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Abstract
At the beginning of the Coronavirus Disease 2019 (COVID-19) pandemic, when
there were no vaccines available, a considerable number of governments around the
world imposed mobility restrictions to control the spread of the disease. Mobility
restrictions are part of the so-called Non-Pharmaceutical Interventions (NPIs). NPIs
are measures taken by individuals or mandated by governments to prevent the spread
of the disease. Some of the most notable NPIs include social distancing, use of face
masks, remote working, closure of non-essential businesses, and travel restrictions.
In Finland, these and other NPIs were essential to control the disease during the
first wave of the epidemic, from March 2020 to May 2020.
The aim of this thesis is to use a compartmental metapopulation model to study
the COVID-19 epidemic and the role of NPIs in Finland. The model is informed
with mobility data from a telecommunications operator and calibrated to describe
the epidemic during the first wave. Furthermore, the model is calibrated using
Approximate Bayesian Computing (ABC), a set of algorithms that make it possible
to infer model parameters without an explicit function for the likelihood of data being
produced by the model. The purpose of the model is to analyze the effect of NPIs in
Finland through counterfactual scenarios. Counterfactual scenarios affect aspects of
the calibrated model to present alternate scenarios of the original situation. This
thesis uses two classes of counterfactual scenarios based on mobility data. The first
class reduces or increases the number of contacts made inside the region. Similarly,
the second class increases or reduces the cross-border traffic between the regions in
Finland.
The analysis performed in this thesis confirms that NPIs applied in Finland were
crucial to reducing the incidence in Finland during the first wave. Moreover, NPIs
which prevent contacts inside regions, such as social distancing, have a more significant
impact on reducing the incidence than those that limit traffic between the regions.
Finally, the results of this analysis, i.e., the observed effect of NPIs and the software
package developed for calibrating the model through ABC, could further analyze the
situation of COVID-19 or future epidemics.
Keywords Approximate Bayesian Computation, Epidemic modelling, Coronavirus,

Mobility , NPIs
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1 Introduction
The Coronavirus Disease 2019 (COVID-19) has had a tremendous impact on the life
of everyone for the last two years. On 31 December 2019, China informed about
cases of pneumonia of unknown cause (later confirmed as COVID-19) and, as of 3
January 2020, 44 patients were admitted into the Wuhan Hospital, 11 severely ill [66].
Two weeks later, on 13 January, the first detected coronavirus cases outside China
were confirmed in Thailand [68]. The first reports warning about the severity of the
disease, its symptoms, and the fact that it was human-to-human transmissible arrived
soon at the end of January [56]. Despite the efforts, given the harsh characteristics
of COVID-19 by 11 March 2020, the World Health Organization (WHO) cataloged
coronavirus as a pandemic. At the time, there were 118,000 cases in 14 countries, and
4,291 people had died [67]. Shortly after that, Dr. Tedros Adhanom, the Director-
General of the WHO, declared that Europe was the epicenter of the epidemic [41].
As a result, European countries declared a state of emergency to control the rising
incidence and severity of the coronavirus. The primary measure adopted by European
countries was to put the population into a lockdown that only permitted essential
trips, such as to grocery shops or pharmacies. On 18 March 2020, there were 250
million people in lockdown because of Coronavirus Disease 2019 (COVID-19) only in
Europe [63].

The lockdown was a measure implemented in several countries because of different
reasons: (1) COVID-19 is human to human transmissible, (2) the transmission of
the disease is through exposure to respiratory fluids carrying infectious viruses
coming from droplets and aerosol particles [73], (3) there was no antiviral treatment
for any coronavirus that had proven to be effective [56], (4) due to its novelty
there was no available vaccine. These aspects suggested that the best measures
to prevent new infections were physical distancing, community use of face masks,
and avoidance of crowded indoor spaces [73]. The measures, combined with the
increasing infections and the fatality of the disease among risk groups [42], forced
the countries to implement a generalized lockdown, among other actions. These
measures that do not rely on taking medication or getting vaccinated are denominated
Non-Pharmaceutical Intervention (NPI) [43].

NPIs were the primary containment measure taken by most countries, and they
proved to be helpful. Some of the NPIs commonly taken to avert the transmission of
COVID-19 are social distancing, school closures, travel restrictions both external and
internal in a country, and the use of face masks in public spaces. In summary, most
measures attempted to decrease human mobility. Countries closed their borders to
prevent importing new cases, and internally they closed public spaces to prevent
contact. The strategy confirmed its effectiveness since the beginning of the epidemic
in Wuhan. The Chinese government prohibited traveling to and from Wuhan on 23
January 2020. The authors in Ref. [64] estimate that the Wuhan travel restrictions
delayed the arrival time of COVID-19 to some cities by 2.91 days which in turn gave
those cities more preparation time, potentially saving lives. The same study also
estimates that, without the travel ban and the intervention of the government, the
number of confirmed cases by 19 February would have been around 744,000. With
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NPIs, the confirmed number of cases was 29,839.
The situation in Europe was not different. The first country to implement major

NPIs was Italy, and soon other countries followed. Italy ordered school closures on 5
March 2020, and lockdown followed soon on 11 March. The majority of European
countries applied the same measures with some delay. Most ordered school closures
on 13 March and a national lockdown from 16 March onward. NPIs saved the lives
of about 3,100,000 people in eleven European countries, from the beginning of the
epidemic until 4 May 2020, according to some estimates [52].

Finland was not exempted from the coronavirus epidemic nor from NPIs applied
by the government. As of 17 September 2021, Finland has had 135,815 confirmed
cases and 1,052 deaths attributed to COVID-19 [79]. A way to compare the number
of confirmed cases and deaths to other countries is dividing by million inhabitants.
Finland has had 24,000 confirmed cases per million inhabitants, while Spain has
105,000, and Germany 49,000. Finland is also the Nordic country with the least
confirmed cases per million; Sweden has had 112,000, Norway 32,000, and Denmark
61,000. Revising the number of deaths per million inhabitants, Finland has had 180,
Spain 1,800 and Germany 1,100. Among the Nordics, Finland is the second with the
lowest number of deaths per million, the country with the lowest number of deaths
is Norway with 150, Denmark with 450.52, and Sweden with 1450.77 [46]. From
these numbers, the spread of the disease in Finland has been more controlled than in
other European countries. Hence the interest to analyze the NPIs in Finland. The
objective of NPIs taken by the Finnish government to control the epidemic was to
reduce mobility, especially at the beginning of the epidemic in the spring of 2020.

Finland declared a state of emergency on 16 March 2020. At that moment, there
were 272 confirmed cases of COVID-19. The state of emergency entailed immediate
school closure, the suspension of passenger traffic to Finland except for returning
Finnish citizens, the ban of gatherings of more than ten people, and the closure of
museums, libraries, and other public spaces [69]. These imposed measures were the
first and most significant mobility restrictions. The second most significant mobility
restriction was the border closure of Uusimaa region on 27 March; Uusimaa is the
capital region where Helsinki is located. It has 1.7 million inhabitants, a little less
than a third of the population of Finland [72]. Uusimaa had reported 865 of the
1396 cases nationally at the time of the border closure. The government decided to
close the borders of Uusimaa to keep the majority of the infections in the capital
area and prevent the arrival of the coronavirus to other regions. Uusimaa borders
remained closed until 15 April 2020 [71]. The event marked the gradual reopening of
society and the lift of mobility restrictions. By 1 July 2020, the government partially
lifted most of the restrictions; even public outdoor events of more than 500 people
were allowed [70].

Coronavirus studies and data informed the decisions of the governments and
helped them choose the NPIs that were applied. As mentioned earlier, some works
studied the impact of NPIs [52], [59], [64]. The common conclusion was that social
distancing measures were crucial for controlling the spread of the epidemic. Another
aspect studied was the way coronavirus extended across countries using airport travel
information [45]. This work also studied the importance of international travel bans
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and when it is adequate to make such bans. A similar study that studied the timing
of NPIs and their implications is the one presented in Ref. [44]. In this study, the
authors used a model informed by mobile phone data to discuss the impact of NPIs
in different neighborhoods in a city, taking into account the level of income of such
neighborhoods. All of these studies greatly depend on the available data. Fortunately,
precisely because of this very reason, there were several efforts to make different
kinds of data available. Many governments and health institutes made public the
daily incidence, hospital occupation, and the number of deaths [46], [50], [53], [79].
Also, companies such as Google [55] and Facebook [48] released information that
described how mobility was changing in each country and region.

The main objective of this Thesis is to take advantage of the available data sources
to model the spread of the COVID-19 epidemic in Finland during the spring of 2020
and then evaluate the role of NPIs taken by the government through counterfactual
scenarios. A counterfactual scenario presents an alternate version of what happened.
For example, it can present the scenario when the government did not take any NPIs
or the opposite case, in which the restrictions taken by the government were stricter.
By comparing the results of these counterfactual scenarios, it is possible to determine
the factors that most influenced the progression of COVID-2019.

The counterfactual scenarios posed in this Thesis will analyze different mobility
patterns during spring 2020, the period of the first coronavirus outbreak in Finland.
The purpose is to establish which were the mobility patterns that affected the
most progression of coronavirus. The mobility patterns are analyzed through a
compartmental metapopulation model that captures mobility between twenty-one
regions in Finland. This model investigates the interactions and movements of people
between and within the regions. In this case, the calibration of the model is done
using Approximate Bayesian Computation (ABC), mobile phone data provided by
a major telecommunications operator, and the reported incidence by the Finnish
Institute for Health and Welfare (in Finnish Terveyden ja hyvinvoinnin laitos) (THL).

The knowledge acquired during this epidemic can help control the next one by
having models in place, providing adequate data for such models, and knowing
which NPIs are more effective in controlling the disease. The present Thesis is a
contribution to this knowledge.

1.1 Outline of the Thesis
The next Chapter 2 presents the theoretical aspects of epidemic modeling. It also
discusses the theory behind inference with ABC. At the end of the Chapter, there are
examples of studies similar to this Thesis analyzing coronavirus and NPIs. Chapter 3
presents the metapopulation model and its calibration to the coronavirus outbreak in
Finland during spring 2020. Chapter 4 presents the description of the counterfactual
scenarios and the comparison of such scenarios to the calibrated model. Finally,
Chapter 5 discusses the effectiveness of NPIs according to the counterfactual scenarios,
and Chapter 6 summarizes and concludes the Thesis.
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2 Background

2.1 Epidemic modeling
Humankind, through its existence, has suffered any number of epidemics. Some have
taken the life of a significant part of the world population; a classic example is a
plague, also referred to as Black Death. The plague, during the fourteenth century,
caused an estimated 50 million deaths. Half of those deaths were in Africa and Asia,
and the other half in Europe. Those 25 million deaths in Europe represented a quarter
of the European population at the time [20]. One more recent and typical example of
an epidemic is influenza. Influenza is a complex and changing virus; it has developed
new strains that appear periodically and at irregular intervals causing pandemics in
different periods and countries. There have been 31 documented influenza pandemics;
the so-called Spanish flu was one of the most virulent [20].

The purpose of modeling infectious diseases is to understand how the pathogens
that cause epidemics spread, predict the outcome of an outbreak, and evaluate
strategies to control the damage. Daniel Bernoulli conducted the first mathematical
model of the spread of a disease in 1766 [21]. In this work, Bernoulli presented the
advantages of a global inoculation against smallpox to influence the general public
to get inoculated. However, it was not until the twentieth century that the first
compartmental models were proposed.

2.1.1 Compartmental epidemic models

Compartmental models try to mimic the behavior of an epidemic by moving in-
dividuals from one compartment to another. Compartments are states that any
given individual can experience during an epidemic. The most simple example is a
model with two compartments: Susceptible to be infected (S) and Infected (I). All
individuals start from the S compartment, and after some given time, if they contact
an individual from the I compartment, they transition to the I compartment. The
use of compartmental models in epidemics is more than a century old. One of the first
works in the matter was published in 1916 by Ross [1]. In this work, the population
was divided only into two compartments, similarly as in the example given before,
affected and not affected. Interestingly, although there are only two compartments,
this seminal work also considers other factors in the model such as birth rate, death
rate, and immigration and emigration rates. Ross and Hudson expanded this work
in Ref. [2] and Ref. [3]. Typically, the model does not consider the birth and death
rates since the duration of the epidemic is assumed to be sufficiently short in time
for these factors to be negligible [4], [29].

The first compartmental Susceptible, Infected, and Removed (SIR) model was
proposed in 1927 by Kermack and McKendrick [4]. This work took the previous one
by Ross and Hudson [1]–[3], but it took the death and birth rates as constants and
introduced the third compartment. The Removed (R) compartment was for those
who either recovered from the disease and developed immunity or those who died
after contracting the disease. Figure 1 shows a graphic representation of the SIR
model.
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Susceptible
S

Infectious
I

Removed
R

β I
N γ

Figure 1: Graphical representation of the SIR compartmental model. The Susceptible
S individuals transition to the Infected compartment I at a rate β I

N
. In turn, the

Infected I transition to the Removed R compartment at a rate γ.

Kermack and McKendrick proposed the following differential equations to describe
the change over time of the compartments S, I, and R under constant infectivity
rate β and recovery rate γ:

dS

dt
= −βSI

N
;

dI

dt
= β

SI

N
− γI;

dR

dt
= γI,

(1)

where t represents time, S+I+R = N and N is the total size of the population. Note
that there is no entry into the S compartment and no exit from the R compartment,
i.e., the population size is kept constant through the epidemic and is only moving
within the compartments.

Other works built more elaborated models to account for different states by
taking the SIR compartmental model as a base. For example, the SIRD model
adds the Deceased D compartment. Essentially, it differentiates when a person
has recuperated from the disease and transitions into a state in which it acquires
immunity (R) and when it does not recover from the disease and dies (D). Similarly,
the SIRV accounts for people being Vaccinated V and acquiring immunity. One
of the most common variations of the SIR model is the SEIR model. The SEIR
model adds a compartment E to account for the exposed but not yet infectious
individuals [35] (Figure 2).

Susceptible
S

Exposed
E

Infectious
I

Removed
R

β I
N λ γ

Figure 2: Graphical representation of the SEIR compartmental model. The main
difference from this model to the SIR model in Figure 1 is the introduction of a
third compartment E for individuals who are exposed but not yet infectious.
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The system of differential equations for the SEIR model is the following,
dS

dt
= −βSI

N
;

dE

dt
= β

SI

N
− λE;

dI

dt
= λE − γI;

dR

dt
= γI.

