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Abstract
Due to the technological advancements in communications, contemporary smartgrids
have started to adopt Fifth Generation (5G) mobile networks for communications.
Communication between Supervisory Control and Data Acquisition (SCADA) sys-
tems and Remote Terminal Units (RTUs) in smart grid environment utilizes the
IEC 60870-5-104 protocol. It is a Transmission Control Protocol/Internet Protocol
(TCP/IP) based protocol where data is transmitted in unencrypted form. Smart
grids adopting 5G networking for communications are not isolated appropriately.
Therefore, smart grids are still insecure against cyberattacks. With respect to recent
developments in data plane programming, new networking paradigms can be realized
including progressive ways of isolating smart grid traffic from normal traffic in a data
plane.

The aim of the thesis is to explore the usage of data plane programming to
isolate and secure smart grid traffic into a network slice in 5G networks. This thesis
successfully develops a flexible and efficient 5G network slicing solution based on P4
(Programming Protocol-Independent Packet Processors) language framework. Slice
isolation is achieved with varied packet rates in slices as well as blocking devices
from one slice communicating to the devices in another slice. The network slicing
solution enables 5G equipped RTUs to be connected with SCADA in the Data
Network in an isolated manner. A P4-based packet tagging solution is also presented
where smart grid packets are tagged with specific Differentiated Services Code Point
(DSCP) in the Internet Protocol (IP) headers to aid network slicing. DSCP values
in the IP headers are used by the P4-based slicing solution to classify smart grid
packets appropriately and push them into network slices. Both the network slicing
and the DSCP tagging solutions are implemented with P4 software switch known
as the Behavioral Model version 2 (BMv2). The network slicing performance is
assessed in an experimental 5G testbed, which is powered by an opensourced 5G
core. Basestation and User Equipment (UE) elements for connecting the RTU are
simulated using appropriate software. The network slices are examined carefully in
this thesis as well as their ability to provide Quality of Service (QoS) for the services
hosted in the slices.
Keywords P4, SDN, 5G, Network slicing, Smart grid, Data plane programming, QoS
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1 Introduction
The advent of Fifth Generation (5G) of mobile networks have contributed to novel
use case scenarios that have not been addressed with prior generations of mobile
networks. Newer and advanced use case scenarios in 5G have paved the way for new
types of technologies and applications to emerge [15]. The smart grid is considered
to be a part of a group of technologies that have been simultaneously developed
along with new and emerging communication methods, standards, and protocols.
When compared with traditional power grids, smart grid improves the efficiency and
quality of power distribution; increases capacity and effectiveness of power networks;
automates upkeep and processes while also increasing choices for consumers and
enabling new goods, services, and markets [16].

A substation in a smart grid generally houses Remote Terminal Units (RTUs),
Intelligent Electronic Devices (IEDs) and circuit breakers, in which interruptions in
power systems are circumvented through the detection of faults by IEDs and the
subsequent activation of circuit breakers to protect the electricity distribution net-
work. Grid protection activities are automated using Supervisory Control and Data
Acquisition (SCADA) systems hosted in control stations [17]. The SCADA systems
are responsible for providing monitoring and controlling signals to substations for
the operation of the RTUs. However, smart grids using Ethernet communication
are susceptible to general Ethernet attacks along with other types of vulnerabilities
exposed through its insecure nature of system architecture and software designs [18].

The International Electrotechnical Commission (IEC) 60870-5-104 protocol, also
known as the IEC 104 protocol, formulates the communication between control
or master stations and substations. The IEC 104 protocol utilizes Transmission
Control/Internet Protocol (TCP/IP) to send relevant telecontrol messages between
the SCADA and the RTU [4]. However, the messaging is performed in plain-text
and is vulnerable to snooping and other attacks.

Also, the lack of authentication and encryption mechanisms in the application
layer of the IEC 104 protocol, increases chances for unauthorized access to systems
and cyber-attacks. Smart grid operators and the device manufacturers are mainly
concerned with immediate service continuity, and therefore security in smart grid
networks have become an afterthought, which has exposed exploitable security vul-
nerabilities in its architecture [19]. The design of IEC 104 is largely driven by harsh
delay constraints, which are typical of, for example, differential line protection where
detection, communication and the operation of circuit breakers must stay below 100
milliseconds (ms). Since the circuit breakers are electromechanical devices and must
deal with high voltages, they take up most of the delay budget. Hence, quite low
and predictable delay is expected of the IEC 104 communication.

The lack of encryption in IEC 104 communications has not been necessarily
resolved with the adoption of 5G technology. A work in progress Internet Engineering
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Task Force (IETF) draft explores the data plane optimization of the interface between
the Data Network (DN) and the 5G core. The DN is considered to be a remote
network, and therefore is not considered to be proximal to the user devices or
User Equipment (UE). Due to this, there is a need to bring about new solutions
for controlling, configuring, and upkeeping paths to the DN from the UE [20].
Furthermore, enabling data plane programmability has provided new approaches to
dynamic and flexible solutions for computer networking. By combining the concept
of data plane programmability and optimization of the network segment between the
DN and the 5G core, this thesis proposes an isolating slicing solution with respect to
securing the smart grid communications.

1.1 Research Problem and Objectives
The main research problem is to ponder whether Programming Protocol-Independent
Packet Processors (P4) can provide efficiency and flexibility to create an isolating
slicing solution for smart grid IEC 104 communications over the DN, which is enabled
by connecting 5G equipped RTUs or IEDs. Therefore, the goal of this thesis is to
develop a network slicing mechanism, which isolates smart grid communications
between the RTU and the SCADA into network slices. The network slicing is imple-
mented on the segment between the 5G core and the DN. The physical segment is
virtually divided into several isolated virtual slices by accessing the programmable
data plane using the P4 (Programming Protocol-Independent Packet Processors)
language framework. In addition to securing the network slices from each other, the
slice accommodating the smart grid traffic is tailored to satisfy the Quality of Service
(QoS) requirement in order to mitigate the damage a possible malware attack on the
RTU-SCADA connection could cause to the whole connection.

The following sub-objectives for this thesis are considered with respect to the
research problem and the main goal:

1. Choice of experimentation platform for P4.

2. The choice of fields in the IEC 104 packets, which are used for slice classification.

3. The methodology for implementing a QoS mechanism that would be supported
by P4 switches.

4. Functional verification of the solution.

1.2 Thesis Scope
This thesis is mainly focused on dataplane design, development and experimentation
for the slicing implementation. Compared to the traditional End-to-End (E2E)
network slicing solutions in 5G networks, this thesis’s approach of network slicing
is considered to be contained on the segment between the 5G Core and the DN.
Therefore, the slicing is deemed to be in DN rather than the 5G network itself.
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The concept is to use the modern programmable data plane to add a level of
isolation between the different smart grid devices and functions. There are at least
two optional approaches that could be pursued. Firstly, the IEC 104 traffic can be
classified and controlled per device. This would require lots of policy and configura-
tion information per device but the difficulty of not having reliable identities would
easily defeat the controls if an attacker has managed to infiltrate either malicious
hardware or malware into the smart grid. Therefore, second option of parsing the
IEC 104 messages and creating a possibility of applying controls based on the type
of smart grid traffic was chosen. The approach assumes the ability to assign controls
to each type of traffic with a small amount of configuration information leading to a
solution that would be easy to manage. Moreover, due to the programmable P4 data
plane, there is the possibility of upgrading the precise controls by remote commands.

Optimization and performance tuning of the P4-based slicing mechanism is
considered out of scope for this thesis mainly due to time constraints. In addition,
the control plane implementation for the management of the network slices is not
the primary focus. Also, some compromise is expected in terms of integration of the
slicing solution with a real 5G network, mainly due to the limited amount of 5G
equipment to test with. Also, there is uncertainty on whether a P4-based hardware
would be compatible with the real world 5G equipment or not.

1.3 Structure of the Thesis
The thesis is structured into six chapters. Chapter 2 discusses the necessary back-
ground information related to QoS, the smart grid architecture and the IEC 60870-
5-104 smart grid communications protocol. Also, the programming concepts of P4
language framework are explored in detail along with the architectural model of the
P4 software switch and P4-based extern objects. Furthermore, the concept of 5G
networking and core architecture is discussed at length. The chapter ends with the
description of network slicing in 5G networks. Chapter 3 outlines the design and
implementations of the 5G network, P4-based network slicing solution as well as
the P4-based tagging solution for packet’s QoS assignment. Chapter 4 describes the
results obtained from performance measurements of the network slices and verifies
the slicing in detail. Chapter 5 discusses the performance aspects of the P4-based
software switch, and examines the results with the networking requirements for smart
grids. The chapter ends with the discussion of the technical challenges that were
encountered during the thesis execution process. The thesis is then concluded in
Chapter 6, in which the objectives and the tasks are assessed. The chapter is then
finished with the contemplation of future work which can be considered for improving
the slicing solution as well as the entire P4 software development process.
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2 Background
This chapter provides thorough explanations regarding the relevant topics for this
thesis. Firstly, the concept of QoS and isolation techniques used in today’s computer
networks are discussed. Then smart grid architecture is examined in detail. In
addition, the telecontrol messaging in smart grid communications with the IEC 104
protocol is studied. Furthermore, the concept of data plane programming with the
P4 programming language framework is explained. This is followed by the discussion
of the P4 architecture for P4-based targets, and the consecutive discussion regarding
the P4 extern objects such as P4 meters and counters. Also, the operation of the
P4-based software switch used for this thesis is examined in depth. The chapter
is then concluded with the review of the concept of 5G mobile core networking
architecture with respect to its implementation for this thesis with the open source
project Free5GC.

2.1 Quality of Service and Isolation Techniques in IP Net-
work

In computer networking, isolation of Quality of Service is one of the biggest challenges.
QoS is a paradigm that gauges whether a service provided by a service provider
satisfies the stated and implied needs to the user. However, the term itself is very
broad and applies to many different aspects of the service.

Figure 1: QoS Model for ITU/ETSI and IETF approaches. As seen in ([1], Fig. 1).

As seen in Figure 1, QoS is described by three models: assessed QoS, perceived
QoS, and intrinsic QoS. The International Telecommunication Union (ITU) and
European Telecommunications Standards Institute (ETSI) approaches QoS in a
similar manner with perceived and intrinsic QoS models. They define QoS as the
total effect of the performance of the service which controls the level of satisfaction
of a user of the said service. Whereas, IETF perceives QoS with intrinsic QoS model,
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in which it is a list of service conditions that must be fulfilled by a network while
transmitting a flow [1].

One of the prominent, well defined and standardized architectures for implement-
ing QoS is the Diffserv model. In this architecture, QoS is applied to predefined
services which are chosen by individual packets or flows. The QoS assurance is
provided by aggregating network packets to experience the same QoS level. The
range of the QoS spans edge-to-edge. And they are administered based on the
Differential Services Code Point (DSCP) carried in the Internet Protocol (IP) header.

When considering network slicing in mobile networks, slice isolation is also an
important aspect. Each slice can be described as an independent set of resources which
are set up utilizing the network environment along with a set of defined functions.
The grade and power of network isolation may differ based on the requirements of use-
case scenarios. For example, in a particular scenario, there would be a requirement
for having communication between the slices. While in the other, the requirement
would be strict isolation. Therefore, network slice isolation can be described in
several methods and may consist of set of features which are selected based on
implementation requisites [21]. Isolation of slices can be realized in the following
areas:

• Traffic Isolation: Even though all the slices utilize the same network resources,
there is guarantee that data flow in one slice does not go into another.

• Processing Isolation: Processing of network packets in a network slice is inde-
pendent of all the other network slices. However, all the virtual slices utilize
the same physical resources.

• Bandwidth Isolation: Each network slice is allocated with a specific bandwidth
that is different from other network slices.

• Storage Isolation: Data pertaining to a network slice is stored independently
from the other network slices.

Network slice isolation can also be realized with technologies such as Multi-
Protocol Label Switching (MPLS), which enables tag-based network slice isolation.
In addition, Virtual Local Area Networks (VLANs) can be used to partition computer
network on the Etherney layer. Furthermore, Virtual Private Networks (VPNs)
utilizing Internet Protocol Security (IPSec), Datagram Transport Layer Security
(DTLS), Secure Socket Tunneling Protocol (SSTP), Secure Shell (SSH) could be
used to ensure the confidentiality and validation for data transmission with network
slices [21]. The network slicing implemented in this thesis mainly focuses on traffic
and bandwidth isolation that is catered to the smart grid communications using IEC
104 protocol.
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2.2 General Architecture of the Smart Grids
As briefly described in Chapter 1, from a control station, a SCADA system or
control server centrally manages the RTUs and IEDs housed in different substations
and secondary substations respectively. The IEDs and RTUs can be situated in
geographically different sites, where they control actuators and monitor sensory
equipment. The role of the SCADA system is to process the information gathered by
the RTU, which controls the processes occurring locally in the substations. IEDs are
special devices which act as a protective relay and directly interfaces with sensors
and monitoring equipment. They can either transmit information directly to the
SCADA or a local RTU, which polls the IEDs for collecting data and becomes an
intermediary element by passing the collected information to the SCADA system.
SCADA systems generally have in-built redundancy, and also are made to be fault
tolerant.

Figure 2: General layout of smart grid communication between SCADA, RTU and
IED. As seen in ([2], Fig. 2-2).

Figure 2 displays the typical settings and communciation elements of the SCADA
system. The control center consists of the Human-Machine Interface (HMI), work-
stations, storage servers, the main SCADA units as well as communication routers
interfacing with the outside networks connecting the field sites. Most of the field
sites are generally separated by a large geographical distance. Therefore, communi-
cation systems such as cellular and satellite networks are the norm. Few decades
ago, switched telephone lines were standard for smart grid communication networks.
However, due to advances in Wide Area Network (WAN) technologies, usage of
telephone networks has discontinued, and newer iterations of Local Area Network
(LAN) and WAN technologies have become the industrial standard for communication.

The control center is mainly responsible for monitoring and reporting. The field
sites are tasked with localized control of sensors and monitoring equipment. In many
cases, field sites are enabled to be remotely accessed by technicians, where they
perform troubleshooting and repairs in case something goes wrong.
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2.3 IEC Transmission Protocols
A technical report by Matoušek (2017) [4] provides the analysis of the IEC 104
protocol in detail. The report describes that the IEC 60870 standards for telecontrol
in electrical engineering and power system automation applications for SCADA
units are defined by the IEC. The part 5 of the IEC 60870 standard stipulates
a transmission outline for transmitting essential telecontrol messages between the
primary telecontrol station and the substations. The 60870-5 transmission protocol
outlines the following parts. They are:

• IEC 60870-5-1 Transmission Frame Formats

– It details the function of the physical and the Ethernet layers.

• IEC 60870-5-2 Link Transmission Procedures

– Two types of service primitives and transmission procedures are defined
here: unbalanced and balanced. It also outlines if messaging can be
commenced only by a master station or by any other station.

• IEC 60870-5-3 General Structure of Application Data

– It defines the overall structure of data at the application level, as well as
the rules for generating application data units.

• IEC 60870-5-4 Definition and Coding of Application Information Elements

– It establishes a standard description of the different information items
used in telecontrol applications and defines the information elements.
Common elements such as signed or unsigned integers, fixed or floating
point numbers, bit-strings, and time elements are examples of these.

• IEC 60870-5-5 Basic Application Functions

– Top level functionalities such as station startup, data acquisition tech-
niques, clock synchroniziation, command transmission, totalizer counts,
and file transfer are defined here.

• IEC 60870-5-6 Guidelines for conformance testing for the IEC 60870-5 com-
panion standards

With respect to these guidelines, the IEC has developed companion standards for
generic telecontrol functions with IEC 60870-5-101 transmission protocol standard.
IEC 60870-5-104 transmission standard was later then released adding network access
with TCP/IP. Security extensions for both IEC 60870-5-101 and IEC 60870-5-104
protocol standards were defined with IEC 62351-3. However, it is found that the
security measurements implemented in this standard for IEC 104 has increased
complexity and reduces backwards compatibility for certain communication protocols.
Therefore, smart grid operators need to consider architectural changes and will
have to update their hardware to highly performing ones adding to unwarranted
operational and capital expenditures [22].
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2.3.1 IEC 60870-5 protocol stack

The protocol stack for the IEC 60870-5 is established on an attenuated version of
the Open Systems Interconnection (OSI) model. This is known as the Enhanced
Performance Architecture (EPA). It includes the three layers of the OSI model
namely: Application Layer (Layer 7), Ethernet Layer (Layer 2) and Physical Layer
(Layer 1). In the following Table 1, the parts of the IEC 60870-5 corresponds to the
following layers of the EPA:

Enhanced Performance Architecture (EPA)
Selected application functions of IEC 60870-5-5 User process
Selected application information elements of IEC 60870-5-4 Application Layer (L7)Selected application service data units of IEC 60870-5-3
Selected link transmission procedures of IEC 60870-5-2 Link Layer (L2)Selected transmission frame formats of IEC 60870-5-1
Selected ITU-T recommendations Physical Layer (L1)

Table 1: EPA for IEC 60870-5 protocol stack. As seen in ([4], Tab. 1).

2.3.2 IEC 104 communications

As described earlier, IEC 60870-5-101 provides a transmission outline for sending
generic telecontrol signals between a centralized station and substation in a master-
slave manner. IEC 104 iteration improves upon IEC 60870-5-101 by introducing
network access with TCP/IP. The main smart grid station elements in IEC 104
communication are explained as follows:

• Controlling station or master station, which consists of SCADA units. This is
where control of substations are carried out.

• Controlled station, slave station or substation, where devices such as RTU or
IEDs are controlled by the SCADA in master stations.

The IEC 104 protocol also defines modes of directions in communication:

• Control Direction - Messages are transmitted from SCADA to the RTUs.

• Monitor Direction - Messages are transmitted from the RTUs to the SCADA.

