights
are enabling new sets of autonomous applications ranging from delivery of commercial
packages and medical supplies, surveying and mapping to military operations and
logistic missions [1]. Availability of accurate position and orientation information is
crucial for autonomous navigation of drones [2]. Drones rely on different types of
sensors to obtain odometry information and for navigating through known or unknown
environments. This sensor suite usually includes global navigation satellite system
(GNSS) receivers and inertial measurement unit (IMU) sensors, but complementary
systems, such as light detection and ranging (LIDAR) sensors, and/or cameras, are
necessary in autonomous systems [3]. Additional sensors enable autonomous systems
to perform secure and reliable operations in various environments [4]. Implementing
autonomous drone flights is challenging since there are limitations associated with
different sensors. GNSS receivers are not very reliable for accurate positioning as
the accuracy is degraded or the signal may be blocked by the presence of buildings,
trees, or when the signals are reflected off the wall [5, 6]. LIDARs can be heavy
in comparison with the weight of the drone and might have limited performance
at higher flight altitudes. Moreover, being an active sensor, LIDAR utilises more
battery power, which can cause shorter flight times for the drone.

Visual odometry (VO) is an odometry technique used in various domains, such
as robotics, automotive, and wearable computing. It is the process of estimating the
ego-motion of a system using the input from a single or multiple cameras attached
to it [7]. Earlier works have explored the idea of using images from a monocular
camera or stereo cameras mounted on a drone to calculate its ego-motion using
VO [8–13]. Other studies [14–16] have mapped the region along with the path and
developed visual simultaneous localisation and mapping (SLAM) algorithms. SLAM
is the process of simultaneously building a map of the environment and localising
the system in that map [17]. Inertial data can be incorporated with visual data to
increase the accuracy and robustness, resulting in visual-inertial odometry (VIO)
and visual-inertial SLAM (VISLAM) solutions [18–21].

Integrating VIO/VISLAM algorithms with outdoor drones enable them to perform
various tasks autonomously without relying on GNSS or heavy sensors, such as
LIDARs. Open-source implementations of VIO and VISLAM algorithms are already
available and they have been evaluated with the data collected using drones. State-of-
the-art VIO algorithms are compared with publicly-available drone datasets in [22],
and autonomous drone navigation has been implemented using the odometry output
from the VINS algorithm [23–25]. In most of these works in which VIO/VISLAM
algorithms are used, the drone is flown inside the buildings while collecting the data.
According to the author’s knowledge, there does not exist evaluations or comparative
studies of these algorithms with outdoor drone datasets, which are relevant for many
drone applications, especially the BVLOS tasks.

The objective of this thesis is to identify suitable VIO and/or VISLAM algorithms,
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and to design the required sensor suite for localising a drone in outdoor environments
for autonomous outdoor applications. The accuracy and reliability of existing solutions
in different scenarios have to be studied, along with an understanding of the effects of
sensor configurations on the accuracy have to be realised. To accomplish these goals,
the thesis evaluates three state-of-the-art VIO algorithms with the data collected
using a custom-made stereo camera and IMU sensor suite mounted on an off-the-shelf
drone. Camera and IMU data collected at various flight configurations are processed
by VINS-Fusion, ORB-SLAM3, and FLVIS algorithms to estimate flight trajectories,
which are compared with the ground truth data. This thesis focuses only on the
odometry/ego-motion of the drone; maps generated by VISLAM algorithms are not
compared with the ground truth in this work.

The remainder of this thesis is structured as follows. Chapter 2 provides the re-
quired theoretical background which supports the algorithms and evaluation methods
presented in this work. Chapter 3 introduces the VIO and VISLAM algorithms. The
platform is presented in Chapter 4, which includes the sensor suite and the additional
hardware, as well as the software. Chapter 5 describes the data collection methods,
overview of recorded datasets, data processing, and the error metric calculation.
Chapter 6 compares the estimation results with the ground truth. These results are
analysed in Chapter 7. Chapter 8 concludes the thesis and discusses the scope for
future work.
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2 Background
Visual-inertial odometry/SLAM is an extension of VO/VSLAM where inertial data
is coupled with visual data to estimate the position and orientation of the sensors.
VO and VSLAM techniques fall under structure from motion (SfM). In SfM, 3-
dimensional (3D) reconstruction and 6 degree-of-freedom (DOF) pose estimation
from unordered image sets whereas VO estimates 3D motion from sequential images
by computing and concatenating the relative motion between the images, and
by optimising previous poses to refine the path locally. VSLAM, along with VO,
incorporates loop detection, and a global graph optimisation for trajectory estimation,
and mapping of the area. In VIO/VISLAM, inertial data is fused with above
techniques to improve the estimation as well as to make the system robust by adding
an additional sensor. This chapter provides the necessary background knowledge to
understand the algorithms and frameworks used in this thesis.

2.1 Feature detection and tracking
Features are recognisable elements in the environment which can be extracted from
the images of the environment and can be described mathematically. A feature,
also known as a keypoint, is an image pattern that differs from its neighbourhood
in terms of texture, colour and intensity. Features can be classified into different
categories based on their properties. First class includes edges and blobs, which give
some semantic interpretation of the feature. The features in the second category do
not have a semantic interpretation, but they are used in applications such as feature
tracking and 3D reconstruction as their location can be determined accurately. The
third type is used to recognise an object or a scene, whose location is not relevant
whereas the number of matches is important. This type of features are used in the
visual-word based place recognition [26].

Edges and corners are detected in the locations where there is an abrupt intensity
change in the image. The corner, which is defined as the intersection of two or
more edges, has high localisation accuracy – accurately localising a feature both
in image position and scale. Corners are usually detected using Harris [27], Shi-
Tomasi [28], and FAST (Features from Accelerated Segment Test) detectors [29].
A blob is an image pattern which is not a corner, but differs significantly from
its neighbours in terms of texture and intensity. Even though blobs have less
localisation accuracy than a corner, they are better in the case of place recognition
as they are more distinctive than corners. Blobs are detected by using methods such
as laplacian of gaussian (LoG), difference of gaussians (DoG), speeded up robust
features (SURF) [30], and scale-invariant feature transform (SIFT) [31].

The Harris detector has been identified as the most stable corner detector [32].
Corners are invariant to image rotation and affine intensity changes, but not to the
image scale. The Shi-Tomasi detector is derived from the Harris detector and has
similar invariance properties. FAST detector is more efficient as compared to Harris
but is not robust at high levels of noise. Even though these corner detectors are not
scale invariant, by analysing images at multiple scales for scale estimation, they can
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be made scale invariant. Since the appearance of corners varies little at adjacent
scales, the scale estimation of corners is less accurate than blobs.

In comparison with corners, the scale and shape of a blob are defined better as
the blob is localised by its boundary while the corner is localised by a point. On the
other hand, blobs are located less accurately than corners. SIFT is able to detect
robust keypoints which are extremely distinctive as well as successfully matched in
images with varying illumination, scale, rotation and viewpoint. SIFT also computes
a descriptor which distinctively describes the feature. The SURF detector is inspired
by SIFT. It is more efficient than SIFT, at the expense of robustness. Binary
Robust Independent Elementary Features (BRIEF) descriptor [33] detects features
at a high rate but is not invariant to scale or rotation. Oriented FAST and rotate
BRIEF (ORB) descriptor [34], which is based on FAST features, provides rotation
invariance to BRIEF features.

Large-scale feature matching and retrieval demands quick ways to narrow down
the search to a few likely images on which detailed matching techniques are applied.
Similar to the approaches in fast document retrieval algorithms, where the frequency
of occurrence of particular words in a document is used to find matches for a particular
query, high dimensional feature descriptors in an image is mapped into visual words
and are stored as bag-of-words for matching in a large set of images [35]. This method
of feature matching is useful for place recognition, which enables SLAM systems to
recognise previously visited places.

The extracted features and corresponding descriptors from an image can be
matched with features in another image. It is assumed that the Euclidean distance
between feature descriptors can be used to rank potential matches. The simplest
matching strategy is to set a threshold to the distance between the matches and
to return all of them [35]. These matches can be verified using random sample
consensus (RANSAC) method [36]. In contrast to independently searching for features
in all images and matching them, feature tracking methods find a set of possible
feature locations in the first image, and search for the match in corresponding locations
in subsequent images. The Kanade-Lucas-Tomasi (KLT) tracker is developed based
on this idea and it has been used widely in real-time applications [28].

2.2 Structure from motion
The process of simultaneously estimating both the camera pose and the 3D geometry
using multiple images is known as structure from motion (SfM). The motion of the
camera and the structure of the environment is estimated together with the available
images. Images can be from different cameras and they do not have to be processed
in the same order as they were captured.

The motion or the 3D pose of the camera is estimated from a set of 2D image
points and corresponding 3D points [35]. This pose estimation problem, also known
as extrinsic calibration, can be solved using linear methods or iterative methods. In
linear methods, the camera pose is obtained by solving a set of linear equations which
relates the 3D points with their 2D correspondences. Iterative methods optimise the
pose solution by minimising the reprojection errors iteratively.
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The 3D geometry of the environment can be calculated by triangulating a set
of corresponding image locations with the knowledge of camera positions. This is
the converse of the pose estimation problem. 3D positions can be computed by
minimising the reprojection errors, in the same way the pose estimation problem is
solved using the iterative method.

When there are multiple images, simultaneous adjustment of parameters for all
cameras and the 3D scene points can be performed using bundle adjustment (BA).
Reprojection errors in all images are minimised together during the optimisation.
Since BA is an iterative process, convergence to an optimal solution from an arbitrary
starting point is not guaranteed. This leads to development of solutions in which
an easily computable non-optimal solution for reconstruction is implemented as an
initialisation technique, and BA is performed with the obtained initial value to solve
the reconstruction problem [37].

2.3 Visual odometry and visual SLAM
Visual odometry is a particular case of SfM technique in which the motion of an
agent is estimated by observing images from a single or multiple cameras attached
to it [7]. This method of motion estimation, similar to wheel odometry, estimates
the pose incrementally by processing sequential images from the on-board camera(s).
Compared to SfM, where the final structure and camera poses are refined using an
offline optimization (bundle adjustment), VO performs a real-time estimation of 3D
motion of the camera as a new frame is received. The local trajectory estimation
can be refined using BA.

2.3.1 Formulation

The camera is moved through the area and images are captured at discrete time
instants. Two camera positions at adjacent timestamps are related by a rigid body
transformation T ∈ R4×4 such that

T =
[︄
R t
0 1

]︄

Where R ∈ SO(3) is a rotation matrix, and t ∈ R3×1, a translation vector. The
set of camera poses for any arbitrary time span contains all the transformations of
the camera with respect to the initial coordinate frame. The main aim of VO is
to compute all the relative transformations and subsequently concatenate them to
recover the full path.

The relative motion between the frames can be calculated by two main approaches;
appearance-based and feature based methods. Appearance based methods use the
information of intensity changes in the corresponding pixels whereas feature based
techniques extract salient features which are matched in both frames for further
computation. Feature based methods are more accurate, faster and computationally
cheaper than appearance based methods while they require robust feature matching
or tracking techniques for better estimation. Figure 1 shows the pipeline of feature
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Image sequence Feature detection Feature matching (or tracking)

motion estimationlocal optimisation

Figure 1: Pipeline of visual odometry

based VO. For each input image, features in it are detected and matched (or tracked)
initially. Based on these features, relative motion between the frames are calculated.
Finally, a sliding window based iterative refinement to minimise the sum of squared
reprojection errors of the reconstructed 3D points is performed to obtain a more
accurate estimate of the local trajectory.