We note that there is an extra parameter λ that represents the latent period.
The latent period is the average time an individual transitions from being exposed
but not infectious (compartment E) to infectious (compartment I).

Adding more compartments to the model is not the only change that can be
applied. The model can also be stochastic and have some inherent randomness. Such
stochastic compartmental models are reviewed next in Section 2.1.2.

2.1.2 Stochastic compartmental models

So far, the discussed models have been deterministic. In the deterministic setting
is assumed that, over a specific period, the incidence and deaths will always be
the same. This assumption applies when the infectious individuals form a small
fraction of a large population. Thus, there will be slight fluctuations considering the
individuals as discrete units, with a probability to be infected or not, or fractionally
[29]. However, this is not the case in real life; there is always a probability of dying
or getting infected that needs to be considered [8]. The first probability approaches
were Greenwood’s in 1931 [5] and Reed-Frost in 1928 but were not published until
1952 [7]. These works study the spread of disease in households using a binomial
distribution. However, using a binomial distribution is not the only way to approach
stochastic epidemic models; other approaches can be considered [25].

Going back to the SIR model but now presenting the model with one of the
possible stochastic approaches, it is possible to randomly pick, at each time step t,
the number of infected individuals X(1)(t) and the number of recovered individuals
X(2)(t). Then, the SIR deterministic model in Section 2.1.1 can be expressed in a
similar but stochastic fashion,

S(t+ ∆t) = S(t)−X(1)(t);

I(t+ ∆t) = I(t) +X(1)(t)−X(2)(t);

R(t+ ∆t) = R(t) +X(2)(t).

Here the total population also remains constant, N = S(t) + I(t) + R(t). The
probability of getting infected is given by,

β∆tI(t)
N

,
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where the factor I(t)
N

represents the probability of a susceptible individual meeting
an infected one in a homogeneous mixing population, β is the transmission rate, and
∆t is a small time step discretization. The recovery probability is given by,

γ∆t,

where γ−1 is the average time an individual takes to recover or die from the disease.
Using these two probabilities, we can pick the number of infected and removed
individuals at time t using a binomial distribution Binom(n, p) with n trials and
timty p,

X1(t) ∼ Binom
(︃
S(t), β∆tI(t)

N

)︃
;

X2(t) ∼ Binom(I(t), γ∆t).

Another common addition to the compartmental models, both in their deter-
ministic and stochastic settings, is studying how different populations interact. For
example, the so-called metapopulation models study the spatio-temporal interaction
of populations separated geographically. The details of the metapopulation models
are presented Section 2.1.3.

2.1.3 Compartmental metapopulation models

Compartmental epidemic models assume all populations have the same epidemic
dynamics regardless of gender, age, or geographical location. To introduce hetero-
geneity, one common way to break this assumption is to divide the individuals into
smaller groups depending on their age, gender, or spatial location. Usually, the
groups get assigned different transmission rates β for contacts between groups and
within the same group. The difference in transmission rate, or any other epidemic
parameter, allows modeling the epidemic independently for each group and how the
interaction among these groups will affect the outcome of the epidemic [11].

Compartmental metapopulation models break the homogeneous mixing assump-
tion implicit into the traditional compartmental epidemic models. They do it by
separating the population into smaller groups based on geographical regions. In
the twentieth century, the advancements in transportation, such as the train, car,
and airplane, shortened the travel times. Trips that used to take days or weeks
were possible in hours. The shorter travel times provoked an increase in human
mobility. The increase in human mobility facilitated the spread of diseases that were
transmitted person-to-person. Before the twentieth century, diseases that geography
limited to a small region resulted in national or worldwide infections [19]. The spread
of diseases among geographical regions motivates metapopulation models that can
capture the evolution of epidemics.

One of the first metapopulation studies that included data and compared their
results to a disease outbreak was by Rvachev and Longini in 1985 [14]. The authors
modeled the geographical spread of influenza. Since then, several studies have
followed the same path and tried to model worldwide outbreaks of influenza using
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available information on air travel [22], [24], [27]. These studies build a network
using the database of the International Air Transport Association (IATA) [76]. The
database contains the worldwide list of airport pairs connected by direct flights and
the number of available seats on any given connection. With the information, the
authors build a network between the commercial airports. Each airport is a node
in the network. The network connects two airports with a weighted edge, in which
the weight represents the passenger flow between the airports. Once the authors
have built the network, they simulate the spread of influenza using a compartmental
metapopulation model.

The mobility within a country has also been studied. For example, Ref. [23]
studied the spread of influenza in the United States, Ref. [33] the case in France,
and Ref. [26] analyzed the spread of measles in coastal cities of the United Kingdom.
More recently, the authors in Ref. [47] studied the spread of influenza in Bangladesh.
Here, the authors divide Bangladesh into 544 sub-regions. In this case, the mobility
between the 544 sub-regions is taken from mobile phone data. Every sub-region i
has a local stochastic compartmental model; the model has five compartments. To
make an analogy of the model in Ref. [47] to the one presented previously in Section
2.1.2, which was stochastic but not compartmental, the five compartments of the
model in Ref. [47] are simplified to three,

Si(t+ ∆t) = Si(t)−X(1)
i (t);

Ii(t+ ∆t) = Ii(t) +X
(1)
i (t)−X(2)

i (t);

Ri(t+ ∆t) = Ri(t) +X
(2)
i (t),

and

X
(1)
i (t) ∼ Binom

(︃
Si(t), βi∆t

Ii(t)
Ni

)︃
;

X
(2)
i (t) ∼ Binom(Ii(t), γ∆t).

As previously mentioned, Binom(n, p) is the binomial distribution with n trials
and probability p and γ−1 the average time to recovery. Note that each sub-region i
has in independent transmission rate βi. The independent transmission rate βi allows
modeling the case where the infection is more severe in some region i compared
to another region j. Also, it is worth mentioning that the population in region i
does not remain constant, it varies in time according to the number of ingoing and
outgoing people,

Ni(t) = Ni +
K∑︂

j=0
wj,i(t)−

K∑︂
j=0

wi,j(t).

The variable Ni is the initial population in region i, wj,i(t) is the number of people
traveling from region j to region i at time step t and K the total number of regions
of the model. The population in region i is being affected at every time step t by
the ingoing people ∑︁

j wj,i and the outgoing ∑︁
j wi,j(t).
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Metapopulation models that aim to study real-world scenarios and fit actual
epidemic breaks need to be infused by mobility data. Flight data between airports
and telecommunications data are suitable for this purpose. However, there is not
always the possibility to get such accurate data. Other models such as the radiation
model [31] and the gravity model [6] have served as approximations to the real
mobility. In Ref. [34], there is an evaluation of the role of different mobility proxies
when modeling epidemics.

Another critical component in the metapopulation models are the parameters
that govern the epidemic. The parameters of the epidemic drive the central quantity
in epidemics, the reproduction number R0. The definition of R0 and the role the
parameters play is discussed in the next section.

2.1.4 Reproduction number of an epidemic

The basic reproduction number R0 is the average number of new cases caused by a
typical infectious individual in a completely susceptible population. The importance
of R0 lies in the interpretation of its numerical value. If R0 > 1 it is considered that
a disease can invade (it is growing), if R0 < 1 it cannot (it is shrinking) [16]. The
last interpretation, especially throughout the coronavirus epidemic, has guided the
efforts of the authorities. When R0 > 1, the authorities introduced new NPIs to
drive it below 1 [38].

In the SIR model used as an example in Section 2.1.1, R0 is obtained by linearizing
the system of differential equations in Equations (1) when I ≈ 0. The result of the
linearization results in the following equation,

dI

dt
≈ (β − γ)I,

whose solution is,

I(t) ≈ I(0)e(β−γ)t.

From the last expression, one can note that the disease will grow exponentially
only when β − γ > 0. Hence, for the disease to grow [36],

R0 = β

γ
> 1.

More complicated models, such as the compartmental metapopulation models, use
a similar concept to calculate R0; it is calculated through the spectral radius of
the Next Generation Matrix [29], which also uses the linearization of the system of
differential equations that describes the epidemic.

Analyzing the expression obtained above for R0 of the SIR model, the parameter
γ−1 represents the average recovery period of an infectious individual. A longer
recovery period will yield a larger R0 with a fixed transmission rate β. If an infectious
individual takes longer to recover or transition to a state where it can no longer
keep infecting, it will infect more individuals driving R0 up. On the other hand, β is
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proportional to R0. Thus with a fixed γ, if the transmission rate increases, also R0
will and vice versa.

Sometimes, from previous studies, one can obtain the values for parameters γ
and β (or any other extra parameter) associated with a disease. Depending on the
purpose of the model, one could also fix R0 and obtain a hypothetical β with a fixed
γ. Otherwise, if the disease parameters are not available from the literature, it is
necessary to estimate them through an inference method. An inference method that
has been used recently for this purpose is analyzed next in Section 2.2.

2.2 Approximate Bayesian Computation (ABC)
Approximate Bayesian Computation (ABC) is an alternate approach to Markov
Chain Monte Carlo (MCMC) techniques used for Bayesian inference. With Bayesian
inference, one can draw conclusions from unobserved parameters, given some known
or observable quantities, using probability models and Bayes theorem [32].

p(θ|y) = p(y|θ)p(θ)
p(y) ;

p(θ|y) ∝ p(y|θ)p(θ),

where y are the observable quantities or data and θ the unobserved parameters. The
term p(y|θ) is called likelihood, p(θ) the prior and p(θ|y) the posterior distribution.
The term p(y), with fixed y, does not depend on θ; thus, it can be considered a
constant. Just as the name suggests, the prior distribution summarizes our prior
knowledge of the unknown parameter θ. In Bayesian inference, the objective is
to derive the posterior distribution p(θ|y) either in a closed form or with some
approximation. Using the estimated posterior distribution, one can make predictions
on some unseen data ỹ,

p(ỹ|θ, y) =
∫︂
p(ỹ|θ)p(θ|y)dθ.

The distribution p(ỹ|θ, y) is called the posterior predictive distribution.
MCMC techniques approximate the distribution p(θ|y) directly, this distribution is

also called the target distribution. Some of the most notable examples of algorithms
that are part of the MCMC family are the Gibbs sampler [12], the Metropolis-
Hastings algorithm [9], [10], and the Hamiltonian Monte Carlo algorithm [15]. MCMC
algorithms rely on evaluating the likelihood function, while ABC algorithms do not.
Hence, ABC algorithms are sometimes also called likelihood-free techniques.

ABC is used in problems where the likelihood of p(θ|y) is unavailable. The
likelihood may be unavailable either for mathematical reasons when it is not available
in closed form, or for computational reasons when it is too expensive to make an
approximation [30]. Rubin proposed the first ideas behind ABC in 1984 [13]. Rubin
proposes an algorithm that chooses relevant statistics to summarize distributions and
uses the summaries to evaluate how well proposed posterior predictive distributions
resemble the observed data. In essence, this is the spirit behind ABC, namely to find
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a set of parameters with the ability to produce predictions that resemble as much as
possible the observed data.

The first formal ABC algorithm was proposed by Pritchard et al. in 1999 [18]
(see Algorithm 1), although it builds on an idea proposed by Tavaré et al. in 1997
[17].

Algorithm 1: Outline of the original ABC rejection algorithm proposed in
Ref. [18].
N ← desired number of samples;
n← 0 Current number of samples;
while n < N do

Sample θ′ from prior p(·);
Simulate ỹ using f(θ′);
if d(S(ỹ), S(y)) < ϵ then

Save θ′ as one accepted set of parameters;
n← n+ 1;

In Algorithm, 1 f(·) is a function that can produce data ỹ that is similar to the
observed data y given a set of parameters θ. S(·) is a function that defines one or
more summary statistics that will be applied to the simulated and observed data.
Finally, d(·, ·) is a distance measure over the summary statistics. If the distance
between the summaries is less than some small threshold ϵ, the proposed set of
parameters will be accepted. The idea is that if the summary statistics S(·) are
representative and ϵ is small enough, then the generated parameters will approximate
the posterior distribution p(θ|y).

The algorithm described was originally proposed in studies related to DNA [17]
and chromosomes [18], but it has found success under different settings. There is
a good compilation of several studies that use ABC in evolutionary biology and
ecology in Ref. [28]. Given the success of ABC, there have been modifications and
improvements made to the original algorithm. Most of them have been reviewed in
Refs. [28], [30], [37].

In this Thesis, ABC is going to be used to calibrate a compartmental metapopu-
lation model to the reported cases of coronavirus in Finland. In section 2.3, there is
a review of some studies that have previously used ABC for epidemics simulation
and other relevant work on the modeling of the coronavirus epidemic.

2.3 Coronavirus modeling
The coronavirus pandemic has brought a lot of renewed attention to the field of
epidemiology. As a result, there are many studies and a considerable coronavirus
interest, how to model it, and the effects NPIs had in society [77]. In this section, I
will focus on presenting some studies done in the context of coronavirus and have the
same objective as this Thesis: to evaluate the effect of NPIs and their role throughout
the epidemic.
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The term Non-Pharmaceutical Intervention (NPI) refers to a wide range of
measures, from bottom-up measures that emerge from the society in response to the
disease to top-down restrictions imposed by the authorities. The first ones include
better personal hygiene, avoidance of social gatherings, and social distancing. The
latter include border closures, traffic restrictions, lockdowns, and school closures [77].
Sometimes, there is no clear distinction to the origin of an NPI taken by a person,
e.g., an individual may use a face mask because of a natural fear of the disease or
because the government mandates it. However, no matter the origin, using a face
mask is considered an NPI. Moreover, sometimes top-down NPIs can influence the
adoption of bottom-up measures. For example, when a government mandates the
border closure of a single region, it may indirectly influence people in other regions
to enforce stricter social distancing measures.

At the beginning of the coronavirus epidemic, in 2020, NPIs were the primary
control measures, both emerging from the society and mandated by governments.
Therefore, understanding their effects on the outcome of the epidemic became crucial,
and can also be beneficial for future epidemics. According to a literature compilation
of 2020 [77], the three most cited studies at the time were Refs. [45], [52], [59].
All of them study the effect of NPIs, how they affected the course of the epidemic
in different contexts, and pose counterfactual scenarios. Counterfactual scenarios
analyze what would have happened in hypothetical situations with different restriction
levels introduced by NPIs.

