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José Correa
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The classic prophet inequality states that, when faced with a finite sequence of non-negative independent
random variables, a gambler who knows their distribution and is allowed to stop the sequence at any time,
can obtain, in expectation, at least half as much reward as a prophet who knows the values of each random
variable and can choose the largest one. In this work we consider the situation in which the sequence comes
in random order. We look at both a non-adaptive and an adaptive version of the problem. In the former case
the gambler sets a threshold for every random variable a priori, while in the latter case the thresholds are set
when a random variable arrives. For the non-adaptive case, we obtain an algorithm achieving an expected
reward within at least a 1− 1/e fraction of the expected maximum and prove this constant is optimal. For
the adaptive case with i.i.d. random variables, we obtain a tight 0.745-approximation, solving a problem
posed by Hill and Kertz in 1982. We also apply these prophet inequalities to posted price mechanisms, and
prove the same tight bounds for both a non-adaptive and an adaptive posted price mechanism when buyers
arrive in random order.

Key words : optimal stopping; threshold rules; prophet inequality; posted price mechanisms; mechanism
design; computational pricing and auctions

MSC2000 subject classification : Primary: 91B25; secondary: 91B26, 68W25
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1. Introduction One of the most basic economic problems is that of eliciting information to
make optimal decisions. Consider for instance the fundamental problem of a seller who holds a
single item and wants to sell it to buyers with private valuations for the item. The seller places no
value on the item, while the buyers have independent, not necessarily identical, random valuations
for the item. The main question is to design an incentive compatible mechanism maximizing the
revenue of the seller. This question was answered in a seminal paper by Myerson [35], and as the
solution is incentive compatible, it is in the buyers best interest to declare their true valuations.
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Implementing this mechanism is remarkably simple in some situations. For instance, the optimal
mechanism if the valuations are independent and identically distributed (i.i.d.) can be implemented
as a second price auction with a common reserve price. However, this simple auction cannot always
be implemented, for example when not all prospective buyers are in the same place at the same
time.

As implementing an auction is not always possible, a simple alternative to optimal auctions is
provided by posted price mechanisms. In this setting, again we have a seller holding a single item to
sell to a set of customers, who have independent random valuations for the item. Customers arrive
sequentially and the arrival sequence may be fixed, random, or chosen by the seller, depending on
the specific context. In any case, upon arrival of a customer, the seller offers a price as a take-
it-or-leave-it offer, and the customer either takes the item at that price or simply leaves it. The
goal of the seller is to find the prices (and possibly the sequence of arrival) that maximize his
expected revenue. These mechanisms are very appealing because of their simplicity and the fact
that strategic behavior vanishes. So, quite naturally, they have been vastly studied, particularly in
the marketing community [8]. A common example of this practice is that of direct mail campaigns,
in which the seller contacts its potential buyers directly and offers each one a certain price for the
item. The item is then sold to the first consumer who accepts the offer [8, 13].

Due to the relevance of these mechanisms in electronic commerce, several companies have started
to apply personalized pricing to sell their products. Under this policy, companies set different prices
for different consumers based on purchase history or other factors that may affect their willingness
to pay. For example, the online data provider Lexis-Nexis sells to virtually every user at a different
price [40]. In 2012, Orbitz online travel agency found that people who use Mac computers spent as
much as 30% more on hotels, so it started to show them different, and sometimes costlier, travel
options than those shown to Windows visitors [33]. Similarly, retailers and supermarket chains
such as Safeway are using data culled from billions of purchases to offer deals tailored to specific
shoppers [27]. Recently, the Council of the European Union has even agreed on regulation that will
prevent such price discrimination based on nationality or place of residence [36].

Choudhary et al. [12] further investigated this issue, providing more examples and developing
a theoretical framework to analyze equilibrium between firms that apply personalized pricing and
those who do not.