2.3.2 Motion estimation

The motion estimation from two frames can be performed using different methods
depending on the dimension in which the feature correspondences are specified, in
2D or 3D. In 2D-to-2D method, features in both frames are specified in 2D image
coordinates whereas the same are specified in 3D coordinates in the case of 3D-to-3D
method. In the 3D-to-2D method, features of the current frame are specified by 2D
reprojections of the same features specified in 3D coordinates of the previous frame.
3D points are triangulated from two consecutive frames.

Motion estimation from 2D-to-2D feature correspondences are computed by
estimating the essential matrix, which describes the geometric relations between two
images of a calibrated camera [7]. The corresponding rotation and translation can be
extracted from the essential matrix using the five point algorithm [38]. The absolute
scale of the translation has to be computed before concatenating the transformations.
This scale cannot be recovered from the 2D sequences alone, it is computed by
triangulating the 3D points from a pair of two subsequent images. This scale is used
to correct the translation between the image pairs. Transformations are concatenated
to obtain the full trajectory. Above steps are repeated for every new image input.

3D-to-3D methods computes the camera motion by calculating the aligning
transformation of between the two 3D feature sets which are triangulated from two
sets of stereo image pairs. The transformation is computed by minimising the L2
distance between the two 3D feature sets. These transformations are computed and
concatenated for each incoming image pair.

2D-to-2D and 3D-to-2D methods are more accurate than 3D-to-3D method as
the 2D correspondence methods minimise the reprojection errors whereas the 3D
method minimises the feature position error [39]. In 3D-to-2D methods, direct linear
transform (DLT) recovers the pose of a camera by solving a set of linear equations
which relates the 3D points with their 2D correspondences. Using DLT, the intrinsic
calibration of the cameras, along with its pose can be determined. Usually, the
calibration matrix of the camera is available from the calibration results, which enables
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to solve this linear problem with a minimum set of three point correspondences.
This method is known as the perspective-3-point (P3P) algorithm. An extension of
this approach, PnP [40] takes in a large number of point correspondences for pose
estimation.

Iterative methods, along with linear methods, are preferred to solve the motion
estimation problem since minimal PnP solutions can be quite noise sensitive. An
initial guess of the pose can be estimated, for example, by using linear 6-point
algorithm and the precise pose solution is optimised by iteratively minimising the
reprojection error [35]. For each new frame, new features are matched with the
features in the previous frame and the camera pose is computed using the PnP
algorithm. Features in the new frame are triangulated to match with the new
features in the upcoming frame. This process is repeated and the transformations
are concatenated.

2.3.3 Camera pose optimisation

Transformations between adjacent frames are concatenated to compute camera poses.
It might also be possible to compute transformations between the frames which are
not subsequent. Knowledge of these transformations can be used to improve the
camera pose estimation by using pose-graph optimisation [41].

The camera pose corresponding to each frame can be represented as a node in a
graph where the transformations between the frames are edges between corresponding
nodes. In addition to the transformations between adjacent frames, it is possible to
compute the transformations between any two frames which are not of subsequent
views. These extra transformations can be modelled as edges between corresponding
nodes, and add additional constraints in the pose-graph. Non-linear optimisation
algorithms try to minimise the cost function, which is the L2 norm of the difference
between the pose of one node and the transformed pose from another node [41].

Usually the nodes are connected to nearby nodes which correspond to nearby
camera poses and this accounts for drift accumulation. Re-observing a landmark
or moving the camera in a previously mapped area is called loop detection which
allows the application of additional constraints in the pose graph [41]. These loop
constraints connect the nodes that are spaced at larger intervals of time based on the
visual similarity and optimise the graph further to reduce the accumulated drift. The
visual similarity between the frames are usually detected using visual word based
approaches in which a feature descriptor is represented as a single integer number.
These similarity computations are coupled with a visual-word database where all the
observed feature descriptors are stored for future comparison.

Windowed bundle adjustment, which is similar to the pose-graph optimisation, is
applied to optimise the 3D landmark parameters along with the camera parameters [41,
42]. The optimisation is applied for a set or window of frames to minimise the image
reprojection error and this window is moved across the trajectory to optimise the
trajectory locally. Since the reprojection error is a nonlinear function, the optimisation
is performed using the Newton-Gaussian or Levenberg-Marquardt approaches.
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2.3.4 VSLAM

VO aims to realise local consistency of the local map and trajectory to obtain
an accurate estimate of the local trajectory whereas VSLAM aims for a globally
consistent trajectory as well as a globally consistent map. A global refinement
technique is required to estimate globally consistent trajectory and map. The pose-
graph maintained along with the estimation process can be optimised globally to
adjust the poses to satisfy the constraints between the poses. These constraints
include the rigid-body transformation between the poses and loop-closure matches.
This non-linear least square optimisation problem can be solved using various open-
source frameworks such as g2o [43] or Ceres Solver [44].

A global BA, similar to global pose-graph optimisation, can be performed to
jointly optimise the 3D structure parameters and the camera poses of the entire
trajectory by minimising the reprojection error corresponding to each frame [45]. The
global BA results in accurate estimations at the cost of high computation resource
utilisation. A local windowed BA is preferred in real-time applications with limited
computational resource capacity.

This chapter presented a short summary of the techniques of computer vision in
regard to SfM as well as the basics of VO and VSLAM. An alternate solution for
pose estimation problem is implemented by the fusion of visual and inertial sensor
data. Next chapter provides necessary background for VIO/VISLAM techniques and
introduces state-of-the-art VIO/VISLAM algorithms.
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3 Visual-inertial Odometry and SLAM Algorithms
Localisation is one of the fundamental problems for autonomous systems and there
have been many solutions presented over the years. Many systems rely on data from
GNSS coupled with IMU, and LIDAR sensors, which are fused together for an accurate
estimation of position and mapping. For payload critical systems, computationally
expensive processes, which require a high processing device, are not feasible; so
alternative methods are desired. Cameras and IMUs provide sufficient information to
estimate the pose of the system on which the sensors are mounted, and such methods
use less resources than LIDAR based solutions [4]. VIO and VISLAM algorithms
provide pose and map estimation using visual and inertial data.

In order to get real-time performance with a limited resource computational
system, the camera output rate is typically limited to less than 40 FPS, which does
not allow fast movement of the camera since adjacent images should have sufficient
overlap for estimation. Along with this limitation, vision based estimation systems
experience scale ambiguity in monocular setup, and are not robust to images from
low textured scenes [46]. On the other hand, an IMU is highly scene-independent,
but it has poor signal-to-noise ratio at low accelerations and low angular velocities,
and the motion estimated from IMU data alone suffer from quick drift accumulation.
But a combination of IMU and cameras can provide a robust and accurate state
estimation due to their complementary properties [46].

Visual-inertial odometry estimates the state of the sensor suite using the inertial
and visual data inputs. This state usually includes the 6-DOF pose of the IMU,
velocity of the IMU, and biases of the gyroscope and accelerometer. In comparison to
VO, the extra quantities in the state vector are the biases and the velocity. The biases
are needed for calculating the actual sensor values from raw IMU measurements
whereas the velocity is needed to calculate position by integrating the acceleration [46].

Early works of visual-inertial estimation fused independent estimation results
from IMU and camera inputs. Such systems are known as loosely coupled systems.
In contrast, tightly coupled systems include both the visual measurements and
IMU states in the estimation framework [21]. In these systems, IMU measurements
are integrated to predict feature locations in the next visual frame to improve the
feature tracking. Also the coupling enables correction of the drift in the vision-only
estimation [46].

Two main approaches for visual-inertial fusion are filter-based methods and
optimisation-based approaches. In filter-based methods, the pose of the camera and
the landmarks are part of the system state vector. The IMU measurements between
two visual inputs are propagated and the result acts as the prediction term for the
next visual input. The states are updated with the subsequent visual input. In the
optimisation-based techniques, camera poses and landmarks are considered as vertices
in a graph. Adjacent vertices are connected using two edges, one corresponds to the
reprojection error and the other to the IMU pre-integration. The pose estimation
problem is defined as a minimisation of cost functions of the two types of edges [21].

In this thesis, three state-of-the-art VIO/VISLAM algorithms – VINS-Fusion,
ORB-SLAM3 and FLVIS – are analysed quantitatively. These algorithms are chosen
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based on previous integration with UAVs and the availability of their open-source
implementations. The workflow and main features of these algorithms are described
in this chapter.

3.1 VINS-Fusion
VINS-Fusion is an extension of VINS-Mono, which is a tightly coupled, non-linear
optimisation-based state estimation method by fusing data from a minimum set
of sensors [18]. In VINS-Mono, IMU measurements are preintegrated and fused
with the features extracted from the monocular camera images to estimate the 6
degree-of-freedom (DOF) position and orientation of the robot or the sensor suite. It
also enables relocalisation, has a robust initialisation procedure, four DOF pose graph
optimisation, map merging and map reuse features. In VINS-Fusion, apart from a
monocular camera and an IMU, additional sensors such as cameras and LIDARs can
be integrated seamlessly to improve the estimation results. Both VINS-Fusion and
VINS-Mono share a similar pose estimation pipeline, but VINS-Fusion is designed as
a general framework which supports multi-sensor combination [47].

3.1.1 Data collection and preprocessing

In VINS-Fusion, each sensor is considered as a factor which provides a measurement.
In this review, the type of sensors are limited to visual and inertial as this thesis
focuses only on VIO algorithms. An overview of the framework is shown in Figure 2.
In the case of a stereo camera and IMU suite, the inertial data is collected at a higher
frequency than the image capture rate. This ensures multiple inertial measurements
between two consecutive images. Shi-Tomasi corners are extracted from the input
stereo images and they are matched in the left and right image. As new images
are received, the detected features are tracked using the KLT sparse optical flow
algorithm [28]. Sufficient corner features are detected to maintain a minimum number
of features in each frame while enforcing uniform feature distribution over the frame.
Keyframes are selected based on the number of tracked features, and the average
parallax of tracked features in the input images.

The IMU data collected between two consecutive image frames are preintegrated
to calculate relative velocity and rotation of the IMU. Preintegration of IMU
reduces the need of repropagating the states during the optimisation, which is
a computationally expensive process. As explained in [18], the relative velocity
and rotation can be calculated using the IMU measurements and the biases of the
accelerometer and gyroscope. The biases of the accelerometer and gyroscope are
modelled as random walk which are estimated continuously. Repropagation of IMU
values is performed only if the bias estimation changes the bias values significantly.
Since IMU propagation is not needed repeatedly, the preintegration method reduces
the computational resource usage in optimisation-based algorithms.
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Figure 2: Pipeline of VINS-Fusion. Adapted from [18].

3.1.2 Initialisation

The highly nonlinear tightly coupled VIO have to be initialised accurately at the
beginning by loosely aligning the preintegrated IMU values with the vision-only
structure [18]. To accomplish this alignment, rotation and translation between the
latest frame and one of the previous frames in the sliding window is computed using
the five-point algorithm. There should be sufficient parallax and stable feature
tracking between these two frames. An arbitrary scale is set and 3D points are
triangulated. Also using PnP algorithm, poses of all the other frames in the window
are determined. Finally a full global bundle adjustment is applied to minimize the
total reprojection errors of all observed features. This vision-only SfM generates a
pose graph where the only parameter is the arbitrarily set scale.