The study in Ref. [45] uses a metapopulation stochastic compartmental model
seeded by flight and local epidemic information. The model is fitted to data using
ABC. Subsequently, the authors perform counterfactual scenarios to reduce the
interaction inside each region by manually altering the effective reproduction number
Reff. The authors also reduce traffic between regions by reducing the number of
flights. The approach is very similar to the approach that will be taken later in
this Thesis within Finland. Their findings suggest that reducing traffic between
regions delayed the spread of the disease to other regions. However, after this first
effect, infectious cases traveled out of the infectious region without being detected.
Moreover, the authors in Ref. [45] expect that interventions aimed at reducing the
transmission are more beneficial than travel restrictions in the long term.

Nonetheless, there are differences between the counterfactual scenarios proposed
in Ref. [45] and the ones proposed in this Thesis. The scenarios that are proposed
in this Thesis attempt to be as close to an alternate reality as possible using the
available data. In contrast, Ref. [45] does a manual downscaling of the parameters
and amount of traffic in flights.

The study in Ref. [59] presents a compartmental model that considers the age of
individuals and the social mixing patterns. The objective of the study is to analyze
the effect of social distancing measures in the city of Wuhan. The model of the study
does not consider different geographic regions but analyzes the effect of interventions
on the result of the epidemics through theoretical contact matrices. As the name
implies, a contact matrix describes the contacts of an individual in high mixing
places, where the disease quickly spreads, such as schools, workplaces, and residences.
The authors in Ref. [59] use the theoretical matrices to produce counterfactual
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scenarios that scale down the contacts of a contact matrix in regular times, without
restrictions. With the theoretical contact matrices Ref. [59] theorizes on what would
have happened by introducing different levels of restrictions at different times. The
results in Ref. [59] suggest that physical distancing measures in Wuhan were crucial
to reduce the number of infections and delay the epidemic’s peak. Although this
work does not use a compartmental model, it does present different counterfactual
scenarios. It does it in a similar way to [44] by scaling the level of restrictions.

The counterfactual scenarios in Ref. [52] compare the number of deaths when
the governments implement NPIs, which was the case in 2020, to a scenario in which
they did not introduce NPIs. In this work, the Reff for different countries is estimated
through a Bayesian approach, although not using ABC. The model and estimation
of Reff are informed by the number of reported deaths in eleven European countries.
The authors assume that every implemented NPI affects contacts; hence they infer a
new Reff every time a country introduces a new major NPI. For the counterfactual
scenario, they keep the estimated Reff for the beginning of the epidemic, i.e. they
assume that none of the introduced NPIs affected the original Reff, and calculated the
number of deaths under this scenario. Then, they compared the number of deaths
from the counterfactual scenario to the original number of deaths calculated by the
model that does take into account NPIs. This way the study presents the number of
averted deaths due to NPIs, which is significant. Based on the number of averted
deaths in the model due to NPIs, the authors conclude that NPIs were crucial to
reduce Reff < 1. Furthermore, they find that the NPI that had the most substantial
effect was a generalized lockdown, in which people is only permitted to do essential
trips, a measure whose ultimate goal is to prevent as many contacts as possible.

Different kinds of data inform the proposed models. For example, mobile phone
data informs the model proposed in Ref. [44]. The authors present a compartmental
metapopulation model with mobile phone data in which people go from their residence
to an outside location, maybe a store, a workplace, or a restaurant. First, the
parameters of the model are fitted to match the reported cases. After fitting the
model, they show counterfactual scenarios that can change the mobility in two ways.
The first way to change the mobility is to reduce it by some fraction. The second
way is to shift the date when the government introduced major NPIs. Using these
two ways of changing mobility, they show the change in the number of reported
cases with the counterfactual scenarios with respect to the fitted model. They
find that policy-makers must be careful with the timing and the reopening society;
a prompt and uncontrolled reopening may lead to a rise in the cases due to the
increase of contacts. Another aspect that the authors analyze is the change in the
number of visits to businesses, such as restaurants or convenience stores, with each
counterfactual scenario. The purpose is to analyze which businesses were the most
affected by the NPIs. This analysis is possible due to the high specificity of the mobile
phone data. For this Thesis, mobile phone data is available but not as detailed as in
Ref. [44]; with the available mobile phone data, I can build counterfactual scenarios
at a regional level, as explained in the upcoming chapters.

The authors in Ref. [54] present a similar study that shows counterfactual
scenarios based on mobility but at the regional level. Here, the authors present
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a compartmental metapopulation model for Italy. In the model, Italy is divided
into 107 sub-regions connected through mobility data derived from census mobility
fluxes. The model is calibrated to data to match the number of hospitalized cases
and the number of deaths using MCMC. The work presents the counterfactual
scenarios as changes in mobility, much like this Thesis. In Ref. [54], the authors
present the number of hospitalizations that would have occurred if NPIs had not been
implemented. Similar to Ref. [54], the authors of Ref. [52] recognize the lockdown
imposed by the government as the main factor in reducing transmission rates. They
also recognize that the available data limit the extent and accuracy study and point
out the fact that other authors have successfully used mobile phone data for their
studies.

Throughout this section, I have presented studies focused on the study of NPIs
and their role during the coronavirus epidemic. This Thesis will focus on the same
objective under a different context and with different data. As pointed out, the
available data often limit the extent of this type of studies. In this case, there
are mobility data available that inform how people travel between municipalities
in Finland. Using the available data and a compartmental metapopulation model
calibrated with ABC, the Thesis poses as realistic counterfactual scenarios as possible.

In the following Chapter 3, I will describe the methods used to calibrate the
epidemic model. The methods presented in the next chapter are based on the theory
and studies revised in this chapter.
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3 Compartmental metapopulation model
The objective of modeling the spread of COVID-19 is to understand and explain it
through the parameters and factors in the model. In this Thesis, the main factor
under analysis is the mobility between the regions of Finland, which motivates the
use of a metapopulation model; metapopulation models study the spread of disease
by separating it into regions and observing the interactions between them.

This chapter will present the epidemic model used to describe the spread of
coronavirus in Finland and how the model is calibrated to data. At the end of the
chapter, I show the result of calibrating the model to spring 2020, when COVID-19
arrived in Finland and had its first outbreak.

3.1 Epidemic model
The coronavirus epidemic is modeled using a stochastic compartmental metapopula-
tion model published originally in Ref. [47]. In the model, a region, such as a country,
is divided into K sub-regions. Each sub-region k has its own set of compartments.
The model divides the individuals into Susceptible to the disease (S), Exposed (E)
individuals to the disease but not yet infectious, Presymptomatic infectious (P ),
Asymptomatic infectious (A), Infectious and symptomatic (I), and Removed (R).
A more traditional SEIR model, with only three compartments, is not used since
studies suggest that both Asymptomatic [40] and Presymptomatic [65] individuals
contribute to the spread of the disease. Therefore, using P and A compartments
brings the model closer to the actual progression of an individual in the disease than
using a SIR or an SEIR model. Figure 3 shows a graphical representation of the
SEPAIR compartments and the parameters of the model.

The set of stochastic SEPAIR equations of the model that determine the situation
in region k at time t+ ∆t is the following,

Sk(t+ ∆t) = Sk(t)−X(1)
k (t)−X(2)

k (t)−X(3)
k (t);

Ek(t+ ∆t) = Ek(t) +X
(1)
k (t) +X

(2)
k (t) +X

(3)
k (t)−X(4)

k (t);

Pk(t+ ∆t) = Pk(t) +X
(5)
k (t)−X(6)

k (t);

Ak(t+ ∆t) = Ak(t) +X
(4)
k (t)−X(5)

k (t)−X(8)
k (t);

Ik(t+ ∆t) = Ik(t) +X
(6)
k (t)−X(7)

k (t);

Rk(t+ ∆t) = Rk(t) +X
(7)
k (t) +X

(8)
k (t),

(2)
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Figure 3: Graphical representation of the stochastic compartmental SEPAIR model.
The individuals from the compartments in red can spread the disease. A Suscepti-
ble individual S may become infected when interacting with individuals from the
Presymptomatic compartment P , the Asymptomatic compartment A, or the In-
fectious compartment I. If infected, the Susceptible individual will transition to
the Exposed compartment E and after that progress to Asymptomatic or Presymp-
tomatic. If the individual becomes Presymptomatic, it will eventually progress to the
Infectious symptomatic compartment. At the end of the disease, the Asymptomatic
and Infectious individuals will end up in the Removed compartment R. One individ-
ual can be Removed either because the person recovered from the disease or because
he or she died. The probability of an individual transitioning from one compartment
to the next one is indicated on top of the arrows of the diagram. The values for the
parameters of the model are discussed later in Section 3.3.

in which,
X

(1)
k (t) ∼ Binom

(︃
Sk(t), βk(t)∆tIk(t)

Nk

)︃
;

X
(2)
k (t) ∼ Binom

(︃
Sk(t), raβk(t)∆tAk(t)

Nk

)︃
;

X
(3)
k (t) ∼ Binom

(︃
Sk(t), rpβk(t)∆tPk(t)

Nk

)︃
;

X
(4)
k (t) ∼ Binom(Ek(t), λ1∆t);

X
(5)
k (t) ∼ Binom(X(4)

k (t), 1− pa);

X
(6)
k (t) ∼ Binom(Pk(t), λ(2)∆t);

X
(7)
k (t) ∼ Binom(Ik(t), γ∆t);

X
(8)
k (t) ∼ Binom(Ak(t), γ∆t).

(3)



24

In Equations (3), Binom(n, p) is the binomial distribution with n trials and success
probability p. As mentioned earlier, individuals in the P and A compartments also
contribute to the spread of the disease. The factors ra and rp account for this
contribution. The factor ra is the relative infectiousness an individual in the A
compartment has with respect to an individual in the I compartment, i.e., setting
ra = 1 would mean an individual in the A compartment is as infectious as an
individual in the I compartment. In turn, rp represents the same but for the
individuals in the P compartment. The parameter γ−1 is the average number of
days an individual stays infectious before transitioning to R. Similarly, λ−1

1 is the
average latent period and λ−1

2 the average presymptomatic period, both expressed
in days. The parameter pa is the probability an individual has of becoming part of
the A compartment. Finally, the parameter β is the transmission rate an individual
from I has. As expressed by the equations, β varies across the k regions and time
step t. Thus, the variation of the value of β captures the progression of the disease
at different regions and times. Finally, the parameter ∆t is the time interval between
epidemic realizations expressed in days. For example, if the time interval between t
and t+ ∆t is 6 hours, then ∆t = 1

4 since 6 hours is one-fourth of a day.
There is a set of SEPAIR compartments per region k. Furthermore, at every

time step t, people are traveling between the k regions. To have travelers between
regions allows capturing the situation in which an infected person coming from a
region k may go to another region l, interact with the population in region l, and
transmit the disease. In Figure 4, there is a graphical representation of the model
and the travelers with K = 3 sub-regions.

Figure 4: Interaction of K = 3 sub-regions in the compartmental model at time t.
Each region, at every time step t, has its own set of SEPAIR compartments, and
there is a certain number of people traveling between the regions.

The number of people present in region k, and the people traveling into that
region at time t, determine the number of people in each compartment at time t+ ∆t
and region k as seen in Equations (2). How traveling between regions affects the
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population in each compartment is discussed next in Section 3.1.1.

3.1.1 Travelling between regions

Travelling affects the population of region k at every time step t. This is because
people travel between regions before performing the stochastic step from t to t+ ∆t.
The number of people traveling is taken from an Origin-Destination (O-D) matrix.
Going back to the example where K = 3 from Figure 4, an O-D matrix at time t
would look like the matrix in Table 1. The entry of the O-D matrix at cell with row
k and column l indicates the number of travelers going from region k to region l.

O-D(t) Region 1 Region 2 Region 3
Region 1 3 10 20
Region 2 5 8 13
Region 3 15 4 7

Table 1: Example of an O-D matrix with K = 3 regions at time step t. The values
of the matrix are not based on real data. In the matrix, each cell shows the number
of travelers between two regions. For example, 10 travelers are going from Region 1
to Region 2 and 20 from Region 1 to Region 3.

As mentioned before, traveling occurs between step t and step t + ∆t. For
example, this allows for people in the infected compartment in region k (Ik(t)) to
travel to a new region l and be part of population Il(t) before the realization of time
step t+ ∆t. Thus, the infectious travelers Ik(t) will affect the epidemic outcome in
region l by infecting people. Therefore, at every time step t, the number of people
at compartment C ∈ {S,E, P,A, I, R} in region k is determined by the number of
residents of k currently in k and the number of visitors from the rest of the regions l
in k,

Ck(t) =
∑︂
l∈K

Cl,k(t).

There are two aspects to take into consideration when moving travelers between
regions:

• There are two types of population in region k at all times: people resident in
the region and the travelers in the region.

• Every person at region k, resident or traveler, may belong to any of the six
compartments.

A person in region k may belong to one of 6K classes. It may be in one of the
the six compartments of the model and belong to two types of population (resident
and traveler). The O-D matrix shows the total number of travelers between regions.
However those travelers may belong to any of the 6K classes. Hence the need for a
prioritization algorithm that chooses individuals from the 6K classes in an specific
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order and moves the individuals between the regions. The way the algorithm handles
traveling, considering that an individual may belong to 6K classes, has two cases,
when t = 0 and when t > 0. Algorithm 2 shows the first case, when t = 0, and
Algorithm 3 the second case.

When t = 0, before performing the first stochastic step, all the population is in
the S compartment. Since all the population is in S and there are still no travelers
from the other regions, the algorithm will move people between the regions according
to the O-D matrix at t = 0. However, for t > 0, some people may have gotten
infected, and there will be travelers present in the regions; this is why there is a
separate algorithm to handle this case.

Algorithm 2: Algorithm to distribute the travelers at t = 0 between the
K regions. The algorithm first moves the Susceptible S individuals between
the regions before taking the first time step.
K ← number of regions;
O-D (0)← O-D matrix at t = 0;
for k ← 1 to K do

for l← 1 to K do
/* Get the c travellers going from k to l */
c← O-Dk,l(0);
/* Remove c from k and add to l */
Sk,k(0)← Sk,k(0)− c;
Sl,k(0)← Sl,k(0) + c;

On the other hand, when t > 0 (Algorithms 3 and 4), the algorithm checks
how many travelers c need to be moved from region k to l according to the O-D
matrix. Then, the algorithm will pick residents and travelers in region k until getting
c to move to region l. The order in which the algorithm will pick the people is the
following:

1. Travelers from l currently in k.

2. Residents of k currently in k.

3. Travelers from other regions that are not l currently in k.

The data is not perfect and is imbalanced. This means that, at the end of a day, all
the people that travel from region k to region l may not return to the origin region.
Hence, if the algorithm is ran for a long time horizon, a region may get depleted
of population. If this situation happens, and there is still c people required to go
from k to l, the algorithm will create the missing people as residents of k in the S
compartment and immediately send them to l.

