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Simple Summary: The prediction of pathologic complete response (pCR) to neo-adjuvant systemic
therapy (NST) based on radiological assessment of pretreatment MRI exams in breast cancer patients
is not possible to date. In this study, we investigated the value of pretreatment MRI-based radiomics
analysis for the prediction of pCR to NST. Radiomics, clinical, and combined models were developed
and validated based on MRI exams containing 320 tumors collected from two hospitals. The clinical
models significantly outperformed the radiomics models for the prediction of pCR to NST and were
of similar or better performance than the combined models. This indicates poor performance of the
radiomics features and that in these scenarios the radiomic features did not have an added value
for the clinical models developed. Due to previous and current work, we tentatively attribute the
lack of significant improvement in clinical models following the addition of radiomics features to the
effects of variations in acquisition and reconstruction parameters. The lack of reproducibility data
meant this effect could not be analyzed. These results indicate the need for reproducibility studies to
preselect reproducible features in order to properly assess the potential of radiomics.

Abstract: This retrospective study investigated the value of pretreatment contrast-enhanced Magnetic
Resonance Imaging (MRI)-based radiomics for the prediction of pathologic complete tumor response
to neoadjuvant systemic therapy in breast cancer patients. A total of 292 breast cancer patients, with
320 tumors, who were treated with neo-adjuvant systemic therapy and underwent a pretreatment
MRI exam were enrolled. As the data were collected in two different hospitals with five different MRI
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scanners and varying acquisition protocols, three different strategies to split training and validation
datasets were used. Radiomics, clinical, and combined models were developed using random forest
classifiers in each strategy. The analysis of radiomics features had no added value in predicting
pathologic complete tumor response to neoadjuvant systemic therapy in breast cancer patients
compared with the clinical models, nor did the combined models perform significantly better than
the clinical models. Further, the radiomics features selected for the models and their performance
differed with and within the different strategies. Due to previous and current work, we tentatively
attribute the lack of improvement in clinical models following the addition of radiomics to the
effects of variations in acquisition and reconstruction parameters. The lack of reproducibility data
(i.e., test-retest or similar) meant that this effect could not be analyzed. These results indicate the
need for reproducibility studies to preselect reproducible features in order to properly assess the
potential of radiomics.

Keywords: breast cancer; MRI; neoadjuvant systemic therapy; response prediction; radiomics

1. Introduction

Neoadjuvant systemic therapy (NST) is increasingly administered in the treatment
of breast cancer. The number of breast cancer patients receiving NST varies between 17%
and 70% and depends mainly on breast cancer subtype and tumor size [1,2]. NST allows
monitoring of in vivo tumor response, potentially decreasing tumor size and thus enabling
breast-conserving surgery [1,3,4]. Unfortunately, not all patients respond well to NST, with
tumor response ranging from pathologic complete tumor response (pCR) to non-response
and sometimes even progression of disease. Predicting which patients will respond well to
NST and achieve tumor pCR could lead to modifications of treatment plans. In current
clinical practice, magnetic resonance imaging (MRI) assessment combined with clinical
(tumor) characteristics is used to determine tumor response to NST [5–7]. However, the
diagnostic accuracy of the MRI with regard to tumor response evaluation is insufficiently
accurate (76.1%) to adapt clinical treatment plans [8]. Furthermore, two studies investigated
the use of ultrasound-guided biopsies to identify pCR after NST [9,10]. Unfortunately, the
results showed that these biopsies are not accurate enough to identify pCR that surgery
can be omitted [11].

Radiomics, a quantitative image analysis technique, could play a role predicting pCR
from pretreatment dynamic contrast-enhanced (DCE)-MRI exams. Radiomics extracts large
amounts of quantitative features from medical imaging, including MRI. These features
capture information on the underlying heterogeneous structure of the region of interest
(ROI), describing volume and shape, intensities and textures [12]. Radiomics’ non-invasive
ability to characterize the three-dimensional ROI, combined with the availability of ever-
growing amounts of (longitudinal) imaging data and its cost-effectiveness, all contribute
to the potential use of radiomics in personalized medicine [13–16]. The emergence of
radiomics has so far mainly been applied in the field of clinical oncology and has also
permeated breast cancer research.

Several MRI-based radiomics studies have reported promising results regarding the
prediction of pCR to NST in breast cancer patients based on pretreatment scans [17–21].
However, the evidence from these studies is limited due to the relatively small sample sizes
ranging from 29 to 100 patients and the lack of external validation datasets. Despite the
promising potential of radiomics, several hurdles that impede the clinical implementation
of radiomics models have been identified. One of these is the sensitivity of radiomics
features to the variations in acquisition and reconstruction parameters across different
imaging modalities [22–26], and some features were found not to be reproducible even in
test-retest scenarios [27–29].