The IMU initialisation results in calculating the gyroscope bias, initialising
velocity, gravity vector and metric scale, and gravity refinement. Gyroscope is
calibrated using the relative rotation between two consecutive frames calculated by
visual SfM and the results of IMU preintegration. This new gyroscope bias is used
to repropagate all the IMU preintegration terms. The velocity, gravity vector and
the metric scale are initialised using the information obtained from the SfM and
the new IMU preintegrated terms. The gravity vector is refined by constraining its
magnitude to the known value. Finally, rotation between the world frame and the
camera frame are computed by rotating the gravity vector to the z axis, and all the
variables from the reference frame to the world frame.



19

3.1.3 Estimation

A sliding window based state optimisation is performed in VINS-Fusion where the
nonlinear least square problem of minimising the cost function is solved using Newton-
Gaussian or Levenberg-Marquardt approaches. Ceres solver [44], an open sourse
C++ library for modeling and solving large optimisation problems, is used in the
implementation. The state vector includes the position and orientation of the body
in the world frame, depth of each feature observed in the first frame, and the IMU
measurements corresponding to each image in the sliding window which includes the
position, velocity, rotation and the IMU biases. As the number of states increases
with time, in order to reduce the computational complexity, marginalisation of states
is incorporated without losing useful information. Marginalisation process converts
the previous measurements into prior terms in the estimation process as new features
and IMU data are collected. This restricts the number of states which in turn bounds
the computational complexity.

3.1.4 Relocalisation

The sliding window with marginalisation method of estimation introduces drift that
accumulates over time. A tightly coupled relocalisation technique is incorporated to
reduce this drift. The first step for relocalisation is the loop detection. DBoW2 [48],
the state-of-the-art library for converting images into a bag-of-word representation,
is used for loop detection. The features are detected and described using BRIEF
descriptors [33]. Upon detecting geometrical and temporal consistency between the
descriptors, DBoW2 returns the loop-closure candidates. Relocalisation process
aligns the sliding window to previous poses where poses of all loop-closure frames
are constant. After this, all the IMU measurements, visual measurements and the
feature correspondences in the sliding window are optimised jointly which reduces or
eliminates the drift.

3.1.5 Global pose estimation

A global pose-graph optimisation is performed in addition to the pose-graph optimi-
sation performed in the sliding window to ensure that the set of previous poses are
registered in a globally consistent manner. The roll and pitch are fully observable
in visual-inertial systems. They are absolute states in the world frame while the
position and the yaw values are relative estimates in the reference frame. This results
in drift accumulation only in x, y, z, and the yaw angle. So, the pose-graph optimisa-
tion is performed after fixing the roll and pitch values, which is a 4-DOF optimisation.

VINS-Fusion supports map merge, save, and load features. For every keyframe, a
node is added to the graph with its pose information. Edges between the nodes are
defined by either the relative transformation between two frames or if the frames are
relocated with loop closure. Along with the node, feature descriptors of corresponding
frames are also saved. This graph can be saved and later loaded, which can be
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connected with a new graph whenever another frame is relocated with one of the
nodes in the loaded graph.

3.2 ORB-SLAM3
ORB-SLAM3 is a feature-based tightly coupled visual-inertial SLAM system [20].
It is developed based on ORB-SLAM2 and ORB-SLAM-VI which are, respectively,
visual and visual-inertial systems, to use short-term, mid-term and long-term data
association which eliminates drift in mapped areas [15, 16]. ORB-SLAM, the initial
framework upon which other variants are developed, uses the same features for
mapping, tracking, and place recognition. This avoids the need to interpolate the
depth of recognition features adjacent to SLAM features. Also for the place recognition
capabilities, features with rotation invariant property are chosen. Oriented FAST and
rotated BRIEF (ORB) features are extracted from input images and are associated
with 256 bit descriptors [49] for fast computation and matching of features.

3.2.1 System overview

Figure 3 shows the main components of ORB-SLAM3 system. Each component is
summarised below.
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Figure 3: Overview of ORB-SLAM3. Adapted from [20].
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Atlas represents/stores multiple maps created while tracking. There are non-active
maps and one active map. The tracking thread localises the incoming frames in
the active map, which is continuously grown and optimised with new keyframes.
An active map becomes non-active when the tracking thread fails to localise
the current keyframe in the active map.

Tracking thread processes information from the sensors and estimates the pose of
the current frame in the active map by minimizing the reprojection error of
the matched map features. The tracking thread initialises a new active map,
makes an active map to non-active and switches the active map if needed.

Local mapping thread maintains the active map by adding keyframes and points
to it. It also adjust the map using visual or visual-inertial bundle adjustment.
If an IMU is present in the system, local mapping thread initialises IMU
parameters and refines them using MAP-estimation technique.

Loop and map merging thread performs loop closure if it detects overlapping
regions in the active map and other non-active maps in the Atlas. If the
new frame overlaps with the active map, loop correction is performed. If
the common region belongs to a non-active map, both active map and the
non-active map are merged together into a single one, which becomes the active
map. The map is refined using a full BA after the loop correction.

3.2.2 Camera model

ORB-SLAM3 supports various camera types and configurations. Apart from the
previously supported pinhole camera, the Kannala-Brandt fisheye model is also
supported [20]. The images from the cameras, regardless of the type of the camera,
are not rectified as it forces to crop out outer parts of the frame to follow the
assumption of uniform reprojection error, which is not the case for fisheye cameras,
or for the cameras with large field of view (FOV). The same applies to the images
from a stereo camera setup. Advantages of large FOV will not be utilised, especially
in the case of a divergent stereo pair, or a stereo fisheye camera setup, if images from
these setups are rectified. The stereo pair is considered as two monocular cameras
of known constant relative transformation between them. If there are overlapping
regions between their frames, corresponding landmarks are triangulated to get the
true scale from the initial observation.

3.2.3 VISLAM

The state vector for the estimation problem contains the body pose and velocity
in the world frame, as well as the gyroscope and accelerometer biases. The IMU
measurements between two visual frames are preintegrated to obtain rotation, ve-
locity and position of the IMU [50]. IMU residuals are calculated based on these
preintegrated values and the state values corresponding to the input image frame.
The visual residual terms are calculated based on the reprojection error and the
known rigid transformation between the camera and the IMU. By combining both
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visual and inertial residuals, a keyframe based minimisation approach is followed to
solve the visual-inertial SLAM problem.

In order to obtain the scale, IMU parameters, and the gravity direction, the IMU
has to be initialised. This process is split into three steps. The vision only MAP
estimation processes the incoming images for two seconds to estimate camera poses
which are combined to create the camera trajectory. In the next step, an optimal
estimation of inertial variables are performed by using only the inertial measurements
between the received keyframes. The final step is the visual-inertial MAP estimation
which optimises the visual and inertial parameters jointly.

ORB features are extracted from the input frame and are matched with the
previous frame. From the matched features, the camera pose is predicted and the
map points in the local map are projected and matched with the keypoints in the
frame. The current frame is optimised by minimising the feature reprojection error of
all matched points along with the IMU error term. The optimisation is solved with
the Gauss-Newton approach implemented using g2o [43]. Local mapping manages
the keyframes in the fixed local window. Each Time a new keyframe is added to
the window, a local BA is applied to optimise the keyframes in the window along
with the 3D points seen by the frame. The frames are connected by covisibility
graphs whenever they share a common observation. The local BA cost function is a
combination of IMU error terms and the reprojection error terms. In the event of
short term visual tracking loss, due to camera occlusion or fast motions, the body
state is estimated from the IMU measurements, along with the projection of map
points in the estimated camera pose. These points are matched with images in a
large window and are included in a joint visual-inertial optimisation. This recovers
the visual tracking. In the case of a long-term lost, another visual-inertial map is
initialised and added to the Atlas.

3.2.4 Map merging and loop closing

Similar to the recovery of lost visual tracking, short-term and mid-term data associa-
tions between the active and a new frame are found in an image window to expand
and optimise the local map. The long-term data association enables loop-closure and
relocalisation. This, in ORB-SLAM3, is realised by using the DBoW2 bag-of-words
place recognition system. Whenever a new keyframe is created, the place recognition
system matches it with the keyframes stored in the Atlas. If the keyframe belongs to
the active map, loop-closure is performed. On the other hand, if it is part of another
map, the corresponding map is merged with the active map. The accuracy of loop-
closure and map merging is improved by searching for mid-term data associations in
a window defined by the matching keyframes and their neighbours in the covisibility
graph.
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Figure 4: Simple workflow of FLVIS. Adapted from [21].

3.3 FLVIS
Feedback-feedforward loop-based visual inertial system (FLVIS) is a visual odometry
technique which is neither a filter-based method nor an optimisation based method,
but it leverages the advantages of both methods [21]. The main difference from other
techniques are the use of additional filters for propagation of IMU values and for
landmark updation, and solving the pose estimation as a control problem.

3.3.1 System overview

A Simple workflow of the system is shown in Figure 4. The measurement model
assumes no errors in the system such as no calibration error. The estimation depends
only on the accuracy of landmark positions and the quality of the initial guess. A
robust orientation estimation with the accelerometer and gyroscope data is performed
using a one-step gradient-based Madgwick filter [51] during the IMU propagation
phase. The IMU states are forwarded to the vision pipeline as correction terms for
the initial guess. IMU bias terms are updated after the BA process. An infinite
impulse response (IIR) filter updates the positions of landmarks using the depth
information extracted from each frame. The frontend creates and forwards keyframes
to the backend where a sliding window based reprojection model optimises all the
keyframe measurements and returns the corrections to the frontend. Loop closure is
also implemented in the backend.
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3.3.2 IMU Propagation

The position, orientation and velocity states are propagated for two consecutive IMU
measurements. For a high accuracy IMU attitude estimation, the Madgwick feedback
of attitude estimation is adopted. When the sensors provide steady measurements
without any acceleration (moving steadily or standing still), the fields of gravity and
acceleration measurements will be in the same direction. The Madgwick feedback
is applied at this steady condition. This attitude estimation and the propagation
model are fused together to obtain the estimations at IMU rate.

3.3.3 Visual estimation

ORB features are extracted from each frame for the camera pose estimation. These
features are selected in such a way that they have equal distribution in the 16
predefined regions (grids) in the image pane. For each region, the features are sorted
based on their Harris index score [27]. Top 15 features are added to the feature list,
which is part of the state vector, after checking their proximity; too close features
are not added to the list. These features are tracked by the KLT tracker and the
tracked pairs are verified using ORB Hamming distance [52]. The camera pose
corresponding to each frame is estimated by using the PnP 3D-2D method, for which
the 3D positions of landmarks are accurately estimated by using an IIR filter. An
in-frame BA, where camera poses are the only variables in the sliding window, is
performed to get the camera frame rate pose estimation output.

3.3.4 Local mapping and loop closure

A new keyframe is added to the mapping thread if there is sufficient motion or visual
change in the frame. Each keyframe contains a camera pose and landmark positions.
A sliding window with eight continuous keyframes is maintained in the mapping
thread. The optimiser refines poses of all the camera frames and landmarks based on
the reprojection error except for the first pose in the window, which is set as fixed in
the optimiser.

The loop closure thread takes in the new keyframe, and feature descriptors are
extracted from each frame. A bag-of-visual-words approach is implemented using
DBoW2 to find the loop candidate from the keyframe database. In order to verify
the loop candidate matches, a geometry check is performed, which eliminates per-
petual aliasing. After the geometry check, a pose-graph optimisation is performed
to correct the keyframe poses of the loop. This optimisation is implemented by the
Gauss-Newton method in g2o.