• Reverse Direction - Slave stations transmit control signals to master stations
or master stations transmit data to RTUs in the slave station.

2.3.3 The IEC 104 protocol

The IEC 104 protocol allows for the transmission of monitoring and controlling
information over geographically widespread operations with the help of TCP/IP
protocol.
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Figure 3: IEC 104 protocol’s reach in a smart grid environment. As seen in ([3], Fig.
1).

The protocol’s application uses equivalent station articles as the IEC 101 protocol.
In the report [4], it is described that the TCP/IP suite allows multiple network types
to be utilized such as Frame Relay, Ethernet, Asynchronous Transfer Mode (ATM)
and serial point-to-point. Figure 3 demonstrates that the IEC 104 protocol mainly
spans between the SCADA unit, the RTU and even the IEDs (yellow communication
line). However, the communication between the IEDs and the monitoring elements
are specified by the IEC 61850 protocol (red and blue line). The 61850 protocol
specifies the standard to send data back and forth between the IEDs and the Metering
Units (MU), which are basically monitoring equipment and relays or actuators. The
IEC 61850 protocol standardises data transmission through Generic Object Oriented
Substation Events (GOOSE) and Sampled Values (SV) network packet types. But,
this protocol is considered out of scope for this thesis. Therefore, the thesis is mainly
concerned with the IEC 104 protocol.

The protocol stack for IEC 104 protocol with consideration to the OSI model
is displayed in Table 2. The IEC 104 protocol allows transmission of data between
the SCADA and the RTU. This data is housed in Application Service Data Unit
(ASDU), which is situated in the Application Layer from the OSI model perspective.
ASDU combined with Application Protocol Control Information (APCI) constitutes
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Selected Application Functions User Process
Selection of Application Service Data Units (ASDU) of IEC 104 Application Layer (L7)Application Protocol Control Information (APCI)

Selection of TCP/IP Protocol Suite (RFC 2200)

Transport Layer (L4)
Network Layer (L3)
Ethernet Layer (L2)
Physical Layer (L1)

Table 2: Protocol stack for the IEC 104 Protocol. As seen in ([4], Fig. 3).

the Application Protocol Data Unit (APDU). The APDU can either contain only
the APCI or an APCI with ASDU.

2.3.4 The APCI frame

The APCI frame begins with a start byte of the hex value 68, which is followed by
four 8 bit control fields. This constitutes the APDU with fixed length. As for APDU
with variable length, it consists of the general APCI field format comprising of the
four 8 bit control fields followed by the ASDU. The APCI field constitutes 6 bytes
entirely.

Figure 4: Fixed and variable length APDU format for the IEC 104 protocol. As seen
in ([4], Fig. 4).
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The frame format of the entire APDU is determined by the control fields that
are present in the APCI header. There are three APDU frame formats for the IEC
104 protocol. They are: I-format, S-format and the U-format.

• I-format
Between the controlling station and the controlled station, the I-format is

Figure 5: I-format APCI frame type. As seen in ([4], Fig. 5).

utilized to convey numerical information. It is variable in length and it always
guarantees an ASDU header within the APDU frame. Furthermore, its control
fields determine the communication direction. The last bit of the control field
1 is set to 0.

• S-format

Figure 6: S-format APCI frame type. As seen in ([4], Fig. 5).
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The S-format is of fixed length. Numbered supervision functions are carried out
using this frame. The data transfer with S-format APDU is unidirectional. It
is transmitted during buffer overflows, timeouts and during instances where the
communication grid has passed the maximum numerical threshold of sending
I-format APDUs without sending or receiving acknowledgements. The final
bits of the control field 1 are set to 01.

• U-format

Figure 7: U-format APCI frame type. As seen in ([4], Fig. 5).

The U-format of the APDU is utilized to execute unnumbered control function.
This frame too has a fixed length. It comprises of only APCI. Its function, test
frame (TESTFR) is activated along with the stop data transfer (STOPDT) or
start data transfer (STARTDT) simultaneously. TESTFR function is utilized
to verify the established connections on a regular basis in order to discover any
issues in communication. The last 2 bits of the control frame 1 are always set
to 11.

2.3.5 Format of the ASDU frame

The ASDU frame is divided into two main parts. The first part is the data unit
identifier, which is fixed in length of 6 bytes. The second part is the data, which
can be made of at least one information object. The particular category of data is
specified by the data unit identifier. It also offers addressing to identify the data’s
unique identity, as well as extra information such as the reason of transmission [4].
At most, an ASDU can transmit a maximum of 127 objects. The frame format of
the ASDU is as shown in Figure 8.
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Figure 8: ASDU frame format for the IEC 104 protocol. As seen in ([4], Fig. 8).
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The following are the important fields of the ASDU frame:

1. Type Identification (TypeID) - 1 byte

The TypeID determines the type of information carried by the ASDU frame.
It also determines whether the ASDU frames are being transmitted in the
monitor or control direction.
The following table outlines the TypeID groups and the type of data they
represent in the IEC 104 ASDU frames:

TypeID Group
1-40 Process information in monitoring direction
45-51 Process information in control direction
58-64 Command telegrams in control direction

70 System information in monitor direction
100-107 System information in control direction
110-113 Parameter in control direction
120-127 File transfer

Table 3: ASDU TypeIDs and their groups for the IEC 104 protocol. As seen in ([4],
App. C.1).

2. Structure Qualifier (SQ) - 1 bit

This field determines the way data elements are addressed. When the bit
value is 0, it denotes that there are consecutive data elements or information
objects embedded in the ASDU frame. When the bit value is 1, then the ASDU
frame only consists of a single information element per frame.

3. Number of objects/elements - 7 bits

This field basically denotes the amount of information objects contained by
the ASDU frame. The value ranges from 0 to 127.

4. Test (T) - 1 bit

This field determines whether the ASDU frame is generated during test condi-
tions or not. Value 0 denotes that there is no test. Value 1 denotes that the
ASDU frame is a test frame.

5. Positive/Negative (P/N) - 1 bit

This field in the ASDU frame specifies the verification of positive or nega-
tive activation demanded by the primary application function. Value 0 states
that the verification is positive and value 1 verifies that the response is negative.
It is generally established to 0 when it is not appropriate.
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6. Cause of Transmission (CoT) - 6 bits

This field in the ASDU frame is used to route messages on a communica-
tion network and within a station by directing them to the right program or
task for execution. The ASDUs in the control direction have been validated
as application services, and they may be replicated in the monitor direction,
albeit with different transmission mechanisms. Typical values are between 1
and 47. Values between 48-63 are used for special cases.

7. Originator Address (ORG) - 1 byte

This field is used by the controlling or master station for explicitly informing
the slave station about its identity. This is particularly useful when multi-
ple master stations are involved. This allows the slave station to selectively
send information back to the master station where the control ASDU frames
originated from.

8. ASDU Address Field - 2 bytes

This field basically consist of a normal station address. But it can be framed
to be a sector address where multiple logical units can be represented by break-
ing a singular station. This ASDU address field can also be used for global
address. A global address is used as a broadcast address where the messages
are broadcasted to all the stations situated in a specific sector. The global
address is generally utilized when a specific operation must be started at the
same time. For example, ASDU with TypeID 103 is sent to all the logical units
simultaneously for synchronizing clocks to a conventional time.

9. Information Objects - N bytes

The data utilized by the smart grid communication is embedded in the in-
formation objects fields within the ASDU frame. The information object is
identified by the Information Object Address (IOA), which is 3 bytes in length.
The IOA is utilized to identify which data belongs to which specific station. It
is also used to acknowledge the control and monitor directions of smart grid
communication with the help of destination and source addresses respectively.

10. Information Elements

Information elements fields in the ASDU header are the building components
that are utilized to transfer data. The standard specifies the format and length
of each information element. Furthermore, it specifies how the values included
in the fields are decoded once they have been encoded.

The most relevant ASDU header field for this thesis is the ASDU TypeID. The
TypeID is used to determine the DSCP value, that would be added by the P4 switch
when IEC 104 protocol based packet traverses through the switch from the SCADA.
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2.4 P4 (Programming Protocol-Independent Packet Proces-
sors)

Data plane programming as a concept initiated when Software Defined Networking
(SDN) reinforced the separation of the network into control plane and forwarding
or data plane. Over the years since the advent of SDN, vendor agnostic control
plane applications such as OpenFlow gained huge traction. It enabled network
operators to control multiple data plane devices with a single control plane. But
due to development of new and upcoming networking headers, protocols, services
and applications, it became increasingly difficult for network operators to wait for
specific updates and patches for their physical and virtualized networking hardware.

Due to this aspect, researchers from Barefoot Networks, Intel, Stanford University
and other institutions introduced a networking paradigm that would allow flexible
configuration of the data plane. This flexibility allows a network programmer to
program their networking hardware in whatever manner they see fit, for unique net-
working applications instead of waiting for the network vendors and manufacturers
to release new features and zero-day security updates [23].

The authors in the paper [23], introduced the design of P4 programming language
for data plane programming with the following main objectives:

• Reconfigurability

• Protocol Independence

• Target Independence

As explained in [23], the reconfigurability aspect empowered by the P4 program-
ming enables re-defining of packet parsing and processing. The protocol independence
prevents the networking hardware from being locked to a particular format for the
networking packets. Rather, there is flexibility in defining the packet parsing as well
as implementing match-action tables to process network packets. Finally, target
independence skips the need for a network programmer to know the underlying
processor architecture of the networking hardware. In lieu of this, a programming
compiler converts a "taget-independent" P4-based programmatic description into
a "target-dependant" one that is understood by the underlying processor of the
networking hardware.

The advantages of data plane programming are numerous. A presentation [6]
created by the members of the P4 consortium outlines the following advantages of
general data plane programming.

Data plane programming:

1. Enables support of new, upcoming, and custom protocols,



17

2. Enables elimination of obsolete protocols, which minimizes complexity,

3. Allows for Developer Operations (DevOps) style of development, which enables
quick bug fixes, rapid innovation and faster programming design cycle,

4. Facilitates systematic use of resources, in which usage of tables are scales as
required.

5. Provides increased visibility of the network and its devices by allowing new
methods for network telemetry and diagnosis.

The specifications of the P4 programming were first outlined in August 2014. At
that time, the programming specification called the language framework as P414.
Later in 2016, a new iteration of the P4 programming language framework was
released. It is known as P416, which is named after the release year. In this thesis
project, the slicing implementation as well as the DSCP tagger were implemented
with the latest P416 framework. From this point onward, whenever P4 language
framework is mentioned, P416 is indicated instead of the older network programming
framework P414.

Before delving deep into the topic of data plane programming of P4, some relevant
definitions must be presented with. As specified in [7], they are:

1. Architecture: It consists of a group of P4-programmable elements and defines
the way the data plane communicates with them.

2. Control Plane: It consists of a category of programs which are used to supply
the data plane with the related input and output information.

3. Data Plane: The data plane consists of a group of programs which explains
how the packets are processed and modified (forwarding logic).

4. Metadata: It is described as the transitional information which is constructed
during the P4 program runtime.

5. Packet: It is also known as network packet. which is a structured element of
data which is transmitted within a computer network.

6. Packet Header: It is the structured information at the forefront of the packet.
A single packet may consists of one or several packet headers depicting various
computer network protocols.

7. Packet Payload: It consists of the raw data after the packet headers are
defined.

8. Packet-Processing System: It consists of data handling methods for han-
dling packets. It brings together both the control plane and data plane programs
to form the network plane.
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9. Target: It is the packet-processing system that is able to recognize the functions
and constructs defined in the P4, and run them to execute network functions
for implementing the forwarding logic in the data plane.

2.4.1 Traditional VS programmable switches

In the specification document [7] for P416, a traditional switch is compared with
P4 programmable switch. While most network switches utilizes both the control
plane and the data plane, P4 allows modifying the data plane characteristic of the
programmable network unit. P4 programs can be used to determine the link or the
interface by which the control plane can interact with the data plane. However P4
programming cannot be used like OpenFlow for control plane management. Generally,
the control plane is used to control the P4 programmable data plane by adminis-
tering table entries, handling network protocol packets, setting up unique objects
(P4 counters or meters), and processing unsynchornized events such as link-state
notifications.

With respect to a traditional network switch, P4-based programmable switch is
distinguished in the following ways:

• The P4 program specifies the functionalities of the data plane. It is configured
when the P4 programmable switch is started. Before the initialization, the
programmable switch does not have prior knowledge of the prevailing network
protocols.

• Interaction with the data plane by the control plane is performed by utilizing
the same way (channels) as the fixed-function network switches. However, the
network tables and data plane objects can be specified in the P4 program in
different ways as well as any number of times unlike the fixed function switches.
The P4 compiler will create the Application Programming Interface (API) that
will allow the control plane to interact with the P4 defined tables, objects and
program functions in the data plane.
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Figure 9: Traditional fixed-function network processor vs P4-based programmable
network processor. Adapted from ([5], Fig. 1).

As depicted in the Figure 9, the network functions that can be used by the
network administrators for their networks are pre-defined by the manufacturers of
the fixed-function network devices. The network functions can be accessed through
the device’s Operating System (OS) with the utilization of the device drivers, which
is a gateway to the processor chip that executes these network function programs.
The network functions are mostly fixed and they would not allow the network admin-
istrators to modify the network functions as required. Modification of the network
functions usually require firmware or OS upgrade deployments and processor redesign.
This would add operational and capital expenses for both the manufacturer and the
enterprise consumers.

Whereas, this is not the case for the devices with programmable processors.
The programmable processor allows the network programmer to define the network
functions with P4. The P4 code can be compiled into a set of programs with
the help of the P4 compiler, which the programmable processor can recognize to
execute them. Unlike the network functions in fixed-function processors, network
functions in programmable processors can be modified as required without the
intervention of the processor manufacturer or network hardware vendor. The processor
firmware could be updated as required to add more feature-sets to the P4 language
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compiler rather than redesigning or reprogramming the entire processor itself. This
enables more flexibility and adaptability for the network programmer to modify their
computer networks in an elastic and scalable manner. It also reduces expenditure
by minimizing hardware obsolescence as well as mitigating long wait times for the
network programmers to deploy upgrades or plug security vulnerabilities and bugs in
the network functions without delay and extra involvement of the network processor
manufacturers, hardware vendors, and software providers.

2.4.2 Programming the data plane with P4

In relation to other data plane programming frameworks, P4 is considered "protocol
independent" which allows network programmers to define various different sets of
protocols that are standard and customized as well as implement diverse data plane
operations [7]. However, in order to ensure that the network hardware such as a
switch is P4 programmable, the manufacturer of the network processor must design
the compiler appropriate for specific target processor. The target processor can be a
Field Programmable Gate Array (FPGA), Application-Specific Integrated Circuit
(ASIC), BMv2 and other physical or virtualized network hardware that are enabled
to support P4 programming with the utilization of P4-based compilers.

Figure 10: P4 programming workflow, which consists of compilation and loading a
P4 program into a target processor. As seen in [6] and [7].

As visualized in the Figure 10, the compilation of P4 program with the P4
compiler can generate the following [7]:

• Structure of the data plane, which is applied by the forwarding logic outlined
in the input P4 program.

• An API for the control plane, which can be used to administer objects and
configurations in the data plane, that are defined in the P4 program.
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Apart from the general advantages of data plane programming, there are also
other merits to data plane programming with P4 as described in [7]:

• Elasticity: Compared to traditional networking hardware, P4 can help design
new methods for packet forwarding which are describable as program functions.
Traditional hardware only discloses fixed-functions for network administrators
to work with.

• Expressiveness: Multipurpose processes and table retrieval can be utilized
with P4 to articulate complex and hardware independent network packet
handling algorithms. These programs can be used between multitude of
different hardware targets that implement the same architecture.

• Resource Mapping and Management: The P4 compiler automatically
plots custom fields defined by the user to vacant hardware resources and
handles resource and time allotment in an abstract manner.

• Software Engineering: P4 programming enables multiple usage of the soft-
ware as well as type-checking and concealment of information within the
program.

• Component Libraries: Manufacturers provide component libraries to encap-
sulate manufacturer defined functions into transferable high-level P4 constructs.

• Decoupling hardware and software evolution: Target or processor man-
ufacturers can define new abstract architectures, allowing them to additionally
separate high-level computation from low-level design.

• Debugging: Software archetypes of the model provisioned by the manufacturer
can help in the P4 program development and debugging.

P4 programming is quite similar to programming with the C language, albeit
without the for and while loop functions. However, there are some fundamental
concepts for defining forwarding logic in the data plane with the P4 language
framework. The fundamental concepts as defined by the P4 specification [7] are:

1. Header Types: This abstraction is used to define the structure of the network
packets.

2. Parsers: It is used to define the order of the headers and header fields within
the ingress packets. It also describes the means of recognizing the packet as well
as the information contained in the headers and fields that are to be derived
from the network packets.

3. Tables: This is utilized to link operations with the keys defined by the network
programmer. The tables are used to apply access control lists, flow tables,
forwarding information base, routing tables as well as custom-built tables for
invoking multifaceted networking decisions.
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4. Actions: Actions in code block form, are used to define the manner of modifi-
cation of packet header fields and metadata. It can also incorporate information
provided by the control plane while the network processing is taking place.

5. Match-Action Unit: It is generally utilized to execute a specific order of
processes. Firstly, the lookup keys are generated from the packet header fields
or calculated metadata. Then, by utilizing the generated lookup keys, table
lookup is carried out. During this process, an action is also selected to be
carried out. Finally, at the end of the match-action process, the chosen action
code blocks are processed.

6. Control Flow: It describes the method each packet must be handled within
the P4 programmable target. It includes the order of calling match-action
units. The reconstruction (deparsing) of the network packet is also executed
with the help of the control flow abstraction.

7. Extern Objects: These are specified within the architecture that is controlled
by the P4 program via clearly expressed APIs. They are not modifiable with
P4, and their characteristics are fixed (packet header checksum function is one
such example).