In recent years there has been a significant effort to understand the expected revenue of the
outcome generated by different posted price mechanisms when compared to that of the optimal
auction [21, 9, 2, 7, 10, 42]. Interestingly, first Hajiaghayi et al. [21] and then Chawla et al. [10]
noted a close connection between online mechanisms in general and posted price mechanisms in
particular and prophet inequalities. These prophet inequalities measure the expected pay-off of
an all-knowing prophet relative to the best gambler in the theory of optimal stopping that was
very active in the probability theory community three decades ago. Specifically, Chawla et al. [10]
implicitly show that the problem of designing posted price mechanisms can be reduced to that of
finding stopping rules of a related optimal stopping problem. Recently, Correa et al. [14] proved
that the reverse direction also holds and therefore established an equivalence between designing
posted price mechanism and finding stopping rules for optimal stopping problems. This connection
opened the way for new approaches and results and constitutes the starting point of this paper.
We refer to the survey of Lucier [32] for further details.

1.1. Optimal stopping theory Optimal stopping theory is concerned with choosing the
right time to take a particular action, so as to maximize the expected reward. The famous prophet
inequalities are a key example of a result in optimal stopping. There, a gambler faces a finite
sequence of non-negative independent random variables X1, . . . ,Xn with known distributions from
which iteratively a prize is drawn. After seeing a prize, the gambler can either accept the prize
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and the game ends, or reject the prize and the next prize is presented to her. The classical result
of Krengel and Sucheston [29, 30], also attributed to Garling, states that the gambler can obtain
at least half of the expected reward that a prophet can make who knows the realizations of the
prizes beforehand. That is, sup{E[Xt] : t stopping rule} ≥ 1

2
E{sup1≤i≤nXi}. Moreover, Krengel

and Sucheston also showed that this bound is best possible. Samuel-Cahn [38] showed that the
bound of 1

2
can be obtained by a good threshold rule, which stops as soon as a prize is above a fixed

threshold. In later work, Samuel-Cahn [39] considers the case in which the random variables have
a negative dependence. In this setting, she proves a slightly better bound and also shows that this
bound is obtainable by the best threshold rule. Hill [22] studies the situation in which the order in
which the random variables are presented can be chosen by the gambler. Kennedy [25] as well as
Assaf et al. [4] considered the setting in which the gambler can select k different prizes. Whereas
Kennedy looked at the situation in which the sum of the prizes is compared to that of the prophet,
Assaf, et al. studied the situation in which the maximum of the prizes is given as a reward. We
refer the reader to the survey of Hill and Kertz [24] for more results on prophet inequalities. More
recently, Esfandiari et al. [17] considered an interesting combination of the prophet inequality and
the secretary problem, now known as the prophet secretary problem. This is basically a prophet
inequality but the the random variables are presented in a random order to the gambler. This
setting provides the ground for the problems studied in this paper.

1.2. Problem description In the optimal stopping problem that we study, a gambler faces
a sequence of n non-negative independent random variables Xi with known distributions Fi for
i ∈N = {1, . . . , n}. In this paper, we assume that the random variables arrive in a random order,
where each order is equally likely. In every stage, a prize πi ∼ Fi is drawn and the gambler needs to
decide whether to accept and keep that prize, or to reject it and wait for the next realization. The
goal is to maximize his expected reward. We consider a non-adaptive and an adaptive scenario.
Non-adaptive: The gambler sets for each i∈N a threshold τi ≥ 0, with the goal of maximizing his
expected reward defined as

E

[∑
i∈N

πτi P
[
i= arg min

j∈N
{σ(j) |πj ≥ τj}

]]
,

where the probability is taken over the arrival permutation σ and the distributions F of the random
variables. Furthermore, πτi denotes the random variable (πi |πi ≥ τi).
Adaptive: The gambler sets thresholds upon arrival of every random variable. So, the gambler
sets functions τi : 2N → R for each random variable Xi, such that, if S is the set of random
variables that did not exceed their threshold before, τi(S) is the threshold for random variable
Xi if this is the next random variable to arrive. For an arrival permutation σ, we denote τi(σ) =
τi({σ−1(1), . . . , σ−1(σ(i)−1)}) and πτi (σ) = (πi |πi ≥ τi(σ)), and therefore we can write the gamblers
expected revenue as

E

[∑
i∈N

πτi (σ)P
[
i= arg min

j∈N
{σ(j) |πj ≥ τj(σ)

]]
,

where the expectation is taken over the arrival permutation σ, and the probability is taken over
the distributions F of the random variables.