This chapter discussed the basics of visual-inertial pose estimation and introduced
VIO/VISLAM algorithms used in this thesis. Table 1 summarises the properties of
these algorithms.
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Table 1: Summary of algorithms

Algorithm Properties

VINS-Fusion

• Tightly coupled, features based, optimisation-based VIO
• Pinhole camera, monocular-inertial, stereo-inertial, stereo

sensor configurations
• Shi-Tomasi corner features, KLT tracker
• Sliding window based optimisation using Ceres Solver
• DBoW2 based place recognition with BRIEF features
• Global optimisation based on pose-graph

ORB-SLAM3

• Tightly-coupled, feature-based, optimisation-based VISLAM
• Pinhole, fisheye camera, RGB-D, Monocular, monocular-

inertial, stereo, stereo-inertial sensor configurations
• ORB features
• Sliding window BA using g2o
• DBoW2 based place recognition with ORB features
• Global optimisation with a full BA

FLVIS

• Tightly coupled, feature based, fusion of filter-based and
optimisation-based estimation, VIO

• Pinhole camera, stereo, stereo-inertial, RGB-D-inertial,
RGBD-stereo-inertial configurations

• ORB features, KLT tracker
• Orientation estimation and depth information extraction

using filters
• Sliding window BA using g2o
• DBoW2 based place recognition with ORB features
• Loop closure and global optimisation based on pose-graph



26

4 Platform Development
The algorithms mentioned in Chapter 3 support various sensor configurations includ-
ing monocular vision with inertial data, stereo vision data, and stereo vision with
inertial data. In order to leverage the maximum potential of these algorithms, this
work used a stereo camera and IMU setup.

Off-the-shelf sensor suites for visual-inertial systems are readily available on the
market. Intel RealSense T265 packs two fisheye cameras, an IMU and a video pro-
cessing unit, which provides raw sensor data along with accurate tracking results [53].
Nerian Karmin3 stereo camera series offers stereo cameras with different baselines,
which can be paired up with their SceneScan system to extract data from the cameras
synchronously [54,55]. Even though these systems allow quick testing by eliminating
the need of developing a sensor suite, they are not suitable for this study. The
T265 has a very short baseline of 10 cm while the Karmin3 series offers a maximum
baseline of 25 cm (Nerian also provides custom baseline stereo setup). A shorter
stereo baseline results in larger depth error, and the depth uncertainty increases as
the height increases. To minimise these issues, a custom sensor suite with longer
baseline was developed to collect the visual and inertial data.

In order to collect the data, suitable cameras and IMU were selected. Along with
the sensors, a suitable computing device of a small form factor was chosen. Following
factors were considered while developing the system. For an easy integration of the
sensor suite with the computer, the computer should be compatible with Linux to
run robot operating system (ROS) [56] in it, and the availability of ROS drivers
for sensors is desired. The weight of the system should be less than the payload
capacity. The camera should have a global shutter sensor with a frame rate of at
least 50 FPS. Availability of manual triggering, exposure control and binning are
also desired. The IMU should be able to output the data at a frequency of at least
100 Hz and it should have trigger control options for synchronisation. Availability
of optional RTK corrected GNSS data is preferred as it can be used for generating
ground truth data. This chapter describes the developed sensor suite, hardware and
software configurations, calibration of sensors and integration of this system on a
commercially available drone.

4.1 Hardware
The sensor system comprises two Basler acA2440-75uc [57] cameras and one Xsens
MTi-680G RTK GNSS/INS [58] IMU which are mounted on an aluminium bar. This
sensor system is connected to GIGABYTE GB-BSi5H-6200-B2-IW (rev. 1.0) mini
computer [59] using universal serial bus (USB) 3.0 interface. This system is shown
in Figure 5.

The Basler cameras output colour images of 2448 × 2048 resolution at maximum
75 FPS. It has a 2/3" global shutter sensor of size 8.4 mm × 7.1 mm, and a physical
pixel size of 3.45 µm × 3.45 µm. Basler provides a ROS package along with camera
application programming interfaces (API) for interfacing their cameras easily with
ROS environment. A Fujinon HF6XA-5M 1:1.9/6mm lens is attached to each
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Figure 5: Stereo camera and IMU setup connected to the Intel NUC mini computer

Camera
right

Camera
leftIMU

Mini computer

USB GPIO

Figure 6: System diagram

camera [60]. It is a 6.23mm fixed focus length lens with maximum resolution of
3.45 µm pixel pitch. The cameras are configured to output monochrome images
since the algorithms in this study use monochrome images. Also the frame rate of
the camera is reduces to the range 15-25 FPS in order to get realtime performance.
Positioning of cameras in the stereo setup is described later in this section.

The Xsens MTi-680G RTK IMU is capable to output inertial data at a frequency
of 400 Hz. GNSS data is also available if a receiver is connected to the sensor module.

Figure 7: Top view of stereo camera and IMU setup with frames of references
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(b) Trigger signals and camera exposure signals.

Figure 8: Hardware synchronisation

It is possible to send real-time kinematic (RTK) corrections to the module to get
accurate GNSS measurements. RTK corrections are received from a base station
using NTRIP (Networked Transport of RTCM via Internet Protocol) for which an
internet connection is needed. In our system, a wireless 4G module is used to access
internet. Even though the VIO or VISLAM algorithms do not need GNSS data, it is
collected as a ground truth to evaluate outputs of the algorithms.

The sensors are mounted on an aluminium channel. Cameras are placed 30 cm
apart from each other to form the stereo camera pair, which faces downwards when
mounted on the drone. The IMU is placed in between the cameras at a distance of
5 cm from the left camera. The top view of the setup is shown in Figure 7 along
with the frames of references. {CR} and {CL} are the right and left camera frames
respectively, frame {B} is the body frame. {I} is the frame attached to IMU, which
is parallel to the body frame. Approximate transformations between these frames are
given below. The exact transformations were calculated during sensor calibration.
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TICR
=

⎡⎢⎢⎢⎣
0 1 0 0
1 0 0 −0.25
0 0 −1 0
0 0 0 1

⎤⎥⎥⎥⎦ TICL
=

⎡⎢⎢⎢⎣
0 1 0 0
1 0 0 0.05
0 0 −1 0
0 0 0 1

⎤⎥⎥⎥⎦

TCLCR
=

⎡⎢⎢⎢⎣
1 0 0 −30
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦ TCRCL
=

⎡⎢⎢⎢⎣
1 0 0 30
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦

The sensor system should acquire data synchronously to process it further. This
system is synchronised without using any signals from an external device as shown
in Figure 8a. Xsens module generates trigger signals based on its internal 400 Hz
SDI sampling clock. This signal, with desired skip factor (to reduce the output
frequency), triggers the right camera using through its input GPIO pin. Since there
is only one output synchronisation pin present in Xsens module, the right camera
send trigger signals to the left camera when it captures an image. Since there are
no external triggers present, the synchronisation is not exact. On an average, a
temporal difference of 200 µs is present between the corresponding stereo images.
This difference is handled by software synchronisation described in subsection 4.2.
The trigger signals and camera exposure signals corresponding to 100 Hz of IMU
sampling rate and 16 FPS of camera frame rate are shown in Figure 8b.

The USB 3.0 devices cause interference to wireless devices with lower radio
frequencies [61]. The cameras transfer data through USB 3.0 cables which interfere
the GNSS signals by reducing the signal to noise ratio of GNSS signals. This would
affect the GNSS data from the Xsens module and also put the drone at the risk
of having inaccurate position data by interfering with its position and navigation
system. In order to reduce or fully eliminate this problem, camera cables and the
USB 3.0 hub are shielded using copper foil tape.

4.2 Software
The data from both cameras and the IMU are processed in the VIO algorithms.
These data are collected from the sensors using the drivers provided by the manu-
facturers. All the algorithms and the drivers are compatible with robot operating
system (ROS) [56]. ROS is an open-source middleware, a collection of software frame-
works for robot software development [56]. It provides drivers for various sensors,
packages for various algorithms, means to communicate between different modules of
the system, along with various other features. Modules in ROS are called nodes and
communication between the nodes are realised using topics, services, and actions.
Nodes can publish or subscribe to a topic to send or receive messages in a one way
manner. Service and action servers receive a request from a node in order to achieve
a goal for which the server sends back a response based on the result. Availability of
a huge number of algorithms, drivers and tools for analysing or monitoring robotic
systems makes ROS the most popular middleware in the robotics field.
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Basler, the camera manufacturer, provides a ROS package to interface with their
cameras. The pylon_camera1 package is a ROS wrapper for their C++ APIs which
can be used to receive images from and to configure various parameters of the camera.
One of such parameters is the exposure time. This can be adjusted by calling a ROS
service provided by the pylon_camera package. Pylon Viewer2, a software provided
by Basler is also used to configure the GPIO pin modes and the image acquisition
modes. The images from the camera are of size 2448 × 2048 px (5 Mpix). Since the
algorithms have to process these images in realtime, the images are subsampled to
reduce their size. OpenCV functions are used for subsampling since the camera does
not have binning option. Images are reduced to 612 × 512 px (0.3 Mpix) size, which
is sufficient enough for the algorithms to process.

The algorithms expect the stereo images to have the same timestamps to pro-
cess these images. Since one camera triggers the other camera using GPIO pins,
there is a small latency of 200 µs between corresponding stereo images. This is
addressed by using ApproximateTime policy of message_filters3 package in ROS.
ApproximateTime policy takes messages with similar timestamps and outputs as a
single message containing those messages.

IMU data is acquired from the sensor using xsens_mti_ros_node4 ROS package
provided by Xsens. The IMU sends electrical signal to trigger one camera. The
frequency of this trigger signal, along with other configurations, is configured in the
MT Manager5 software provided by Xsens. The GNSS data is corrected using RTK
corrections provided by FinnRef, a Finnish network of reference stations [62]. A ROS
package based on ntrip_ros6 streams the corrections through the mini computer
that is connected to the networked transport of RTCM via Internet protocol (NTRIP)
server of FinnRef.

4.3 Calibration
Stereo cameras and the IMU have to be calibrated to obtain their intrinsic and extrin-
sic parameters. A multisensor calibration toolbox, Kalibr7, along with imu_utils8

was used to calibrate the sensor suite. imu_utils produces IMU noise values. Stereo
camera calibration was performed to calculate intrinsic and extrinsic parameters for
each camera using Kalibr toolbox [63]. Finally, using the above two results, a stereo
camera and IMU joint calibration was performed in Kalibr [64].

The IMU measurement model used in Kalibr for stereo camera and IMU joint
calibration contains two types of errors: additive noise and sensor bias. The angular

1https://github.com/basler/pylon-ros-camera
2https://baslerweb.com/en/products/software/basler-pylon-camera-software-suite
3http://wiki.ros.org/message_filters
4https://github.com/xsens/xsens_mti_ros_node
5https://mtidocs.xsens.com/mt-manager
6https://github.com/dayjaby/ntrip_ros
7https://github.com/ethz-asl/kalibr
8https://github.com/gaowenliang/imu_utils

https://github.com/basler/pylon-ros-camera
https://baslerweb.com/en/products/software/basler-pylon-camera-software-suite
http://wiki.ros.org/message_filters
https://github.com/xsens/xsens_mti_ros_node
https://mtidocs.xsens.com/mt-manager
https://github.com/dayjaby/ntrip_ros
https://github.com/ethz-asl/kalibr
https://github.com/gaowenliang/imu_utils
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Figure 9: Aprilgrid board captured during calibration

rate measurement, ω̃ is modelled as

ω̃(t) = ω(t) + b(t) + n(t)

Here ω is the actual angular rate. This measurement model is for a single axis
of gyroscope. The fluctuations in sensor signal are modelled with a zero-mean
continuous-time white Gaussian noise n(t) and the variations in sensor bias are
modelled with a random walk b(t). Both of these parameters are calculated for the
accelerometer and the gyroscope of IMU. These noise model parameters are obtained
by analysing Allan standard deviation of the IMU data [65]. This was performed by
the imu_utils tool with the IMU data collected while the IMU was kept stationary
for a duration of two hours.