8. User-Defined Metadata: These are data constructs, which are linked to
each ingress or egress network packets. They are defined by the user.

9. Intrinsic Metadata: It is the metadata that is supplied by the model linked
with each ingress or egress packet. For example, the port at which the packet
is incoming is considered as an intrinsic metadata.
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2.5 P4 Architectural Model and the BMv2 Switch
The P4 architecture is an important aspect for programming with the P4 language
framework. It defines the relevant P4-programmable blocks in the appropriate order:

• Parser

• Ingress Control Flow

• Egress Control Flow

• Deparser

The P4 architecture binds the P4 program with the target that must be pro-
grammed. The P4 architecture is outlined in the P4 compiler by the target manufac-
turer. The P4 architecture determines the way P4 targets behave when processing a
network packet. The architectural model uses machine language to map appropriate
bit values to intrinsic metadata. An example is, during initialization of a P4 counter
with a relevant identification value, that value is stored in a control register by
the P4 architecture. However, the manner the intrinsic metadata is stored and un-
derstood, is determined by which P4 architecture is implemented by the manufacturer.

Different P4 architectures cannot support the same P4 program. However, any P4
targets that support the specific P4 architecture model can support the P4 program
written for the model. The P4 architectural model used for this thesis is known as
the V1model.

2.5.1 The V1model

The V1model implements the following P4 programming blocks for applying its
architecture:

Figure 11: P4 V1 Model architecture. As seen in [6]).

As observed in the Figure 11, the P4 target that runs the P4 program, performs
the processing of the network packet by starting with the parsing. Once the packet is
parsed, the necessary checksum header fields in the packet are checked for validation.
If the checksum verification fails, the packet is dropped by default. After this stage,
the ingress processing begins. When the ingress processing finishes, the packet is
pushed into the traffic manager, in which the packet is kept in queue if necessary.
After the traffic management, right before the packets are pushed through the output
port of the network hardware, the packet undergoes egress processing, which is very
similar to ingress processing stage. After the egress processing, the checksum fields
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in the packets are updated. If this is not done, the consecutive network device will
reject the packets since the checksums are not in order due to the packet processing
in the programmable P4 target. The packets are then restructured back to their
correct forms or restructured with modified or with additional data (such as tunnel
entries) and pushed out of the respective network port as specified in the P4 program.

Before the P4 programmatic blocks are implemented, the packet header fields
that must be extracted, must be declared. For example, if the network programmer
wants to extract information contained in the fields in an IPv4 header of an incoming
packet, then the P4 program must declare the following header definitions:

1 header ethernet_t {
2 bit <48> dstAddr ;
3 bit <48> srcAddr ;
4 bit <16> etherType ;
5 }
6

7 header ipv4_t {
8 bit <4> version ;
9 bit <4> ihl;

10 bit <8> dscp;
11 bit <16> totalLen ;
12 bit <16> identification ;
13 bit <3> flags;
14 bit <13> fragOffset ;
15 bit <8> ttl;
16 bit <8> protocol ;
17 bit <16> hdrChecksum ;
18 bit <32> srcAddr ;
19 bit <32> dstAddr ;
20 }
21

22 struct metadata {
23 /* empty */
24 }
25

26 struct headers {
27 ethernet_t ethernet ;
28 ipv4_t ipv4;
29 }

Listing 1: Header declarations for Ethernet and IPv4 protocols. As seen in [14].

In the above Listing 1, the header fields for Ethernet and IPv4 protocols are
declared in an abstract manner. The variable name for each bit block can be named
in any specific manner as per the network programmer’s needs. However, the bit
lengths for each header fields are declared as per the standards required for the
communication protocols to operate. Otherwise, incorrect information would be
parsed into the header field declarations.
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The parser block in a P4 program is implemented as the following:

1 parser MyParser ( packet_in packet ,
2 out headers hdr ,
3 inout metadata meta ,
4 inout standard_metadata_t standard_metadata ) {
5

6 state start {
7 transition parse_ethernet ;
8 }
9

10 state parse_ethernet {
11 packet . extract (hdr. ethernet );
12 transition select (hdr. ethernet . etherType ) {
13 0x800: parse_ipv4 ;
14 default : accept ;
15 }
16 }
17

18 state parse_ipv4 {
19 packet . extract (hdr.ipv4);
20 transition accept ;
21 }
22

23 }

Listing 2: Parser block example for parsing incoming packets with Ethernet and
IPv4 headers. As seen in [6] and [14].

The parser is declared as seen in Listing 2. The parser block in the P4 program
can have predetermined declarations, namely: Start, Accept and Reject. The Start
declaration begins the parsing process. Accept declaration allows the program to
move to the next parsing stage, while the Reject declaration prompts the P4 target
to reject the packet out of the P4 pipeline. The parsing stage allows the network
programmer to chart information in the network packets into headers and metadata
declared in the P4 program. While transitioning from one state to another, the
programmer is free to implement greater than or equal to zero number of program-
matic statements in the parser block. The parser block contains the select statement,
which is used to create branches in the parsing algorithm. This is identical to using
case statements in C and Java programming. However, there is no need for break
statements. Branching is required to parse the bit information in the packets. In
the above Listing 2, the hex value 0x800 (line 13) establishes the structure of the
consecutive headers that must be extracted from the packet.

After the parsing stage, then the checksum verification stage begins. The check-
sum verification is an optional P4 programming block that can be used as needed in
the P4 program. In order to use it, the checksum fields in the packet headers are
declared here. The checksum verification block is declared in the following Listing 3:

1 control MyVerifyChecksum (inout headers hdr , inout metadata meta) {
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2 apply { }
3 }

Listing 3: Checksum verification block declaration in a P4 program. As seen in [14].

The necessary header checksum verification declarations are specified in the apply
statement in this (Listing 3) P4 block.

After the declaration of the checksum verification block, ingress processing begins.
In ingress processing, new variables can be declared, along with the generation of
lookup tables and initializing extern objects. The network functions are basically
specified in both ingress and egress processing blocks. In addition, match-action
pipelines are declared here for specifying the way the P4 programmable target must
process the network packets.

1 control MyIngress (inout headers hdr ,
2 inout metadata meta ,
3 inout standard_metadata_t standard_metadata ) {
4

5 action ipv4_forward (bit <32> dstAddr , bit <9> port) {
6 .......
7 .......
8 .......
9 /* Implement your network function here */

10 }
11

12 table ipv4_lpm {
13 key = {
14 hdr.ipv4. dstAddr : lpm;
15 }
16 actions = {
17 ipv4_forward ;
18 }
19 }
20

21 apply {
22 if (hdr.ipv4. isValid ()) {
23 ipv4_lpm .apply ();
24 }
25 }
26 }

Listing 4: Ingress processing in a P4 program. As seen in [14].

As observed in Listing 4, the way the packets should be handled in the target
is described here. Firstly, an action statement is defined, with the declaration of
temporary variable header fields that are used in the statement for defining the
network function (line 5). Subsequently, a lookup table is also defined, in which the
key declaration is used to activate the network function, once the key is triggered
along the entire network processing. The lookup table can be called from the control
plane to insert the key that must trigger the network function. Finally, an apply
statement is declared, where the lookup table is instantiated inside this statement
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(line 22). After the ingress processing, the packet gets transferred through the traffic
manager. The traffic manager consists of traffic queuing pipeline leading to egress
processing. But the queuing is optional and be customized by needed by activating
strict priority function in the P4 target.

The egress processing works in a very similar way as the ingress process, except
the processing is performed at the egress stage. The declaration of action statements
and lookup tables are done in the same manner. The following Listing 5 depicts the
manner egress processing is declared in the P4 program:

1 control MyEgress (inout headers hdr ,
2 inout metadata meta ,
3 inout standard_metadata_t standard_metadata ) {
4 apply { }
5 }
6

Listing 5: An empty egress processing block in a P4 program. As seen in [14].

After the egress processing, the packets which had their header fields modified
must undergo checksum calculation again. If this is not done, then the modified
packets with incorrect checksum will get dropped at the interfaces of other devices
in the network. The checksum calculation block is depicted in the P4 program as
below:

1 control MyComputeChecksum (inout headers hdr , inout metadata meta)
{

2 apply {
3 update_checksum (
4 hdr.ipv4. isValid (),
5 { hdr.ipv4.version ,
6 hdr.ipv4.ihl ,
7 hdr.ipv4.diffserv ,
8 hdr.ipv4.totalLen ,
9 hdr.ipv4. identification ,

10 hdr.ipv4.flags ,
11 hdr.ipv4.fragOffset ,
12 hdr.ipv4.ttl ,
13 hdr.ipv4.protocol ,
14 hdr.ipv4.srcAddr ,
15 hdr.ipv4. dstAddr },
16 hdr.ipv4. hdrChecksum ,
17 HashAlgorithm . csum16 );
18 }
19 }

Listing 6: An example checksum computation for IPv4 header. As seen in [14].

In the above Listing 6, the checksum calculation is depicted for the IPv4 header of
the network packets. The checksum is updated in case the header fields are modified
in some way by the network functions declared in the P4 program. In this checksum
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calculation declaration, the hash algorithm extern object provided by the V1 model
is used (line 17). The calculated checksum is 16-bit in length, which is the standard
length for IPv4 checksum field.

After the checksum update block in the P4 program, the deparser block is next.
The deparser block is necessary in order to rebuild the packet back to its original
form. With consideration of the parsing stage for Ethernet and IPv4 headers, the
following code block declares deparsing stage for these headers:

1 control MyDeparser ( packet_out packet , in headers hdr) {
2 apply {
3 packet .emit(hdr. ethernet );
4 packet .emit(hdr.ipv4);
5 }
6 }

Listing 7: Deparser stage declared for Ethernet and IPv4 headers. As seen in [14].

In the Listing 7 referencing the deparser block, both the Ethernet and IPv4 headers
that were parsed in the beginning of the entire networking process are constructed
back to their original form and then pushed through the output port. From this
point onwards, the target has performed the network processing as described by the
P4 program that was loaded into it.

2.5.2 P4 extern objects - meters and counters

As described earlier in Section 2.4.2, P4 extern objects are specific functions which
are defined in the P4-based architecture. They are not modifiable and are hard-
corded by the vendor or the manufacturer. The P4 externs are accessed through
the control plane APIs. Apart from the checksum extern object, there are other
extern object which are relevant for this thesis. They are: P4 meters and P4 counters.

P4 meter extern is based on the concept of a two rate three color marker (trTCM)
[24]. It is defined by default in the V1Model P4-based architecture for the P4 pro-
grammable targets (such as BMv2). As per the concept of the trTCM, it marks
incoming IP network packets with green, yellow or red mark. When a packet exceeds
the Peak Information Rate (PIR), the trTCM marks the packet red. Generally, the
packet is marked green or yellow based on whether it fails to be under or exceeds
the Committed Information Rate (CIR). The trTCM is generally used for policing
incoming traffic of a service, whenever the peak rate has to be imposed independently
from the committed rate.

The P4 meter marks each packet and transmits the packet and the relevant
metering outcome to the marker. The trTCM meter in P4 is set up by allocating
values to four parameters: PIR and its relevant Peak Burst Size (PBS), and CIR
and its relevant Committed Burst Size (CBS). The units measured for both the
PIR and CIR are packets per second. The PIR should generally be same as CIR or
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greater than it. Whereas both the PBS and CBS are measured in packet sizes or
byte sizes. This can be configured in the P4 program when the P4 meter is invoked.
The behavior of the P4 meter is defined in regards to two token bucket P and C.
The PIR and CIR rates are also considered. The maximum size of the token bucket
P corresponds to the PBS, while the token bucket C corresponds to CBS.

Figure 12: Token buckets P and C. As seen in ([8], Fig 7-4).

As shown in Figure 12, the tokens are placed in P and C buckets with respect to
the PIR and CIR rates. When one of the bucket is filled with tokens, the consecutive
tokens are dropped. However, if the other bucket is not full, the tokens are transferred
to that bucket. The trTCM operates on the basis of checking whether the transmis-
sion rate is following the specifications. Hence the traffic rate is calculated based
on the bucket P first, and the bucket C is taken into consideration for measurement [8].

Let Tp and Tc attribute to the number of tokens in buckets P and C correspond-
ingly. The preliminary values for Tp and Tc are PBS and CBS respectively. For
Color-Blind mode, when a packet of size B reaches at time t [8]:

• If Tc(t) – B ≥ 0, both Tp and Tc are decreased by B and the packet is marked
green.

• If Tp(t) – B ≥ 0 but Tc(t) – B < 0, Tp is decreased by B, and the packet is
marked yellow.

• If Tp(t) – B < 0, the Tp and Tc values remain unchanged, and the packet is
marked red.

P4 counters are classified as extern objects that are used to keep network packet
statistics. They support both packet and byte counting. Byte counts are incremented
by measuring packet size. However, the implementation of this can vary based on
the P4-based architecture.
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2.5.3 The BMv2 software P4 switch

As per the official GitHub repository for the BMv2 switch, it is the second iteration
of the software switch that supports P4 [25]. C++ was used to develop this software
switch. The P4 compiler for this switch target creates a JSON file from the P4
compiler. The JSON file is used by the software switch to apply the programmatic
functions in the the BMv2 target, which enables it to handle the network packets
transferred through it.

The BMv2 has several model targets. However the most recommended one to be
used is the simple_switch target. The simple_switch target utilizes the V1Model
architecture and it supports P416. The control plane of the simple_switch target can
be accessed with the Thrift server running in the target during runtime. The Thrift
server is programmed to be accessed by a network admin with the help of APIs. This
manner of interacting with the P4 BMv2’s control plane, enables the P4 program to
be loaded into the BMv2 target without the control plane program recompiled again
for use. Hence, the Thrift API (runtime CLI) is considered program independent.
This is why the BMv2 target is used for this thesis.

Figure 13: Typical BMv2 workflow for the simple_switch target, which runs
myprog.p4 program. As seen in [6]).

The second model target is the simple_switch_grpc. It has all the features of
simple_switch, but it allows interaction with the controller through TCP communica-
tions utilizing Remote Procedure Call (RPC), however this target model is not used
for this thesis. The final model target is the psa_switch, which utilizes the Portable
Switch Architecture (PSA) instead of the V1model. But the implementation for the
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PSA is not finished yet and is work in progress.

As observed in Figure 13, the P4 compiler compiles the myprog.p4 P4 program
to generate two files: myprog.p4info and myp4rog.json. The myprog.p4info file is
used by the P4Runtime server, which interacts with the control plane of the BMv2
software switch. The runtime control uses the outline of the pipeline provided by
myprog.p4info file. All the characteristics of the P4 programs such as actions, lookup
tables, extern objects, and many others are described in this file. During the BMv2
switch runtime, the runtime controller will access the myprog.info file to understand
the P4 program’s structure and provides an interface for the network administrator to
interact with the P4 program’s functions. The format for the .P4info file is based on
protocol buffers, which is an open source library developed by Google. The compiler
output is always target independent as long as the target model is supported by the
hardware provided by the manufacturers.

2.6 5G Core Network Architecture and Free5GC
Currently, 5G networks are being deployed due to the increasing number of appli-
cations such as Internet of Things (IoT), smart home, smart grid, industrial IoT
and many others. 5G is being adopted widely, because it significantly reduces delay
and energy consumption compared to 4G (Fourth Generation Mobile Networks).
Furthermore, it facilitates very high throughput, faster development and deployment
of services or applications; in addition to elasticity, improved security, privacy and
connectivity to large number of devices amounting to billions.

Figure 14: Typical standalone 5G cellular network which incorporates 5G RAN and
5G core. As seen in [9]).

5G is an evolving system. It is restricted by Key Performance Indicators (KPIs)
and other standards. One of the main aspects of a 5G network is the 5G core. It
describes the way mobile user devices are connected to each other as well as devices
on the internet. The 3rd Generation Partnership Project (3GPP), has defined the
outline for the 5G mobile core network to adopt a microservice based architecture.
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Microservice based architecture allows to break down the implementation into differ-
ent functional blocks. Apart from the core, the Radio Access Network (RAN) is also
very important for the mobile cellular networks.

Current mobile networks are deployed in different ways. First way is the non-
standalone method. There are two approaches to deploy a non-standalone mobile
network. First approach is deploying 4G and 5G RAN with 4G’s Evolved Packet
Core. Second approach is deploying both 4G and 5G RAN over a 5G core. The
second method of deployment is the standalone 5G, where the entire architecture is
5G, including the the RAN, which provides wireless interfaces for the UEs to connect
to the mobile network [9].

As displayed in the Figure 14, the RAN, also known as the basestation or gNodeB
(5G-New Radio) is connected to the 5G core through a backhaul network. The RAN
ensures that the radio spectrum is effectively used by the UEs to fulfil the QoS
prerequisites.

2.6.1 The 5G Core

The 5G core consists of the following elements in its system architecture:

Figure 15: Elements in the 5G core system architecture and their interfaces as
outlined by the 3GPP Release 15. As seen in [10]).

As seen in the above Figure 15, the following are the elements in the 5G architec-
ture [9]:

• Network Slicing Selector Function (NSSF) - It is responsible for selecting
a network slice for the UE.

• Network Exposure Function (NEF) - It is used to expose the abilities of
the network functions to outside services in a secure manner.

• Network Function Repository Function (NRF) - It is used to expose
network functions that are active. It provides a discovery service.
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• Policy Control Function (PCF) - It provides the control to create or modify
policy rules, which are imposed by other network functions.

• Unified Data Management (UDM) - It provides the function to manage
user identity, as well as creation of authentication keys.

• Application Function (AF) - The AF provides access for the NEF and
session linked data to the PCF for policy control. It is considered as a logical
element in the 5G core architecture.

• Authentication Server Function (AUSF) - The AUSF acts as the authen-
tication server.