Note that in Algorithms 3 and 4, in several steps, it is mentioned that it is necessary
to pick a specific number n of individuals from the compartments S∗, E∗, P∗, A∗, I∗, R∗.
The number of individuals s, e, p, a, i, r from each compartment respectively must be
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Algorithm 3: Algorithm to distribute the travelers at every time step t
between the K regions. At any given time step, there can be v visitors from
region l in region k. On the other hand, according to the O-D matrix, c
people need to go from k to l. Following these conditions, there can be three
cases (1) c = v, the same amount of people returning to l that travel from l,
(2) c < v, fewer people returning than traveled, i.e. there will be long-stayers,
and (3) c > v, more people returning than traveled. This algorithm presents
the first two cases, and Algorithm 4 presents the last one.
K ← number of regions;
T ← time step t ̸= 0;
O-D (t)← O-D matrix at t;
for t← ∆t to T do

for k ← 1 to K do
for l← 1 to K do

/* c travellers going from k to l */
c← O-Dk,l(t);
/* v travellers currently in k that belong to l */
v ← Sl,k(t) + El,k(t) + Pl,k(t) + Al,k(t) + Il,k(t) +Rl,k(t);
if c = v then

/* Return every traveller from l to home */
Add Sl,k(t), Sl,k(t), El,k(t), Pl,k(t), Al,k(t), Il,k(t), Rl,k(t) to the
respective compartments in l ;

Remove Sl,k(t), Sl,k(t), El,k(t), Pl,k(t), Al,k(t), Il,k(t), Rl,k(t) from
the respective compartments in k ;

/* Less people going to l than current visitors */
else if c < v then

Pick randomly s, e, p, a, i, r individuals from
Sl,k(t), El,k(t), Pl,k(t), Al,k(t), Il,k(t), Rl,k(t) respectively such
that s+ e+ p+ a+ i+ r = c ;

Add s, e, p, a, i, r to the respective compartments in l ;
Remove s, e, p, a, i, r from the respective compartments in k ;

/* More people going to l than current visitors */
else if c > v then

This is a special case since also resident individuals need to be
chosen to go from k to l. See Algorithm 4 ;

picked such that s+e+p+a+ i+r = n. The algorithm performs this operation using
the Hypergeometric(N,K, n) distribution that describes the number of k successful
draws from an object with a specific feature, in n draws without replacement, from a
total population size N that contains exactly K objects with the required feature. For
example, to pick s individuals from the S∗ compartment, the distribution parameters
would be Hypergeometric(N∗, S∗, n), where N∗ = S∗ + E∗ + P∗ + A∗ + I∗ +R∗.
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Algorithm 4: Last case of Algorithm 3. More people returning to l than
people who traveled from l, i.e., c > v

c← O-Dk,l(t);
v ← Sl,k(t) + El,k(t) + Pl,k(t) + Al,k(t) + Il,k(t) +Rl,k(t);
/* Return every traveller from l to home */
Add Sl,k(t), Sl,k(t), El,k(t), Pl,k(t), Al,k(t), Il,k(t), Rl,k(t) to the respective
compartments in l ;

Remove Sl,k(t), Sl,k(t), El,k(t), Pl,k(t), Al,k(t), Il,k(t), Rl,k(t) from the
respective compartments in k ;

/* m people still need to be sent from k to l */
m← c− v;
/* p residents of k currently in k */
p← Sk,k(t) + Ek,k(t) + Pk,k(t) + Ak,k(t) + Ik,k(t) +Rk,k(t) ;
/* Enough residents of k to be sent to l */
if p ≥ m then

Pick randomly s, e, p, a, i, r individuals from
Sk,k(t), Ek,k(t), Pk,k(t), Ak,k(t), Ik,k(t), Rk,k(t) respectively such that
s+ e+ p+ a+ i+ r = m ;

Add s, e, p, a, i, r to the respective compartments in l ;
Remove s, e, p, a, i, r from the respective compartments in k ;

else
/* Send all residents from k to l */
Add Sk,k(t), Ek,k(t), Pk,k(t), Ak,k(t), Ik,k(t), Rk,k(t) to the respective
compartments in l ;

Remove all residents from the compartments in k ;
/* m people still need to be sent from k to l */
m← m− p ;
/* Travellers of all regions k′ that are not from l */
v−l ← Sk′,k(t) + Ek′,k(t) + Pk′,k(t) + Ak′,k(t) + Ik′,k(t) +Rk′,k(t);
/* Enough travellers from all k′ to be sent to l */
if v−l ≥ m then

Pick randomly s, e, p, a, i, r individuals from
Sk′,k(t), Ek′,k(t), Pk′,k(t), Ak′,k(t), Ik′,k(t), Rk′,k(t) respectively such
that s+ e+ p+ a+ i+ r = m ;

Add s, e, p, a, i, r to the respective compartments in l, keep their
resident location k′ ;

Remove s, e, p, a, i, r from the respective traveller compartment of k′

in k ;
else

Add Sk′,k(t), Ek′,k(t), Pk′,k(t), Ak′,k(t), Ik′,k(t), Rk′,k(t) to the respective
compartments in l, keep home location k′ ;

Remove all travellers from all regions k′ in all compartments in k ;
/* m people still need to be sent from k to l */
m← m− v−l ;
Create m Susceptible individuals in region k, Sk,k ;
Send the newly created Sk,k to region l ;
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The algorithms describe how to handle the travelers between regions specified by
the O-D matrices. Data from a major telecommunications operator in Finland is
processed to construct the O-D matrices.

3.2 Mobility data
Mobility data available from a major telecommunications operator in Finland is
processed to determine the O-D matrices needed for the metapopulation model. The
mobility data consists of the number of people moving between municipalities in
Finland from 1 February 2019 to 31 May 2019 and a second period from 1 February
2020 to 31 May 2020. The two time periods are the same but in different years,
2019 and 2020. Therefore, the periods allow comparing the behavior of people when
traveling between municipalities in a year without coronavirus (2019) and during the
first wave of the epidemic (2020).

The data from the operator presents the number of travelers between two mu-
nicipalities on a specific day and determined hour bin. All days have 4 hour bins,
from 0:00 to 5:59, 6:00 to 11:59, 12:00 to 17:59 and 18:00 to 23:59. On the other
hand, Finland is divided into 309 municipalities. Thus on any given day there can
be four entries, one per hour bin, between any two municipalities. Table 2 presents
an example of the mobility data.

Date Origin Mun Destination Mun Hour bin Trips
2019-02-01 Mun A Mun B 0:00-5:59 10
2019-02-01 Mun A Mun B 6:00-11:59 50
2019-02-01 Mun A Mun B 12:00-17:59 50
2019-02-01 Mun A Mun B 18:00-23:59 10

Table 2: Example of the mobility data. The values shown in the rows are not real.
The first column of the Table indicates the date on which the trips occur. The
second and third columns are the origin and destination municipalities of the trips,
respectively. Then, the fourth column indicates the hour bin of the trips. Finally, the
fifth and last column shows the number of trips between the origin and destination
municipalities for that day and hour bin.

3.2.1 Data preprocessing

To obtain the data in the format of Table 2, the telecommunications operator counts
the number of registered users it has that started moving in Municipality A and ended
up in Municipality B at the specific day and hour bin. If the user starts moving and
then does not move for more than 20 minutes, the user ends its trip. The operator
also scales the number of trips it registered to represent the total market instead
of only its market share and present the data as accurately as possible. Lastly, the
operator also mentions that, for some days, there are municipalities with low signal
quality. To deal with the low signal quality, the operator removes the trips originating
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from municipalities with low signal quality, effectively removing the municipality as
an origin for the day in which the signal had low quality. After analyzing the data,
almost all days there is at least one removed municipality. However, since there are
309 municipalities, the removed municipalities do not affect the overall quality of the
data, especially when aggregated. Hence I can directly use the data for most days,
even if some days have these removed municipalities. Nonetheless, the number of
removed municipalities causes bias in the data for the minimum number of days. The
days that are not considered from the data are determined by visually inspecting the
number of total trips between all municipalities per day (see Figure 5).
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Figure 5: Mobility in Finland summing the total number of trips per day from all
municipalities. The number of trips per day in 2019 is in the left panel and 2020 in
the right panel. The figures reveal some days with out-of-the-ordinary low mobility
in both years. These days are not considered if they are not above a threshold; the
threshold is the discontinuous black line in the figures.

A threshold is set in order to discard days with low mobility that are out of
the ordinary. If the total number of trips in a day is less than 4 × 106, the day
is discarded. Also, I verified that the discarded days had a significant number of
reported missing municipalities due to low signal quality. The removed days have a
significantly low number of trips compared to the average number of trips per day
in a year. The average number of trips per day in 2019 is 10,340,396. The days
that are discarded from data are 2019-02-12 with 8,398 trips, 2019-02-13 with 2873
trips, 2019-02-15 with 20,325 trips, 2019-03-27 with 115,671 trips and 2019-05-01
with 3,164,628. For 2020 the average number of trips is 8,834,824. The discarded
days are 2020-02-12 with 3,731 trips, 2020-02-25 with 1,703,217 trips, 2020-03-31
with 40,520 and 2020-05-26 with 3,653 trips.

The analysis done with the metapopulation model requires mobility data for all
days. Instead of completely removing days with low signal quality, they are replaced
with an average measure of mobility. In specific they are replaced with the average
number of trips for the weekday of the removed day. From the data is observed
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that mobility patterns for a weekday are similar in a given period. For example, all
Mondays of autumn have similar mobility patterns, and the same applies for the rest
of the weekdays in the autumn, all Tuesdays, Wednesdays, and so forth. However, it
may not apply for a different period such as all summer Mondays. The difference in
mobility patterns between two periods, for example, autumn and summer, is because
during autumn the schools are open and a few people go out on vacation, whereas
during summer, the schools close, and a significant amount of people go on vacation.
Using this assumption that all weekdays of a given period have similar mobility
patterns, the days with low mobility are replaced with the average number of trips for
that weekday in the correspondent period. The average number of trips tr̄ between
any two regions k and l, for a weekday x and hour bin h, is calculated as follows,

tr̄
(x,h)
k,l = 1

D

∑︂
d∈D

tr
(d,h)
k,l ,

where D groups all the weekdays for a certain period together, e.g., D =
{Mondays of the autumn}. This way, I constructed an average mobility week w̄
in which all the weekdays have the average number of trips between regions, for an
hour bin, in a given period.

Using the method that was just described, I built six weeks w̄ for six different
periods. The periods with similar mobility are the following:

• w̄(2019). The period from 2019-02-01 to 2019-05-31. The whole year 2019 is
considered to have similar mobility. Therefore, it is considered a single period.

• w̄(before). The period from 2020-02-01 to 2020-03-15. Period before the coron-
avirus pandemic. On 2020-03-16, the government declared a state of emergency
in Finland [69], in which it applied several mobility restrictions.

• w̄(quarantine). The period from 2020-03-16 to 2020-03-26. The period after the
state of emergency was declared. The state of emergency entailed the closure of
museums, libraries, and other public spaces. Meetings of more than ten people
were prohibited, and also passenger traffic to Finland was suspended.

• w̄(uusimaa). The period from 2020-03-27 to 2020-04-15. The period where the
border of the region of Uusimaa was closed. On 2020-03-16, the government
ordered the closure of the border of the region of Uusimma [72], restricting
ingoing and outgoing traffic. The border closure of Uusimaa was the most
significant restriction to mobility during 2020. The border was reopened on
2020-03-27 [71].

• w̄(open). The period from 2020-04-16 to 2020-05-13. The period after Uusimaa
border was opened and before the reopening of schools. After the reopening
of the border of Uusimaa, there were still some mobility restrictions in effect.
Some of them were lifted by 2020-05-14, in which also the government allowed
the gradual reopening of elementary schools [51].
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• w̄(schools). The period from 2020-05-14 to 2020-05-31. The period after the
gradual reopening of elementary schools. There are no more available mobility
data from the telecommunications operator after 31 May. There were no other
restrictions lifted between the schools reopening on 14 May and 31 May 2020.

The week w̄(2019) is used to replace all the days that have out of ordinary low
mobility (2019-02-12, 2019-02-13, 2019-02-14, 2019-03-27, 2019-05-01). The week
w̄(before) is used to replace the mobility for days 2020-02-12 and 2020-02-25. Next,
the week w̄(uusimaa) is used to replace the mobility of 2020-03-31. Finally, the week
w̄(schools) is used to replace 2020-05-26.

3.2.2 Aggregation of mobility data to HCD

How the Finnish Institute for Health and Welfare (in Finnish Terveyden ja hyvin-
voinnin laitos) (THL) reports the confirmed coronavirus cases is discussed later in
detail in Section 3.4. Nevertheless, it is worth to cover how the mobility data will
be aggregated. The mobility data are aggregated to match the geographical level
at which THL reports the confirmed cases. THL reports the cases at the Hospital
Care District (HCD) level. However, the mobility data available is in a finer geo-
graphical level, at the municipality, or in Finnish, kunta level. HCDs, or in Finnish
sairaanhoitopiirit, enclose one or more municipalities. A larger geographical level
that encloses HCDs is called Hospital Catchment Area (in Finnish erityisvastuualue)
(ERVA), also mentioned later in Section 3.4.1. To see the different geographical levels
in Finland, see Figure 6.

The mobility data is aggregated to the HCD level to match the geographical level
at which THL reports the cases. That means first to identify to which HCD each
municipality belongs to and then make the summation of trips between the HCDs,

tr
(d,h)
k,l =

∑︂
k′∈K′

∑︂
l′∈L′

tr
(d,h)
k′,l′ ,

where tr(d,h)
k,l are the final aggregated trips from HCD k to l at day d and hour bin

h. The variable K ′ is the set of municipalities that belong to HCD k, and similarly,
L′ is the set of municipalities that belong HCD to l. The mobility data will still
look similar to those entries in Table 2, but instead of having origin and destination
municipality, there will be origin and destination HCD.