This study aimed to investigate the potential of pretreatment contrast-enhanced
MRI-based radiomics for the prediction of pCR to NST in breast cancer patients. We
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hypothesized that radiomics models trained and validated on data from two indepen-
dent cohorts could add information to the prediction of tumor response to NST and that
combined with clinical models can improve prediction accuracy. During our analysis,
the sensitivity of radiomics features to the variations in acquisition and reconstruction
parameters was established.

2. Materials and Methods
2.1. Study Population

In this multicenter study, imaging, and clinical data from consecutive women with
histopathologically confirmed invasive breast cancer were retrospectively collected from
two hospitals in the Netherlands (MUMC+—Maastricht University Medical Center and
ZMC—Zuyderland Medical Center) between January 2011 and December 2018. The in-
clusion criteria were as follows: (i) treated with NST, (ii) have undergone pretreatment
DCE-MRI in one of the two participating hospitals, and (iii) breast surgery after NST
with histopathological outcome. Exclusion criteria were as follows: (i) histopathologi-
cally confirmed inflammatory breast cancer without the possibility of unequivocal tumor
segmentation, (ii) MRI exam artefacts, if also rejected for visual assessment by the breast
radiologist, (iii) non-standard chemotherapy regimens, deviating from the Dutch breast
cancer guidelines, (iv) unfinished NST, and (v) no access to the patient’s medical record.
In the case of multifocal breast cancer, all histopathologically confirmed invasive tumors
were included in the study. The institutional research board of both hospitals approved the
study and waived the requirement for informed consent.

2.2. Study Strategy

As different MRI scanners with varying acquisition and reconstruction parameters
were used in the two hospitals, it was decided to develop separate prediction models
(radiomics, clinical, and a combination of the two) for both cohorts and to validate them on
each other (strategies 1 and 2). Therefore, all feature reduction, selection, and modeling
procedures were performed on both data cohorts. A third modelling strategy was based on
a mixture of both datasets divided into 70% training and 30% validation cohort. Feature
selection and model building was performed on 70% of the training data and tested on
the remaining 30% of the training data. The process of splitting the data into training and
testing was iterated 100 times, maintaining class imbalance and ensuring that tumors from
one patient were selected either in the training data or in the testing data. Figure 1A shows
an overview of the selected data per strategy.

2.3. Clinical and Pathological Data

Clinical and pathological data were retrieved from patients’ medical records and
included age, clinical and pathological tumor, nodes, and metastases (TNM) stage, tumor
grade, tumor histology, breast cancer subtype, and NST regimen. The majority of patients
were treated with an anthracycline- and taxane-based NST regimen; the remaining received
a taxane-based only NST regimen. Human epidermal growth factor receptor 2 (HER2)
positive tumors received additional treatment with trastuzumab and/or pertuzumab. After
completion of NST, all patients underwent breast surgery. The surgical specimens of all
patients were evaluated via standard histopathological analysis by breast pathologists in
the two participating hospitals. The breast tumor response was assessed by the Miller–
Payne or Pinder grading systems [30,31]. In this study, tumors were defined as pCR when
classified as grade 5 using the Miller–Payne classification or classified as 1i and 1ii using
the Pinder classification (pCR; ductal carcinoma in situ may be present).
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Figure 1. An overview of training, test, and validation data cohorts for the three strategies (A) and a flowchart from
patient selection for the two different hospitals (B). Abbreviations, MUMC+ = Maastricht University Medical Center+,
ZMC = Zuyderland Medical Center, NST = Neoadjuvant Systemic Therapy, MRI = Magnetic Resonance Imaging.

2.4. Imaging Data

For all patients, pretreatment MRI exams were collected containing fat-suppressed
3D THRIVE DCE T1-weigthed (T1W), T2-weighted in the MUMC and fat-suppressed T2-
weighted in the ZMC, and diffusion weighted imaging sequences. It was decided to only
use the peak-enhanced phase of the DCE-T1W images for the radiomics analysis as tumors
are best visible on this sequence [32,33]. The DCE-T1W images were obtained before and
after intravenous injection of gadolinium-based contrast Gadobutrol (GadovistTM (EU))
with a volume of 15 mL and a flow rate of 2 mL/s. A 105 s temporal resolution protocol was
used in the MUMC+ and a 20 s temporal resolution protocol in the ZMC, resulting in five
and nineteen post-contrast images for each patient in the MUMC+ and ZMC, respectively.
Images were acquired using 1.5T (Ingenia, Intera, and Achieva by Philips Medical system,
Best, The Netherlands and Avanto Fit by Siemens, Minhen, Germany) and 3.0T (Skyra by
Siemens, Minhen, Germany) MRI scanners. All patients were scanned in prone-position
using a dedicated breast-coil. DCE-T1W MRI acquisition protocols from both hospitals can
be found in Table 1. Sequence parameters varied per MRI scanner and hospital, reflecting
the heterogeneity in medical images used in daily clinical practice.
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Table 1. Scanning Parameters.