For the stereo camera calibration, stereo image pairs were recorded at a low
framerate of 4 FPS as a Bag file. ROS messages can be recorded along with timestamps
to a Bag file, which can be played later for further analysis. An Aprilgrid board [66],
as shown in Figure 9, was used as the calibration target. The camera was kept
stationary and the board is moved while recording the data. Patterns on the
Aprigrid targets can be detected individually, which simplifies the data collection
as the calibration can be performed even if the target is only partially visible in
the image. Reprojection errors of each camera are shown in Figure 10. Kalibr
does not provide the stereo rectification parameters. So, it was calculated using the
intrinsic and extrinsic parameters obtained by stereo calibration by using OpenCV
StereoRectify9 function.

A joint IMU-stereo camera calibration was performed to calculate the extrinsic
parameters, such as rotation and translation of cameras about the IMU axis. In

9https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_
reconstruction.html#stereorectify

https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#stereorectify
https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#stereorectify
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(a) left camera

(b) right camera

Figure 10: Reprojection errors

this case, the calibration target, Apriltag, was kept stationary and the sensors are
moved while collecting the data. Image pairs were collected at a 20 FPS rate and the
IMU data was collected at 100 Hz rate. Sensors were moved in such a way that all
rotations and accelerations axes of the IMU are excited. This recorded data, along
with the results of individual IMU and stereo camera calibrations were processed
together in Kalibr to calculate transformation between the IMU and the cameras.
Calibration results are presented in Appendix A.
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Figure 11: Sensor suite and the mini computer mounted on the drone

4.4 Integration with drone
The system was mounted on a DJI Matrice 600 drone to collect data as shown in
Figure 11. The data collection process is completely independent of the systems of
the drone. The aluminium channel on which the sensors are mounted was attached
to a frame, along with the mini computer. This frame can be easily attached to the
drone. There was no gimbal used in this mounting, but the frame was screwed to
the drone rigidly.
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5 Experiments
Experiments were performed to calculate the accuracy of each VIO/VISLAM algo-
rithm mentioned in Chapter 3. In order to analyse effects of flying altitude and speed,
inputs to these algorithms – stereo camera images and IMU data – were collected at
different flight conditions. Ground truth data was also collected. The sensor data
was processed with the algorithms and the results were compared with ground truth
data. Error metrics were computed to evaluate the algorithms.

The algorithms were evaluated in offline processing mode in which the collected
sensor data were processed later to estimate the trajectory. There exist various
parameters for each algorithm based on their implementations. Most of these pa-
rameters, except the sensor calibration details, were kept unchanged. Tuning these
parameters would give better estimation results, but it was not performed as part of
this work.

The data collection method and relevant parameters are described in Section 5.1.
Section 5.2 details the collected datasets and their properties. Data processing and
evaluation methods are explained in Section 5.3 and Section 5.4 respectively.

5.1 Data collection
The drone was flown in predefined paths marked by waypoints to collect the data.
These waypoints were defined in UgCS drone mission planning and flight control
software [67] which generated the mission plan. The flight altitude and flight speed
were modified and uploaded to the drone before each flight using this software. These
parameters are shown in the Table 2.

Table 2: Flight parameters

Altitudes (m) Speeds (m/s)
40 2
60 3
80 4
100

The flight altitude is the distance of the drone from the ground. Depending on
the object below the drone (eg. tree, building, field etc.) the distance to the closest
object is changing continuously, which has an effect on triangulation. The ground
sample distance (GSD) values corresponding to each flight altitudes are listed in
Appendix C.

The framerate of both cameras, the stereo baseline and the IMU output frequency
were kept fixed for each dataset. Exposure time of the cameras was adjusted based
on the lighting conditions before each flight. As mentioned in Chapter 4, the cameras
and the IMU output data to the Intel NUC mini computer over the ROS ecosystem.
In order to start the ROS nodes and to record the data, the mini computer was
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Figure 12: Data flow chart while sensor data recording

accessed over a secured shell (SSH) connection. ROS nodes of the sensors were
launched which publish sensor data as ROS messages over specified ROS topics.
These messages were stored as bag files10 in the mini computer. Each bag file
contains image messages from both left and right cameras, IMU messages and GNSS
messages. IMU messages contain orientation, angular velocity and linear acceleration
of the IMU. Table 3 contains details of messages collected in each bag file. Figure 12
depicts the data flow during the data record process.

Table 3: Data collection: details of recorded ROS messages

Sensor Topic Message type Frequency
Left camera /left/downsample_raw sensor_msgs/Image 16 Hz
Right camera /right/downsample_raw sensor_msgs/Image 16 Hz

IMU /imu/imu/data sensor_msgs/Imu 100 Hz
/imu/gnss sensor_msgs/NavSatFix 4 Hz

The ground truth of the drone flight was not measured directly. Since RTK
corrected GNSS measurements were not able to provide the orientation information,
the ground truth was obtained by post processing the recorded images along with
the ground control point information in Agisoft Metashape software [68]. Metashape
software provides digital photogrammetric solutions including, but not limited to point
cloud generation, photogrammetric triangulation, stereoscopic measurements and
georeferenced orthomosaic export [69]. Previous studies have shown that estimation

10http://wiki.ros.org/Bags

http://wiki.ros.org/Bags
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Figure 13: Ground control point measurements for Metashape processing. Top two
images show the marker. Bottom left image shows the HiPer HR GNSS receiver on
the marker and the last image shows the FC-5000 Field Controller which has marked
the ground control points.

results from Metashape are highly accurate, given accurately measured ground
control points are available for processing [70]. In this work, photogrammetric
triangulation was performed on the stereo images in Metashape to obtain the
position and orientation of cameras corresponding to each image. The ground control
points were located with the help of markers placed in the mapping area. Positions
of these markers were recorded using a HiPer HR GNSS receiver and a FC-5000
Field Controller by Topcon Positioning Systems [71,72]. Figure 13 shows the marker
and its location measurement.

5.2 Datasets
Table 4 lists the collected datasets. These datasets are based on the flight altitudes
and speeds mentioned in Table 2. All the datasets except 02.08.2021 have a camera
frame rate of 16 FPS and IMU output frequency of 100 Hz. Corresponding camera
and IMU output rates in 02.08.2021 dataset are 15 FPS and 30 Hz, respectively. This
difference is due to the changes in triggering of the sensors. Here, one of the cameras
triggers the IMU. The exposure time for cameras were kept constant based on the
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(a) near a building (b) above an open field

Figure 14: aerial views of the test areas

lighting conditions. Data was collected from two areas as described below.

Table 4: Recorded datasets

Altitude (m) 40 60 80 100 Exposure
time (µs)Speed (m/s) 2 3 4 2 3 4 2 3 4 2 3 4

12.07.2021 ✓ ✓ ✓ 500
02.08.2021 ✓ ✓ ✓ ✓ ✓ 500
06.08.2021 ✓ ✓ ✓ 1000
17.08.2021 ✓ ✓ ✓ 1000
08.09.2021 ✓ ✓ ✓ 1200

Area 1: near FGI main building

The drone was flown in predefined paths around the FGI main building with varying
flying altitudes and speeds. One of these paths is shown in Figure 15. This area
contains large buildings, roads, grass and sparse forest as shown in Figure 14a. The
waypoints were defined in such a way that the drone flew in a loop and this path
was followed twice during the flight. Total length of the flight path, including take
off and landing, varies from approximately 700 m to 1000 m, depending on the flight
altitude. Most of the datasets in this work, excluding the datasets of 02.08.2021,
were collected from this area, and their details are listed in Table 4.

Area 2: open field

This dataset was collected over an open field with a few trees along the boundary. As
shown in Figure 14b, the frame does not contain many features as compared to the
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frames in the building dataset. The drone was flown at various heights and speeds
as mentioned in the Table 4 under the date 02.08.2021. Flight paths contain small
patches in which the drone has already flown, which enable loop closure.
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Figure 15: Ground truth data for the flight at 60 m altitude and 3 m/s speed

5.3 Data processing
The collected data was given as input to each algorithm and the estimated trajectory
of the drone was obtained. All the algorithms are available as ROS packages
(ORB_SLAM311, VINS-Fusion12 and FLVIS13) which can be installed along with their
dependencies. These packages, after configuring the sensor calibration details, read
the recorded sensor data, carry out the trajectory estimation, and write the estimated
trajectory to a file. The poses are in local coordinates where the origin is the starting
point of the flight.

Images from the recorded bag file were extracted and processed in the Metashape
software to obtain the ground truth. Since the images were recorded at 16 FPS rate,
adjacent images have high overlap, especially when the drone had flown at a low
speed of 2 m/s. Therefore the images were subsampled with a fixed interval, and this
small sample along with the ground control points were processed. Output of this
process includes the pose of the camera for each image. Poses were generated in both
local and geographic coordinate systems. Since this output did not have timestamps
along with the pose information, they were added separately from the bag file.

The configuration parameters of each algorithm were almost unchanged. Based
on the sensor calibration, camera and IMU parameters were adjusted. Important

11https://github.com/UZ-SLAMLab/ORB_SLAM3
12https://github.com/HKUST-Aerial-Robotics/VINS-Fusion
13https://github.com/HKPolyU-UAV/FLVIS

https://github.com/UZ-SLAMLab/ORB_SLAM3
https://github.com/HKUST-Aerial-Robotics/VINS-Fusion
https://github.com/HKPolyU-UAV/FLVIS
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Table 5: Relevant algorithm parameters

FLVIS
max. tracked features 480
min. tracked features 240
min. distance between
two features 5

VINS-Fusion
max. features tracked 150
min. distance between
two features 30

RANSAC threshold 1px

ORB-SLAM3
features tracked 1200
scale factor between levels in scale
pyramid 1.2

number of levels in scale pyramid 8

and relevant parameters specific to each algorithm are listed in Table 5. In this work,
the ORB-SLAM3 estimation is based only on visual inputs, but not visual-inertial
data, due to unresolved problems related to the visual-inertial mode14.

5.4 Error metrics calculation
The quality of estimated trajectories have to be evaluated and analysed to understand
and benchmark different algorithms. Studies have proposed absolute trajectory error
(ATE) and relative pose error as error metrics to evaluate visual odometry/SLAM
algorithms [73]. More informative results are obtained by calculating relative error
(RE) for each sub-trajectory of the estimation [74]. [75] provides methods to quanti-
tatively evaluate the quality of visual(-inertial) odometry estimation by computing
ATE and RE with respect to the ground truth. It follows a two step approach in
which the estimated trajectory is aligned with the ground truth initially, and the
error metrics are calculated based on the aligned trajectory.

The trajectory alignment is performed based on the Umeyama method [76],
which aligns both the ground truth and the estimated trajectories based on multiple
estimated poses of the trajectory. The alignment process calculates a rotation and
translation (and scale in case of monocular VO) which is applied on the estimated
trajectory to align it with the ground truth.