3.2.3 Comparing mobility between 2019 and 2020

The government enforced a high number of mobility restrictions in 2020 due to the
coronavirus epidemic. Comparing the mobility data between 2019 and 2020, one can
detect the impact of the restrictions to mobility. To compare the mobility of 2020 to
the mobility of 2019, I used the previously constructed week w̄(2019) as a baseline.
First, the total number of trips of a day d between every HCD pair k and l is going
to be obtained summing the trips of every hour bin,

tr
(d)
k,l =

4∑︂
h=1

tr
(d,h)
k,l .
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Figure 6: Geographical levels in Finland. The smallest level is a municipality (kunta
in Finnish); on the map, it is delimited by white borders. The next level is HCD,
with black borders between each on the map. Finally, the largest level visible level
in the map is Hospital Catchment Area (in Finnish erityisvastuualue) (ERVA). Each
ERVA has a different color on the map. On the left, the HCDs are listed, indicating
how many municipalities belong to them and to which ERVA they belong. The
image is taken from the Association of Finnish Municipalities with their permission
(Kuntaliitto) [57].

The above expression will be applied for all weekdays in w̄(2019) and every day in the
mobility data of 2020. Then, the relative change in mobility r in 2020 with respect
to 2019 per day d, origin k, and destination l can be obtained by,

r
(d)
k,l =

tr
(d)
k,l − w̄

(x)
k,l

w̄x
k,l

,

where w̄ is the average mobility per weekday during 2019 (w̄(2019)) and x is the
weekday of day d. Last, to get a measure of relative change in mobility per HCD k,
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the average relative change for all the trips that originated in k is taken as,

r
(d)
k = 1

K

K∑︂
l=1

rk,l
d .

Finally, Finland’s average relative change in mobility per day can be obtained by
averaging r(d)

k across all HCDs. Figure 7 is a comparison of the relative change in
mobility during 2020 with respect to 2019 in four regions: Finland, Helsinki and
Uusimaa HCD (the most populated HCD), the HCD that most reduced its mobility
(Ahvenanmaa), and the HCD that least reduced it (Itä-Savo).
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Figure 7: Relative change in mobility in Finland in 2020 with respect to 2019.
Marked with a dashed line is the baseline, i.e., the mobility level of 2019. Helsinki
and Uusimaa HCD is the most populated HCD, and its relative change is visible in
black on the plot. The borders of Uusimaa were closed from 2020-03-27 to 2020-04-15;
in the plot, we can see the effect of the mobility restriction. Ahvenanmaa was the
HCD that reduced its mobility the most, and Itä-Savo HCD was the one that reduced
it the least. The relative change in both can be seen in blue and purple, respectively.
In red is the relative change in mobility in the whole of Finland.

Figure 7 presents the effect of the mobility restrictions in Finland. For example,
a drop in the relative change can be seen when a state of emergency was declared
in 2020-03-16. There was another drop for Helsinki and Uusimaa HCD when the
border was closed on 2020-03-27, and then a slight increase when the border opened
on 2020-04-15.

The mobility data reflects the mobility restrictions imposed by the government.
The aim is to use this informative data and present counterfactual scenarios, i.e.
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scenarios that involve modifying the mobility patterns of 2020 and seeing how these
changes may affect the epidemic’s evolution. One example is the scenario in which
there would be no restrictions and the people continue their mobility patterns from
2019. It is expected that the counterfactual scenarios have consequences on the
development of the epidemic, taking into account that NPIs were the primary resource
of the government to prevent the spread of the disease. The way the counterfactual
scenarios are set in detail is discussed in Section 4.1.

First, there is a need to calibrate the model to the epidemic situation in Finland
during the first wave of the epidemic. To calibrate the model the mobility data
and the values for the parameters in the epidemic model are needed. This section
presents the mobility data; the next Section 3.3 will cover the parameters of the
epidemic model.

3.3 Parameters of the model for coronavirus epidemic
In the stochastic Equations (3), there are several parameters. The values of those
parameters are inherent to the characteristics of the coronavirus disease. Some of the
values of the model parameters have been taken from the literature and set in the
model. The parameters from the literature are λ1, λ2, γ, ra, rp and pa. The parameter
∆t was set based on the periodicity of the available mobility data. The mobility data
is analyzed in detail in Section 3.2. The parameter βk(t) is inferred from the number
of reported cases in Finland. Section 3.5 discusses the method followed to infer the
parameter. Table 3 presents the values for all the parameters of the model.

Parameter Description Value
βk(t) Transmission rate Inferred
λ−1

1 Average latent period 3 days
λ−1

2 Average presymptomatic period 2 days
γ−1 Average infectious period 5 days
ra Relative infectiousness of an A individual wrt I 0.1
rp Relative infectiousness of a P individual wrt I 1.25
pa Probability of being asymptomatic 0.4
∆t Time interval between time steps 0.25 days
K Number of regions 21 HCDs

Table 3: Parameters and their values in the SEPAIR epidemic model. The values
for the parameters λ1, λ2, γ, ra, rp and pa are from Ref. [49]. The parameter βk(t) is
inferred from data, see Section 3.5. The parameter ∆t is set based on the available
mobility data. K is also set based on the available data; in this case, the confirmed
cases reported by THL. More information about the reported cases is available in
Section 3.4.

Finland is divided into sub-regions called Hospital Care Districts (HCDs). There
are 21 HCDs, hence K = 21 in the model. The main reason to use HCDs as sub-
regions of Finland and not apply the model to a finer level, for example, municipalities,
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is because the Finnish government reports the number of confirmed cases at the
HCD level. A more detailed explanation of how THL reports the cases is given next
in Section 3.4.

3.3.1 The effective reproduction number

The effective reproduction number Reff is computed in the same way as in Ref. [47],

Reff = β
(︃
rp(1− pa)

λ2
+ 1− pa

γ
+ rapa

γ

)︃
.

Most of the values for the parameters are fixed (see Table 3). However, the
parameter β changes across HCDs and in time and is calibrated based on data, see
Section 3.5.

3.4 Reported cases by THL
The βk(t) parameters in the compartmental metapopulation model presented in
Section 3.1 are calibrated using the number of confirmed cases or incidence, reported
by the Finnish Institute for Health and Welfare (in Finnish Terveyden ja hyvinvoinnin
laitos) (THL). THL reports daily the incidence of coronavirus by Hospital Care
District (HCD). The data are available on their website, and are free to download
[79]. One or more municipalities form each HCD, and a code identifies it. Each HCD
has a different population and area extent. Helsinki and Uusimaa HCD comprise
a little less than a third of the population of Finland. The second biggest HCD
population-wise is Pirkanmaa HCD, with almost 10% of the population of Finland.
The population of each HCD is in Table 4.

The HCD with the most prevalence until the end of May 2020 was the Helsinki
and Uusimaa HCD. By itself, it accounts for over two-thirds of the total prevalence
in Finland during the period. Southwest Finland HCD, where the city of Turku
is located, is in a second place. However, it only accounts for a little bit less than
5% of the total prevalence. Moreover, 11 out of the 21 HCDs have less than a 1%
contribution to the total prevalence.

The reported incidence is not a reflection of the actual number of infectious
people. Not all infectious people present symptoms and are asymptomatic. Most
asymptomatic individuals will not get tested, and THL will not count them in the
reports. Nonetheless, from the numbers, it can be seen how Helsinki and Uusimaa
HCD greatly influence the national epidemic numbers. If Helsinki and Uusimaa HCD
has a large incidence, Finland will most likely also have a large incidence.

Figure 8 shows the progression of the epidemic in Finland during the spring
period of 2020. The cases started increasing at the beginning of March 2020. The
day with the most reported incidence, when the epidemic reached its peak, was 6
April 2020. On that day, THL reported 210 confirmed cases. After 6 April, the
number of reported cases started to decrease, reaching almost 0 by the end of May
2020.
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HCD Name Code Population Population (%) Cases Cases (%)
Ahvenanmaa 0 29,884 0.54 13 0.18
Southwest Finland 3 482,169 8.72 347 4.96
Satakunta 4 216,752 3.92 53 0.75
Kanta-Häme 5 170,925 3.09 111 1.58
Pirkanmaa 6 537,226 9.72 260 3.73
Päijat-Häme 7 210,057 3.80 109 1.56
Kyymenlaakso 8 164,456 2.97 44 0.63
South Karelia 9 127,757 2.31 23 0.32
South Savo 10 98,823 1.78 52 0.74
Itä-Savo 11 40,258 0.72 13 0.18
North Karelia 12 164,465 2.97 25 0.35
North Savo 13 244,236 4.42 138 1.97
Central Finland 14 252,716 4.57 134 1.91
South Ostrobothnia 15 193,207 3.49 46 0.65
Vaasa 16 169,495 3.06 58 0.83
Central Ostrobothnia 17 77,304 1.39 23 0.32
North Ostrobothnia 18 41,0112 7.42 134 1.91
Kainuu 19 72,306 1.30 65 0.93
Länsi-Pohja 20 60,295 1.09 145 2.07
Lappi 21 116,866 2.11 74 1.05
Helsinki and Uusimaa 25 1,685,983 30.5 5,116 73.26
Total - 5,525,292 100 6,983 100

Table 4: List of HCDs in Finland, including their code, population at 2019, and
cumulative number of reported cases or prevalence until 31 May 2020. The prevalence
is taken from the daily numbers reported by THL [79]. The population numbers
were obtained from Statistics Finland [78].

3.4.1 Hospitalizations

Another common indicator to evaluate the severeness of COVID-19 is the number of
hospitalizations. Unfortunately, THL does not report this by HCD. THL reports the
number of hospitalizations to a more aggregated geographical level called Hospital
Catchment Area (in Finnish erityisvastuualue) (ERVA). An ERVA contains more
than one HCD. Since there is no available way to assign the number of hospitalized
people by ERVA, and relate it to the HCD level, the number of hospitalizations is
not going to be used to calibrate the compartmental model.

Next, Section 3.5 presents the complete process for calibrating the model using
the incidence and the mobility data.
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Figure 8: Incidence in Finland per day from 24 February 2020 to 31 May 2020. The
peak number of reported cases was reached on 6 April 2020.

3.5 Calibration of the epidemic model
The parameters βk(t) from the model presented in Section 3.1 are inferred from
the data. The parameter depends on HCD k and time t, reflecting the changing
behavior of the disease across different HCDs and different times. The reported
incidence by THL and the mobility data are used to calibrate the parameters βk(t).
The specific inferring method used is Approximate Bayesian Computation (ABC),
initially proposed in Ref. [17] and already explained in Chapter 2.

Chapter 2 presents the rejection algorithm for ABC. In the algorithm there are
four essential components: the prior distribution for the parameters p(·), a simulator
function f(·), the summary statistics S(·) and the distance measure d(·, ·). The basic
idea is to extract a set of proposed parameters θ′ from the prior distribution, make
simulations of the data ỹ using f(θ′) and accept the parameters θ′ if the generated
data ỹ is close enough to the observed data y according to the summary statistics
and the distance function, d(S(ỹ), S(y)). In the following sections, I will analyze the
choice of the ABC elements for the coronavirus epidemic and the epidemic model.

3.5.1 Prior distributions

Priors are used to sample a set of proposed parameters θ′ that will be later introduced
into the simulator function f(·), as seen in Algorithm 1. For the case of the epidemic
model presented earlier, the proposed parameters sampled θ′ are going to be proposed
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parameters βk(t) for the model. I used the exponential distribution as a prior
distribution for the β parameters. The reason behind choosing an exponential
distribution is because its support is [0,∞) and thus it can never adopt negative
values. This same characteristic is also desired for the β parameter; a negative
value of β would yield a negative Reff, which is impossible. On the other hand,
when β = 0.22, the effective reproductive number Reff = 1. Therefore, to have
no assumptions on the state of the epidemic, the mean for the prior exponential
distribution is λ−1 = 0.22.

The parameter βk(t) depends on time t and HCD k. Therefore, during simulations,
the algorithm first samples a national value β(t), and then it samples the βk(t) values
for each HCD conditionally on the national β(t) obtained.

3.5.2 Simulating the data

The first step to simulate data is to sample some proposed βk(t) parameters from
the prior distribution. The βk(t) parameters along with the mobility data (Section
3.2) and the rest of the parameters (Section 3.3) will be used to do realizations of
the epidemic model over some time T to get ỹ. If ỹ is similar enough to y, the set of
proposed βk(t) parameters will be accepted.

Defining the simulated data. The true observed data y are the reported inci-
dence by THL during time T . To simulate data ỹ, I will use the epidemic model as
the simulator function f(·). The incidence of individuals in the epidemic model’s
infectious compartment (I) will be taken as the simulated data ỹ. Hence, I am
assuming that all the individuals that are infected are also reported.

The number of required parameters. Note that the number of required βk(t)
parameters depends on the time T of the simulations. For instance, if T = 7 days,
and there is a different βk(t) used per day and HCD, then 7× 21 = 147 parameters
βk(t) parameters are needed. The number 21 comes from the number of HCDs.
However, the value of βk(t) is not expected to vary that much daily. Even the reports
done by health institutes tend to report a Reff weekly instead of daily. Because of
this, the same sampled βk(t) will be used for seven days. Adjusting the previous
example when T = 7 days, only 21 parameters βk(t) are needed instead of 147.

Dividing the time T . Another detail is that to have a faster convergence of the
ABC algorithm and more accurate βk(t) values, I do the simulations of the epidemic
in steps of p = 21 days until reaching the complete time T rather than a single
simulation for the complete duration of T . Algorithm 5 exhibits the complete flow
of the process to obtain ỹ.

3.5.3 Summaries and distance measure

The summary statistics and distance measure are the last components of the ABC
algorithm. I used K + T summary statistics and constructed a vector s of length
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Algorithm 5: Simulating the epidemic in steps of maximum p = 21 days.
Since the value of βk(t) is used for 7 days, and there are K = 21 HCDs, then
at most, a total of 3× 21 = 63 parameters βk(t) are sampled and calibrated
at the same time using ABC (Algorithm 1).
p← 21 ;
/* Variable to keep track of the simulated time */
sim← 0 ;
T ← Total time;
while sim < T do

/* Finding out how much time is missing to simulate */
if T − sim ≥ 21 then

d← 21;
else

d← T − sim;
Run ABC with the epidemic simulator for d days to get βk(t);
Save obtained βk(t);
sim← sim+ p;

K + T with its result. The K statistics come from the sum over time T of the
incidence of each HCD k. For a single HCD,

yk =
T∑︂

t=0
yk(t).