Hospital Scanner Total MRI
Exam No. Group

No. of Tumors for
Specific Scanning

Parameters
Pixel Spacing

Acquisition
Matrix

(n)

Slice Thickness
(mm)

TR/TE
(ms)
(n)

Spacing
between Slices

Flip
Angle

MUMC+

Philips 1.5T
(Ingenia) 124

a 44 (0.97, 0.97) 340 × 340 1 3.4/7.5
3.5/7.6 1 10◦

b 66 (0.95, 0.95)
378 × 314 (28)
380 × 318 (23)
380 × 316 (18)

1
3.2/7.1
3.4/7.5
3.5/7.6

1 10◦

c 9 (0.80, 0.80) 344 × 344 1 3.4/7.5 1 10◦

d 3 (0.92, 0.92) 400 × 333 (2)
398 × 331 (1) 1 3.5/7.6

3.4/7.5 1 10◦

e 1 (0.88, 0.88) 384 × 368 1 3.4/7.5 1 10◦

f 1 (0.85, 0.85) 384 × 278 1 2.9/6.5 1 10◦

Philips 1.5T
(Intera) 28

a 25 (0.97, 0.97) 340 × 337 1 3.4/7.4-7.6 1 10◦

b 1 (0.99, 0.99) 376 × 376 1 3.4/7.4 1 10◦

c 1 (0.95, 0.95) 364 × 364 1 3.4/7.5 1 10◦

d 1 (0.85, 0.85) 368 × 368 1 3.4/7.4 1 10◦

ZMC

Philips 1.5T
(Achieva) 123

a 94 (0.97, 0.97) 340 × 338 2 3.4/6.9–7.0 1 12◦

b 28 (0.96, 0.96) 372 × 368 (15)
372 × 370 (13) 2 3.4/6.9–7.0 1 12◦

c 1 (0.90, 0.90) 392 × 388 2 3.4/6.9 1 12◦

Siemens 3.0T
(Skyra) 39 a 39 (0.69, 0.69) 288 × 288 2 1.2/4.0 unknown 10◦

Siemens 1.5T
(Avanto_fit) 6 a 6 (0.89, 0.89) 224 × 202 2 2.4/6.1 unknown 10◦

Abbreviations, MRI = Magnetic Resonance Imaging, TR = Repetition Time, TE = Echo Time, T = Tesla, MUMC+ = Maastricht University Medical Center+, ZMC = Zuyderland Medical Center.
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2.5. Tumor Segmentation

The images acquired at tumor peak enhancement, at approximately two minutes’ post-
contrast administration, were used for the 3D ROI segmentation and further radiomics
analysis, as tumors are best assessed on these images. All histologically confirmed invasive
tumors were segmented manually using Mirada Medical’s DBx 1.2.0.59 (64-bit, Oxford,
UK) software by a medical researcher with three years of experience (RG), supervised by
a dedicated breast radiologist with 14 years of experience (ML). During segmentation,
the radiology reports were accessible, and adjustment of image grayscale was allowed to
optimize the visualization of the tumor. To gauge any bias introduced by inter-observer
segmentation variability, 129 tumors from 102 patients acquired at MUMC+ were seg-
mented by four observers independently with different degrees of experience in breast
MR imaging (RG, ML, resident with three years of MRI experience (TvN), and a medical
student with no experience (NV)) [34].

2.6. Image Pre-Processing and Feature Selection

Image pre-processing of the two-minute postcontrast-T1W images was performed
after tumor segmentation using an in-house developed pipeline and using a widely used
proposed pre-processing method by Pyradiomics [35,36]. The in-house developed pipeline
started first by applying bias field correction to every image using MIM software (ver-
sion 6.9.4, Cleveland, OH, USA) to correct for nonuniform grayscale intensities in the
MRI caused by field inhomogeneities. Second, in order to minimize acquisition-related
radiomics variability, voxel dimensions were standardized across the cohorts to arrive
at an isotropic voxel resolution of 1 mm3 by means of cubic interpolation [37]. Third, to
homogenize arbitrary MRI units and clip image intensities to a certain range, a histogram
matching technique was applied, adjusting the pixel values of the MR image such that
its histogram matched that of the target MR image from the training data cohort [38–40].
Further gray value filtering was applied to generate MRIs with comparable gray value
range and to enhance the contrast of the image using the following filtering parameters:
window level (WL: 3050) and window width (WW: 2950). Filtering parameters were found
when exploring the images after the histogram matching step. Fourth, to reduce high
frequency noise and optimize handling of the image, grayscale values were resampled
using a fixed bin width of 24, which reduced both image noise and computation times when
extracting radiomics features from the ROI [41]. The pre-processing method proposed
by Pyradiomics was applied after images’ bias field correction and consisted of z-score
normalization, resampling to isotropic voxel resolution of 1 mm3, and image discretization
using a bin width of 100 to reach an ideal number of bins between 16 and 128 [12].