• Access and Mobility Function (AMF) - Considered as the control plane
function. Its important operations are reachability management, mobility
management, connection management and registration management. Basically,
these operations allow the UE to register or unregister to the 5G network,
as well as establish control plane signalling, while ensuring the UE is always
available and is located appropriately.

• Session Management Function (SMF) - It is responsible for assignment
of IP addresses to UE, manage QoS, and also control session context with the
UPF.

• User Plane Function (UPF) - It is the gateway between the RAN and the
DN. It performs packet forwarding for the UEs to reach the devices in the DN.
Furthermore, it provides network statistics and provides control over QoS.

In addition to the elements the following are the interfaces used by the network
functions to operate [10]:

• Nnssf - It is the interface exposed by the NSSF.

• Nnef - It is the interface exposed by the NEF.

• Nnrf - It is the interface exposed by the NRF.

• Npcf - It is the interface exposed by the PCF.

• Nudm - It is the interface exposed by the UDM.

• Naf - It is the interface exposed by the AF.

• Namf - It is the interface exposed by the AMF.

• Nsmf - It is the interface exposed by the SMF.

Apart from the interfaces, the reference points are also depicted in the Figure 15
[10]:
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• N1 - It is the point between the AMF and the UE.

• N2 - It is the point between the AMF and the RAN.

• N3 - It is the point between the RAN and the UPF.

• N4 - It is the point between the SMF and the UPF.

• N6 - It is the point between the UPF and the DN.

• N9 - It is the point between two UPFs. Multiple UPFs are used either for
redundancy or for connecting two different DNs.

2.6.2 Free5GC

The Free5GC is the open source project for implementing the 5G core for the 5G
mobile network. The project implements the 5G core network as per the requirements
of the 3GPP Release 15. There are other open source projects for configuring the
5G core network. The Free5GC was chosen for this thesis based on the extensive
guides available to understand its installation and configuration process. In addition,
the UE and basestation simulator, UERANSIM is designed to work with Free5GC
[26]. The 5G core network that is implemented for this thesis with Free5GC is the
same as depicted in Figure 15. However, the NSSF features are not used and is not
relevant for this thesis.

2.6.3 Network Slicing in 5G

As mentioned in the Introduction Chapter 1, network slicing allows for the isolation
of a physical network into different logical networks (slices) dedicated to different
services tailored to their needs, in order to provide adaptable and diverse applications.
Each slice conforms to specific KPIs and standards as defined by the mobile operator.
It is also an enabler for isolating one end-to-end communication from others and
hence, securing them. Usually, slices can be generated on request and are given
adequate isolation with independent control and management [27]. Network slicing
as a concept for operating the smart grids have been examined carefully, in which
new and efficient business models have been conceptualized [28].

In Figure 16, an E2E network slicing is depicted over the 5G network. It con-
stitutes of network slicing on the RAN, transport network, core network and the
network where the app servers are operating. Various slices which are portrayed in
the figure, are conformed to different standards for different application. The slices
on each component are managed by the same or different controllers, which could
be managed by a network slice orchestrator. This can provide consistency in their
management as well as in the provision of QoS, high reliability and compliance to
explicit KPIs.
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Figure 16: E2E network slicing as outlined by the IETF. As seen in [11]).

There are several technologies that enable network slicing. They are mainly
hypervisors, virtual machines, containers, Software Defined Networking (SDN) and
Network Function Virtualization (NFV). SDN and NFV technologies in particular
have had large impact on the way today’s conventional network slices are created and
managed. For example, SDN allowed the separation of the control plane from the data
plane where centralized network management has been consolidated in the control
plane to provide vital attributes, such as elasticity, expandability, service-oriented
conformability as well as sturdiness in networking systems. These features are required
to maintain network slices through the SDN controllers residing in the control plane
of the networks. Popular SDN solutions such as Open Networking Operating System
(ONOS) and OpenDaylight are some examples, which provide a bird’s eye view of the
network for easier network management. Furthermore, NFVs have been also utilized
heavily to implement network slicing in which, Virtualized Network Functions (VNFs)
are service chained in conjunction with NFV infrastructure, and Management and
Orchestration (MANO) [29]. The network slicing in this thesis is restricted to the
transport network connecting the DN to the UPF of the 5G core as previously stated
in the thesis research problem 1.1. There is no network slice orchestrator, instead
the network slicer’s (BMv2)’s runtime Command Line Interface (CLI) is used to add,
delete and ban slices as required.
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3 Design and Implementation
The main idea for the design of the testbed is controlling the IEC 104 traffic by
isolating it from other network traffic transmitted through the 5G network. It is
important to consider that less important traffic, which may also include malicious
traffic should not be able to take the smart grid down without any difficulty. The
system should be able to upkeep the QoS of different categories of network traffic.
With respect to the IP traffic, the possibility of controlling the QoS comes with the
Differential Services architecture, where different QoS parameters corresponds with
different DSCP code values in the IP header field.

The first section discusses the design considerations of the experimental testbed
for testing the virtual slicing framework at the segment between the 5G core and
the DN. Then, the next section will discuss the system architecture along with
the equipment that was used for implementing the P4-based network slicer and the
P4-based DSCP tagger. Finally, the implementation of slicing and DSCP tagging
with P4 will be discussed more thoroughly.

3.1 Design considerations for the 5G testbed
In the beginning of this thesis project, a testbed that includes a proprietary 5G
core as well as a Nokia basestation was considered and tested. The 5G network
was configured in the standalone mode. The UE consisted of a Raspberry Pi 2
device equipped with Quectel’s 5G modem. However, in standalone mode, there
were connection reliability issues with the 5G modem equipped on the Raspberry
Pi, the assembly and setup of this testbed was dropped. Throughout the testing of
the Raspberry Pi’s connection to the 5G network, it could not establish the Packet
Data Unit (PDU) session with the 5G core most of the time. Moreover, a sufficient
number of Quectel modems for further testing and for establishing concurrent UE
connections to the DN was not available.

Figure 17: 5G testbed with Free5GC and UERANSIM.

Due to these complications, the plan for the 5G testbed with Cumucore 5G core
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and the Nokia basestation was withdrawn. Instead, a 5G testbed with Free5GC
5G core and a UE/RAN simulator was devised. The UE and RAN simulator was
obtained from the open source UERANSIM GitHub repository created by Ali Güngör
[30].

In the Figure 17, the main idea is to separate the UE and RAN elements from
each other rather than keep them together with UERANSIM. Therefore, in this case,
three instances of UERANSIM software are running separately in separate systems.
The core is also run separately in a standalone workstation, so that its performance
will not be affected by the other components.

3.2 System architecture for the 5G testbed and for network
slicing

The following systems were used to implement the 5G testbed, network slicing and
DSCP tagging:

System TLSense Mini
PC

APU Box 1
(Model apu4d4)

APU Box 2
(Model apu4d4)

Purpose Hosting 5G Core
with Free5GC

RTU & UE2
as UEs with
UERANSIM

SCADA in
Data Network

Hosting
basestation

with UERANSIM

System OS Ubuntu
Desktop 20.04 LTS VMware ESXi 6.5 VMware ESXi 6.5

Guest Host OS
(VMware Only) - 2 Hosts - Ubuntu

Server 18.04.5 LTS
Ubuntu

Server 18.04.5 LTS

CPU Model

Intel Celeron
Processor N3160

@2.24 GHz;
4 cores

64-bit AMD
Embedded
GX-412TC
@1 GHz;
4 cores

64-bit AMD
Embedded
GX-412TC
@1 GHz;
4 cores

Memory (RAM) 8 GB 4 GB
(2 GB per host) 4 GB

Table 4: Systems used for implementing the 5G testbed.

Table 4 outlines the system used for implementing the 5G testbed. The 5G
testbed consists of the Free5GC 5G core installed in the TLSense mini Personal
Computer (PC). Due to limitations in obtaining additional workstations with several
network interfaces, the APU boxes were used. As described in the official manufac-
turer website [31], APU boxes are single board computers that are used for computer
networking. Even though they do not have high processing power, they have multiple
network interfaces to work with. Instead of installing standalone OSes on the APU
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box, VMware ESXi 6.5 hypervisor was installed. VMware ESXi is a purpose-build
baremetal hypervisor, which can be installed in the baremetal server. It provides the
user with a centralized management system to efficiently dividing hardware resources
to applications and reduce expenses. Standalone installation of the linux based OS
in the APU box is extremely cumbersome. This is why VMware hypervisor was
chosen instead, which allows multiple isolated virtual machines (VMs) to be run
on the same APU box, allowing easier installation of the OSes and their management.

The 5G network testbed with the DN was configured with the aforementioned
systems as follows:

Figure 18: The 5G network testbed implemented with APU box and TLSense mini
PC.

Figure 18 displays that the 5G network was configured with two APU boxes and a
mini PC. Running UERANSIM did not require high amount of processing power and
RAM memory. Furthermore, UERANSIM allows the user to create concurrent UE
profiles to be connected with the Free5Gcore through the gNodeB basestation element
without any issues. For demonstration of the slicing technique, it was determined
to have two UEs: one for RTU and the other as standalone UE for slice number 2.
As for the SCADA, it is a normal VM running on Ubuntu server 18.04 LTS in the
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VMware hypervisor.

In order to simulate smart grid traffic that consists of sending and receiving ASDU
frames, an open source python based IEC 104 client and server by GitHub user,
RocyLuo [32] was used. The simulator is based on Python programming language,
and utilizes socket streaming based on the TCP standard to send IEC 104 traffic
between the server and the client. The simulator supports the I, S and U frames and
only supports the following ASDU frames with the TypeIDs: 45, 46, 47, 48, 49, 50,
51, 58, 59, 60, 61, 62, 63, 64, 101 and 103. These TypeIDs conform to the IEC 104
traffic transmission in the controlling direction (SCADA to RTU) of the smart grid
communication.

The simulator utilizes the Scapy tool, which is a Python-based tool that allows
to forge and send packets. Since this simulator was published six years ago, it only
supports an older version of Python programming language (Python 2.7) and Scapy
(version 2.2). Therefore, both the UE1 and the RTU machines were installed with
the outdated Python and Scapy libraries in order to run the IEC 104 smart grid
traffic simulation.

As for the implementation of the P4-based network slicer and DSCP tagger, the
following systems were used:

System HP EliteDesk 800
Workstation

APU Box 3
(Model apu3d4)

Purpose P4-based
Network Slicer

P4-based
DSCP Tagger

System OS Ubuntu
Desktop 16.04 LTS VMware ESXi 6.5

Guest Host OS
(VMware Only) - Ubuntu Server

16.04 LTS

CPU Model
Intel Core i5-6500
CPU @3.20 GHz;

4 cores

64-bit AMD
Embedded
GX-412TC
@1 GHz;
4 cores

Memory (RAM) 8 GB 4 GB

Table 5: Systems used for implementing the network slicing and DSCP tagging
utilizing P4 based BMv2 software switch.

As outlined in the Table 5, a standalone workstation and an APU box with
VMware ESXi 6.5 hypervisor was used to implement the slicing technique as well as
the DSCP tagger. Both systems utilize Ubuntu 16.04 LTS OS, since BMv2 and the
P4 compiler do not support Ubuntu versions above 16.04. In addition, installation
of the P4 compiler and the BMv2 takes up significant hard drive storage space due
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to decompression of relevant software packages and libraries. Hence, custom Ubuntu
16.04 installation images with P4 compiler and BMv2 software switch were created
beforehand for easier and modular installation.

The P4 network slicer and the DSCP tagger were integrated with the 5G network
testbed as follows:

Figure 19: P4-based network slicer and DSCP tagger integrated with the experimental
5G testbed.

Figure 19 displays that, the P4 slicer was placed in proximity to the 5G core,
whereas the P4 DSCP tagger is placed in proximity to the SCADA in the DN.
Considering this setup, it can be surmised that the smart grid Distribution System
Operator (DSO) has made an agreement with the Mobile Network Operator (MNO),
which owns the 5G networking infrastructure. Based on their deal, the DSO tags
their smart grid traffic with appropriate DSCP values, which the MNO will use to
push the valid DSCP tagged traffic into a specified network slice through the network
slicer on the DN segment. The DSCP based slice provides the appropriate isolation
as well as compliance to the QoS requirements in accordance to the agreements with
the DSO.
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While taking the aforementioned concept into consideration, the 5G network
testbed along with the slicing implementation can be mapped to a business environ-
ment as shown below:

Figure 20: Overview of the 5G testbed integrated with P4-based network slicing and
DSCP tagging. Enlarged image can be viewed in Appendix D.

In the above Figure 20, it can be observed that the UEs (RTU and UE2) are
owned by the DSO. Whereas, the MNO owns the basestation, the 5G core and the
P4-based network slicer. The P4-based DSCP tagger, the Remote Host 2, and the
remote SCADA are owned by the DSO. The Remote Host 2 is a high performance
Linux powered laptop for testing purposes. Therefore, this scenario is tailored for
smart grid communications powered by 5G network infrastructure. In addition, the
UE subnet is set to 60.60.0.0/24. This is configured in the Free5GC configuration
files. Whereas the IP subnet for the DN is set to 192.168.56.0/24.

3.3 Implementation of P4-based DSCP tagger
In order to establish network slices based on DSCP values, the smart grid traffic
must first be tagged with relevant DSCP values before the network slicer can utilize
them. If both endpoints are owned by the DSO, DSCP tagging could be implemented
directly in the applications. This would however spread the issues of QoS and slicing
into each and every application. By using a P4-based tagger, we can separate the
concerns of QoS and traffic isolation from the applications and create a more man-
ageable overall architecture. Therefore, the implementation of the P4-based DSCP
tagger is discussed first. The DSCP tagger was first compiled using a P4 compiler,
which compiles a P4 program into a JSON file. The JSON file is loaded into the
BMv2 switch installed in APU box 3.

Firstly, in the P4 program, all the important headers are defined for parsing as
follows:

1

2 header ethernet_t {
3 macAddr_t dstAddr ;
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4 macAddr_t srcAddr ;
5 bit <16> etherType ;
6 }
7

8 header ipv4_t {
9 bit <4> version ;

10 bit <4> ihl;
11 bit <8> diffserv ;
12 bit <16> totalLen ;
13 bit <16> identification ;
14 bit <3> flags;
15 bit <13> fragOffset ;
16 bit <8> ttl;
17 bit <8> protocol ;
18 bit <16> hdrChecksum ;
19 ip4Addr_t srcAddr ;
20 ip4Addr_t dstAddr ;
21 }
22

23 header tcp_t {
24 bit <16> srcPort ;
25 bit <16> dstPort ;
26 bit <32> seqNo;
27 bit <32> ackNo;
28 bit <16> tcp_flags ;
29 bit <16> wndw_size ;
30 bit <16> tcp_checksum ;
31 bit <16> urgentPtr ;
32 bit <8> tcp_option_kind ;
33 bit <8> tcp_option_kind2 ;
34 bit <8> tcp_option_kind3 ;
35 bit <8> tcp_option_len ;
36 bit <32> tcp_option_tval ;
37 bit <32> tcp_option_tsecr ;
38 }
39

40 header apci_t {
41 bit <8> StartByte ;
42 bit <8> apdu_len ;
43 bit <8> type_h ;
44 bit <16> rx;
45 bit <8> tx;
46 }
47

48 header asdu_t {
49 bit <8> TypeId ;
50 bit <8> sq;
51 bit <8> numix;
52 bit <8> cot;
53 bit <8> nega;
54 bit <8> test;
55 bit <8> oa;
56 bit <16> addr;
57 }
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58

59 struct metadata {
60 /* empty */
61 }
62

63 struct headers {
64 ethernet_t ethernet ;
65 ipv4_t ipv4;
66 tcp_t tcp;
67 apci_t apci;
68 asdu_t asdu;
69

70 }

Listing 8: Header definitions for Ethernet; IPv4; TCP; APCI and ASDU.

After the header definition, the parsing stage is executed. The entire P4 program
for DSCP tagging can be viewed in Appendix A. However, the following logic graph
for the parser is presented:

Figure 21: Parsing logic for DSCP tagger.

As seen in the above Figure 21, the parser logic in the BMv2 switch initiates at
the Ethernet header. Once the required value is found in the etherType field (0x800)
of the Ethernet header, the parsing stage continues to IPv4 then to TCP, from TCP
to APCI header of the IEC 104 protocol and finally the ASDU header. The parsing
occurs as specified in the P4 program and the required information is extracted as
outlined in the header definitions of the P4 program. By default, the parsing stages
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are accepted and the packets are not dropped. However, P4 allows the parsing logic
to be programmed in such a way that, certain parsing stages can be rejected by the
P4 switch. But, there was no need to implement this, since the P4 hardware acts as
a network switch forwarding different types of network packets, whether IEC 104
protocol is present or not.

After the parsing stage, the BMv2 switch moves onto the checksum verification.
However, checksum verification was not applied for DSCP tagging. And therefore,
the ingress processing takes place.

In the Figure 22, the ingress processing starts with the the validation of the IPv4
header. When it is comfirmed to be true, the lookup of the values entered in the
desp_dest table is performed. While the P4 program is running on the BMv2 switch,
the values for the table are entered by the network admin through the runtime CLI.
The values entered in the table are the IP addresses of the devices involved in the
smart grid communication. In this case, they are the IP address of the RTU on the
UE side of the mobile network.

Once the table lookup hits the entered key values, the TypeID field in the ASDU
header is checked. The process of TypeID checkup is divided into two. Smart grid
traffic corresponding to the TypeIDs between 45 and 51, as well as 101 and 103 are
deemed to contain system or process information. Therefore, they are configured with
a DSCP value of 18 (as seen in Figure 23). Whereas, ASDU packets with TypeIDs
between 58 and 64 have the DSCP field configured to be 40, which is considered to
be the appropriate values for sending signalling based traffic. The tagging is done
by set_dscp_mon() and set_dscp_cont() functions for tagging DSCP values of 18
and 40 respectively. After the tagging is performed, the ingress processing logic
ultimately ends with switch_forward() function, which enables the BMv2 acting as
a network switch forwarding any packets from one interface to another. Throughout
the packet processing, there is no rejection of packets. Any incoming packets, which
are not relevant to the smart grid application are normally switched to the output
port and will have their DSCP value set to 0, which is the default value. There are no
processes defined for the egress processing, and therefore the deparsing is performed
for the Ethernet, IPv4, TCP, APCI and ASDU headers.