1.3. Related work For the non-adaptive version of the problem we provide a stopping rule
that guarantees an expected reward within a factor 1−1/e of the expected value of the maximum.
Interestingly this bound matches the bound of Chawla et al. [10] for the so called sequential posted
price mechanisms (SPM) in which the arrival order of the random variables is chosen by the gambler
rather than at random. Furthermore the bound also matches that of Esfandiari et al. [17], however,
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their bound is obtained through a stopping rule that is adaptive.1 Interestingly, subsequent to
our work there have been several improvements. First Ehsani et al. [16] find yet another non-
adaptive stopping rule with the same performance guarantee. Their stopping rule is essentially
a fixed threshold stopping rule though it requires randomized tie-breaking. This is indeed quite
surprising since their stopping rule is non-adaptive and anonymous. Furthermore, their result is
best possible since, as we show in this paper, there does not exist a non-adaptive stopping rule
achieving a guarantee on the expected reward within a factor strictly better than 1− 1/e of the
expected value of the maximum. Very recently the factor 1− 1/e for prophet secretary has been
improved. Indeed, using a subtle analysis and case distinctions Azar et al. [5] were able to design
an algorithm achieving a ratio of 1− 1/e+ 1/400. Furthermore, Correa et al. [15] obtained the
currently best known guarantee by using randomized stopping rules based on the quantiles of the
distribution of the maximum. In terms of upper bounds Correa et al. [15] (in the full version of
their paper) establish that no stopping rule can achieve a ratio better than

√
3− 1≈ 0.732 for the

prophet secretary problem.2

This latter upper bound together with the fact that we show that the impossibility for non-
adaptive stopping rules to beat 1− 1/e holds even if the random variables are i.i.d., lead us to
study adaptive stopping rules in this simpler setting. Of course, in the i.i.d. case the classic prophet
inequality and the prophet secretary problem are equivalent, and its study dates back to the work
Hill and Kertz [23]. They provide a recursive characterization of the best possible an such that, if
Tn is the set of stopping times of random variables X1, . . . ,Xn, then

E(max{X1, . . . ,Xn})≤ an sup{E(Xt) : t∈ Tn} . (1)

They also prove that for all n > 1, 1.1< an < 1.6, conjectured that the sequence an is monotone
and that an ≤ 1 + 1/e ≈ 1.368. Shortly after, Samuel-Cahn [38] reported that Kertz [26] proved
that an → β∗ ≈ 1.341< 1

0.745
and conjectured that this limit constitutes the best possible upper

bound (Saint-Mont [37] provides a simpler proof of this result). However, the best bound known
until then was an ≤ e/(e− 1)≈ 1.582 [26, Lemma 3.4]. Recently, and independent from our work,
Abolhassani et al. [1] improved the bound to 1.355. In this context we study an adaptive stopping
rule for i.i.d. distributions and prove that it leads to the optimal prophet inequality. Indeed we
show that its guarantee exactly matches the upper bound of 1/β∗ ≈ 0.745 of Hill and Kertz [23],
and Kertz [26]. It should be noted that this optimal prophet inequality was not only known in the
limit when n→∞ [26], but also when the number of random variables is not fixed to n but is
determined by a Poisson process [3]. More recently, Kleinberg and Kleinberg [28] obtain the same
bound in a continuous time setting, while Singla [41] provides a remarkably simple analysis for the
Poisson arrival case.

Due to the reduction of Chawla et al. [10], our stopping rules carry over to posted price mecha-
nisms. Thus, when the arrival order is random, we obtain a non-adaptive posted price mechanism
obtaining an expected revenue within a factor 1− 1/e of the expected revenue of the optimal auc-
tion. Also for i.i.d. valuations we obtain an adaptive posted price mechanism that improves this
bound to 1

1.341
> 0.745.

It is worth mentioning that our work is indeed related to some of the literature in dynamic pricing.
In this context we typically have one or more units to sell to a number of strategic consumers with

1 It is worth mentioning that the sequence of thresholds they found is anonymous in that they do not depend on the
distribution of the random variable considered at that stage.