Similarly, the T statistics come from the sum of the incidence of all HCDs K at time
t,

y(t) =
K∑︂

k=0
yk(t).

Once the vectors for the observed reported cases s and the simulated reported cases
s̃ are obtained, they are compared using the Euclidean distance,

d(S(y), S(ỹ)) = d(s, s̃) =
√︃∑︂

(si − s̃i)2.

3.5.4 Seeding the epidemic

The last aspect to consider when calibrating the parameters βk(t) is setting the initial
infectious people. Without this, the disease will not spread. As a result, there is a
need to set some initial number of infectious people per HCD k. This process is also
sometimes referred to as seeding the epidemic.

I seeded the epidemic using the incidence reported by THL during the first three
weeks of the time T . The period of three weeks, 21 days, was chosen to match the
first step of p = 21 days when simulating the epidemic, as explained in the previous
section.
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The primary purpose of the Thesis is to analyze the mobility measures imple-
mented by the government during the spring of 2020. Accordingly, I will calibrate
the epidemic model from 2 March 2020 to 31 May 2020. Thus, the epidemic will
be seeded using the reported incidence by THL during the first three weeks of the
period, from 2 March to 22 March.

To match the day the cases were reported, I construct a matrix M with K = 21
rows and D = 21 columns. The columns represent the days in which the cases
were reported. The entries of the seed matrix mk,d are the reported infections ik,d

amplified by a factor ψk. The factor ψk is introduced to account for the undetected
cases at the beginning of the epidemic at HCD k,

mk,d = ψkik,d,

The final value of mk,d represents the infectious individuals used as a seed in HCD k
in day d. The simulator, in turn, will introduce the infectious seed individuals at the
appropriate simulation day. The value of ψk is also going to be calibrated from data
using ABC.

The complete reported prevalence for the three weeks is not used to seed the
epidemic. Instead, the prevalence is divided into three weeks ωi. An HCD k will only
have as seed the reported cases of one of the three weeks. The incidence for the rest
of the weeks is not going to be used. If HCD k has reported cases during the first
week ω1, those cases will be used to seed the epidemic. If k does not have reported
cases at ω1, then the cases from the second week ω2 will be used. Still, some HCDs
did not report cases during the first two weeks; for those HCDs, the cases for the
third week, ω3, are used. The used week-prevalence for seeding each HCD per week
ωi is in Table 5.

3.6 Calibrated model in Finland during spring of 2020
The model is calibrated over the period from 2 March 2020 to 31 May 2020. It was
in this period when the epidemic reached Finland and had its first outbreak or wave.
For simplicity, through the rest of this chapter, I will refer to this period as spring
2020.

The parameter βk(t) is the only parameter calibrated to data of spring 2020.
The parameter βk(t) accounts for the transmission rate of an infectious individual.
This parameter depends on time t and region k, i.e., the parameter’s value varies
across time and region. The value of βk(t) stays constant over seven days, one week,
in a given region. Since spring 2020 consists of 91 days and 21 HCDs, there are
(91/7)× 21 = 273 inferred parameters.

ABC is used to infer the parameters βk(t). ABC obtains 1000 samples for each
βk(t). Each set of samples yields a realization of the epidemic model over spring
2020. To calibrate the model, the observable quantity of the model is the incidence
in the I compartment. Thus the incidence in the I compartment will resemble the
incidence in Finland at the end of the calibration. Hence there are 1000 realizations
of the epidemic model that resemble the incidence of the epidemic in Finland in
spring 2020.
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HCD Name ω1 ω2 ω3

Ahvenanmaa 0 0 2
Southwest Finland 1 0 0
Satakunta 0 7 0
Kanta-Häme 3 0 0
Pirkanmaa 7 0 0
Päijat-Häme 0 1 0
Kyymenlaakso 0 1 0
South Karelia 1 0 0
South Savo 0 2 0
Itä-Savo 0 0 1
North Karelia 1 0 0
North Savo 3 0 0
Central Finland 1 0 0
South Ostrobothnia 0 1 0
Vaasa 0 1 0
Central Ostrobothnia 1 0 0
North Ostrobothnia 1 0 0
Kainuu 0 0 1
Länsi-Pohja 0 0 1
Lappi 0 1 0
Helsinki and Uusimaa 22 0 0

Table 5: Prevalence used for seeding the epidemic. The rows are the HCDs in Finland
and the columns the weeks ωi that were used for seeding. Within a row, only one
column ωi ̸= 0, i.e., only one week per HCD was used for seeding. The week ω1
encompasses the period from 2 March 2020 to 8 March 2020, ω2 from 9 March to 15
March, and ω3 from 16 March to 22 March.

The average incidence over the 1000 realizations of the epidemic model will
represent the overall incidence of the calibrated model. The 25 and 75 percentiles
will delimit the 50% Confidence Interval (CI) and the 12.5 and 87.5 percentiles the
75% CI.

Figure 9 shows the incidence of the calibrated model in Finland and for the three
HCDs with the most prevalence over spring 2020. The three HCDs with the most
prevalence are Helsinki and Uusimaa, Southwest Finland, and Pirkanmaa. These
three HCDs correspond with three major cities in Finland: Helsinki, Turku, and
Tampere, respectively.

According to Figure 9, the calibrated model does resemble the reported incidence
by THL. The calibration of the model is better for the Helsinki and Uusimaa HCD
than for the other HCDs. It is expected that the Helsinki and Uusimaa HCD has a
better fit since it is the HCD with the highest incidence and therefore has a more
significant influence on the distance measure of the ABC algorithm.
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Figure 9: Calibrated metapopulation model from 2 March 2020 to 31 May 2020. The
reported incidence by THL is in gray. The incidence of the model is in orange. The
shadowed areas are the CIs of the model. The darker shadow is the 50% CI and the
lighter the 75% CI.

3.6.1 Reff during spring 2020

The effective reproduction number (Reff) values can be retrieved using the samples of
the βk(t) parameter. The Section 3.3.1 specifies the relation between Reff and βk(t).

As before, Figure 10 displays the plotted values of the Reff for Finland, Helsinki
and Uusimaa, Southwest Finland, and Pirkanmaa HCDs. Helsinki and Uusimaa
HCD has the highest Reff value, Reff > 3 at its highest point. This point was reached
in the week of 9 March 2020. After this week, the government declared a state
of emergency, and Reff decreased had a slight increase in the week that started on
30 March. The week of 30 March is the week after the border of Uusimaa was
closed. The slight increase of Reff at this time suggests that, while the NPI of closing
the border was to prevent infections at other HCDs, it promoted the contacts and
infections inside Helsinki and Uusimaa.

In Finland, Reff < 2 at the beginning of spring 2020. After the declaration of the
state of emergency, and the implementation of NPIs, the Reff value dropped near
to unity. During the week of 30 March, Reff had a slight increase. The reported
incidence of that week explains the increase in Reff. That week marked the peak of
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Figure 10: Reff for the calibrated model from 2 March 2020 to 31 May 2020. The
continuous orange line is the average value of Reff, the darker and lighter shade
are the 50% CI and 75% CI, respectively. In a discontinuous horizontal black line,
Reff = 1, the equilibrium of the epidemic, when it will not increase nor decrease. The
discontinuous vertical lines mark dates of meaningful mobility changes. The first line
marks when the state of emergency was declared in Finland on 16 March 2020. The
second and third lines mark when Uusimaa border was closed, from 27 March to 15
April. The last black line is 13 May, when the gradual reopening of schools started
along with the ease of other mobility restrictions. The gray line is the calculated Reff
in Ref. [61], and it is plotted for comparison.

the epidemic at a national level and in most HCDs. By the following week, the week
of 6 April, Reff dropped below 1, and it stayed below 1 until the end of spring 2020.
This indicates that the NPIs at the beginning of spring worked. Based on this stable
state of Reff < 1, the government decided to ease the restrictions on 13 May.

The Reff values that result from the calibrated model are compared with the
results obtained in Ref. [61]. THL did not start reporting the weekly Reff until 15
May 2020 [80]. However, Ref. [61] is a site that, since 3 March 2020 calculates the
Reff values for Finland and at the ERVA level using an SEIR model. The site uses
the reported incidence by THL to estimate the state of the SEIR model using an
unscented Rauch-Tung-Striebel smoother. Then, a value of Reff is obtained from the
estimated system state. The results obtained by Ref. [61] mostly agree with the ones
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obtained by THL for the other dates; thus they are a good baseline. The results
of Ref. [61] for spring 2020 are very similar to the results obtained in this Thesis.
Figure 13 shows that the Reff values are similar except for the Helsinki and Uusimaa
HCD at the beginning of spring 2020. In this case, the Reff values of the calibrated
model used in this Thesis are more pessimistic than those in Ref. [61].

Finally, the following section presents a final result with a scenario that tests the
model and methods of the Thesis.

3.7 The epidemic in Finland beyond spring 2020.
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Figure 11: Calibrated metapopulation model from 2 March 2020 to 19 September
2021. The reported incidence by THL is in gray. The incidence of the model is in
orange. The shadowed areas are the CIs of the model. The darker shadow is the
50% CI and the lighter the 75% CI.

To test the model’s robustness and ABC as inference method, I calibrated the
model to a longer time horizon. The model is calibrated from 2 March 2020 to 19
September 2021 in this final result. The objective is to test if the methods presented
in the Thesis for calibrating the model could be applicable to another scenario.

Figure 11 shows the incidence for the same four regions as the previous results of
this chapter but for a longer time horizon. The incidence by the calibrated model
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does follow the reported incidence by THL. The result implies that the calibration
and inference methods are robust.

Throughout this chapter, I have presented the model, introduced its different
parameters and characteristics, its calibration to data, and the resulting Reff given
the calibration. In the coming Chapter 4, I will discuss how to adjust the calibrated
model through mobility data to analyze different counterfactual scenarios. The
objective of the counterfactual scenarios is to know how the NPIs implemented in
Finland ultimately affected the outcome of the coronavirus epidemic in Finland.
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4 Counterfactual scenarios
The main objective of the Thesis is to analyze the effect of NPIs through counterfactual
scenarios on the coronavirus epidemic situation in Finland during spring 2020. A
compartmental metapopulation model, calibrated with the incidence in each region
in Finland, describes the epidemic situation (see Chapter 3). Each counterfactual
scenario will affect the mobility of the calibrated model; this alteration will produce
a different incidence than the one of the calibrated model. The new incidence is then
compared to the incidence of the calibrated model to analyze and contrast the role
of mobility and NPIs.

Most of the NPIs affected the daily mobility patterns. Mobility had a crucial
impact in driving down the incidence and Reff. Without a vaccine and effective
medication against coronavirus, it was one of the few things that the government
could control. If people do not meet, there is also no possibility of getting infected.

Counterfactual scenarios allow gaining the previously mentioned understanding
of the impact that NPIs had on the outcome of the epidemic. With counterfactual
scenarios, the possibility of modeling how mobility would have been if a given NPI
was not taken and then analyzing the impact of that scenario in the outcome of the
epidemic is available. The opposite is also possible, posing a scenario in which the
control imposed by NPIs restricts more mobility than it did. The comparison of
different scenarios can shed light on which NPIs were most effective in controlling
the epidemic.

4.1 Counterfactual scenarios based on mobility data
The counterfactual scenarios that I will present will affect mobility since it is one
of the most representative aspects of everyday life affected by NPIs. There are two
ways in which data can affect mobility. The first one is to affect the ingoing and
outgoing people of a specific HCD, changing the cross-border mobility between HCDs,
explained next in detail in Section 4.1.1. The second one is to affect the internal
mobility of the HCDs, impacting the way people interact with each other. To that
end, a parameter (α) is introduced into the stochastic equations presented in Section
3.1; Section 4.1.2 explains the new parameter in detail. Figure 12 displays a small
diagram illustrating the factors affecting the mobility in a HCD k.

4.1.1 Cross-border traffic

For the case of affecting mobility between HCDs it is enough to change the number
of trips of the O-D matrix for a given number of days and hours. Thus the number
of trips between HCDs is going to be altered in two ways.

Having no trips between HCDs. Not having any trips between HCDs accounts
for a very severe scenario in which the borders of all the HCDs are closed so nobody
can go outside of their HCD of residence. People would still have contacts and
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Figure 12: Schematic of the factors altering mobility in HCD k. Changing the number
of trips ingoing and outgoing (cross-border traffic) will influence the interaction with
other regions. On the other hand, the parameter αk(t) will scale up or down the
parameter βk(t) to account for how people interact inside a given region.

therefore spread the disease inside the HCD. Therefore, all entries in the O-D matrix
will simply be set to zero.

Have an equivalent number of trips as in 2019. The second scenario accounts
for not having any restrictions. The year 2019 is a time without the presence of
coronavirus and hence of normal mobility. The objective is to see how the disease
would have spread under a normal cross-border flow. The O-D matrix will be
constructed using w̄(2019), defined in Section 3.2. Thus, the trips tr for a day d will
be replaced with the trips of w̄(2019) of weekday x of day d.

4.1.2 Inner mobility and the α parameter

The value of the parameter βk(t) is mainly responsible for determining the transmis-
sibility inside an HCD k. This parameter encodes how many contacts an average
person makes and the transmission probability of the disease during these contacts.
The parameters βk(t) of each HCD are initially calibrated to emulate the situation
of spring 2020 in Finland. Then, I introduce an αk(t) parameter that will adjust the
calibrated contacts of βk(t) depending on the counterfactual scenario modeled.

The data and situation allow three different counterfactual scenarios to adjust
the contacts of the calibrated model to spring 2020:

1. Reduce the number of contacts.

2. Reproduce the number of contacts made in 2019.

3. Remove the contacts of people who stayed in their HCD of residence that,
without coronavirus, would have traveled out.
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Another plausible scenario is one in which, instead of removing completely the
contacts of people who stayed in their HCD of residence, they make as many contacts
in their HCD as they would have made if they had traveled out. Unfortunately, the
last described scenario cannot be modeled due to the nature of the data. Currently,
there is no way to determine from the data the average time a person from HCD k
spends when he or she visits HCD l. Thus, it is also impossible to know the average
contacts an individual makes in HCD l and transfer those contacts to their HCD of
residence k. For these reasons, this scenario is not considered here.