For each ROI, 833 features were extracted using the Pyradiomics software (version
3.0). The extracted radiomics features included first-order statistics features (18), shape-
based features (14), gray-level co-occurrence matrix features (GLCM) (22), gray-level run
length matrix features (GLRLM) (16), gray-level size zone matrix features (GLSZM) (16),
neighboring gray tone difference matrix features (NGTDM) (5), and gray-level dependence
matrix features (GLDM) (14) from both unfiltered and filtered (eight wavelet decomposi-
tions) images.

2.7. Feature Selection and Radiomics Model Development

All feature selection steps followed by model development were performed on the
70% training data for each iteration. First, features sensitive to interobserver segmentation
variabilities were removed using an intraclass correlation coefficient (ICC) cut-off value
>0.75 (29). Consecutively, features with zero or small variance (with the frequency ratio
between the most common value and the second most common value larger than 95/5)
were removed. This was followed by the removal of highly correlated features using
pairwise Spearman correlation (|r| > 0.90), where from any two highly correlated features,
the feature with the highest mean correlation with the rest of the features was removed.
Finally, the Boruta algorithm, a random forest feature selection method, was used to
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select important predictive features [42,43]. The Boruta algorithm duplicated all features
and shuffled the values in the so-called shadow features. Random forest classifiers were
trained on the real and shadow features, and the algorithm subsequently compared the
importance score of each feature and selected only those features where the importance of
the real feature was higher compared with the shadow’s feature importance [44]. Random
forest classification models were trained on the 70% of the training data and tested on the
remaining 30% of the training data. The best performing radiomics models according to
the summation of AUC and sensitivity value based on the test data in all strategies were
selected and validated on the external validation data. All random forest parameters were
set at default (Table S1) values. Figure 2 shows the radiomics workflow used in this study.
Additionally, the range of the AUC values in the training data set is presented.
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2.8. Clinical and Combined Model Development

Clinical and combined (based on radiomics features and clinical variables) random
forest models were trained, tested, and validated using the same strategy used to develop
the radiomics models as described above. Clinical models were based on the available
clinical characteristics, including age, clinical tumor stage (cT), clinical nodal stage (cN),
clinical tumor grade, tumor histology, and breast cancer subtype. The best performing
clinical and combined models according to the summation of AUC and sensitivity value
based on the test data in all strategies were selected and validated on the external validation
data. All random forest parameters were set as default. Additionally, the range of the AUC
values in the training data set was presented.

2.9. Statistical Analysis

Image pre-processing steps were performed in Python (version 3.7) using an in-
house developed pipeline based on the computer vision packages opencv (version 4.1.0),
SimpleITK (version 1.2.0), and numpy (version 1.16.2) procedure. The remaining statistical
analysis, feature selection, model development, and model evaluation were performed in
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R (version 3.6.3) using R studio (version 1.2.1335, Vienna, Austria) [45] and the R packages
Boruta (version 7.0.0), Caret (version 6.0–85), Smotefamily (version 1.3.1), RandomForest
(version 4.6–14), and pROC, (version 1.3.1) [46]. The difference between cohorts was
assessed using independent samples t-test for continuous normally distributed variables,
and Pearson chi-squared test for categorical variables. Statistical significance was based
on p-values < 0.05 for both tests. The models developed were evaluated using the AUC
and the 95% confidence interval (CI). DeLong’s test was used to compare AUC values.
In addition, the sensitivity and specificity and the negative predicted value (NPV) and
positive predictive value (PPV) were derived from the confusion matrix. The radiomics
quality score (RQS) was used to assess the radiomics workflow [14]. This study checked
the Transparent Reporting of a multivariable prediction model for Individual Prognosis or
Diagnoses (TRIPOD) guidelines [47,48].

3. Results
3.1. Patients Demographics

A total of 322 women with invasive breast cancer and treated with NST were con-
sidered for inclusion, of whom 32 were excluded (Figure 1B). A total of 290 women with
320 breast tumors met the inclusion criteria, of whom 129 women with 152 breast tumors
were collected at the MUMC+ and 161 women with 168 breast tumors at the ZMC. Table 2
summarizes the patient and tumor characteristics of both datasets. The pCR rate of the
included tumors was 34.9% (53/152) and 29.2% (49/168) in the MUMC+ and ZMC cohorts,
respectively, showing no significant difference. There were significant cohort differences
in clinical tumor stage, clinical nodal stage, clinical tumor grade, and tumor histology
(Table 3). Clinical tumor stage, clinical tumor grade, and breast cancer subtype showed
significant differences between pCR and non-pCR tumors within the individual cohorts
(Table 3).