The P4 program for DSCP tagging is compiled and loaded into the BMv2 switch
as a JSON file in the APU box 3. During the P4 program’s runtime, the program
elements outlined in the program can be interacted with the runtime CLI provided
by the simple_switch. The runtime CLI can be invoked by:

1 # Invoke the runtime CLI initialized on thrift port 9090
2 simple_switch_CLI --thrift -port 9090

After the runtime CLI has been invoked, the following commands are entered for
activating the network processes defined by the P4 program in the network switch:

1 # Program the network hardware to switch packets from ingress
port to egress port
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Figure 22: Ingress Processing logic for DSCP tagger.
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Figure 23: P4-based DSCP tagger processing the incoming IEC 104 packet to modify
the IPv4 DSCP value in the packet accordingly.

2 table_add switch_forward 1 => 2
3 table_add switch_forward 2 => 1
4

5 #Tag DSCP values to packets based on TypeID
6 table_add dscp_dest NoAction 60.60.0.1 =>

The above commands enables the network admin to invoke lookup tables and
enter key values into them. In the case of switch_forward table, the key value is the
ingress port and the action value is egress port. Therefore, the switch is tasked to
transfer packets from the ingress port to egress port and vice-versa. As for activating
the DSCP tagging, the IP address of the RTU (UE 1) is provided as the destination
address.

Figure 24: Modified DSCP field by the P4-based DSCP tagger for the ASDU header
TypeID 45. DSCP Hex value 0x12 corresponds to DSCP value of 18. As captured in
Wireshark.
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Figure 25: Modified DSCP field by the P4-based DSCP tagger for the ASDU header
TypeID 45. DSCP Hex value 0x28 corresponds to DSCP value of 40. As captured in
Wireshark.

In the Figures 24 and 25, the modified DSCP fields are displayed. In normal
smart grid communications over TCP, the DSCP values are not changed at the
application level and remain to be 0. The P4-based DSCP tagger changes the value
as required by the DSO, so that the MNO can provide application specific mobile
networking services (such as slicing) based on the DSCP value.

3.4 Implementation of P4-based Network Slicer
The P4 program that enables network slicing allows for the creation of two types
of slices. First slice is the basic slice which isolates E2E connection between two
network devices. The second slice is the DSCP based network slice, which spans
the same E2E connection. Both slices for the same E2E connection can be provided
with QoS and packet queuing parameters that are different from each respective slice
for QoS based isolation. In addition, network slices for other E2E connections can
be deployed in such a way that they are either isolated or devices in a slice can be
connected to device in the other slice, provided that the devices belong to the same
IP subnet.

The P4 program for the network slicer once again starts with header definitions for
Ethernet and IPv4 headers. In addition, header definition for the User Datagram Pro-
tocol (UDP) is also added. After the headers are defined, the next stage is the parsing.

In the Figure 26, the parsing stage starts with the parsing of the Ethernet header,
which then continues to IPv4 parsing, and then finishing after UDP header is parsed.
By default all the packets are parsed appropriately and not rejected even when
the above parsing sequence does not conform to the packet structure. There is no
checksum verification implemented in this P4 program, so the program skips to the
next stage.
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Figure 26: Parsing stage logic for the network slicer.

3.4.1 Ingress Processing for Network Slicer

The network slicing implementation is incorporated throughout the ingress and egress
stages of the P4 pipeline, and is not limited to a single pipeline. The entire code for
the P4-based network slicer can be viewed in Appendix B. In the ingress processing,
the network process for slicing is performed as below:

As depicted in the Figure 27, the ingress stage starts with the invocation of
the switch_table with the forward action function responsible for switching the
incoming packets from ingress port to the egress port. Once the necessary actions
are called, the process invokes the slicein table, where the table’s key is the Ipv4
source address. The slice_in table invokes the add_slice action, where the slice
ID is associated with the key entered into the table. After this, the DSCP fields
are checked. The DSCP values for verification can be configured by the network
admin. If the approved DSCP values are detected, the DSCP slice is created with
the Ipv4 destination address as the key for the dspc_slicein table. Along with the
DSCP check, strict priority queuing (highest priority) is applied to the network
packets. Considering the hardware used, it was decided to use highest priority for
both the DSCP values (18 and 40). In the table, the same add_slice action is
invoked, where the network admin can provide a different slice ID to activate the
DSCP slice. Apart from this, if the packets are not detected with the appropriate
DSCP value, then the default priority queuing (priorty 0) is applied. That is, nor-
mal slices are applied with lowest priority, while DSCP slices are given highest priority.

Subsequently, the P4 extern known as the P4 meter is expressed through the
meter_table. Here, the slice ids that have been assigned for the slices are used as
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Figure 27: Ingress stage logic for the network slicer.

keys to apply the P4 meter. The meter_table invokes the m_action function, where
the P4 meter is initialised and has slice ID assigned to it. The P4 meter extern used
in this implementation of network slicing is based on trTCM as outlined by the IETF
[24]. The meter extern is used to control the packet rate for each slice. Therefore,
slices can be tailored with different queuing and packet rate for applying QoS.
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3.4.2 Egress Processing for Slicing

The P4 program then moves onto the egress stage. In the egress stage, each slice is
provisioned with a P4-based counter, where this extern object can be used to keep
count of the packets and bytes transmitted through the slice. The logic for the egress
processing is as follows:

Figure 28: Egress stage logic for the network slicer.

As depicted in the above Figure 28, the egress stage mainly invokes the net-
work functions through the following tables: sliceout, dscp_sliceout and sliceban.
Sliceout table consists of IPv4 destination address and the slice ID as a key-pair.
When the key-pair is detected in the packets, the table invokes the function known
as slice_action() which initializes a counter which is associated to the slice. The
dscp_sliceout table is very similar to the sliceout table. The key-pairs are IPv4
destination address and the slice ID assigned for the dscp-based slice.

After the application of the counter for slices, the sliceban table is applied. The
sliceban table takes the slice ID as well as IPv4 source addresss as the keys. When
the values are entered into the table, the table invokes the drop function, where the
BMv2 drop the packets and do not forward them. The sliceban is an optional feature
that was implemented during the development. The P4 pipeline then continues with
IPv4 header checksum computation and finally ends in the deparsing of the Ethernet,
IPv4 and UDP headers.
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3.4.3 Slice Implementation and Regulating Packet Rates

The normal and the DSCP slices are applied through the runtime CLI while the P4
program is running on the BMv2 switch. The CLI commands for normal slices were
implemented as follows:

1 #Slice ID 1 between RTU (60.60.0.1) and the SCADA (192.168.56.102)
2 table_add slicein add_slice 60.60.0.1 => 1
3 table_add slicein add_slice 192.168.56.102 => 1
4

5 #Slice ID 2 between UE2 (60.60.0.2) and the Remote Host2
(192.168.56.104)

6 table_add slicein add_slice 60.60.0.2 => 2
7 table_add slicein add_slice 192.168.56.104 => 2
8

9 # Assigning P4 counter 1 to Network Slice 1
10 table_add sliceout slice_action 1 60.60.0.1 => 1
11 table_add sliceout slice_action 1 192.168.56.102 => 1
12

13 # Assigning P4 counter 2 to Network Slice 2
14 table_add sliceout slice_action 2 60.60.0.2 => 2
15 table_add sliceout slice_action 2 192.168.56.104 => 2
16

17 # Isolating network slices #1 and #2
18 table_add sliceout Drop 1 60.60.0.2 =>
19 table_add sliceout Drop 1 192.168.56.104 =>
20 table_add sliceout Drop 2 192.168.56.102 =>
21 table_add sliceout Drop 2 60.60.0.1 =>

The above commands implement the network slices with slice ids 1 and 2. Slice
isolation is also ensured in such a way that devices in one slice cannot connect to
devices in the other. As for DSCP slice, it is implemented with the following runtime
CLI commands:

1 #Check for DSCP values 18 and 40 and apply highest traffic queuing
priority

2 table_add dscp_check dscp_priority 18 => 7
3 table_add dscp_check dscp_priority 40 => 7
4 #Rest of the slices have default queuing priority (level 0)
5

6 # Assign Slice ID 6 for the DSCP based slice between SCADA and RTU
7 table_add dscp_slicein add_slice 60.60.0.1 => 6
8 table_add dscp_slicein add_slice 192.168.56.102 => 6
9

10 # Assign P4 counter #6 to Slice ID 6 with respect to SCADA and RTU
11 table_add dscp_sliceout slice_action 6 60.60.0.1 => 6
12 table_add dscp_sliceout slice_action 6 192.168.56.102 => 6
13

14 # Isolate DSCP slice from Slice #2 devices
15 table_add dscp_sliceout Drop 6 60.60.0.2 =>
16 table_add dscp_sliceout Drop 6 192.168.56.104 =>

As previously mentioned, DSCP check is performed first and the traffic with the
assigned DSCP values have higher priority compared to other traffic. The slice ID
assigned for the DSCP slice is 6. And the slice with the slice ID 2 is isolated from
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the DSCP slice. However, the slice is not isolated from the slice ID 1, since the
DSCP slice is applied to the same connection between the RTU and the SCADA.
Additionally, slices can be banned immediately from use in case of security attacks
or breaches with the following commands:

1 #Ban A Slice
2 table_add sliceban Drop 02 60.0.0.2 =>
3 table_add sliceban Drop 02 192.168.56.104 =>
4

5 # Remove Slice Ban
6 table_clear sliceban

In addition to the strict priority queuing for the normal and DSCP slices, the
packet rates in the slices can be controlled by the usage of P4 meters. The following
commands are applied to implement the control for packet rates:

1 # Initializing P4 meter extern object slicerate_meter
2 table_set_default meter_filter drop
3 table_add meter_filter NoAction 0 =>
4

5 # Provisioned Packet Rate for Slice #1
6 table_add meter_table m_action 1 => 1
7 meter_set_rates slicerate_meter 1 0.01:1 0.05:1
8 #If packet size = 1000 bytes ,
9 # Packet rate = 0.01 x (1 packet /1 us) x 1000 bytes x 8 bits = 80

Mbps
10

11 # Provisioned Packet Rate for Slice #2
12 table_add meter_table m_action 2 => 2
13 meter_set_rates slicerate_meter 2 0.00001:1 0.00005:1
14 # Packet rate = 0.00001 x (1 packet /1 us) x 1000 bytes x 8 bits = 80

kbps
15

16 # Provisioned Packet Rate for DSCP Slice #6
17 table_add meter_table m_action 6 => 6
18 meter_set_rates slicerate_meter 6 0.01:1 0.05:1
19 # Packet rate = 80 Mbps

The runtime CLI commands entered during P4 program’s runtime allows the
network admin to control the packet rates in the network slices. The same commands
were also used during the actual implementation and testing phases of this thesis.
The visualization of the entire P4 pipelines for slicing is depicted in the Figures 29
and 30.

The figures outline the ingress and egress processing of the P4 program for
implementing the network slicing. Figure 29 depicts the P4 pipeline, where the
packet transmission rates are not controlled for each slice. Therefore, this pipeline
did not assign the P4 meters for each network slice yet. As seen in the ingress
stage of the pipeline, packets are classified based on the DSCP values that are
configured to be checked as per the network admin. Once the necessary packets
are identified with specific DSCP values, they are assigned to the DSCP slice while
the rest are assigned to their respective slices based on their IPv4 destination ad-
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Figure 29: P4 pipeline for network slicer with only strict priority queuing and counters.
Enlarged figure can be viewed in Appendix E.

Figure 30: P4 pipeline for network slicer with P4 meters, strict priority queuing and
counters. Enlarged figure can be viewed in Appendix F.

dresses as configured by the network admin. During the movement of the packets
between the ingress and the egress stage of the pipeline, each the packets with the
appropriate DSCP value gets the highest priority. Other traffic with DSCP value
of 0 (default) gets the lowest priority. When the packets arrive in egress, each
packet tagged with specific slice id are pushed into a P4 counter assigned to the
respective slices. The P4 counters counts the packet and byte count while the packets
traverses through them. In this manner, the number of packets transmitted can
be obtained for each slice. The packets then exit the interface through the egress port.

Figure 30 depicts a very similar P4 pipeline, however this time the P4 meters
are activated. The incoming packets gets classified in the same manner as described
before. But each packet assigned to a slice id gets allocated a P4 meter with specific
configuration as prescribed through the runtime CLI. The P4 meter controls the
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rate the packets gets transmitted and in this manner, bit rate for each slice can be
allocated by the network admin as required. Apart from this, the rest of the process
are the same. However, the P4 switch requires high amount of Central Processing
Unit (CPU) and memory resources to perform this kind of network processing.

Figure 31: Visualisation of the entire 5G testbed with virtual network slicing at the
N6 interface. Enlarged figure can be viewed at Appendix G.

Figure 31 depicts an overview of the network slicing in the 5G testbed and
shows where exactly this takes place. In hindsight, the network slicing is limited
to the N6 interface between the 5G core and the DN. The slice id that packets are
tagged with, only exists within the P4 switch and is not communicated to the SDN
controller. Therefore, this makes it impossible to implement an E2E network slicing.
As mentioned before, the P4 program for slicing allows the slices to be isolated from
each other, so that they are secure. In addition, a slice ban functionality is also
implemented for immediate reaction to security breaches and attacks on the UE
devices or the E2E connection between the UE and the remote devices in the DN.
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4 Results
This chapter firstly provides an overview of the types of measurements taken and
then briefly outlines the scenarios that were considered for the 5G testbed and the
slicing setup that was discussed in the previous sections. Later in the chapter, an
analysis of the measurements will be provided.

The main measurements that were taken for the analysis of the effectiveness of
the network slices are mainly Round Trip Time (RTT) and TCP bandwidth with
the help of the ping and iperf tools respectively. Measurements based on the UDP
protocol were not taken into consideration, mainly due to the fact that they gave
inconsistent measurement values. Throughout the measurement process, IEC 104
traffic was also transmitted between the RTU and the SCADA in the DN. This
is done in order to ensure that there is consistent transmission of IEC 104 traffic
even though other types of network traffic are being transmitted through the medium.

The following non-slicing and slicing scenarios were considered for the measure-
ment and analysis of the 5G testbed and the network slicer:

• Scenario #1: Normal Slicing (Slices #1 and #2)

In this first scenario, network slices #1 and #2 are deployed for commu-
nications between RTU and SCADA along with UE2 and Remote Host 2
respectively. As depicted in Figures 29 and 31.

• Scenario #2: Normal Slicing + Packet Rate Control for Each Net-
work Slice (#1 and #2)

In the second scenario, normal slicing is deployed. In addition, packet trans-
mission rates for each slice are controlled as well. Packet rates are restrained to
around 80 Megabits per second (Mbps) for normal slice #1. Whereas, packet
rates are controlled to 80 Kbps for slice #2. As depicted in Figures 30 and 31.

• Scenario #3: Normal Slicing along with DSCP Slice (Slices #1, #2
and #6)

In the third scenario, both normal slices #1 and #2, as well as the DSCP slice
#6 are deployed. But the packet transmission rates are not restrained for these
slices.

• Scenario #4: Normal Slicing + DSCP Slice + Packet Rate Control
for Each Slice

In this final scenario, slices are deployed similarly as the previous scenario.
That is, normal slices #1 and #2 are deployed along with the DSCP slice
#6. But each slice has their packet transmission rate restrained. Slice #1 and
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DSCP slice #6 have their bitrates restrained to 80 Mbps. Whereas, slice #2
has its bitrate controlled to 80 Kbps.

It is important to consider the fact that the measurements were taken for slices
#1 and #2, while the IEC 104 traffic was being transmitted from the SCADA to
the RTU and vice-versa. This applies to all the scenarios. Another important aspect
of this network slicing is that, the slice #1 overlaps with DSCP slice #6 for the
communication between the SCADA and the RTU. That is, it is not possible to
obtain RTT and TCP measurements for the DSCP slice #6, when there are two
types of slices for the same communication endpoints (SCADA and RTU) and the
DSCP slice allocation is mainly dependant on whether the chosen DSCP values are
present in the DSCP field of the IP headers of the transmitted packets or not.

Scenario Description RTT
Slice 1 (ms)

TCP
BW

Slice 1 (Mbps)

RTT
Slice 2 (ms)

TCP
BW

Slice 2 (Mbps)
#1 Normal Slicing 10.61 0.97 7.64 1.04

#2

Normal Slicing
and

Slice Bitrate
Control

10.20 1.01 8.13 0.06

#3
Normal Slicing

and
DSCP Slicing

10.40 0.82 7.33 1.05

#4

Normal Slicing,
DSCP Slicing,

and
Slice Bitrate

Control

10.74 1.21 7.84 0.05

Table 6: End-to-End delay (ms) and TCP bandwidth (Mbps) for slices #1 and #2.

The Table 6 showcases the results obtained for E2E delay for the SCADA and
the RTU communications in Slice #1 as well as their TCP bandwidths for each
slicing scenarios that were previously mentioned. In addition, E2E delay and TCP
bandwidth are provided for the UE 2 and Remote Host 2 devices in Slice #2. The
E2E delay is in ms, while the TCP bandwidths are obtained in Mbps.
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Figure 32: Bar chart comparing the E2E delay for slices #1 and #2.