As mentioned, the parameter αk(t) will affect βk(t) in Equations (2). It does it
in the following way,

X
(1)
k (t) ∼ Binom

(︃
Sk(t), αk(t)βk(t)∆tIk(t)

Nk

)︃
;

X
(2)
k (t) ∼ Binom

(︃
Sk(t), raαk(t)βk(t)∆tAk(t)

Nk

)︃
;

X
(3)
k (t) ∼ Binom

(︃
Sk(t), rpαk(t)βk(t)∆tPk(t)

Nk

)︃
.

(4)

Since βk(t) is not present in X(4)(t) throughX(8)(t) of Equations (2), these expressions
will remain unchanged.

From Equations (4), it is observed that αk(t) = 1 would be equivalent to leaving
the inner mobility unchanged and therefore not altering the calibrated βk(t) values.
Thus, setting αk(t) > 1 would account for more contacts inside the HCD. Equivalently,
αk(t) < 1 would be set for a scenario with fewer contacts.

In the coming paragraphs, I will explain how the values for αk(t) were set according
to the three counterfactual scenarios mentioned before.

Reducing the number of contacts. The first counterfactual scenario will set
αk(t) to reduce the number of contacts made in 2020. This scenario will allow
modeling a situation where the population reduces its contacts by staying more at
home or making fewer contacts due to even tighter restriction measures inside each
HCD or a natural fear of the disease.

To model this scenario, I set αk(t) to a constant,

α
(const)
k (t) = 0.8.

This value implies a 20% reduction in contacts with respect to the calibrated
scenario in all HCDs and at all times t.

Reproduce the number of contacts made in 2019. The second counterfactual
scenario will model αk(t) to affect βk(t) such that it reproduces the number of contacts
in 2019. The value of αk(t) will encode the information of the difference in the contact
patterns between 2019 and 2020. The purpose is to pose a situation in which the
population did not reduce their contacts during 2020. Instead, it kept the contact
patterns of 2019.
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To this end, I will consider the trips that started in HCD k and ended in HCD
k, the inner trips of HCD k during 2019 and 2020, to compute the values of αk(t).
These inner trips also include the within-municipality trips present in the data,
aggregated to the HCD level. The difference in the inner trips between the years
will be interpreted as the difference in the contact patterns. Thus, more inner trips
during 2019 than 2020 will yield more contacts inside the HCD and vice versa.

To compute αk(t), I will use the average mobility per weekday during 2019 w̄(2019)

presented in Section 3.2 and the trips tr during 2020 of the mobility data,

α
(2019)
k (t) =

w̄
(x,h)
k,k

tr
(d,h)
k,k

,

in which w̄ = w̄(2019), x is the weekday of day d, h denotes the hour bin of the
trips, and trk,k are the trips that started and ended in HCD k on 2020. It is worth
mentioning that t matches h. Every time step t in simulation is equivalent to 6 hours;
the hour bins h also account for 6 hours of the day.

Removing the contacts of people that stayed in their HCD of residence.
The final counterfactual scenario will model the hypothetical but very possible
situation in which the people who did not go out of their HCD k during 2020 but
would have left without coronavirus do not participate in the contacts of the region
to spread the disease. The assumption is that people forced to stay inside their HCD
of residence stayed in lockdown and did not participate in contacts. Figure 13 confers
a representation of the scenario.

There is an amount of travelers ∑︁K
l ̸=k tr

(2020)
k,l that travel out HCD k during 2020.

However, the amount of travelers ∑︁K
l ̸=k tr

(2019)
k,l that travel out of the same HCD in 2019

is greater than in 2020, i.e.,∑︁K
l ̸=k tr

(2019)
k,l >

∑︁K
l ̸=k tr

(2020)
k,l . Under normal conditions,

without the coronavirus epidemic, one could expect ∑︁K
l ̸=k tr

(2019)
k,l ≈ ∑︁K

l ̸=k tr
(2020)
k,l .

NPIs and fear of the disease are responsible for this difference in the mobility between
HCDs. One can theorize why the travelers were not able to make the usual trips;
probably they were ordered to work from home or the avoided trips were not essential,
or some other unknown reason.

Be that as it may, since the population of HCD k stays more or less constant
between years, the population present in HCD k during 2020 is greater than the
population present in 2019, Nk −

∑︁K
l ̸=k tr

(2019)
k,l < Nk −

∑︁K
l ̸=k tr

(2020)
k,l .

On the other hand, the model is calibrated assuming all the people present in
HCD k during 2020 participated in contacts. Hence, the people who did not travel
to other HCDs l are present and making contacts during calibration. To model
the situation in which the people who stayed in their HCD k of residence did not
participate in contacts, I assume that the population participating in contacts in
HCD k during 2020 would be around the same as those who stayed at HCD k during
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2019. The modeling of the assumption leads to the following expression,

α
(lockdown)
k (t) = 2019 population in k at time t

2020 population in k at time t ;

α
(lockdown)
k (t) =

Nk −
∑︁K

l ̸=k w̄
(x,h)
k,l

Nk −
∑︁K

l ̸=k tr
(d,h)
k,l

,

in which Nk is the total population at HCD k, w̄ = w̄(2019) the average number of
trips in 2019 per weekday, x is the weekday of day d, h denotes the hour bin of the
trips, and trk,l are the trips starting at HCD k and ending in l in 2020. Figure 13
shows a representation of the scenario.

Figure 13: Graphical representation of the way α(lockdown) is modeled. Each square
represents one scenario of the people that travel out from HCD k (arrow pointing
to the right) and the people that stay inside the HCD and participate in contacts
(recursive arrow). The leftmost square represents a scenario in which mobility in
non-pandemic times is maintained, like in 2019. The central square is the scenario
that happened in 2020 and to which the model is calibrated. The rightmost square
is the situation modeled for α(lockdown). The outgoing trips are kept, but the people
who participate in contacts inside the HCD are the same as in 2019.

Comparing the parameters αk. I computed αk(t) as described in the previous
paragraphs. I also computed the values per day to get an idea of the values that
αk(t) will adopt. The values are computed by first aggregating by day the number of
trips and substituting the values in the above-presented expressions, i.e., substituting
tr

(d,h)
k,l by ∑︁

h tr
(d,h)
k,l and w̄(d,h)

k,l ) by ∑︁
h w̄

(d,h)
k,l ). Figure 14 presents the daily numerical

values of αk(t).
As seen in Figure 14, α(2019) will scale up β, accounting for a greater number of

contacts in 2019 as compared to 2020. Also, we can see that, according to α(lockdown),
on average, 10% of the people did not participate in contacts during 2020 since they
were in lockdown. Finally, the scenario that will reduce the contacts the most is
α(const).



52

2020−03−01

2020−03−15

2020−04−01

2020−04−15

2020−05−01

2020−05−15

2020−06−01

Date

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

α
(t

)

Different α’s for inner mobility

α(lockdown)

α(2019)

α(const)

Figure 14: Numerical values of α per day. The a dashed black line denotes α = 1,
equivalent to not affecting the parameter β and leaving the model as calibrated. In
a continuous line, for each color, are the average values of all the HCDs. Thus, it
can be interpreted as a national numerical value of α. The dashed colored lines are
the α values for the Helsinki and Uusimaa HCD under the different configurations
of α. The shaded area is delimited by the HCDs that have, on average, the largest
and smallest α. In the case of α(lockdown), the largest value corresponds to the North
Karelia HCD and the smallest to the Kanta-Häme HCD. For α(2019), the Vaasa and
Itä-Savo HCD are the largest and smallest values, respectively.

4.2 Altering the calibrated model through counterfactual
scenarios.

All possible combinations of αk(t) and cross-border traffic were tried out to see which
one had the most significant influence on the epidemic, inner contacts or cross-border
traffic. Table 6 summarizes the combinations.

In total, there are eleven counterfactual scenarios. Figure 15 presents the results
for the counterfactual scenarios in which αk(t) is not α(2019), and Figure 16 presents
the results for α(2019).

Figure 15 shows that, for the case of Finland, the scenarios that use α(const) are
the ones with the lowest incidence. This case is equivalent to reducing 20% the
number of contacts inside HCDs. Stricter lockdown measures are an example of how
to achieve this reduction in contacts. For these scenarios with α(const), cross-border
traffic does not significantly impact the incidence at a national level. The incidence
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αk(t) Cross-border traffic
1 2020
1 2019
1 0

const 2020
const 2019
const 0
2019 2020
2019 2019
2019 0

lockdown 2020
lockdown 2019
lockdown 0

Table 6: Summary of the available counterfactual scenarios of all possible combinations
of αk(t) and cross-border traffic. The top row is equivalent to not affecting mobility
and leaving the model and parameters as calibrated. The subsequent rows show the
counterfactual scenarios affecting mobility. The first column shows the way contacts
inside HCDs can be affected by αk(t), and the second column shows the cross-border
traffic between HCDs.

is around the same despite the cross-border traffic.
In Finland, the scenario that would increase incidence the most is when cross-

border traffic is zero, with no traffic between HCDs, and αk(t) = 1. Limiting the
traffic to stop the spread of the disease can contain it in certain HCDs. However,
the measure will promote the contacts inside HCDs in which the disease is already
present, increasing the infections.

Notably, at a national level, all the scenarios with α(lockdown), in which the contacts
of people who did not travel due to the pandemic were removed, report less incidence
than those using αk(t) = 1, the calibrated model. In these scenarios with α(lockdown),
the scenario with the most incidence is with the least cross-border traffic. The one
with the fewest incidence is when cross-border mobility is at its highest.

The results for the Helsinki and Uusimaa HCD are very similar to the ones
of Finland. This similarity confirms that the situation at a national level depends
significantly on what happens in this HCD. Nonetheless, in the Helsinki and Uusimaa
HCD, there is a small but noticeable difference in the incidence when α(const). When
α(const), the worst scenario is when the cross-border traffic is equal to zero and the
best when it is equivalent to the traffic of 2019. This difference is also explained by
the fact that, without cross-border traffic, there are more contacts inside the HCD.
With cross-border traffic similar to the one of 2019, contacts inside the region reduce
with the disadvantage that the disease may escape the HCD and cause infections in
other HCDs.

For the Southwest Finland HCD, the results are different when comparing them
to Finland and the Helsinki and Uusimaa HCD. For this HCD, the lowest incidence
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Figure 15: All counterfactual scenarios from 2 March 2020 to 31 May 2020, except
for scenarios that use inner the HCD mobility parameter α(2019). The orange line is
the incidence of the calibrated model. The rest of the lines represent the incidence
with each counterfactual scenario using α(const) and α(lockdown) in combination with
all possible scenarios of cross-border traffic. The dash-dotted line represents the
reported incidence by THL.

is when cross-border traffic is zero, no matter what values of αk(t) is used. The result
suggests that visitors caused most of the infections in the HCD during spring 2020.
If there is a prohibition on traffic entrance to the HCD, there is an evident decline in
the incidence. Following this logic, as expected, the highest incidence is seen when
the cross-border traffic is similar to 2019. Since there were no mobility restrictions,
the cross-border traffic of 2019 is greater than the one of 2020. Hence more visitors
will arrive at Southwest Finland HCD and spread the disease.

The Pirkanmaa HCD follows a pattern similar to that of the Southwest Finland
HCD. The scenario with the highest incidence is when the cross-border traffic is
at its highest in 2019. In general, when comparing cross-border traffic with the
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same αk(t) for these two HCDs, the scenario with the most incidence is when the
cross-border traffic is at its highest.

In summary, removing cross-border mobility causes the highest incidence in
Finland and in the Helsinki and Uusimaa HCD, but it also causes the lowest incidence
in the Southwest Finland and Pirkanmaa HCDs. Nevertheless, the opposite happens
when cross-border mobility is highest in 2019; Finland and the Uusimaa HCD have
the lowest incidence but the highest presents in the other HCDs.

Finally, the last counterfactual scenarios presented are those in which α(2019)

alters the contacts (Figure 16).
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Figure 16: Counterfactual scenarios with inner HCD mobility parameter α(2019) from
2 March 2020 to 31 May 2020. The orange line is the incidence of the calibrated
model. The rest of the lines represent the incidence with each counterfactual scenario
using α(2019) in combination with all possible scenarios of cross-border traffic. The
dash-dotted line represents the reported incidence by THL.

In Figure 16, there is a substantial increment in the incidence using α(2019) with
respect to the calibrated model results. At a national level, the incidence with α(2019)

is over ten times higher than that with the calibrated model. This increment of the
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incidence happens with the three types of cross-border traffic. Suggesting that, no
matter what the implemented control on the cross-border traffic, the incidence would
have been outstandingly higher if NPIs had not taken place inside the HCDs.

However, although the incidence is higher with α(2019), differences depend on the
cross-border traffic used. The highest incidence occurs without cross-border traffic,
followed by cross-border traffic of 2020 and finally traffic from 2019. The phenomenon
is explained similarly as before; with more border traffic, more infectious people get
out of the HCDs, but there are fewer infections inside and vice versa. Therefore,
eliminating the cross-border traffic would increase the incidence in the Helsinki and
Uusimaa HCD. Thus, the situation at a national level would be similar since the
national situation is highly dependent on the Helsinki and Uusimaa HCD.

In Southwest Finland, without cross-border traffic the incidence is similar to the
calibrated model. The result implies that even without implementing NPIs inside
Southwest Finland, closing the border would have been enough to keep the incidence
similar to the calibrated scenario. This result agrees with the earlier results that
suggested that visitors caused most of the infections in the Southwest Finland HCD.
Oppositely, incidence would be at its highest when the cross-border traffic also is,
when the cross-border traffic is similar to 2019.

The Pirkamaa HCD follows a similar pattern; the incidence is highest when
cross-border traffic is also at its highest. This confirms that, outside the Helsinki and
Uusimaa HCD, the incidence would increase with more cross-border traffic. However,
with less cross-border traffic, the incidence would increase in Helsinki and Uusimaa
but decline in every other HCD. This phenomenon is valid for all values of αk(t)
studied here.

4.2.1 Effective reproduction numbers

Cross-border mobility does not directly influence the value of Reff. However, altering
βk(t), with α(const), α(lockdown) or α(2019), will do so. Reff is important because it
communicates directly the state of the epidemic; it has been used by decision-makers
through the epidemic. Therefore it is sensible to look at how Reff changes with the
different values of αk(t) (see Figure 17).