The results reported in the manuscript are based on the in-house developed im-
age preprocessing pipeline, whereas the results based on the image pre-processing pro-
posed by Pyradiomics are reported in the Supplementary Materials (Tables S2 and S3 and
Figure S1). In both the radiomics and combined models, no significant differences were
found (Table S4).

Table 2. Clinical patient and tumor characteristics of patients in both complete data from the
Maastricht University Medical Center+ (MUMC+) and Zuyderland Medical Center (ZMC) hospital.

Characteristics MUMC+ ZMC p-Value

Number of patients 129 161 -
Patient Age (years) (mean; range) 51 (28–73) 52 (28–79) 0.378

Number of tumors 152 168 -

Clinical tumor stage (%) 0.007
T1 29 (19.1) 16 (9.5)
T2 99 (65.1) 103 (61.3)
T3 20 (13.2) 37 (22.0)
T4 4 (2.6) 12 (7.2)

Clinical nodal stage (%) <0.001
N0 88 (57.9) 59 (35.1)
N1 44 (29.0) 87 (51.8)
N2 9 (5.9) 12 (7.1)
N3 11 (7.2) 7 (4.2)

Unknown 0 (0.0) 3 (1.8)



Cancers 2021, 13, 2447 9 of 17

Table 2. Cont.

Characteristics MUMC+ ZMC p-Value

Clinical tumor grade (%) 0.003
1 8 (5.3) 22 (13.1)
2 70 (46.1) 84 (50.0)
3 68 (44.7) 62 (36.9)

Unknown 6 (3.9) 0 (0.0)

Tumor histology (%) 0.009
Invasive ductal carcinoma 136 (89.5) 134 (79.8)
Invasive lobular carcinoma 10 (6.6) 14 (8.3)

Invasive mixed ductal/lobular carcinoma 0 (0.0) 9 (5.4)
Other invasive carcinoma 6 (3.9) 11 (6.5)

Cancer Subtype (%) 0.921
HR+ and HER2− 80 (52.6) 82 (48.8)
HR+ and HER2+ 22 (14.5) 26 (15.5)
HR− and HER2+ 19 (12.5) 22 (13.1)

Triple-negative 31 (20.4) 38 (22.6)

Response to NAC (%) 0.331
pCR 53 (34.9) 49 (29.2)

Non-pCR 99 (65.1) 119 (70.8)
Abbreviations, HR = Hormone Receptor, HER2 = Human Epidermal growth factor Receptor 2.

Table 3. Clinical patient and tumor characteristics of patients in both complete data cohorts on pCR and non-pCR tumors
from the Maastricht University Medical Center (MUMC+) and Zuyderland Medical Center (ZMC) hospitals.

Characteristics MUMC+ ZMC

Non-pCR pCR p-Value Non-pCR pCR p-Value

Number of tumors 99 53 - 119 49 -

Patient Age (years) (mean; range) 52
(32–72)

51
(28–73) 0.600 53

(31–79)
52

(28–73) 0.538

Clinical tumor stage (%) 0.019 * 0.023
T1 12 (12.1) 17 (32.1) 6 (5.0) 10 (20.4)
T2 68 (68.7) 31 (58.5) 76 (63.9) 27 (55.1)
T3 16 (16.2) 4 (7.5) 28 (23.5) 9 (18.4)
T4 3 (3.0) 1 (1.9) 9 (7.6) 3 (6.1)

Clinical nodal stage (%) 0.943 0.526
N0 56 (56.6) 32 (60.3) 39 (32.8) 20 (40.8)
N1 29 (29.3) 15 (28.3) 62 (52.1) 25 (51.0)
N2 6 (6.1) 3 (5.7) 11 (9.2) 1 (2.0)
N3 8 (8.1) 3 (5.7) 5 (4.2) 2 (4.1)

Unknown 0 (0.0) 0 (0.0) 2 (1.7) 1 (2.0)

Clinical tumor grade (%) <0.001 * 0.002
1 8 (8.1) 0 (0.0) 19 (15.9) 3 (6.1)
2 58 (58.6) 12 (22.7) 66 (55.5) 18 (36.7)
3 32 (32.3) 36 (67.9) 34 (28.6) 28 (57.2)

Unknown 1 (1.0) 5 (9.4) 0 (0.0) 0 (0.0)

Tumor histology (%) 0.913 0.030
Invasive ductal carcinoma 89 (89.9) 47 (88.7) 91 (76.5) 43 (87.8)
Invasive lobular carcinoma 6 (6.1) 4 (7.5) 13 (10.9) 1 (2.0)

Invasive mixed ductal/lobular carcinoma 0 (0.0) 0 (0.0) 9 (7.6) 0 (0.0)
Other invasive carcinoma 4 (4.0) 2 (3.8) 6 (5.0) 5 (10.2)