2 The prophet secretary problem of our non-adaptive setting has been studied widely in the computer science commu-
nity, where the approximation ratio is usually a number smaller than 1. On the other hand, our adaptive results stems
from the line of research into prophet inequalities in the probability theory community. There, the ratio is usually
expressed as a number larger than 1. We shall stay in line with previous literature by adhering to these conventions.
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random valuation for a unit and that arrive according to a stochastic process; typically Poisson
[20, 6, 11]. In dynamic pricing the goal of the seller is to come up with a price path, i.e., a sequence
of prices for the future, so as to maximize her revenue. Although the number of precise models is
vast, a key difference between posted price mechanisms and dynamic pricing is that in the former
the offers are take-it-or-leave-it and thus strategic behavior vanishes whereas in the latter buyers
are long lived and forward looking. This means that a buyer may decide to wait and buy later
so as to pay a lower price. In light of this, it is interesting to observe, for instance, that the fixed
threshold algorithm of Ehsani et al. [16] for the prophet secretary problem does not translate into
a fixed anonymous price in the setting of posted price mechanism and thus it may be vulnerable to
strategic behavior. The reason for this is that, to use a prophet inequality algorithm in the context
of posted price mechanisms, one needs to go through Myerson’s virtual values (see Section 5) and
thus the price corresponding to a given threshold is given by the preimage of such a threshold
through the virtual valuation [10, 14]. Thus, if the valuation distributions of different consumers
are different, then the resulting prices will also be different.

1.4. Our results More formally, our non-adaptive stopping rule takes the form of the follow-
ing result.

Theorem 1. Given n independent non-negative random variables X1, . . . ,Xn with Xi ∼ Fi.
There exist values τ1, . . . , τn such that

E
[∑n

i=1XiYi∑n

i=1 Yi

]
≥
(

1− 1

e

)
E
[

max
i=1,...,n

{Xi}
]
,

where Yi is a Bernoulli random variable that has value 1 if Xi > τi. Here, when evaluating the
expectation on the left hand side, we define 0/0 = 0.

As the Xis are ordered uniformly at random, each variable Xi that is above τi, i.e., when Yi = 1,
is equally likely to be the first Xi above τi. Hence, the expected reward of the gambler can be
written as the quantity on the left.

The cornerstone of our analysis is a basic result about Bernoulli random variables which may be
of independent interest. The result states that if we are given a set of non-homogeneous independent
Bernoulli random variables with associated prizes, then there is a subset of variables so that the
expected average prize of the successes is at least a factor 1−1/e of the expectation of the maximum
prize over all random variables.

Lemma 1 (Bernoulli Selection Lemma). Given a set N = {1, . . . , n} of independent
Bernoulli random variables Y1, . . . , Yn, where Yi = 1 with probability qi and 0 otherwise, and asso-
ciated prizes b1, . . . , bn. The following inequalities hold:

max
S⊆N

{
E
[∑

i∈S biYi∑
i∈S Yi

]}
≥
(

1− 1

e

)
max
zi≤qi

{∑
i∈N

bizi

∣∣∣ ∑
i∈N

zi ≤ 1

}
≥
(

1− 1

e

)
E[max

i∈N
{biYi}] .

Here, when evaluating the leftmost term, we define 0/0 = 0.

Note that in Theorem 1, the rewards denoted by Xi are random variables, whereas in the
Bernoulli Selection Lemma the prizes bi are fixed. The lemma is related to online contention
resolution schemes as described by Feldman et al. [19] in [19, Theorem 1.6].

To complement our results, we provide instances that show that the bounds in Lemma 1 and
Theorem 1 are tight. In particular, we show that even with i.i.d. random variables the bound of
Theorem 1 cannot be beaten. Therefore, to go beyond 1−1/e, even when the random variables are
i.i.d., a different setting needs to be considered. We examine the adaptive setting, and our adaptive
stopping rule for the i.i.d. case takes the form of the following theorem.
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Theorem 2. Given non-negative i.i.d. random variables X1, . . . ,Xn, there exist thresholds
τ1, . . . , τn, such that

E(max{X1, . . . ,Xn})≤ β∗E(Xt) ,

where t := min{i∈ {1, . . . , n} :Xi ≥ τi} and β∗ ≈ 1.341> 1
0.745

is the unique solution to∫ 1

0

1

y(1− ln(y)) + (β− 1)
dy= 1 . (2)

Theorem 2 can be seen as a follow up on a result by Hill and Kertz [23] on the prophet inequality
for i.i.d. random variables. They study the performance of the best stopping time when compared to
a prophet that can extract the expectation of the maximum. The main result of Hill and Kertz is a
recursive characterization of an, the best possible factor when faced with n random variables. More
precisely, they prove that if X1, . . . ,Xn are i.i.d. non-negative random variables and Tn denotes the
set of stopping rules for X1, . . . ,Xn then

E(max{X1, . . . ,Xn})≤ an sup{E(Xt) : t∈ Tn} .