The ATE of position and rotation give a single number metric corresponding to
the estimation. For a single state, the error from the ground truth is parameterised
as

∆x = {∆R, ∆p, ∆v}

where ∆R, ∆p and ∆v correspond to the rotation, position and velocity errors
respectively. For the entire trajectory, the root mean square error (RMSE) value is

14https://github.com/UZ-SLAMLab/ORB_SLAM3/issues/406

https://github.com/UZ-SLAMLab/ORB_SLAM3/issues/406
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calculated to obtain a single metric value.

ATErot = ( 1
N

N−1∑︂
i=0

∥∠ (∆Ri)∥2)1/2

ATEpos = ( 1
N

N−1∑︂
i=0

∥(∆pi)∥
2)1/2

If there is a rotation error at the beginning of the trajectory, the final ATErot
value would be higher compared to that corresponding to the case where the rotation
error occurs at the end of the trajectory [75]. Since ATE is sensitive to the time of
error occurrence, RE, which provides more information about relative changes, is
also calculated along with ATE in this work.

The quality of estimations can also be evaluated by measuring relative relations
between the states at different times since there exists no global reference for VO/VIO
systems [75]. RE is computed by splitting the trajectory into small sub-trajectories,
aligning each of them separately, and calculating the RMSE of the errors between
the ground truth and the aligned sub-trajectory, similar to the computation of ATE.
Sub-trajectories are defined using a set of pairs of states, dk = {x̂s, x̂e}, e > s. These
pairs are selected based on some criteria (e.g., distance along the trajectory). For
each sub-trajectory, the errors are parameterised as

δdk = {δϕk, δpk, δvk}

Rotation, position and velocity errors in δdk are calculated similar to ATE, and the
error calculation is performed for all the sub-trajectories. Unlike ATE, the relative
error provides a number as a metric for each sub-trajectory as given below.

RErot = {δϕk}
REpos = {δpk}

In this thesis, the algorithms were evaluated based on error metrics ATEpos
and RErot. ATE and RE of the estimated trajectories were calculated using an
open-source tool, rpg_trajectory_evaluation15, which is based on [75]. Inputs to
this tool were the estimated trajectory, ground truth, and time range for which the
evaluation has to be performed. Both trajectories were given in separate files in the
below format.

timestamp x y z qx qy qz qw

Here x, y and z correspond to the 3D position and qx, qy, qz and qw correspond to
the rotation in quaternion format. For the RE calculation, the sub-trajectory length
was set to default values in the evaluation tool. By default, five sub trajectories of
different lengths were chosen for the calculation. These lengths were 10, 20, 30, 40
and 50% of the total length of the trajectory.

15https://github.com/uzh-rpg/rpg_trajectory_evaluation

https://github.com/uzh-rpg/rpg_trajectory_evaluation
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Figure 16: Data processing and trajectory evaluation data flow

Figure 16 shows the sensor data processing and evaluation as a flowchart. Outputs
of this tool include ATE and RE values along with their plots. To get a single value
for the relative error, a combined RMSE value from each individual RE was calculated.

This chapter presented the data collection methods, the datasets along with the
data processing pipeline. The error metrics for evaluating the algorithms are also
explained in this chapter.
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6 Results
This chapter presents the results obtained from the trajectory evaluation tool. Even
though there are multiple datasets collected from different areas and flight parameters,
only some of them were fully processed and evaluated. There are some datasets for
which some or all of the algorithms were not able to produce a good estimate of the
path, those datasets were excluded from the evaluation. Data collected from the two
areas are analysed separately as the visual features differ significantly in both cases.

6.1 Area 1: near FGI main building
Datasets were collected near the FGI main building with the flight parameters listed
in the Table 2. The pose estimations from all the algorithms for all the datasets
were compared against the ground truth and the results are analysed below. All
the three algorithms estimate the path similar to the ground truth for the height
40 m. Since the drone was flown in the same loop twice, the estimation results are
expected to resemble the ground truth as there exist many loop-closure candidates.
The top view as well as the side view of the estimations along with the ground truth
are plotted in Figure 17.

Table 6: ATE of position and RE of yaw for the data collected at different flight
parameters. The values are coloured for each algorithm as FLVIS, ORB-SLAM3 and
VINS-Fusion.

Height
Speed 2 m/s 3 m/s 4 m/s

ATE(m) RE(deg) ATE(m) RE(deg) ATE(m) RE(deg)

40 m
16.603 75.704 19.384 64.204 9.402 73.407
7.444 85.143 13.508 74.566 11.715 72.687
21.689 3.627 2.554 2.638 4.636 1.312

60 m
22.375 67.816 16.890 87.258 48.798 79.954
19.800 70.683 39.517 76.803 33.695 85.022
10.563 0.949 4.744 0.862 2.186 3.214

80 m
39.021 63.984 28.444 65.497 79.665 95.814
31.570 88.392 59.692 82.552 60.038 90.912
4.362 1.414 7.397 4.034 9.245 1.819

100 m
66.804 80.764 107.901 79.658 55.458 70.308
43.557 82.014 45.541 82.375 71.405 97.672
12.861 1.497 12.459 4.069 9.544 4.435

The error metrics corresponding to each flight condition are tabulated in Table 6.
It contains the RMSE values of absolute position error and relative yaw error of the
estimated trajectories compared against the ground truth trajectory after aligning
both trajectories together. Each of the flight conditions have three different values
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Figure 17: Estimated trajectories plotted along with the ground truth at an altitude
of 40 m.

under ATE and RE, which correspond to the estimations of FLVIS, ORB-SLAM3
and VINS-Fusion in the same order.

At an altitude of 40 m, as shown in Figure 17 as well as the error metrics in Table 6,
ORB-SLAM3 has the lowest trajectory error at 2 m/s speed whereas VINS-Fusion
estimates more accurately at speeds 3 m/s and 4 m/s. In all three cases, VINS-Fusion
estimates the yaw angle most accurately with a maximum relative RMSE of 3.63◦.
It is clear from the top and side views that estimation of FLVIS suffer from drift in
the z axis while the x and y axes are almost similar to the ground truth. In the case
of ORB-SLAM3, the drift at 4 m/s speed accumulates significantly more along the
z axis than along x and y axes, while that along the x and y axes increases as the
speed increases.



44

0 100 200 300 400 500 600 700 800

Distance [m]

−80

−60

−40

−20

0

O
ri

en
t.

er
r.

[d
eg

]

yaw

pitch

roll

(a) rotation error

0 100 200 300 400 500 600 700 800

Distance [m]

−40000

−20000

0

20000

P
os

it
io

n
D

ri
ft

[m
m

]

x

y

z

(b) translation error

Figure 18: translation and rotation error of VINS-Fusion estimation at height 40 m
and speed 2 m/s
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Figure 19: translation error at height 40 m
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Figure 20: ORB-SLAM3 and FLVIS estimations at height 60 m and speed 2 m/s

(a) FLVIS (b) ORB-SLAM3 (c) VINS-Fusion

Figure 21: Features detected for each algorithm at height 40 m.

Figure 18 shows translation and rotation errors corresponding to VINS-Fusion
estimation at 40 m height at different 2 m/s speed. Sharp increases in the rotation
error occur due to the changes in direction of the drone during the flight. As the
drone changes its direction, especially when it flies in the opposite direction, the
direction of drift accumulation also changes for x and y axes. The same trend is seen
in FLVIS and ORB-SLAM3 estimations. Translation errors corresponding to their
estimations are shown in Figure 19. The drift accumulation can be attributed to the
weakly observed scale due to the limitations discussed in Chapter 7.

The features tracked by the algorithms for the same flight parameters are shown
in Figure 21 and Figure 22. Features in VINS-Fusion are spreaded all through the
frame while those of FLVIS and ORB-SLAM3 are concentrated in some areas, and
they do not cover the entire frame. This distribution is based on the algorithm
parameters specified in Table 5.

The remaining sets of data were collected at altitudes higher than 40m. At
these altitudes, the estimations of FLVIS and ORB-SLAM3 do not match with the
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(a) FLVIS (b) ORB-SLAM3 (c) VINS-Fusion

Figure 22: Features detected for each algorithm at height 60 m.

(a) frame contains only trees (b) frame with more details

Figure 23: different frames extracted during the flight at 40 m and speed 2 m/s

ground truth path. The estimations with the data collected at 60 m altitude and
at 2 m/s speed are plotted in Figure 20. Since these estimations do not resemble
the ground truth (similar to Figure 15), further analyses are limited to VINS-Fusion
estimations. Comparison plots of ORB-SLAM3 and FLVIS estimations are included
in Appendix B.

6.1.1 VINS-Fusion – detailed analysis

Flying altitude – 40m
The RMSE of ATEpos of VINS-Fusion estimations at 40 m altitude do not show

any particular trend with respect to the flying speed. The ATEpos is highest at 2 m/s
speed and lowest at 3 m/s speed. The flight at 2 m/s has significantly high ATE, and
as seen in Figure 18, the drift is the highest during the last phase of the flight (from
distance 500 m). Images extracted corresponding to this span of flight have only
trees in the frame, as shown in Figure 23a, which have similar features (Shi-Tomasi
corners) across consecutive frames and thus have caused incorrect matching and poor
estimation. Images captured from other parts of the path have much more details,
and distinctive features as depicted in Figure 23b. The relative yaw error decreases
as the flight speed increases.
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Figure 24: Trajectory estimated by VINS-Fusion plotted along with the ground truth
at an altitude of 60 m.

(a) 2 m/s dataset (b) 3 m/s dataset (c) 4 m/s dataset

Figure 25: Difference in illumination of images in 60 m datasets.
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(a) features at 60 m (b) features at 80 m

Figure 26: Features detected in VINS-Fusion estimation at 60 m and 80 m altitude

Flying altitude – 60m
Figure 24 plots the VINS-Fusion estimate along with the ground truth for the

data collected at height 60 m. As given in Table 6, the VINS-Fusion estimation at
60 m height and 4 m/s speed has the lowest ATEpos value. From the plots it is seen
that the drift along each axis reduces as the flight speed is increased. The path
taken by the drone while flying at 4 m/s speed was slightly different from the paths
corresponding to other speeds due to the variations in the waypoints defined to make
the path (as mentioned in Section 5.1). This accounts for the fewer sharp turns
in the former path as compared to the latter ones. The features tracked at height
60 m and 2 m/s is shown in Figure 26a. Figures 27, 28 and 29 show the translation
and rotation error corresponding to 4 m/s, 3 m/s and 2 m/s estimations respectively.
In each case, the drift accumulates in the direction of motion of the drone. But,
noticeably, it is decreasing as the speed is increased. The maximum magnitude of
drift decreases from above 10 m to almost 4 m as the speed increases from 2 m/s to
4 m/s. The number of new features observed increases as the drone flies faster, which
leads quicker to creation of new keyframes. For each new keyframe, a loop-closure
detection was performed, which optimises the path and reduces the drift.