Cancer Subtype (%) <0.001 * <0.001
HR+ and HER2− 64 (64.6) 16 (30.2) 75 (63.0) 7 (14.3)
HR+ and HER2+ 15 (15.2) 7 (13.2) 14 (11.8) 12 (24.5)
HR− and HER2+ 6 (6.1) 13 (24.5) 5 (4.2) 17 (34.7)

Triple-negative 14 (14.1) 17 (32.1) 25 (21.0) 13 (26.5)

Abbreviations, pCR = pathologic Complete Response, HR = Hormone Receptor, HER2 = Human Epidermal growth factor Receptor 2.
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3.2. Radiomics Models—Feature Selection and Model Performance

Of the 833 features extracted per ROI, 87 features were removed, as they were reported
to be significantly affected by inter-observer segmentation variability (Table S5). In the
best performing radiomics models in all strategies, one feature (firstorder_maximum) was
removed, as it showed near zero variance. This was followed by the removal of: 574, 568,
and 568 highly correlated features in strategy 1, 2, and 3, respectively, leaving 172, 178, and
178 features in the respective cohorts. The Boruta algorithm selected 5, 1, and 6 features in
the best performing radiomics models for strategy 1, 2, and 3, respectively (Table 4A).

The results of the best performing radiomics models developed in the three strategies
are shown in Table 5A. The AUC values in the validation cohorts were 0.55 (95% CI: 0.46–
0.65), 0.52 (95%CI: 0.42–0.62), and 0.50 (95%CI: 0.37–0.64) for the respective strategies 1, 2,
and 3. The sensitivity values ranged between 24% and 73% in the validation cohorts. The
100 radiomics models developed in the three strategies resulted in a range of AUC values
in the training cohorts between 0.46 and 0.86 (Table S6).

Table 4. Selected features in best performing radiomics, clinical, and combined models for the three strategies.

Strategy 1 Strategy 2 Strategy 3

A (Radiomics) O_glszm_GrayLevelVariance W.LHH_firstorder_Kurtosis O_shape_Sphericity

W.HLL_firstorder_Mean W.LLH_glszm_GrayLevelNon-
Uniformity

W.HLL_glcm_Imc1 W.LLH_glszm_ZoneEntropy
W.HLH_glcm_InverseVariance W.HHL_glcm_Imc1

W.LLL_ngtdm_Complexity W.HHH_glrlm_RunEntropy
W.LLL_glcm_DifferenceVariance

B (Clinical) Age cT Age
cT cN cT

Tumor grade Tumor grade Tumor grade
Breast cancer subtype Breast cancer subtype Breast cancer subtype

C (Combined) Tumor grade Tumor grade cT
Breast cancer subtype Breast cancer subtype Tumor grade
O_shape_Sphericity W.LHL_firstorder_kurtosis Breast cancer subtype
O_firstorder_Mean W.HHL_gldm_DependenceVariance O_shape_Sphericity

W.HLL_glcm_Imc2 W.LLH_glszm
_SmallAreaLowGrayLevelEmphasis

W.HLL_glszm_ZoneEntropy
W.HLH_glcm_InverseVariance

Abbreviations: O = original, W = wavelet, cT = clinical tumor stage, and cN = clinical nodal stage.

3.3. Clinical Models—Feature Selection and Model Performance

The clinical variables available were patient age, cT, cN, clinical tumor grade, tumor
histology, and breast cancer subtype. None of the clinical variables were highly correlated.
The Boruta algorithm selected four features in the best performing clinical models for all
strategies (Table 4B). The results of the clinical models performed in the three settings are
shown in Table 5B. The AUC values in the validation cohorts were 0.71 (95% CI: 0.62–0.79),
0.77 (95% CI: 0.70–0.85), and 0.72 (95% CI: 0.61–0.83) for strategy 1, 2, and 3, respectively.
The clinical models performed significantly better compared with the radiomics models
(Figure 3). The sensitivity values ranged between 41% and 47% in the validation cohorts.
The 100 radiomics models developed in the three strategies resulted in a range of AUC
values in the training cohorts between 0.68 and 0.88 (Table S6).

3.4. Combined Models—Feature Selection and Model Performance

Of the 833 features extracted per ROI, 87 features were removed, as they were reported
to be significantly affected by inter-observer segmentation variability. In the best perform-
ing combined models in all strategies, one feature (firstorder_maximum) was removed, as it
showed near zero variance. This was followed by the removal of 580, 563, and 577 highly
correlated features in strategy 1, 2 and 3, respectively, leaving 172, 189, and 175 features
in the respective cohorts. The Boruta algorithm selected 7, 4, and 6 features in the best
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performing radiomics models for strategy 1, 2, and 3, respectively (Table 4C). The three
models all contained the same clinical features, clinical tumor grade, and clinical breast
cancer subtype. The results of the best performing combined models developed in the
three strategies are shown in Table 5C. The AUC values in the validation cohorts were 0.73
(95% CI: 0.65–0.81), 0.69 (95%CI: 0.61–0.78), and 0.71 (95%CI: 0.60–0.81) for the respective
strategies 1, 2, and 3. The sensitivity values ranged between 38% and 51% in the validation
cohorts. The 100 radiomics models developed in the three strategies resulted in a range of
AUC values in the training cohorts between 0.59 and 0.91 (Table S6).