The Figure 32 showcases the differences in the E2E delays between slices #1 and
#2 with respect to each slicing scenarios that were outlined before. All of the E2E
delay measurements are averages of the RTT measurements, where the number of
ping requests were at least more than ten. On average, the E2E latencies for slice
#1 is higher than the E2E latencies for slice #2 for all the slicing scenarios. The
difference is around 2.75 ms on average. This difference is mainly due to the fact
that, the SCADA device in slice #1 is connected to the P4-based DSCP tagger, while
the Remote Host 2 is not connected to it in the DN and is directly connected to the
P4-based network slicer (as seen in 20). The DSCP tagger contributes to the extra
latency when compared to the E2E latencies obtained for slice #2. This was due to
the fact that, all the devices were connected directly and did not have any type of
P4-based hardware in between. Apart from this, there is a noticeable increase in
latency for slice #2 in scenarios #2 and #4. This is caused by limiting the bitrate
of the slice to 80 Kilobits per second (Kbps).

In the Figure 33, the TCP throughput performances for the slice #1 and #2 have
been outlined. In scenarios #1 and #3, slice #2 has higher TCP bandwidth, due to
the fact that there is only one P4-based device (network slicer) between the Remote
Host 2 and the UE2. However, in scenarios #2 and #4, the TCP bandwidths for
slice #2 are comparitively very low, with values being around 0.06 and 0.05 Mbps
respectively. This is because, the bitrate for the slice #2 has been set to 0.08 Mbps.
Apart from this, both the slices show consistent TCP bandwidth of around 1 Mbps
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in normal slicing cases.

Figure 33: Bar chart comparing the TCP bandwidth delay for slices #1 and #2.

Figure 34: Combo chart displaying E2E delay and TCP bandwidth delay for slice
#1.

Figure 34 outlines the RTT and the TCP throughput measurements for slice #1
in a chart consisting of both bar and line graph. For each scenario, the bar graph
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represents the E2E delay, while the line graph represents the TCP bandwidth or
throughput measurements. The lowest latency was observed in scenario #2 (10.20
ms) while the highest measurement was observed in scenario #4 (10.74). With
respect to the TCP bandwidth measurements, highest value was observed in scenario
#4, while the lowest was observed in scenario #3.

Figure 35: Combo chart displaying E2E delay and TCP bandwidth delay for slice
#2.

The combo chart shown in Figure 35 depicts the E2E delay and the TCP through-
put measurements for slice #2. In this chart, the low throughput measurements
that were observed in the slicing scenarios #2 and #4 are 0.06 Mbps and 0.05 Mbps.
Highest TCP bandwidth value, 1.05 Mbps was obtained in slicing scenario #3.
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As for the P4 counters, it allows to display the number of packets and bytes that
were transferred through the slice. In the scenario #1, the following information was
obtained from the P4 counter linked to slice #1:

Figure 36: P4 counter for slice #1 displaying number of packets and bytes transmitted
through the slice.

The Figure 36 displays the amount of bytes transferred through the network slice
#1. The P4 counter for slice #1 was invoked after performing the measurement tests
for scenario #1.

In scenario #3, the P4 counters were invoked to display the bytes transmitted
through the slice before any IEC 104 traffic were transmitted back and forth from
the SCADA to the RTU.

Figure 37: P4 counters for normal slices #1 and #2, as well as the DSCP slice #6.
The slices are displaying the number of packets and bytes transmitted through the
slices in the beginning of the scenario #3.

Figure 37 outlines the P4 counters for each slice. They provide the statistics of
the byte and packet count for each network slice in scenario #3. But since not many
packets were sent, the counters are empty.
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Figure 38: P4 counter for slice #1 displaying number of packets and bytes transmitted
through the slices after the IEC 104 traffic were transmitted for scenario #3.

In the Figure 38, the P4 counters displays the byte and packet counts in normal
slice #1 and DSCP slice #6. The packets that were tagged with the DSCP values
18 and 40 traversed through slice #6 (946) while the rest of the packets traversed
through slice #1 (1650). This can be proven in this Wireshark capture:

Figure 39: Packets captured at RTU interface with Wireshark displaying the tagged
DSCP packets that corresponds to the packet count for DSCP slice #6 .
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As seen in Figure 39, the Wireshark packet capture displays the packets that
were captured on on the network interface of the RTU device. The Wireshark packet
capture was filtered to obtain the IEC 104 traffic, that were tagged with the relevant
DSCP values. The filter expression that was used in Wireshark is the following:

1 (frame.number >=1 && frame.number <=2596) && (ip. dsfield ==18 || ip.
dsfield ==40)

The entire IEC 104 traffic exchange between the SCADA and the RTU using the
simulator from [32] comprises of 2596 packets. Before other traffic was sent through
the network for scenario #3, the IEC traffic was sent first. Therefore, the initial
packet count was 2596 packets in total. As observed in the packet count in each
slice #1 and #6, combining the number of packets sent through the slices, the total
packet count of 2596 is observed. In addition, the the total number of DSCP tagged
packets is 946. These packets have been clearly separated by the P4-based network
slicer and put into DSCP slice #6, while the rest of the IEC traffic from RTU which
are not DSCP tagged are pushed into normal slice #1. Apart from this aspect, the
isolation of the slices have been established with the P4-based network slicer. In
a way, it acts as a network firewall, that blocks ingress or egress network packets
based on the policies administered by the network admin. The network slicer was
able to establish slice isolation by blocking the incoming packets that were destined
to the devices in different slice. That is, devices in slice #1 cannot communicate
with devices in slice #2.
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5 Discussion
This chapter first explains the details of the performance of the BMv2 software
switches used for network slicing and DSCP tagging. It also provides the reason how
thesis implementation meets the requirements of networking for smart grids in general.
The chapter then ponders over the usage of encryption along with P4-based BMv2
switch for DSCP tagging application in the IEC 104 smart grid communications.
Finally, technical challenges pertaining to the implementation of this thesis are also
described.

5.1 Performance of the BMv2 Software Switch
Huge performance degradation for the slicing implementation was observed, since the
P4-based BMv2 software switch does not provide very high throughput performance
when compared to a virtual network switch such as an Open vSwitch [25]. Moreover,
low performance APU boxes installed with VMware ESXi hypervisor were used
to partition its hardware resources for hosting P4 switch, remote host (SCADA),
basestation and the UEs. Therefore, this too adds to the performance degradation
when compared to employing the aforementioned network elements in standalone
baremetal nodes.

Figure 40: E2E TCP bandwidth between SCADA and the RTU without P4 switches
and in network slicing (slice #1) scenarios.
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As observed in Figure 40, the 5G network performs better in terms of TCP
throughput without the P4 switches. Around 33 Mbps throughput is achieved. It
can be concluded that the more network functions are added into the P4 program,
the more there is performance overhead for packet processing. For example, it has
been observed that the processing of the DSCP tagged packet in the network slicer
takes around 1 ms. Whereas, it takes about few hundred microseconds for non-DSCP
tagged packets to get processed. This is observed from the logs of the P4-based
network slicer. In addition, compared to the network slices generated by the P4-
based network slicer, without the BMv2 switch integration, the 5G network displayed
higher throughput and better latency performance compared to the network slices.
Furthermore, the connection between the Remote Host 2 and the UE2 displayed
lower E2E latency compared to the connection between RTU and the SCADA.

Figure 41: E2E delay between SCADA and the RTU without P4 switches and in
network slicing (slice #1) scenarios.

In Figure 41, the E2E delay for the scenario without P4 switches is comparatively
lesser for the scenario without P4 switches. With the P4 switches, but without the
network slicing, there is a significant increase in E2E delay. However, with respect
to the slicing scenarios, this delay is lower. In no slicing and the subsequent slicing
#1, #2, #3, and #4 scenarios, two P4 switches (P4-based network slicer and tagger)
were connected in the path between the SCADA and the RTU.
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Figure 42: RTT delay comparison between SCADA-RTU connection and the UE2-
RemoteHost 2 connection.

As seen in the Figure 42, there is a difference in the RTT delays between the
SCADA-RTU and the UE2-Remote Host 2 connections. The following factors con-
tributes in the perceived increase in RTT delay between the SCADA-RTU connection
compared to UE2-Remote Host 2 connection:

• There are two BMv2 P4-based software switches (P4-based network slicer and
DSCP tagger) in the SCADA-RTU connection path.

• Both the SCADA and the RTU devices are VMs hosted in the same APU box
sharing its resources. Therefore, performance degradation is expected.

• There is only one BMv2 P4-based software switch (P4-based network slicer) in
the UE2-Remote Host 2 connection path.

• Remote Host 2 in the Data Network is a high performance Linux based laptop
equipped with physical network interface and therefore, displays lower latency
performance. It is not emulated or running as a VM. This is why there is
around 600 microseconds difference in the no P4 switches scenario.
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Figure 43: Approximate RTT delay for the SCADA-RTU connection with P4 switches
in the path.

Figure 44: Approximate RTT delay for the Remote Host2-UE2 connection with P4
switch in the path.

The Figures 43 and 44, demonstrate how the P4 switches used for network slicing
and DSCP tagging add latency to the SCADA-RTU and the Remote Host2-UE2
connections. Each P4 switch adds around 1-2 ms of latency, while 2-4 ms of latency
by each P4 switch is counted when a network packet is transmitted back and forth
(round-trip). Additional 2-4ms of latency is added by processing of the packet in
the 5G mobile network which consists of the 5G core, basestation and the UE in
round-trip transmissions.

In round-trip transmission for SCADA-RTU connection, the latency becomes
approximately 6-12ms in total. This is because in round-trip transmission, the
network packet gets transmitted through both the P4 switches two times which adds
around 4-8ms of latency along with the latency of 2-4ms due to the packet processing
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in the 5G network. Whereas in the Remote Host2-UE2 connection, there is only one
P4 switch. Therefore in a round-trip transmission for Remote Host2-UE2 connection,
the total latency is approximately 4-8ms due to the processing in the P4 switch and
in the 5G network.

Additional tests were also performed to gauge the performance of the P4 switch
by connecting a workstation over the internet. An iperf test that was performed
provided the following results:

Figure 45: Iperf test performed from a workstation connected to the internet through
a P4 switch.

The above iperf test in the Figure 45 displays the average TCP bandwidth that
was obtained when the workstation was connected to the internet through the BMv2
P4 switch installed in the HP EliteDesk 800 system. The average throughput that
was successfully obtained from the sender end (workstation) was around 610 Kbps,
while the remote server with the address speedtest.serverius.net observed a TCP
throughput of 591 Kbps. A normal consumer-grade switch functions with higher
performance compared to the BMv2 switch, albeit without dataplane customizability
as observed in the Figure 46. Disabling the macro logger for the BMv2 switch reduces
the performance impact immensely. That is, it reduces latency by 1-1.5 ms depending
on the length and complexity of the P4 program. But, logging was an important
aspect for troubleshooting issues with the generation of the network slices in the
P4-based network slicer and therefore was enabled. Apart from this, the usage of
the APU with VMware Esxi 6.5 hypervisor for hosting linux based workstations and
the P4-switch also impacted the performance. CPU performance for the APU box is
clocked at 1GHz, which is quite low.
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Figure 46: Iperf test performed from a workstation connected to the internet with a
normal consumer-grade network switch.

5.2 Networking Requirements for Smart Grids
The ICT requirements specification which is outlined by the Smart Net initiative
provides the following requirements adopting the networking technologies for the
appropriate operation of smart grids [12]:

Figure 47: Network latency requirements for the above network technologies for
smart grid applications. As seen in [12].

The Figures 47 and 48 describe the latency and bitrate requirements for the
smart grid application. The expected lowest latency for the smart grid application is
between 3ms and 10ms. Whereas the maximum expected bitrate is around 2.3 Mbps.
However, this is for the synchrophasor application. While the expected bitrate for
distribution IEDs of around 15 in number is between 18 and 60 kbps.

Considering these requirements, the performance of the P4-based network slicer
almost meets the requirement with respect to the latency, while the bitrate require-
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Figure 48: Network bitrate requirements for the above smart grid applications. As
seen in [12].

ment is definitely met. However, in terms of meeting the 5G KPIs, the 5G network
testbed has not met the requirements since the E2E latency is expected to be below
1ms while the downlink bandwidth is expected to be more than 1 Gigabits per second
(Gbps) and the Uplink bandwidth around 100 Mbps.

5.3 What if SCADA-RTU Connection is Encrypted?
It is possible for manufacturers to adopt Transport Layer Security (TLS) for sending
IEC 104 traffic between the SCADA devices and RTUs or IEDs. In this scenario, the
BMv2 P4-based software switch could be deployed as a containerized application,
which uses Nginx for TLS termination to the external networks connecting RTUs
and IEDs. The TLS encryption mechanism could be programmed in RTU or IED by
the device manufacturer or the DSO may use Kubernetes based controller such as
Nginx to interface with external networks supporting TLS encryption.

Figure 49: P4 DSCP tagger deployed in Kubernetes pod along with Nginx controller
for TLS termination.

As observed in Figure 49, the BMV2 software switch could be deployed as a
Kubernetes pod application, where it is programmed to tag DSCP value based on the
IEC 104 traffic. An Nginx controller deployed in the pod can be configured to be TLS
termination for external connections. The Nginx interface acts as "TLS gateway",
where it encrypts and decrypts TLS traffic that is being transmitted through it. With
this method, the lack of TLS encryption could be resolved and the BMv2 switch can
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easily parse and modify the relevant information in the packets without any difficulty
before the packets are sent through the controller to the RTU device on the UE side.

5.4 Technical Challenges
There were several technical challenges that were encountered throughout the duration
of this thesis. Main issue was trying to find a suitable hardware that supports P4
programming. Other than that, there were challenges in finding a suitable hardware
to host various different Linux based hosts and the BMv2 P4 software switch. Due
to this, compromises with the network performance pertaining to the latency and
bandwidth had to be made.

5.4.1 The P4-NetFPGA hardware

The P4-NetFPGA hardware, also known as the NetFPGA SUME platform is an
FPGA programmable Network Interface Card (NIC) that has been designed and cre-
ated on the initiative of Xilinx Labs, Stanford University and University of Cambridge.

Figure 50: NetFPGA SUME NIC [13].

The NetFPGA-SUME, as seen in Figure 50 consists of four small 10 Gbps form-
factor pluggable plus (SFP+) interfaces. The card can be plugged into a workstation
motherboard using the PCI Express (PCIe) slot, which can hold considerable amount
of high-speed data streams. The NetFPGA SUME platform has been developed for
providing a state-of-the art platform for researchers and developers to work with
in the realm of computer networking. The NetFPGA SUME board utilizes the
SimpleSumeSwitch P4-based architecuture instead of the V1Model. Therefore, some
functionalities available in V1Model may not be necessarily available in Simple-
SumeSwitch and vice-versa.
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However, the platform is not completely open to everyone. In order to program
the NetFPGA with P4 language framework, it requires Xilinx’s proprietary SDNet
module which powers the P4 compiler to turn P4 program into VHSIC Hardware
Description Language (VHDL) and Verilog bin files to program the NetFPGA SUME.
Gaining access to the proprietary module is quite difficult and requires dealing with
the sales support from Xilinx. In addition, usage of the board requires the installation
of Xilinx’s proprietary IDE tool known as Vivado. The installation and the activation
of Vivado is quite cumbersome due to the presence of Digital Rights Management
(DRM). After the installation of the SDNet, Vivado modules and relevant tool
chains, it was later discovered that the NetFPGA SUME board did not support the
motherboard it was connected with the PCIe slot in the workstation. In fact the
NetFPGA SUME only supports few computer motherboards that were manufactured
in the years 2015, 2016 and 2017. Due to hardware deprecation and discontinued
manufacturing, it is difficult to get hold of the motherboards recommended by the
NetFPGA community [33]. During the initial stage of this thesis, two NetFPGA
SUME boards were obtained for use in order to use them for high speed P4 packet
processing. But due to the aforementioned issues, they were not put into use for this
thesis.

A master’s thesis that worked on high speed Network Address Translation (NAT)
with P4 describes the usability issues of the P4-based NetFPGA NIC [34]:

• The P4 based toolchains and modules for NetFPGA SUME is not developed
enough.

• Too many steps for the code compilation.

• Scripts for lookup table entries must be invoking tables that are not used for
the network processing. Invoking only the required parameters crashes the
program.

• The documentations outlining the usage of the P4 based NetFPGA SUME
card is spread and there is no straightforward instructions to operate the card
properly.

• Depending on the size of the P4 program, the compilation takes upto more
than 6 hours preventing faster development process.

• Syntax or other critical errors may not constitute as acceptable errors during
compilation. At times, non-critical errors can be shown as critical errors. This
makes troubleshooting very difficult.

• Resulting logfiles due to improper compilation and crashes are 5 MB or more
in size, preventing the user to troubleshoot easily.

• Even though the NetFPGA kernel module provides access to the NetFPGA’s
SFP+ interfaces, tools such as Wireshark or tcpdump are not able to detect
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packets. Instead they are captured from a workstation connected physically to
the NIC on the other end.

Considering all the statements with regards to the usage of the P4-based NetFPGA
hardware, this makes it difficult to use it properly with the given time-frame for
the thesis project. Therefore, there was a shift in focus from high performance to
functionality and try to verify a P4-based solution for smartgrid. And the decision
was made to utilize BMv2 P4 software switch in a standalone server instead of the
NetFPGA.

5.4.2 Other relevant challenges

Apart from the challenges with the NetFPGA SUME NIC, there were other challenges
faced with the BMv2 P4 software switch. Firstly, there were no direct instructions to
map BMv2’s software interfaces with the physical NIC interfaces on the workstation.
This was figured out through trial and error. In addition, packets processed by the
P4 switch are not necessarily accepted by other NICs connected to it. Therefore, it
was recommended by a researcher to disable NIC offloading in the NICs connected
to the P4 switches, which worked and prevented other devices connected to the P4
switch from dropping the packets.