Meanwhile, the estimation at 4 m/s speed has the highest relative yaw error at this
height. As seen in Figures 27a, 28a and 29a, the absolute value of rotation error for
each axis increases when the drone changes its direction. These direction changes are
usually fast rotations with minimal translation, which can cause temporary tracking
failures. Also the 60 m data was collected in two separate days as mentioned in
Table 4. The illumination and the exposure time were different for each case. The
2 m/s and 3 m/s speed flight data images (Figure 25a and 25b) have good exposure
while those corresponding to 4 m/s speed (Figure 25c) are underexposed. This low
exposure data can be one of the reasons behind the high relative yaw error of 3.21◦

for 4 m/s data while other speeds have the relative yaw error less than 1◦.
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Figure 27: translation and rotation error of VINS-Fusion estimation at height 60 m
and speed 4 m/s
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Figure 28: translation and rotation error of VINS-Fusion estimation at height 60 m
and speed 3 m/s
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Figure 29: translation and rotation error of VINS-Fusion estimation at height 60 m
and speed 2 m/s

(a) 2 m/s dataset (b) 3 m/s dataset (c) 4 m/s dataset

Figure 30: Difference in illumination of images in 80 m datasets

Flying altitude – 80m
The estimation results for different speeds at height 80 m is shown in Figure 31.

The RMSE of relative yaw angle error is less than 2◦ for 2 m/s and 4 m/s speeds, but
it is more than 4◦ at 3 m/s. Similar to 60 m data, the illumination of images affects
the orientation estimation. As shown in Figure 30, the images in 3 m/s dataset
are overexposed while that of other speeds are a little underexposed. The features
tracked at height 80 m and 2 m/s is shown in Figure 26b.

In contrast to the results for 60 m height, the ATEpos value increases as the flight
speed increases, as shown in Table 6. There is no clear evidence to make a correlation
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Figure 31: Trajectory estimated by VINS-Fusion plotted along with the ground truth
at an altitude of 80 m.

between the flight speed and the drift in estimation, which in turn affect the ATE.
The position drift values of estimations for all speeds are plotted in Figure 32. The
slope of drift changes the direction as the drone changes its flying direction, similar
to the results of 40 m and 60 m altitudes. Interestingly the slope while the drift value
varies from a local maximum to local minimum increases as the speed increases. One
image per dataset corresponding to this small stretch of path is shown in Figure 30.
More than half of the image contains trees which have similar features across the
frame. For the speed 2 m/s, the drift is relatively low, and the rate of increase of
drift in the x axis towards local minimum is less in comparison with the other speeds.
This happens due to the presence of the building in the frame, which constitutes to
more distinctive features, which accounts for better estimation. Even though these
datasets differ only in speed, and the same waypoints were used to define the path,
this change or tilt in the field-of-view is attributed to the wind speed while the drone
is flown. According to Finnish Meteorological Institute, the wind speeds at the time
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Figure 32: translation error of VINS-Fusion estimation at height 80 m at different
speeds

of recording the drone data were 10.4 m/s, 7.8 m/s and 5.9 m/s corresponding to
flight speeds 2 m/s, 3 m/s and 4 m/s respectively [77]. The control system of the
drone adjusts its orientation to minimise the wind force to keep it in the predefined
path. Wind speeds during the data collection are tabulated in Appendix D.
Flying altitude – 100m

Figure 33 plots the results of comparison of estimations of VINS-Fusion at various
speeds for the flight altitude of 100 m. Similar to the 80 m dataset, the illumination
of images is different in all three speeds. Sample images are shown in Figure 34. As
shown in Table 6, ATE values are almost similar and above 12 m for speeds 2 m/s
and 3 m/s, and that of 4 m/s is around 10 m, which are large to use in localisation
problems. For the speed 4 m/s, as seen in Figure 33 and 35c, the drift is increases more
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Figure 33: Trajectory estimated by VINS-Fusion plotted along with the ground truth
at an altitude of 100 m.

(a) 2 m/s dataset (b) 3 m/s dataset (c) 4 m/s dataset

Figure 34: Difference in illumination of images in 100 m datasets
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Figure 35: translation error of VINS-Fusion estimation at height 100 m at different
speeds

towards the end of the trajectory in comparison with the other parts. In this part, the
images captured by the cameras contain mostly trees, and due to poor illumination,
there are fewer distinctive features for triangulation and estimation. Faster motion
also degrades the tracking. These result in incorrect scale determination and thus
increases drift. In general, the baseline-to-depth ratio is small for the developed
stereo setup, with a baseline of 30 cm, which degrades the scale observation. This
also can be attributed to the poor estimation results.

Relative rotation error for 2 m/s, however, is around 1.5◦, which is in range with
the value corresponding to the same speed in the 80 m dataset. The same metric is
over 4◦ in the case of 3 m/s and 4 m/s, which can be attributed to poor exposure of
images in these datasets.
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6.2 Area 2: open field
Table 4 in Section 5.2 details the data collected over the field. Each flight path differs
only in the altitude and flight speed, so the top view of these paths would be similar.
Figure 36 plots the paths estimated by VINS-Fusion at different flight settings. The
features tracked at height 80 m and 100 m are shown in Figure 37.
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Figure 36: VINS-Fusion path estimations at different flight settings of the field
dataset

Flights with lower speeds seem to estimate the path similar to the ground truth
as shown in Figure 36a. But as the height increases, the scale error increases and
the path drifts quickly from the beginning of the estimation, as seen in Figure 36c
for the height 100 m. At height 60 m, the path estimation follows the ground truth
initially, but the visual tracking losses at a sharp turn, as the flight speed is 4 m/s,
as shown in Figure 36b. Since most of the estimation results do not match with the
ground truth, they are not evaluated against the ground truth.
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(a) features at 80 m and 3 m/s (b) features at 100 m and 3 m/s

Figure 37: Features detected in VINS-Fusion estimation for the field dataset

This chapter presented the results obtained from the comparison tool and ex-
plained some of the reasons behind them. As FLVIS and ORB-SLAM3 were not able
to provide estimations similar to the ground truth, only the estimations of VINS-
Fusion were analysed in detail. There is no common trend observed from the result,
and this is due to the varying external conditions during the data collection. Also
there are some limitations associated with the platform which makes the estimation
unreliable in some conditions. These points are discussed in the next chapter.



57

7 Discussion
This thesis has detailed three VIO/VISLAM algorithms, collected visual and intertial
data with the developed stereo camera and IMU setup, estimated the trajectory of a
drone with the VIO/VISLAM algorithms using the collected data, and compared
the estimations with the ground truth to analyse these algorithms quantitatively.
The data was collected from two different areas that differ in their aerial views and
textures. The first area contains buildings, trees, cars and roads, and the second
area is an open field with uniform grass cover. Algorithms were able to estimate
trajectories with the data from the first area, while they failed for most of the datasets
from the field. Due to this, comparison with the ground truth was performed only
for the first area. Findings from the experiments and its results are discussed here.

Performance of VIO/VISLAM algorithms

Based on the comparison plots presented in Chapter 6, and the Table 6, VINS-Fusion
estimated the path more accurately than FLVIS and ORB-SLAM3 in most of the
cases. VINS-Fusion estimation at height 60 m had the lowest RMSE of absolute
translation error and relative yaw error out of all the cases. The RMSE of ATE
was 2.186 m at 4 m/s and the RMSE of relative yaw error was 0.862◦ at 3 m/s, for a
trajectory of length 800 m. Even though the error values of FLVIS and ORB-SLAM3
were relatively low for the 40 m dataset, they estimated the path poorly at higher
altitudes. ORB features were tracked in FLVIS and ORB-SLAM3 and they were
close to each other and they did not cover the entire image, whereas corner features
in VINS-Fusion were distributed more evenly across the frame. Also, as the height
increased, features of FLVIS and ORB-SLAM3 were grouped together more closely
where distinctive objects were present. The quality of BA is improved when the
features are well-distributed in the image [78]. This might be one of the reasons
for ORB-SLAM3 and FLVIS to perform poorly after 40 m height. Only the visual
data was used with ORB-SLAM3 while estimating the path in this thesis due to the
challenges with incorporating inertial data with ORB-SLAM3. The visual-inertial
mode of ORB-SLAM3 would have resulted in better estimations as seen in [20].
A better parameter tuning of algorithms, or a different sensor configuration could
improve the estimations with these algorithms.

The estimations were made offline after collecting the data. It was observed
that VINS-Fusion and FLVIS processed the input data in almost real-time, while
ORB-SLAM3 required more time to process the inputs, even without the inertial data.
The online estimation outputs poses in real-time, and it was tested with handheld
datasets during the initial stages of this thesis. Algorithms can be run along with the
data collection nodes to obtain an online estimation of the pose of the drone. These
estimations can also be compared with the ground truth to perform evaluations in
real-world scenarios. Apart from better estimation results, VINS-Fusion has options
to change the sensor configuration during the estimation process. For example,
during an online estimation, one of the cameras can be removed from the estimation
pipeline to perform a monocular visual-inertial estimation. This might improve results
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at higher altitudes where the performance of stereo-visual-inertial configuration is
decreased due to possible reduction in accuracy of estimation due to the reduced
baseline-to-depth ratio. VINS-Fusion is also designed to incorporate multiple local and
global sensors with the existing system. Among the three algorithms, VINS-Fusion
performed better and these results are sufficient to proceed for further improvements
and research for localisation and autonomous navigation.

Flying altitude and speed

From the obtained results, a consistent trend for drift, or scale error, was not observed
with any of the changing flight configurations. But as the flying altitude was increased,
the drift also increased. Especially when the drone flew at heights 80 m and 100 m,
there was a clear distinction between the estimated path and the ground truth. This
drift, or scale error, occurred due to the small baseline-to-depth ratio used in this
study. The triangulation of feature points from a single pair of stereo images from
a small baseline setup is highly error prone at high altitudes [79]. Thus the scale
is weakly observable at high altitudes with the current setup. A monocular camera
with IMU would perform better at higher altitudes [7].

A consistent behaviour in estimation was not found in relation with the flying
speed. The drift reduced as the speed increased for the height 60 m whereas it
increased for height 80 m, but this cannot be fully associated with the change in
speed, but also to the objects visible in the scene. One constant observation was
the increase in the rotation error when the drone changed its direction. Since the
path and speed of the drone was predefined, the drone did not reduce its speed
while it rotated. This resulted in poor estimation as rotation without translation is
not desired while tracking visual features. Reducing the speed of the drone in such
scenarios would improve the estimation quality.

The scene captured by the cameras also affected the estimation. The field dataset,
as described in Section 6.2, showed that VINS-Fusion was able to estimate the path
more or less similar to the ground truth for the height 80 m, while it failed for 60 m.
This was due to the difference in the scene observed in both cases. As the drone
flew above the field at a lower altitude, the images mostly had a uniform grass field.
In contrast, for a higher altitude, the field-of-view was increased which resulted in
having more distinctive objects, such as trees, in the frame. Similarly, in the datasets
near the building, when the drone flew above the trees to have only trees in the
frame, the drift increased. But when stable and well defined objects, such as cars or
the building, were present in the frame, the estimations were better, as seen in the
80 m dataset near the building. Presence of strong wind in the 80 m, 2 m/s dataset
caused the drone to tilt, which resulted in seeing more distinct features in the frame
and to estimate the path more accurately than other speeds for the same height.
Hence, the presence of distinctive objects in the field-of-view increased the estimation
accuracy.
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Developed platform

The data collection was performed using a custom made stereo visual-inertial sensor
system. This system was developed such that it is easily customisable. Two monocular
cameras and an IMU were mounted on a frame that can be easily attached to the
drone. Hardware and software synchronisation were enabled to retrieve synchronous
data from these sensors. The system produced best results at a flight altitude of
60 m. However, the system was not very suitable at high altitudes since the stereo
baseline was only 30 cm, which resulted in higher depth error at higher altitudes. But
there are provisions to increase the baseline till 50 cm and to test the algorithms with
stereo images from a longer baseline setup. This setup enables further testing and
developments in the future. Currently the cameras are facing downwards. A tilted
or forwarding facing configuration can be adopted depending on the application.
Fast maneuvering of drones through the forest, where the cameras face forward, is
presented in [80].