Furthermore, Hill and Kertz find instances in which it is not possible to beat the factor an. They
also prove that an ≤ e/(e − 1), conjecture that the sequence is monotone, and leave open the
existence and computation of its limit. The monotonicity together with the limit calculation would
readily give a universal bound (valid for all n) on the performance of the best stopping rule. Shortly
after, Samuel-Cahn [38] reports that Kertz proves existence of the limit a of the an sequence and
conjectures that it equals 1.341 (obtained as the solution to

∫ 1

0
(y − y ln(y)) + a − 1)−1dy = 1).

Finally, Kertz [26, Lemma 6.2] proves the latter conjecture (for which Saint-Mont [37] derives a
simpler proof). However, he is unable to prove that the sequence is monotone and therefore the
best upper bound on the whole an sequence still stood at e/(e− 1)≈ 1.582 [26, Lemma 3.4]. Very
recently, and independently of our work, Abolhassani et al. [1] improved this upper bound to
1/0.738≈ 1.355. Our Theorem 2 closes the gap and implies that for all n, an ≤ a≈ 1.341, and, by
the tight examples of Hill and Kertz [23], this constant is best possible.

All results carry over to the setting of posted price mechanisms, and the corresponding corollaries
and algorithms can be found in Section 5.

2. The Bernoulli selection Lemma In this section we prove Lemma 1. We also provide
a tight instance. To prove the lemma, we consider a continuous relaxation of the maximization
problem, and then guess a solution in which each random variable is included in S with some
instance-dependent probability. Then, we look for the worst possible instance by applying the first
order optimality conditions of a non-linear problem. These conditions reveal some structural insight
on what a worst case instance looks like. Using this, we obtain the desired bound.

The second inequality of Lemma 1 is trivial, as the expectation of the maximum is a sum
over all values bi weighted by the probability with which that value is the maximum. Since these
probabilities sum to at most one, the inequality follows. Therefore, we only need to prove the first
inequality, which is equivalent to

max
S⊆N

{
E
[∑

i∈S biYi∑
i∈S Yi

]}
≥ e− 1

e
max
zi≤qi

{∑
i∈N

bizi

∣∣∣ ∑
i∈N

zi ≤ 1

}
. (3)

The proof of this inequality has two main ingredients. First, we reformulate the left hand side
in an appropriate way, and lower bound it by another function using KKT conditions. Then, we
show that this function is bounded from below by 1− 1/e times the maximization problem on the
right hand side. We note here that a simpler proof of Lemma 1 can be derived using a recent result
of Ehsani et al. [16]. This alternative proof is presented in Appendix C.
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A simplified proof To provide the main intuition of the proof, we first show how to get a
weaker result, that only gives us a factor of 1√

e
instead of e−1

e
, with more straightforward arguments.

Proof. We start the proof by rewriting the optimization problem:

max
S⊆N

{
E
[∑

i∈S biYi∑
i∈S Yi

]}
. (P)

Instead of choosing a subset of N , we set for each i ∈N a value χi ∈ [0,1], which represents the
probability with which we actually choose i. Now, let πi = χiqi denote the probability of i being
picked and having Yi = 1. So we can consider the following maximization problem, with decision
variables π, as a relaxation of (P):

max
0≤πi≤qi

{∑
S⊆N

(
b(S)

|S|

(∏
i∈S

πi

)(∏
i/∈S

(1−πi)

))}
,

where b(S) =
∑

i∈S bi. Note that in this maximization problem, the objective function is linear
in each πi so that there is an extreme optimal solution. Thus, the previous problem is in fact
equivalent to (P). Now, by changing the order of the summations, we obtain

max
0≤πi≤qi

∑
i∈N

biπi ∑
S⊆N\{i}

 1

1 + |S|

(∏
j∈S

πj

) ∏
j∈N\(S∪{i})

(1−πj)

 . (4)