3.5. RQS and TRIPOD Results

This study scored a RQS score of 41.7% (15 out of 36 points) (Table S7). The score of
the TRIPOD checklist was 73% (24 out of 33 applicable items) (Table S8).
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Table 5. Performance of best performing random forest radiomics (5A), clinical (5B), and combined (5C) models for the
three strategies.

A (Radiomics) Strategy 1 Strategy 2 Strategy 3

Training
MUMC+

Validation
ZMC

Training
ZMC

Validation
MUMC+

Training
70% Mixed

Validation
30% Mixed

Train Test Train Test Train Test

Area under the ROC 0.71 0.78 0.55 0.64 0.67 0.52 0.60 0.65 0.50
95% CI 0.59–0.82 0.63–0.92 0.46–0.65 0.54–0.75 0.49–0.84 0.42–0.62 0.49–0.71 0.51–0.80 0.37–0.64

Sensitivity (%) 53 59 73 44 60 28 38 48 24
Specificity (%) 89 79 36 75 72 62 92 77 88

PPV (%) 70 63 32 42 47 28 69 48 47
NPV (%) 79 76 77 77 81 62 75 77 72

B (Clinical) Strategy 1 Strategy 2 Strategy 3

Training
MUMC+

Validation
ZMC

Training
ZMC

Validation
MUMC+

Training
70% Mixed

Validation
30% Mixed

Train Test Train Test Train Test

Area under the ROC 0.79 0.81 0.71 0.81 0.84 0.77 0.75 0.86 0.72
95% CI 0.71–0.87 0.68–0.95 0.62–0.79 0.73–0.89 0.72–0.96 0.70–0.85 0.68–0.83 0.77–0.95 0.61–0.83

Sensitivity (%) 54 86 45 54 71 47 52 71 41
Specificity (%) 87 64 74 85 86 85 77 84 78

PPV (%) 69 57 42 59 67 63 52 68 46
NPV (%) 78 89 77 82 88 75 77 86 75
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Table 5. Cont.

C (Combined) Strategy 1 Strategy 2 Strategy 3

Training
MUMC+

Validation
ZMC

Training
ZMC

Validation
MUMC+

Training
70% Mixed

Validation
30% Mixed

Train Test Train Test Train Test

Area under the ROC 0.82 0.83 0.73 0.79 0.86 0.69 0.79 0.86 0.71
95% CI 0.74–0.90 0.70–0.97 0.65–0.81 0.71–0.88 0.74–0.98 0.61–0.78 0.73–0.86 0.76–0.96 0.60–0.81

Sensitivity (%) 53 67 51 51 71 51 52 71 38
Specificity (%) 88 88 82 87 82 67 85 89 83

PPV (%) 69 77 53 62 63 45 61 75 50
NPV (%) 78 82 80 81 88 72 79 87 75

Abbreviations, MUMC+ = Maastricht University Medical Center+, ZMC = Zuyderland Medical Center, CI = confidence interval, PPV = pos-
itive predicted value, NPV = negative predicted value.

4. Discussion

In this multicenter study, we investigated the value of pretreatment contrast-enhanced
MRI-based radiomics for the prediction of pCR to NST in breast cancer patients using
radiomics, clinical, and combined models in three different data-mixing strategies. The
AUC values of the radiomics, clinical, and combined models in the validation datasets of
the three strategies had ranges of 0.50–0.55, 0.71–0.77, and 0.69–0.73, respectively. Different
radiomics features were selected for the radiomics and combined models in the three
strategies, while the selected clinical features were mostly the same in all scenarios, with
comparable performances. These results indicate poor performance of the radiomics
features and that the radiomic features had no added value to the clinical models developed
for the prediction of pCR to NST in breast cancer patients.

The clinical models significantly outperformed the radiomics models for the prediction
of pCR to NST in all strategies. This indicates that radiomics features in these scenarios did
not have an added value to the clinical model we developed. Furthermore, the variation in
the features selected and model performance was greater in the radiomics models compared
with the clinical models. However, based on current knowledge in the radiomics field,
we cannot say that radiomics features do not have an added value unless the variations
in acquisition and reconstruction parameters are properly addressed. Due to the lack
of reproducibility data, this study could not analyze the effects of different acquisition
and reconstruction parameters on radiomics feature values. Furthermore, the significant
differences in population characteristics between the two cohorts could have led to the low
performance of the radiomics models. While there was overlap in breast cancer phenotypes,
the proportions at which these phenotypes occur may have differed so that the differences
in prevalence resulted in differences in overall classification performances.