The stereo-camera and IMU setup was calibrated as explained in the Section 4.3.
The calibration target was kept at a distance of 4 m while the calibration was
performed. But during the data collection, the cameras were farther away from the
objects captured in the frame. Even though the reprojection errors for the present
camera calibration are small, it is better to calibrate the sensors in conditions similar
to the actual data collection conditions [81].

The relative rotation error values were affected by the illumination of the images.
When the images in the dataset were highly underexposed or overexposed, the rotation
error increased, while the estimations from normally exposed images resulted in low
rotation error. The exposure time was set to a constant value before each flight as
mentioned in the Chapter 4. This value was chosen intuitively based on the lighting
conditions. Adapting a proper technique to obtain well illuminated images will help
to improve the estimation quality.

As the altitude of the flight increases, the GSD increases. Based on the calcu-
lations and the values given in Appendix C, the GSD increased from 8.9 cm/px to
22.26 cm/px as the height increased from 40 m to 100 m. This might have resulted in
not detecting some key features that corresponded to objects that were smaller than
the GSD for each height. This can be one of the reasons behind the larger errors in
high altitude flight estimations. Raw images from the camera were downsampled
before the estimation process as mentioned in Section 4.2, which increased the GSD
values. Reducing the downsampling factor or using the full image would improve the
estimation at the cost of high resource usage.

Cameras and IMU were mounted on an aluminium frame which was rigidly
attached to the drone. During the flight, this setup experienced strong forces due
to the gravity and the motion of the drone, along with the effects of wind flow.
These forces imparted vibration on the frame and made the sensor data noisy,
especially the raw IMU data. The vibration will increase if the stereo baseline is
further increased. Mounting the sensors on a gimbal would reduce the vibration effect.

Based on the results and observations, VINS-Fusion performed better among the
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three algorithms with the data collected using the custom sensor suite. The flight
parameters, such as speed and height, as well as external environment conditions, such
as illumination and wind, affect the estimation results. Besides, various parameters
of the algorithms also affect the estimation. As discussed previously, there exist
many possible ways to further improve the system to obtain a better trajectory
estimation using VIO/VISLAM algorithms. Further possibilities of interest include
the dense reconstruction of the object as well as semantic segmentation using the
colour information from the cameras.
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8 Conclusion
In this thesis, a sensor suite to collect synchronised stereo visual and inertial data
was developed and mounted on a drone to collect visual and inertial data. This
data was processed to estimate the trajectory of the drone using three state-of-
the-art VIO/VISLAM algorithms – VINS-Fusion, ORB-SLAM3 and FLVIS. A
quantitative evaluation of these estimations are performed using a publicly available
trajectory evaluation tool. The results indicated that VINS-Fusion outperformed
other algorithms with the collected datasets. In a detailed analysis of VINS-Fusion
estimations, it was found that the flight parameters, configuration of the sensor
suite, and the environmental conditions affected the estimation quality. Further
improvements and development for enabling autonomous flights can be proceeded by
using the estimations from VINS-Fusion.

The results showed that the VINS-Fusion estimates the path accurately, given
the drone flies close to the object, the captured image contains distinctive features,
and the image is well illuminated. The least RMSE value of absolute translation
and relative yaw errors for the VINS-Fusion estimations are 2.186 m and 0.862◦,
respectively for a 800 m long trajectory, at a flying altitude of 60 m. With the
availability of an initial global reference value and the above mentioned assumptions,
VINS-Fusion estimation can be used to get a global trajectory of the drone. This
estimation can be used as one part in autonomous operation of a drone.

This work evaluated several factors influencing the performance of the estimation
algorithms. However, it was not possible to evaluate impacts of all the factors
quantitatively. Further experiments and analyses are needed to understand the
effects of sensor configuration, algorithm parameters, external factors, etc. Changes
in the sensor system, such as wider baseline or monocular setup at higher altitudes,
improving the exposure settings of images and tuning the algorithm parameters
can improve the estimation results. Also, for an effective comparison at different
flight altitudes and speeds, the data has to be collected in similar environmental
conditions. Online estimations can also be performed to evaluate the algorithms and
to enable autonomous operation. All of these possibilities can be studied with the
developed sensor suite to identify a better visual-inertial localisation system to carry
out autonomous drone flights.
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A Calibration Results
As detailed in the Section 4.3, the stereo cameras and the IMU are calibrated jointly
using the Kalibr tool. IMU biases are calculated using the imu_utils tool and the
stereo camera calibration is performed using Kalibr.

Cameras are modeled as pinhole cameras and the radial-tangential distortion
model is assumed. Camera parameters, reprojection errors and the stereo baseline
details are tabulated in Table A1.

Table A1: Stereo camera calibration results

Left camera Parameters Standard deviation
Distortion
[ k1, k2, p1 p2 ]

[ −0.1762089, 0.08539239,
0.00024623, 0.00032291 ]

± [ 0.00246955, 0.00616063,
0.00023633, 0.00025822 ]

Projection
[ fx, fy, cx cy ]

[ 448.29308778, 447.99789994,
301.68106405, 242.76373277 ]

± [ 0.24373853, 0.24317746,
0.57081775, 0.57882664 ]

Reprojection
error [ x, y ] [ −0.000009, 0.000002 ] ± [ 0.083676, 0.071372 ]

Right camera Parameters Standard deviation
Distortion
[ k1, k2, p1 p2 ]

[ −0.17142204, 0.07427103,
0.00013522, 0.00007182 ]

± [ 0.002164, 0.00336623,
0.00019319, 0.00028766 ]

Projection
[ fx, fy, cx cy ]

[ 446.38011636, 445.88719477,
306.68683921, 246.39725595 ]

± [ 0.24117874, 0.24583356,
0.61003624, 0.63008214 ]

Reprojection
error [ x, y ] [ −0.000013, 0.000005 ] ± [ 0.099263, 0.094998 ]

Baseline Parameters Standard deviation
Rotation
[ qx, qy, qz qw ]

[ −0.001446, 0.00080468,
−0.00115645, 0.99999796 ]

± [ 0.00128989, 0.00166449,
0.00014686 ]

Translation
[ tx, ty, tz ]

[ −0.30018969, 0.00026494,
−0.00454052 ]

± [ 0.00034904, 0.00030125,
0.00127581 ]
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Table A2: IMU biases

Bias Value
accelerometer noise density 0.00912504793531317
accelerometer random walk 0.0001305951086175891
gyroscope noise density 0.0019425812268625707
gyroscope random walk 3.9570963198826466e-05

The accelerometer and gyroscope biases obtained from imu_utils are tabulated
in Table A2.

The joint calibration of IMU and the stereo camera gives the geometric transfor-
mation and temporal difference between each sensor. The transformation between
left camera and the IMU,

Ti_lc =

⎡⎢⎢⎢⎣
0.00628532 0.99997808 −0.00208084 0.00038067
0.99992558 −0.0062632 0.01046937 0.00038001
0.01045611 −0.00214649 −0.99994303 −0.00041705

0. 0. 0. 1.

⎤⎥⎥⎥⎦
Transformation between right camera and the IMU is given by

Ti_rc =

⎡⎢⎢⎢⎣
0.00397347 0.99999177 0.00081937 0.00131225
0.9999193 −0.00398307 0.0120638 0.3006013
0.01206696 0.00077137 −0.99992689 −0.00133506

0. 0. 0. 1.

⎤⎥⎥⎥⎦
Temporal differences between the IMU, and left and right cameras are given below.

ti_lc = 0.000185936118098s ti_rc = 0.000192639407371s
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B Estimation plots
The estimation results of FLVIS and ORB-SLAM3 are not similar to the ground truth
path for altitudes above 40 m. These results, along with VINS-Fusion estimation
and the ground truth are plotted here. Figure B1 plots the estimations for height
60 m. Figure B2 and B3 plot the results for 80 m and 100 m altitudes respectively.
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Figure B1: Estimation results along with the ground truth at an altitude of 60 m.
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Figure B2: Estimation results along with the ground truth at an altitude of 80 m.
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Figure B3: Estimation results along with the ground truth at an altitude of 100 m.
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C Ground sample distances
The ground sample distance (GSD) is defined as the distance between the centers
of two adjacent pixels measured on ground. This metric is particularly important
in mapping and surveying applications [82]. The GSD is calculated based on the
flying altitude and camera properties, such as sensor size, resolution and focal length.
Based on the parameters listed in the Table C1, GSD is calculated for different
resolution and flight altitude. The results are tabulated in Table C2.

Table C1: Parameters for GSD calculation

Parameter Value
sensor width 8.4 mm
sensor height 7.1 mm
image size 2448 × 2048 px
focal length 6.23 mm

Raw images from the camera are subsampled to reduce their size in order to
decrease the processing time. GSDs corresponding to these reduced image sizes are
also given in Table C2. Images of 612 × 512 size are used in this thesis.

Table C2: GSD in cm/px for various flying altitudes and image size

Size
Height 40 m 60 m 80 m 100 m

2448 × 2048 px 2.23 3.34 4.45 5.56
1224 × 1024 px 4.45 6.68 8.9 11.13
612 × 512 px 8.9 13.36 17.81 22.26
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D Wind speeds
The wind speeds during the data collection are tabulated in Table D1. This data
was collected from the publically available historical data of Finnish Meteorological
Institute’s website16. This data was collected from the Kirkkonumi Mäkiluoto
observation center, which is the nearest one to the data collection location.

Table D1: Wind speed data (in m/s) from collected from FMI

Speed
Height 40 m 60 m 80 m 100 m

2 m/s 4.2 3.1 10.4 11
3 m/s 7.9 4.4 7.8 7.8
4 m/s 10.4 5.6 5.9 5.7

16https://en.ilmatieteenlaitos.fi/download-observations

https://en.ilmatieteenlaitos.fi/download-observations

	Abstract 
	Preface
	Contents
	Abbreviations
	1 Introduction
	2 Background
	2.1 Feature detection and tracking
	2.2 Structure from motion
	2.3 Visual odometry and visual SLAM
	2.3.1 Formulation
	2.3.2 Motion estimation
	2.3.3 Camera pose optimisation
	2.3.4 VSLAM


	3 Visual-inertial Odometry and SLAM Algorithms
	3.1 VINS-Fusion
	3.1.1 Data collection and preprocessing
	3.1.2 Initialisation
	3.1.3 Estimation
	3.1.4 Relocalisation
	3.1.5 Global pose estimation

	3.2 ORB-SLAM3
	3.2.1 System overview
	3.2.2 Camera model
	3.2.3 VISLAM
	3.2.4 Map merging and loop closing

	3.3 FLVIS
	3.3.1 System overview
	3.3.2 IMU Propagation
	3.3.3 Visual estimation
	3.3.4 Local mapping and loop closure


	4 Platform Development
	4.1 Hardware
	4.2 Software
	4.3 Calibration
	4.4 Integration with drone

	5 Experiments
	5.1 Data collection
	5.2 Datasets
	5.3 Data processing
	5.4 Error metrics calculation

	6 Results
	6.1 Area 1: near FGI main building
	6.1.1 VINS-Fusion – detailed analysis

	6.2 Area 2: open field

	7 Discussion
	8 Conclusion
	References
	A Calibration Results
	B Estimation plots
	C Ground sample distances
	D Wind speeds