Furthermore, strict priority queuing functionality in the BMv2 P4 software switch
is not enabled by default. In the initial stages of the installation of the BMv2 software
switch, the v1model.p4 file must be modified to include the following lines:

1 /// set packet priority
2 @alias (" intrinsic_metadata . priority ")
3 bit <3> priority ;
4 @alias (" queueing_metadata .qid")
5 bit <5> qid;

Listing 9: Activating strict priority queuing in BMv2 switch for the V1Model
architecture.

In addition to this, the following line must be added to simple_switch.h file:
1 define SSWITCH_PRIORITY_QUEUEING_ON

After the modification, the files must be compiled and installed. Moreover, BMv2
switch is not considered a production grade P4 switch. Therefore, care must be
taken that it must be configured to have macro logging disabled. Unfortunately this
was not performed for the P4-based network slicer, because logging was required for
troubleshooting issues with the slice and slice rate configuration.

In order to disable macro logging for performance increase, the BMv2 must be
installed with the following configuration:

1 git clone https :// github .com/ p4lang /behavioral -model.git bmv2
2 cd bmv2
3 ./ install_deps .sh
4 ./ autogen .sh
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5 ./ configure ’CXXFLAGS =-g -O3’ ’CFLAGS =-g -O3’ --disable -logging -
macros --disable - elogger

6 make -j8

This configuration ensures that the BMv2 switch performs around 1 Gigabits
per second (Gbps), albeit there is sufficient amount of hardware resources for the
BMv2 switch to operate. In addition, 1 Gbps throughput performance was observed
in mininet simulations rather than an actual implementation of the BMv2 in a
baremetal server. However, there could be potential solutions for improving the
throughput performance of the BMv2 software through several means, apart from
allocating higher resources and disabling macro logging.

Apart from the challenges faced during optimization of the BMv2 performance,
some challenges were faced when trying to implement an actual 5G network for
the integration of the slicing network. First of all, there were limited number of
5G devices to operate with. Secondly, there were issues with connectivity of the
UE to the 5G core through a 5G basestation (gNodeB), since the network was
operating in standalone mode. PDU sessions were not established for the UEs as
expected, because only a few modems and devices in the market support connecting
to standalone 5G networks. Therefore, a quick decision was made to circumvent
this issue by utilizing open source Free5GC 5G core and UERANSIM simulator for
simulating basestation and the UE in linux based workstations. With respect to
actual carrier-grade 5G hardware, the type of hardware used for the implementation
of the 5G core were consumer-grade at best. This has contributed to reduction in
performance for the 5G network that was implemented.
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6 Conclusion
This thesis focused on implementing a network slicing solution on the segment be-
tween the 5G core and the DN. The main objective was to implement the network
slicing to secure the communication between the SCADA and the RTU in the smart
grid environment utilizing the IEC 104 protocol to secure their communications. The
slicing mechanism was implemented in the dataplane using the P4 programming
framework. The implementation of the network slicing was successful in terms of
isolation that was achieved between the slices. In addition to the main goal, one of
the sub-objectives were to implement a solution to tailor the smart grid traffic to
support the imposition of the QoS requirements. This was performed by modifying
the DSCP value in the IP header fields of the smart grid traffic based on the IEC 104
protocol ASDU header’s TypeID field values. The parsing of the smart grid traffic
and the subsequent modification of the DSCP values were achieved with dataplane
programming utilizing the P4 language. Furthermore, the QoS requirements are
imposed by utilizing strict priority queuing and P4 meters, which is based on two
rate three colour marker.

The sub-objective was to find a platform for running P4 programs. The P4-based
slicing mechanism was applied in the BMv2 P4 software switch. The BMv2 switch
provides access to the dataplane through the P4 language framework. It can be
programmed with P4 with custom network functions as per the wishes of the network
programmer. As for interacting with the dataplane in BMv2, this is performed
through the runtime CLI which is considered to be interfacing with the control plane
of the BMv2 switch. The runtime CLI allows the network admin to interact with
the network functions outlined in the P4 program. The network slices were created
by entering the necessary information such as IPv4 addresses in the lookup tables
corresponding to the network functions defined in the P4 program. The information
that constitutes the network slice are IPv4 address, which are tied to the slice id.
As for the tagging of the relevant DSCP values, this too was performed with the
utilization of P4 program that was running in another instance of BMv2 software
switch connected to the SCADA device in the DN. Therefore, smart grid traffic
outgoing from the SCADA device to the RTU was tagged with appropriate DSCP
values, which are utilized by the network slicer to push the smart grid traffic into a
separate DSCP slice distuinguished from the main slices for the same E2E connection.
The entire network slicing and the DSCP tagging platform were implemented on a
5G network that was powered by open source Free5GC 5G core. The basestation
and the UEs comprising of the RTU and a second UE device were simulated using
UERANSIM program.

For this thesis’ demonstration purposes, a total number of three network slices
were created. Two of the slices were normal slices, whereas the third slice was
generated based on the DSCP values in the IP header fields and the IPv4 address
of the packets in the smart grid traffic. By default, network traffic in each slice
undergoes strict priority queuing in the network slicer’s P4 pipeline. The packets
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pushed into the DSCP slice gets the highest priority, while the packets in other slices
get a lower priority. In addition to the queuing, the bit rate in each slice can also be
controlled as required by the network administrator using P4 meters implemented in
the network slicing program.

In terms of meeting the performance requirements for 5G networks, the com-
bination of both the 5G testbed and the network slicer did not meet performance
requirements in terms of latency (less than 1 ms) as well as having a network
throughput of more than 1 Gbps in at least the downlink direction. Furthermore, the
standalone 5G network could only display a maximum throughput of around 33 Mbps.
The average round trip latency with respect to the usage of the P4 two switches were
around 10.36 ms, whereas the TCP throughput performance was around 1.06 Mbps.
This kind of performance is quite terrible with respect to the current performance of
the 5G communications and network slicing paradigms.

However, the performance of the slices has met the requirements of the smart
grid networking, where both the data rates and the latency fall into the required
parameters for sustaining smart grid operations in good condition. The slicing
implementation also displayed that QoS requirements can be imposed by controlling
the bitrates in the slices.

6.1 Future Work
There are some additional studies that must be performed to improve the performance
of P4 switches. Throughout the process of this thesis several P4-based solutions
were considered. The initial solution was to use the NetFPGA SUME NIC as the
P4 hardware. However, due to various technical issues encountered along with the
complexity of its usage, the plan for its usage for this thesis was scrapped. Therefore,
it is recommended to perform more research on finding appropriate methods and
hardware to fully utilize the NetFPGA’s potential. If this is realized, we expect to
obtain around 100 or more times the throughput performance of the BMv2 switch
acheived for this project.

Furthermore, another P4-based solution for running P4 programs is the T4P4S
compiler that allows the compilation of P4 programs into Data Plane Development
Kit (DPDK) based application. T4P4s is a retargetable compiler for the P4 language.
The compiler mainly creates DPDK applications that can be utilized by DPDK
supported NICs. The T4P4S compiler also utilizes the V1Model of P4-based archi-
tecture and therefore, the P4 program for both the network slicer and the P4-based
DSCP tagger developed for this thesis will be compatible with the T4P4S compiler
without any changes to the code. Therefore, this thesis suggests for looking into
implementing the network slicing and the DSCP tagging with the T4P4S compiler,
through which adequate improvement in latency and throughput performances are
expected to be observed.
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Additionally, in the beginning planning stage of the thesis, the scope of the
network slicing covered E2E. That is, the network slicing was supposed to be imple-
mented for the RAN network, Core network and the transport network. However, this
makes E2E slicing with P4 to be very complex. Furthermore, there will be a need for
an intricate control plane application that can manage slices in all the three elements
without any issues. Hence, it was decided to implement network slicing only at the
transport network segment connecting the DN of the 5G network. But during the
developmental phase of the network slicing, relevant parsing of the GPRS Tunnelling
Protocol (GTP) was achieved, and therefore the P4 code for network slicing at the
segment between the RAN and the 5G core was developed. However, due to time
constraints not much tests could be done with this. In addition, GTP relies on
UDP protocol for its operation, and this requires UDP checksum computation for
the GTP packets to be transmitted reliably. The P4 code has not implemented
the UDP checksum, and therefore the network slicing on the RAN segment cannot
be achieved. Accordingly, it is highly suggested to implement the UDP checksum
computation, so that the slicing mechanism can also be implemented at the RAN seg-
ment. The code for the network slicing in the RAN segment is included in Appendix C.

The slicing mechanism relies on BMv2’s runtime CLI control plane application,
which is running on a thrift server. There is a gRPC iteration of the BMv2 software
switch, which allows network admins to administer P4 configurations remotely. This
can help in improving centralized network administration. Future work could focus
on implementing a control plane application for the centralized remote management
of network slices in P4 hardware such as the BMv2 software switch.

Moreover, the performance tests that were done for gauging the performance of
the P4-based network slicer and the DSCP tagger were not adequate enough due to
the time contraints. It is highly suggested that rigorous testing must be performed,
which takes TCP and UDP protocols into consideration. With respect to the devices
used for the implementation of the P4-based network slicers, 5G core network and
the basestation/UE simulators, it is suggested to implement the entire infrastructure
in Docker or Linux based containers. Containers allow to port applications in a
portable and granular manner. Container technology skips hardware incompatibility
while deploying applications in the OS environment. It is assumed that the network
performance would be better when the applications are deployed in containers hosted
in a powerful workstation or server.

Finally, the V1Model architecture model for the P4 does not have default priority
queuing functionalities. The strict priority functionality had to be activated manually
in a non-straightforward manner as discussed in section 5.4.2. It is recommended to
implement a queuing mechanism for network slicing. The new queuing mechanism
could be integrated with the slicing mechanism developed for this thesis to obtain a
more robust and centralized network slicing system.
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A P4 Code for DSCP Tagger

1 /* -*- P4_16 -*- */
2

3 # include <core.p4 >
4 # include <v1model .p4 >
5

6 const bit <16> TYPE_IPV4 = 0x800;
7

8 const bit <8> ASDU_TYPEID_45 = 0x2d; // process info - cont
9 const bit <8> ASDU_TYPEID_46 = 0x2e; // process info - cont

10 const bit <8> ASDU_TYPEID_47 = 0x2f; // process info - cont
11 const bit <8> ASDU_TYPEID_48 = 0x30; // process info - cont
12 const bit <8> ASDU_TYPEID_49 = 0x31; // process info - cont
13 const bit <8> ASDU_TYPEID_50 = 0x32; // process info - cont
14 const bit <8> ASDU_TYPEID_51 = 0x33; // process info - cont
15 const bit <8> ASDU_TYPEID_58 = 0x3a; // command telegram
16 const bit <8> ASDU_TYPEID_59 = 0x3b; // command telegram
17 const bit <8> ASDU_TYPEID_60 = 0x3c; // command telegram
18 const bit <8> ASDU_TYPEID_61 = 0x3d; // command telegram
19 const bit <8> ASDU_TYPEID_62 = 0x3e; // command telegram
20 const bit <8> ASDU_TYPEID_63 = 0x3f; // command telegram
21 const bit <8> ASDU_TYPEID_64 = 0x40; // command telegram
22 const bit <8> ASDU_TYPEID_101 = 0x65; // system info - cont
23 const bit <8> ASDU_TYPEID_103 = 0x67; // system info - cont
24

25

26 const bit <8> ASDU_COT = 0x06;
27

28 /* ********************** H E A D E R S ********************** */
29

30 typedef bit <9> egressSpec_t ;
31 typedef bit <48> macAddr_t ;
32 typedef bit <32> ip4Addr_t ;
33

34 header ethernet_t {
35 macAddr_t dstAddr ;
36 macAddr_t srcAddr ;
37 bit <16> etherType ;
38 }
39

40 header ipv4_t {
41 bit <4> version ;
42 bit <4> ihl;
43 bit <8> diffserv ;
44 bit <16> totalLen ;
45 bit <16> identification ;
46 bit <3> flags;
47 bit <13> fragOffset ;
48 bit <8> ttl;
49 bit <8> protocol ;
50 bit <16> hdrChecksum ;
51 ip4Addr_t srcAddr ;
52 ip4Addr_t dstAddr ;
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53 }
54

55 header tcp_t {
56 bit <16> srcPort ;
57 bit <16> dstPort ;
58 bit <32> seqNo;
59 bit <32> ackNo;
60 bit <16> tcp_flags ;
61 bit <16> wndw_size ;
62 bit <16> tcp_checksum ;
63 bit <16> urgentPtr ;
64 bit <8> tcp_option_kind ;
65 bit <8> tcp_option_kind2 ;
66 bit <8> tcp_option_kind3 ;
67 bit <8> tcp_option_len ;
68 bit <32> tcp_option_tval ;
69 bit <32> tcp_option_tsecr ;
70 }
71

72 header apci_t {
73 bit <8> StartByte ;
74 bit <8> apdu_len ;
75 bit <8> type_h ;
76 bit <16> rx;
77 bit <8> tx;
78 }
79

80 header asdu_t {
81 bit <8> TypeId ;
82 bit <8> sq;
83 bit <8> numix;
84 bit <8> cot;
85 bit <8> nega;
86 bit <8> test;
87 bit <8> oa;
88 bit <16> addr;
89 }
90

91 struct metadata {
92 /* empty */
93 }
94

95 struct headers {
96 ethernet_t ethernet ;
97 ipv4_t ipv4;
98 tcp_t tcp;
99 apci_t apci;

100 asdu_t asdu;
101

102 }
103

104 /* ************************** P A R S E R ***************** */
105

106
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107 parser MyParser ( packet_in packet ,
108 out headers hdr ,
109 inout metadata meta ,
110 inout standard_metadata_t standard_metadata ) {
111

112 state start {
113

114 packet . extract (hdr. ethernet );
115 transition select (hdr. ethernet . etherType ){
116

117 TYPE_IPV4 : ipv4;
118 default : accept ;
119

120 }
121

122 }
123

124 state ipv4 {
125

126 packet . extract (hdr.ipv4);
127 transition select (hdr.ipv4. protocol ){
128 6: parse_tcp ;
129 default : accept ;
130 }
131 }
132

133 state parse_tcp {
134 packet . extract (hdr.tcp);
135 transition select (hdr.tcp. tcp_flags ){
136 {0 x8018 }: parse_apci ;
137 default : accept ;
138 }
139 }
140

141 state parse_apci {
142 packet . extract (hdr.apci);
143 transition select (hdr.apci. StartByte ){
144 0x68: parse_asdu ;
145 default : accept ;
146 }
147 }
148

149 state parse_asdu {
150 packet . extract (hdr.asdu);
151 transition select (hdr.asdu. TypeId ){ default : accept ;}
152

153 }
154 }
155

156

157

158

159 /* *** C H E C K S U M V E R I F I C A T I O N *** */
160
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161

162

163 control MyVerifyChecksum (inout headers hdr , inout metadata meta) {
164

165 apply { }
166

167 }
168

169 /* **** I N G R E S S P R O C E S S I N G **** */
170

171 control MyIngress (inout headers hdr ,
172 inout metadata meta ,
173 inout standard_metadata_t standard_metadata ) {
174

175 action drop () {
176 mark_to_drop ( standard_metadata );
177 }
178

179 action forward (bit <9> port) {
180 standard_metadata . egress_spec = port;
181 }
182

183 action set_dscp_cont () {
184 // for 58 -64
185 hdr.ipv4. diffserv = 40;
186 }
187

188

189

190 action set_dscp_mon () {
191 // for 101 and 103, 45 -51
192 hdr.ipv4. diffserv = 18;
193 }
194

195 action set_default_dscp () {
196 hdr.ipv4. diffserv = 0;
197 }
198

199 table switch_forward {
200 key = {
201 standard_metadata . ingress_port : exact;
202 }
203

204 actions = {
205 forward ;
206 drop;
207 }
208

209 size = 1024;
210 default_action = drop ();
211 }
212

213 table dscp_dest {
214 key = {
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215 hdr.ipv4. dstAddr : exact;
216 }
217 actions = {
218 NoAction ;
219 }
220 }
221

222 table no_dscp {
223 key = {
224 hdr.ipv4. dstAddr : exact;
225 }
226 actions = {
227 NoAction ;
228 }
229 }
230

231 apply {
232

233 if (hdr.ipv4. isValid ()){
234 if ( dscp_dest .apply ().hit){
235 if(( hdr.asdu. TypeId >= ASDU_TYPEID_45 && hdr.asdu.