The results of this study indicate that even extensive MRI pre-processing and homog-
enization of the MR images do not sufficiently address the variations in acquisition and
reconstruction parameters. This is in line with studies published in recent years that inves-
tigated the reproducibility of MRI radiomics features in test-retest phantom data as well
as in patient data of varying disease sites, and showed that, among others, the variations
in acquisition and reconstruction parameters strongly influence the values (concordance)
of radiomics features [24,27–29,49–52]. Shur et al. [29] performed a test-retest 1.5T MRI
phantom study using the same imaging protocol and showed that 20% of the examined fea-
tures were not repeatable. A study on repeatability and reproducibility using a T2W pelvic
phantom showed that radiomics features values are not only affected by varying acquisi-
tion parameters but also by the use of different MRI vendors and magnetic field strengths,
wherein the reproducibility of the radiomic features is more affected by difference in MRI
vendor than by difference in magnetic field strength [49]. Overall, they reported that only
3.3% (31/944) of the examined features showed excellent robustness (ICC and CCC > 0.9).
The radiomics community is currently trying to address these major hurdles.

Investigating comparable published work, we found a number of studies using only
univariate predictive features without an external validation data cohort [18–21,53,54]
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and more recent published papers that were focusing on multivariate prediction mod-
els [32,33,55,56]. Hope Cain et al. [55] achieved an AUC value of 0.71 (95% CI: 0.58–0.83)
for predicting pCR to NST in TN/HER2+ breast cancer patients; however, the model was
not externally validated. Therefore, we anticipate that the results could not be generalized
to scans acquired with different vendors/parameters than those used in the study. The
study by Liu et al. [57] was the only study performing external radiomics model validation
for the prediction of pCR to NST in breast cancer patients. The study differed from our
research by the use of multiparametric (T2-weighted, diffusion-weighted images, and
contrast-enhanced T1-weighted) MRI. However, the use of multiple MRI sequences for
pCR prediction achieved better outcome with validation AUC values between 0.71 and
0.80. However, it is remarkable that their external validation results were obtained with
MRI images that were much less extensively pre-processed compared to our images.

Our study also has its limitations. First, selection bias in retrospective studies is
inevitable and so are the biases introduced by clinical protocols, such as HER2+ tumors
receiving additional treatment compared to other tumors. Second, since the effect of dif-
ferent MRI scanners and acquisition and reconstruction parameters on radiomics features
in breast imaging is not determined, we could not adjust our model for the potential
variance induced by these factors in the radiomics feature values. Therefore, since data
were collected from two hospitals using five MRI scanners with different acquisition and
reconstruction parameters, noise may have been introduced into the models by incorpo-
rating radiomics features not robust to these variations. Third, while we believe that MRI
preprocessing is a necessary step toward comparable images with intensity values having
similar tissue meaning, it is possible that with our choice of preprocessing steps, consistent
with current literature, we may have inadvertently removed quantitative information.
However, the results obtained with the widely used pre-processing method proposed
by Pyradiomics showed no significant differences from the result reported here. Fourth,
the number of patients included in this study did not allow us to perform a subanalysis
for the different breast cancer subtypes. Fifth, the data were collected over a relatively
long period of time during which optimization of MRI acquisitions protocols occurred,
which may have introduced variations as well. Last, for these analyses it was specifically
chosen to use the peak-enhanced (2 min) post-contrast T1W images, as breast tumors are
most visible on them and because some of the tumors included cannot be seen on other
sequences; for example, mucinous tumors and some of the invasive lobular tumors are not
or only weakly visible on the subtraction images. In our opinion, performing the analysis
using the subtraction images instead of the peak-enhanced images would have resulted
in a significant decrement in the number of patients that could be analyzed. Furthermore,
as the effects of the different breast MRI sequences on the radiomics features is not yet
understood, future radiomics research in the field of breast cancer could focus on the use of
the different MRI sequences, as well as on multiparametric and delta radiomics approaches.

5. Conclusions

In conclusion, this study showed no contribution of pretreatment contrast-enhanced
MRI-based radiomics for the prediction of tumor pCR on NST in breast cancer patients,
as neither the radiomics nor the combined models performed significantly better than
the clinical models. However, without analysis of the effects of variations in acquisition
and reconstruction parameters, it is currently not possible to conclude that pretreatment
contrast-enhanced MRI-based radiomic features have no value in the prediction of pCR
to NST. The effects of different acquisition and reconstruction parameters on radiomics
feature values in breast imaging should be explored in future MRI-breast reproducibility
studies to investigate whether further research into pretreatment MRI-based radiomics for
the prediction of pCR to NST in breast cancer patients is useful.
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