The case in which α(const) alters the contact inside the HCDs confirms the expected
drop in the values of Reff. In fact, with this scenario, Reff drops below unity at the
national level just after the government declared a state of emergency on 16 March.
Furthermore, after 16 March, Reff stays below unity for most of spring 2020.

The Reff in the Southwest Finland and Pirkanmaa HCDs with α(const) is similar
to Finland’s. However, it is not similar to the Helsinki and Uusimaa HCD. Although
the value of Reff in the Helsinki and Uusimaa HCD with α(const) is lower with respect
to the value of Reff of the calibrated model, it is still over unity for most of the
beginning of spring 2020. It only drops below one after the week of 6 April. The
result hints that an even larger reduction in contacts, well below 20%, would have
been necessary to drive Reff below unity and prevent more infections in the Helsinki
and Uusimaa HCD.

The value of Reff with α(lockdown) almost overlaps with the Reff of the calibrated
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Figure 17: Comparison between Reff values using α(const), α(lockdown), α(2019), and the
calibrated model from 2 March 2020 to 31 May 2020. The discontinuous horizontal
black line indicates Reff = 1, the equilibrium of the epidemic. The discontinuous
vertical lines mark dates of meaningful mobility changes. The first line marks when
the state of emergency was declared in Finland on 16 March 2020. The second and
third lines mark when Uusimaa border was closed, from 27 March to 15 April. The
last black line is 13 May, when the gradual reopening of schools started along with
the ease of other mobility restrictions.

model. The overlap suggests that not enough people stayed in lockdown to change
the value of Reff in a significant way. However, enough people stayed at home to
prevent some infections (Figure 15).

Contrarily to α(const), α(2019) increases the value of Reff. The superior number of
contacts as compared to those in 2019 than in 2020 justifies the increment. Without
NPIs that reduce contacts in Finland, Reff > 1.5 for most of the beginning of spring
2020. It would drop below unity until 15 April, but the Reff of α(2019) would still be
closer to it than the values of Reff of the calibrated model. By the end of spring 2020,
the values of Reff with α(2019) and of the calibrated model are very similar. This
suggest that, by the end of spring 2020, the population had already regained the
patterns and habits of 2019.

As with other results, the observed behavior of Reff in Finland looks similar to
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the behavior in Southwest Finland and Pirkanmaa with α(2019). Again the exception
is the Helsinki and Uusimaa HCD. As shown in Figure 17, the NPIs that reduced
mobility in the Helsinki and Uusimaa HCD were crucial to reducing Reff during 2020.
With contact patterns similar to 2019, Reff is well above unity for the majority of
spring 2020. It has its peak the week of 9 March, when at the last two days of the
week, Reff > 4. It is until the last three weeks of spring 2020, that the values of Reff
of 2019 are similar to the values of Reff of 2020.

4.2.2 Deaths with the counterfactual scenarios

A final way to observe the differences between counterfactual scenarios is by estimating
the number of deaths under each of them. For this purpose, the deaths per reported
case are calculated; they are obtained by dividing the reported number of deaths by
the prevalence of the calibrated model over spring 2020. Finally, the obtained number
of deaths per reported case is used to multiply the prevalence of each counterfactual
scenario to obtain the number of deaths for each scenario.

αk(t) 0 2020 2019
2019 3426.61 2925.57 2606.36

1 36.52 0 -7.79
lockdown -42.89 -73.08 -78.85

const (0.8) -221.22 -221.53 -224.25

Table 7: Difference between the estimated deaths in each counterfactual scenario
with respect to the estimated deaths of the calibrated model. Each table entry
represents one counterfactual scenario, a combination of one form of αk(t) with one
type of cross-border traffic. The columns are organized from the scenario with less
cross-border traffic (0) to most (2019). Similarly, the rows are organized from α(2019)

that will upscale the most βk(t) (top row), to α(const) that will downscale it the most
(bottom row). In bold font are the scenarios that produce the larges and the smallest
number of deaths.

Table 7 exhibits that the counterfactual scenario with the smallest number of
deaths is the combination of α(const) with cross-border traffic from 2019. The scenario
with the most deaths is the combination of α(2019) with no cross-border traffic.

In general, the scenarios with the least inner mobility are the ones with fewer
deaths and the scenarios with more inner mobility with most. Furthermore, comparing
only cross-border traffic between the same αk(t), the scenario with fewer deaths is
always with cross-border traffic of 2019.

Throughout this chapter, I have presented the main results of the Thesis. Next,
in Chapter 5, I reflect on the implication of the results, their interpretation, and the
limitations of the model and data.
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5 Discussion
NPIs include social distancing measures adopted by society as well as government-
mandated restrictions. Therefore, they were the most critical measure to control
the spread of coronavirus disease at the beginning of the epidemic in the spring of
2020. This Thesis has analyzed the effect of NPIs in Finland on the outcome of the
epidemic, taking as the primary indicator the incidence of reported cases.

The change in mobility from 2019 to 2020 reflected the effect of NPIs; it showed
how the restrictions imposed by the government in symbiosis with the social distancing
measures adopted by individuals altered the mobility patterns from one year to the
other. This Thesis analyzed the effect of different NPIs on the outcome of the
epidemic. The analysis was conducted through counterfactual scenarios in mobility,
comparing the change in incidence and deaths under different mobility patterns
during spring 2020. The purpose was to determine which mobility aspects are more
influential when preventing the spread of the disease.

I first calibrated a compartmental metapopulation model that describes the
evolution of coronavirus in Finland. The model was seeded by mobility data from a
major telecommunications operator in Finland, and ABC was used to calibrate it to
resemble the reported incidence by THL during spring 2020. The mobility of this
calibrated metapopulation model was altered to form the counterfactual scenarios.

5.1 Calibration of the compartmental metapopulation
model

Chapter 3 presented the incidence of the calibrated model and its comparison with
the reported incidence by THL. The calibrated model did resemble the incidence
reported by THL. Furthermore, the effective reproduction number (Reff) that resulted
from the calibration was similar to the one obtained by other studies in Finland [61].
Thus, the results obtained by the model were trustworthy.

The variation over time of Reff reflected the effect of the applied NPIs. After the
first implemented NPIs on 16 March 2020, the value of Reff started to drop. These
first NPIs included a generalized lockdown that reduced the number of contacts;
the drop in the transmission rate of the disease associated with lockdown measures
coincided with the observed in Refs. [52], [54], [59] for other countries. When the
government reopened the borders of Uusimaa, Reff was below unity, and it stayed
here until the end of spring 2020. The result suggested two points: the progression of
the epidemic, reflected in Reff, was indeed influenced by NPIs, and the model could
capture that influence.

However, there were shortcomings both in the modeling phase as well as in the
calibration phase. In the modeling phase, the assumption of homogeneous mixing
in a region was done. A closer-to-reality approach would be to consider the age of
individuals inside each region and the mixing patterns of each age group. With the
introduction of age groups, it would also be possible to model the associated risk of
the elderly to become infectious, which is more significant than younger-age groups.

When calibrating the model an informative and often used metric is the hospital
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occupation. The reported incidence underestimates the real number of infected people
because of the high number of asymptomatic individuals. Moreover, the reported
incidence is also tightly related to the number of performed tests. With the number
of hospitalized individuals, one could estimate the number of unreported cases since
hospital occupation tends to be a more stable and reliable metric. Unfortunately,
in the analysis that was done in this Thesis, the number of hospitalized individuals
could not be used because of the way THL reports it. THL reports the hospital
occupation at a coarser level than it reports the incidence; it divides Finland into
five sub-regions instead of twenty-one as for the incidence. I could have compromised
and used a coarser geographical level to use hospitalizations, but there would not
be as many geographical regions. Therefore, I chose to have more sub-regions to
analyze the mobility between regions more in depth.

The number of performed tests, as the number of hospitalizations, was left out
when calibrating the model. There are nowcast models that account for the delay
in the reporting and the underreporting [58]. The approach taken in this Thesis
could benefit from nowcast, and it would be possible to calibrate the model to the
real number of infected people instead of the reported one. There are two direct
advantages when doing this: (1) to calculate the number of unreported cases, (2) to
have a more accurate model of the epidemic.

Another aspect worth exploring is the use of a more elaborate ABC algorithm to
infer parameters. This Thesis used one of the simplest algorithms from the ABC
family. Thus, a more elaborate algorithm, such as Sequential Monte Carlo ABC and
post-processing the output of ABC [30], [37], may speed up the inference process
and improve the calibration quality.

Finally, it is worth mentioning that the model is general and can be applied to
any country or epidemic. If used in a different country, the model needs mobility and
population data from the country in question. In addition, the epidemic parameters
values, such as the latent and recovery periods, would be needed to use the model
for another disease.

5.2 Effectiveness of NPIs
From the counterfactual scenarios presented in Chapter 4, the main conclusion
was that limiting the mobility and number of contacts inside the regions had a
more significant impact on the incidence, and the progression of the epidemic, than
reducing the cross-border traffic between them. This result coincided with the results
in Ref. [45]. NPIs that prevent the gathering of people, especially indoors where the
coronavirus has proven to spread easier, are examples of limiting the contacts inside
the regions.

The model showed that closing the borders of a highly infectious region negatively
impacted the overall number of infections in a country. By keeping the borders of
the region closed, both infectious and susceptible people would get locked in; this
could promote the contacts inside the region, causing a rise in incidence. On the
other hand, opening the borders of the region would let susceptible individuals travel
and prevent getting infected in a less infectious region.
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Furthermore, there are other two notable factors to consider when considering
closing the borders of a region. The first one is that ensuring a completely closed
region, in which no infectious individuals would go out, is unfeasible. As a result,
there may be a leakage of undetected infectious individuals to other regions. Such
leakage would not completely prevent the arrival of the disease to other regions but
may help delay it, as suggested by Refs. [45], [64]. The second factor to consider is
the number of infectious individuals in other regions. If there are many infectious
individuals in other regions, the border restrictions to prevent the arrival of more
may not be decisive to prevent further infections. Nevertheless, border restrictions
would make a difference when there are no infectious people in other regions. Hence
there is a need for an adequate surveillance system.

The observations made so far have analyzed the case of Finland. Finland has
the characteristic that the capital region concentrates one-third of the population.
The consequence of this characteristic is that the national incidence numbers will
be closely related to the ones of the capital region. On the other hand, national
incidence numbers, and other epidemic indicators, could not have such a strong
dependence on a region in a country with a more evenly distributed population.
Still, based on results, prioritizing the reduction of contacts inside regions would
bring the best results when trying to control the spread of the epidemic. This is
because reducing the contacts inside regions prevents infections independently of the
population density.

The work performed in the Thesis was highly dependent on the mobility data
available. A more refined analysis would require a more specific type of data.
For example, knowing the exact number of visitors to relevant locations, such as
restaurants or convenience stores, or directly having the anonymized location of the
users of the telecommunications company would enable more in depth analysis.

Facebook [48] and Google [55] data sets have been used to try to overcome the lack
of refined mobility data. However, the dataset provided by Facebook only indicates
the relative change in mobility with respect to a baseline week; it does not link this
relative change to a specific business or location. On the other hand, Google also
reports the relative change in mobility and does link the change to a specific type of
location. The caveat of their data is that there is no way to determine the original
baseline visitors; this is why the relative change reported by Google is often used as
a multiplicator for baseline mobility data [60], [75], or directly used to predict the
incidence of new cases [62], [74]. Therefore, more specific information is still needed
to permit a more precise approach like agent-based modeling [39].

Another inherent caveat to the data in this Thesis was that, as previously
acknowledged, some municipalities on specific days had noisy measurements (see
Chapter 3). Therefore, days with similar mobility to the ones with noisy measurements
were used to replace it. Nevertheless, it is impossible to know how close or far the
replaced data were from reality.

The results of this Thesis, and the previous studies, can be used as a stepping
stone to a broader analysis on what happened in Finland and the world to inform the
decisions of future epidemics. This Thesis has focused on the mobility restrictions
between regions. Further analysis could be performed on the effect of specific
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restrictions inside regions or the travel restrictions to arrive and leave the country.
Moreover, as noted previously, the results of this Thesis were analyzing the case of
Finland; future research may analyze if the effects observed here apply to another
country or even in general for any region.
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6 Conclusions
The Thesis has presented a compartmental metapopulation model, informed by
mobile phone data, that analyzes the main NPIs applied in Finland from March 2020
to the end of May 2020, the spring of 2020. The period of spring 2020 is characterized
by two facts. The first one is that during this period, COVID-19 reached Finland
and caused a sudden appearance of new cases. Secondly, spring 2020 is the period
when the government implemented the NPIs with the highest mobility restrictions.

Using the metapopulation model and counterfactual scenarios based on data, I
evaluated the effectiveness of different NPIs. The counterfactual scenarios suggest
that, when trying to prevent the spread of coronavirus, NPIs which aim to reduce
the contacts that people make inside a region are more beneficial than NPIs that
restrict the traffic between regions. Some examples of NPIs that reduce contacts
are the closure of public places and restrictions on the number of people allowed to
gather in closed spaces.

As mentioned, NPIs that restrict cross-border traffic between regions may be
counter-effective. If closing the borders of a region promotes contacts inside it and
the disease has already been established, then the closure would promote the spread
of the disease. Furthermore, if the region is densely populated, the disadvantages of
restricting cross-border traffic may outweigh the advantages. The number of infected
people in the populated closed region may further increase the national incidence
when closing its borders than if kept open. An example of border closure happened
in Finland when the borders of Uusimaa were closed from 27 March to 15 April 2020.

Although this analysis comes after a considerable amount of time after the first
outbreak of coronavirus cases, the results are not only applicable in the context
of coronavirus in Finland. Therefore, decision-makers may apply the results of
this Thesis, and other relevant studies, to other epidemics in which pharmaceutical
interventions, such as a vaccine or medical treatments, are not available or not feasible
to apply.

Over the past year, the scientific community has already performed several studies
around COVID-19. Nonetheless, a posteriori research on it, which takes advantage
of the diverse released data sources and information, would still provide some benefit
in controlling future epidemics. In this respect, it is essential to understand the most
effective measures to control coronavirus, have models ready to describe the disease,
and provide adequate information for such models.

This Thesis has made it clear that public and available information is vital for all
the performed studies and any a posteriori study that may happen. The coronavirus
epidemic has brought new light in the field of epidemic and its importance. Therefore,
it is in the best interest to keep releasing information to inform future research in
the field.
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