TypeId <= ASDU_TYPEID_51 ) || hdr.asdu. TypeId >= ASDU_TYPEID_101
&& hdr.asdu. TypeId <= ASDU_TYPEID_103 ) {

236 set_dscp_mon ();
237 }
238 else if (( hdr.asdu. TypeId >= ASDU_TYPEID_58 && hdr.

asdu. TypeId <= ASDU_TYPEID_64 )) {
239 set_dscp_cont ();
240 }
241 }
242 else if ( no_dscp .apply ().hit || !hdr.apci. isValid ()) {
243 set_default_dscp ();
244 }
245

246 }
247 switch_forward .apply ();
248 }
249 }
250

251 /* **** E G R E S S P R O C E S S I N G **** */
252

253 control MyEgress (inout headers hdr ,
254 inout metadata meta ,
255 inout standard_metadata_t standard_metadata ) {
256

257 apply { }
258

259 }
260

261 /* **** C H E C K S U M C O M P U T A T I O N **** */
262

263 control MyComputeChecksum (inout headers hdr , inout metadata meta)
{

264
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265 apply {
266 update_checksum (
267 hdr.ipv4. isValid (),
268 { hdr.ipv4.version ,
269 hdr.ipv4.ihl ,
270 hdr.ipv4.diffserv ,
271 hdr.ipv4.totalLen ,
272 hdr.ipv4. identification ,
273 hdr.ipv4.flags ,
274 hdr.ipv4.fragOffset ,
275 hdr.ipv4.ttl ,
276 hdr.ipv4.protocol ,
277 hdr.ipv4.srcAddr ,
278 hdr.ipv4. dstAddr },
279 hdr.ipv4. hdrChecksum ,
280 HashAlgorithm . csum16 );
281 }
282 }
283

284 /* **** D E P A R S E R **** */
285

286 control MyDeparser ( packet_out packet , in headers hdr) {
287

288 apply {
289

290 // parsed headers have to be added again into the packet .
291 packet .emit(hdr. ethernet );
292 packet .emit(hdr.ipv4);
293 packet .emit(hdr.tcp);
294 packet .emit(hdr.apci);
295 packet .emit(hdr.asdu);
296 }
297 }
298

299 /* **** S W I T C H **** */
300

301 V1Switch (
302 MyParser (),
303 MyVerifyChecksum (),
304 MyIngress (),
305 MyEgress (),
306 MyComputeChecksum (),
307 MyDeparser ()
308 ) main;

Listing 10: P4 program for DSCP tagging.
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B P4 Code for Network Slicer

1 /* -*- P4_16 -*- */
2

3 # include <core.p4 >
4 # include <v1model .p4 >
5

6 const bit <16> TYPE_IPV4 = 0x800;
7

8 /* ********************** H E A D E R S ********************** */
9

10 typedef bit <9> egressSpec_t ;
11 typedef bit <48> macAddr_t ;
12 typedef bit <32> ip4Addr_t ;
13 typedef bit <8> value_t ;
14

15

16 header ethernet_t {
17 macAddr_t dstAddr ;
18 macAddr_t srcAddr ;
19 bit <16> etherType ;
20 }
21

22 header ipv4_t {
23 bit <4> version ;
24 bit <4> ihl;
25 bit <8> diffserv ;
26 bit <16> totalLen ;
27 bit <16> identification ;
28 bit <3> flags;
29 bit <13> fragOffset ;
30 bit <8> ttl;
31 bit <8> protocol ;
32 bit <16> hdrChecksum ;
33 ip4Addr_t srcAddr ;
34 ip4Addr_t dstAddr ;
35 }
36

37

38 header udp_t {
39 bit <16> srcPort ;
40 bit <16> dstPort ;
41 bit <16> plength ;
42 bit <16> checksum ;
43 }
44

45 struct slice_meta_t {
46 bit <8> slice;
47 }
48

49 struct metadata {
50 slice_meta_t slice_meta ;
51 bit <32> meter_tag ;
52 }
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53

54 struct headers {
55 ethernet_t ethernet ;
56 ipv4_t ipv4;
57 udp_t udp;
58 }
59

60 /* ******************** P A R S E R *********************** */
61

62 parser MyParser ( packet_in packet ,
63 out headers hdr ,
64 inout metadata meta ,
65 inout standard_metadata_t standard_metadata ) {
66

67 state start {
68

69 packet . extract (hdr. ethernet );
70 transition select (hdr. ethernet . etherType ){
71

72 TYPE_IPV4 : ipv4;
73 default : accept ;
74

75 }
76

77 }
78

79 state ipv4 {
80

81 packet . extract (hdr.ipv4);
82 transition select (hdr.ipv4. protocol ){
83 0x11 : parse_udp ;
84 default : accept ;
85 }}
86

87 state parse_udp {
88 packet . extract (hdr.udp);
89 transition accept ;
90 }
91 }
92

93 /* *** C H E C K S U M V E R I F I C A T I O N *** */
94

95 control MyVerifyChecksum (inout headers hdr , inout metadata meta) {
96

97 apply { }
98

99 }
100

101 /* **** I N G R E S S P R O C E S S I N G **** */
102

103 control MyIngress (inout headers hdr ,
104 inout metadata meta ,
105 inout standard_metadata_t standard_metadata ) {
106
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107 action drop () {
108 mark_to_drop ( standard_metadata );
109 }
110

111 action forward (bit <9> port) {
112 standard_metadata . egress_spec = port;
113 }
114

115 table switch_forward {
116 key = {
117 standard_metadata . ingress_port : exact;
118 }
119

120 actions = {
121 forward ;
122 drop;
123 }
124

125 size = 1024;
126 default_action = drop ();
127 }
128

129 action add_slice ( value_t value) {
130 meta. slice_meta .slice = value;
131 }
132

133 table slicein {
134 key = {
135 hdr.ipv4. dstAddr : exact;
136 }
137 actions = {
138 add_slice ;
139 NoAction ;
140 }
141 }
142 action dscp_priority (bit <3> prio){
143 standard_metadata . priority = prio;
144 }
145

146 table dscp_check {
147 key = {
148 hdr.ipv4. diffserv : exact;
149 }
150 actions = {
151 NoAction ;
152 dscp_priority ;
153 }
154 }
155

156 table dscp_slicein {
157 key = {
158 hdr.ipv4. dstAddr : exact;
159 }
160 actions = {
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161 add_slice ;
162 NoAction ;
163 }
164 }
165

166 meter (10, MeterType . packets ) slicerate_meter ;
167

168 action m_action (bit <32> meter_id ) {
169 slicerate_meter . execute_meter ((bit <32 >) meter_id , meta.

meter_tag );
170 }
171

172 table meter_table {
173 key = {
174 meta. slice_meta .slice: exact;
175 }
176

177 actions = {
178 m_action ;
179 NoAction ;
180 }
181

182 size = 1024;
183 default_action = NoAction ();
184

185 }
186

187

188

189 table meter_filter {
190 key = {
191 meta. meter_tag : exact;
192 }
193

194 actions = {
195 drop;
196 NoAction ;
197 }
198

199 size = 1024;
200 default_action = drop ();
201

202 }
203

204

205 apply {
206 switch_forward .apply ();
207 slicein .apply ();
208 if ( dscp_check .apply ().hit) {
209 dscp_slicein .apply ();
210 }
211 else if (hdr.udp. isValid ()) {
212 standard_metadata . priority = (bit <3>)0;
213 }
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214 else {
215 standard_metadata . priority = (bit <3>)0;
216 }
217

218 meter_table .apply ();
219 meter_filter .apply ();
220 }
221

222 }
223

224 /* **** E G R E S S P R O C E S S I N G **** */
225

226 control MyEgress (inout headers hdr ,
227 inout metadata meta ,
228 inout standard_metadata_t standard_metadata ) {
229

230 counter (16384 , CounterType . packets ) slice_counter ;
231

232 action Drop () {
233 mark_to_drop ( standard_metadata );
234 }
235

236 action slice_action (bit <32> index) {
237 slice_counter .count(index);
238 }
239

240 table sliceout {
241 key = {
242 meta. slice_meta .slice: exact;
243 hdr.ipv4. srcAddr : exact;
244 }
245 actions = {
246 slice_action ;
247 NoAction ;
248 Drop;
249 }
250 }
251

252 table dscp_sliceout {
253 key = {
254 meta. slice_meta .slice: exact;
255 hdr.ipv4. srcAddr : exact;
256 }
257 actions = {
258 slice_action ;
259 NoAction ;
260 Drop;
261 }
262 }
263

264 table sliceban {
265 key = {
266 meta. slice_meta .slice: exact;
267 hdr.ipv4. srcAddr : exact;
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268 }
269 actions = {
270 Drop;
271 }
272 }
273

274 apply {
275 sliceout .apply ();
276 dscp_sliceout .apply ();
277 sliceban .apply ();
278 }
279

280 }
281

282 /* **** C H E C K S U M C O M P U T A T I O N **** */
283

284 control MyComputeChecksum (inout headers hdr , inout metadata meta)
{

285 apply {
286 }
287 }
288

289 /* **** D E P A R S E R **** */
290

291 control MyDeparser ( packet_out packet , in headers hdr) {
292 apply {
293 packet .emit(hdr. ethernet );
294 packet .emit(hdr.ipv4);
295 packet .emit(hdr.udp);
296 }
297

298 }
299

300 /* **** S W I T C H **** */
301

302 V1Switch (
303 MyParser (),
304 MyVerifyChecksum (),
305 MyIngress (),
306 MyEgress (),
307 MyComputeChecksum (),
308 MyDeparser ()
309 ) main;

Listing 11: P4 program for Network Slicing.
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C P4 Code for Network Slicer in the RAN Seg-
ment of the 5G Network

1 /* -*- P4_16 -*- */
2 # include <core.p4 >
3 # include <v1model .p4 >
4

5 const bit <16> ETHERTYPE_IPV4 = 0x0800;
6 const bit <8> IPPROTO_UDP = 0x11;
7 const bit <16> GTP_UDP_PORT = 2152;
8

9

10 /* **** H E A D E R S **** */
11

12 typedef bit <9> egressSpec_t ;
13 typedef bit <48> macAddr_t ;
14 typedef bit <48> mac_addr_t ;
15 typedef bit <32> ip4Addr_t ;
16 typedef bit <32> ipv4_addr_t ;
17 typedef bit <8> value_t ;
18

19 header ethernet_t {
20 macAddr_t dstAddr ;
21 macAddr_t srcAddr ;
22 bit <16> etherType ;
23 }
24

25 header ipv4_t {
26 bit <4> version ;
27 bit <4> ihl;
28 bit <8> diffserv ;
29 bit <16> totalLen ;
30 bit <16> identification ;
31 bit <3> flags;
32 bit <13> fragOffset ;
33 bit <8> ttl;
34 bit <8> protocol ;
35 bit <16> hdrChecksum ;
36 ip4Addr_t srcAddr ;
37 ip4Addr_t dstAddr ;
38 }
39

40 header udp_t {
41 bit <16> srcPort ;
42 bit <16> dstPort ;
43 bit <16> plength ;
44 bit <16> checksum ;
45 }
46 /* GPRS Tunnelling Protocol (GTP) common part for v1 and v2 */
47

48 header gtp_common_t {
49 bit <3> version ; /* this should be 1 for GTPv1 and 2 for GTPv2

*/
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50 bit <1> pFlag; /* protocolType for GTPv1 and pFlag for GTPv2
*/

51 bit <1> tFlag; /* only used by GTPv2 - teid flag */
52 bit <1> eFlag; /* only used by GTPv1 - E flag */
53 bit <1> sFlag; /* only used by GTPv1 - S flag */
54 bit <1> pnFlag ; /* only used by GTPv1 - PN flag */
55 bit <8> messageType ;
56 bit <16> messageLength ;
57 bit <32> teid;
58 }
59

60 header gtpv1_extension_hdr_t {
61 bit <24> nodata ;
62 bit <8> nextExtHdrType ;
63 bit <32> plength ;
64 }
65

66

67 struct slice_meta_t {
68 bit <8> slice;
69 }
70

71 struct metadata {
72 slice_meta_t slice_meta ;
73 bit <32> meter_tag ;
74 }
75

76 struct headers {
77 ethernet_t ethernet ;
78 ipv4_t ipv4;
79 ipv4_t inner_ipv4 ;
80 gtp_common_t gtp_common ;
81 gtpv1_extension_hdr_t gtpv1_extension_hdr ;
82 udp_t udp;
83 udp_t inner_udp ;
84 }
85

86

87

88 /* **** P A R S E R **** */
89

90 parser MyParser ( packet_in packet ,
91 out headers hdr ,
92 inout metadata meta ,
93 inout standard_metadata_t standard_metadata ) {
94

95 state start {
96 transition parse_ethernet ;
97 }
98

99 state parse_ethernet {
100 packet . extract (hdr. ethernet );
101 transition select (hdr. ethernet . etherType ) {
102 ETHERTYPE_IPV4 : parse_ipv4 ;
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103 default : accept ;
104 }
105 }
106

107 state parse_ipv4 {
108 packet . extract (hdr.ipv4);
109 transition select (hdr.ipv4. protocol ) {
110 IPPROTO_UDP : parse_udp ;
111 default : accept ;
112 }
113 }
114

115 state parse_udp {
116 packet . extract (hdr.udp);
117 transition select (hdr.udp. dstPort ) {
118 GTP_UDP_PORT : parse_gtp ;
119 default : accept ;
120 }
121 }
122

123 state parse_gtp {
124 packet . extract (hdr. gtp_common );
125 transition select (hdr. gtp_common .version , hdr. gtp_common .

eFlag) {
126 (1 ,0) : parse_inner ;
127 (1 ,1) : parse_gtpv1_extension_hdr ;
128 default : accept ;
129 }
130 }
131

132 state parse_gtpv1_extension_hdr {
133 packet . extract (hdr. gtpv1_extension_hdr );
134 transition select (hdr. gtpv1_extension_hdr . nextExtHdrType )
135 {
136 0x85 : parse_inner ;
137 default : accept ;
138 }
139 }
140

141 state parse_inner {
142 packet . extract (hdr. inner_ipv4 );
143 transition accept ;
144 }
145

146 }
147

148

149

150 /* ***** C H E C K S U M V E R I F I C A T I O N ***** */
151

152

153

154 control MyVerifyChecksum (inout headers hdr , inout metadata meta) {
155
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156 apply { }
157

158 }
159

160 /* ***** I N G R E S S P R O C E S S I N G ***** */
161

162 control MyIngress (inout headers hdr ,
163 inout metadata meta ,
164 inout standard_metadata_t standard_metadata ) {
165

166 action drop () {
167 mark_to_drop ( standard_metadata );
168 }
169

170 action forward (bit <9> port) {
171 standard_metadata . egress_spec = port;
172 }
173

174 table switch_forward {
175 key = {
176 standard_metadata . ingress_port : exact;
177 }
178

179 actions = {
180 forward ;
181 drop;
182 }
183

184 size = 1024;
185 default_action = drop ();
186 }
187

188 action add_slice ( value_t value) {
189 meta. slice_meta .slice = value;
190 }
191

192 table slicein {
193 key = {
194 hdr.ipv4. dstAddr : exact;
195 }
196 actions = {
197 add_slice ;
198 NoAction ;
199 }
200 }
201 action dscp_priority (bit <3> prio){
202 standard_metadata . priority = prio;
203 }
204

205 table dscp_check {
206 key = {
207 hdr.ipv4. diffserv : exact;
208 }
209 actions = {
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210 NoAction ;
211 dscp_priority ;
212 }
213 }
214

215 table dscp_slicein {
216 key = {
217 hdr.ipv4. dstAddr : exact;
218 }
219 actions = {
220 add_slice ;
221 NoAction ;
222 }
223 }
224

225 meter (10, MeterType . packets ) slicerate_meter ;
226

227 action m_action (bit <32> meter_id ) {
228 slicerate_meter . execute_meter ((bit <32 >) meter_id , meta.

meter_tag );
229 }
230

231 table meter_table {
232 key = {
233 meta. slice_meta .slice: exact;
234 }
235

236 actions = {
237 m_action ;
238 NoAction ;
239 }
240

241 size = 1024;
242 default_action = NoAction ();
243

244 }
245

246

247

248 table meter_filter {
249 key = {
250 meta. meter_tag : exact;
251 }
252

253 actions = {
254 drop;
255 NoAction ;
256 }
257

258 size = 1024;
259 default_action = drop ();
260

261 }
262
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263

264 apply {
265 switch_forward .apply ();
266 slicein .apply ();
267 if ( dscp_check .apply ().hit) {
268 dscp_slicein .apply ();
269 }
270 else if (hdr.udp. isValid ()) {
271 standard_metadata . priority = (bit <3>)0;
272 }
273 else {
274 standard_metadata . priority = (bit <3>)0;
275 }
276

277 meter_table .apply ();
278 meter_filter .apply ();
279 }
280

281 }
282

283 /* **** E G R E S S P R O C E S S I N G **** */
284

285 control MyEgress (inout headers hdr ,
286 inout metadata meta ,
287 inout standard_metadata_t standard_metadata ) {
288

289 counter (16384 , CounterType . packets ) slice_counter ;
290

291 action Drop () {
292 mark_to_drop ( standard_metadata );
293 }
294

295 action slice_action (bit <32> index) {
296 slice_counter .count(index);
297 }
298

299 table sliceout {
300 key = {
301 meta. slice_meta .slice: exact;
302 hdr.ipv4. srcAddr : exact;
303 }
304 actions = {
305 slice_action ;
306 NoAction ;
307 Drop;
308 }
309 }
310

311 table dscp_sliceout {
312 key = {
313 meta. slice_meta .slice: exact;
314 hdr.ipv4. srcAddr : exact;
315 }
316 actions = {
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317 slice_action ;
318 NoAction ;
319 Drop;
320 }
321 }
322

323 table sliceban {
324 key = {
325 meta. slice_meta .slice: exact;
326 hdr.ipv4. srcAddr : exact;
327 }
328 actions = {
329 Drop;
330 }
331 }
332

333 apply {
334 sliceout .apply ();
335 dscp_sliceout .apply ();
336 sliceban .apply ();
337 }
338

339 }
340

341 /* **** C H E C K S U M C O M P U T A T I O N **** */
342

343 control MyComputeChecksum (inout headers hdr , inout metadata meta)
{

344 apply {
345 /* add UDP checksum computation here */
346 }
347 }
348

349 /* **** D E P A R S E R **** */
350

351 control MyDeparser ( packet_out packet , in headers hdr) {
352 apply {
353 packet .emit(hdr. ethernet );
354 packet .emit(hdr.ipv4);
355 packet .emit(hdr.udp);
356 packet .emit(hdr. gtp_common );
357 packet .emit(hdr. gtpv1_extension_hdr );
358 packet .emit(hdr. inner_ipv4 );
359 }
360

361 }
362

363 /* **** S W I T C H **** */
364

365 V1Switch (
366 MyParser (),
367 MyVerifyChecksum (),
368 MyIngress (),
369 MyEgress (),
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370 MyComputeChecksum (),
371 MyDeparser ()
372 ) main;

Listing 12: P4 program for Network Slicing at the RAN segment.
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D Conceptualized 5G testbed with Network Slicer
and DSCP Tagger
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E P4 Pipeline for Network Slicing with only Strict
Priority Queuing and P4 Counters
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F P4 Pipeline for Network Slicing with Meters
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G Network Slicing at the N6 Interface
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