Using this equivalent form, we can lower bound (P) by guessing a feasible solution. To this end,
consider an optimal solution z∗ to the maximization problem of the right hand side in (3), i.e, to

max

{∑
i∈N

bizi

∣∣∣ ∑
i∈N

zi ≤ 1, zi ≤ qi for all i∈N

}
,

and set πi = z∗i /(1 + z∗i /2). Note that πi ≤ z∗i ≤ qi, and thus it is feasible for (4). Moreover, as

1−πi =
1−z∗i /2
1+z∗i /2

and
∏
j∈S z

∗
j = 2|S|

∏
j∈S z

∗
j /2, (P) can be lower bounded by

∑
i∈N

biz∗i
(∏
j∈N

1

1 +
z∗j
2

) ∑
S⊆N\{i}

 2|S|

1 + |S|

(∏
j∈S

z∗j
2

) ∏
j∈N\(S∪{i})

(
1−

z∗j
2

) .

It is easy to see that

∑
S⊆N\{i}

 2|S|

1 + |S|

(∏
j∈S

z∗j
2

) ∏
j∈N\(S∪{i})

(
1−

z∗j
2

)≥ 1 ,

since the left hand side corresponds to E[f(S)] over all S ⊆N \ {i} under probabilities z∗j /2 for
every element i and f(S) = 2|S|/(|S|+ 1)≥ 1. While for any values zi such that

∑
i∈N zi ≤ 1, we

have
n∏
j=1

1

1 +
zj
2

≥ e−
∑n

j=1

zj
2 ≥ 1√

e
,

where the first inequality follows from 1 +x≤ ex, concluding the proof. �
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Obtaining a bound of 1 − 1/e To obtain the factor 1 − 1/e we make a subtle modifica-

tion in the choice of πi. We will show that for this choice of πi, we can lower bound (P) by∑
i∈N biz

∗
i ϕk(i)(z

∗
i ), where k(i) and thus ϕk(i)(z

∗
i ) is a function that is only dependent on i. We then

show that for each i, ϕk(i)(z
∗
i )≥ 1− 1/e.

Thus, take πi =
2z∗i

2+(e−2)z∗i
,3 such that 1− πi =

2−(4−e)z∗i
2+(e−2)z∗i

. Note that this is a feasible choice of πi
for all i ∈N , since for this choice πi ≤ z∗i ≤ qi.4 We plug this back into (4), and obtain that (P) is

lower bounded by

∑
i∈N

2biz
∗
i

(∏
j∈N

1

2 + (e− 2)z∗j

) ∑
S⊆N\{i}

 2|S|

1 + |S|

(∏
j∈S

z∗j

) ∏
j∈N\(S∪{i})

(2− (4− e)z∗j )


=
∑
i∈N

biz
∗
i

2

2 + (e− 2)z∗i
fN\{i}(z

∗
−i) , (5)

where x−i denotes the vector x with coordinate i eliminated and, for a given set M , fM(x) is

defined as

fM(x) =

(∏
j∈M

1

2 + (e− 2)xj

)∑
S⊆M

 2|S|

1 + |S|

(∏
j∈S

xj

) ∏
j∈M\S

(2− (4− e)xj)

 .

We find a lower bound on (5), by lower bounding fN\{i}(z
∗
−i) by the minimum value for fN\{i}(x)

over all vectors x satisfying
∑

j∈N\{i} xj ≤ 1− z∗i . According to Proposition 1 in the appendix, the

minimum value is obtained by a solution x∗ satisfying that all non-zero variables are equal and the

sum of these variables is equal to 1− z∗i .
Conditioning on the cardinality of the set S, and using the Binomial Theorem, a straightforward

but tedious calculation shows that

fN\{i}(x
∗) =

2k+ (e− 2)(1− z∗i )
2(k+ 1)(1− z∗i )

(
1−

(
1− 2(1− z∗i )

2k+ (e− 2)(1− z∗i )

)k+1
)
.

As this quantity only depends on k and z∗i , we may define

ϕk(z
∗
i ) =

2

2 + (e− 2)z∗i
fN\{i}(x

∗) ,

to conclude that expression (5) (and in turn (P)) is lower bounded by∑
i∈N

biz
∗
i ϕk(i)(z

∗
i ) .

where the index k(i) = |S| denotes the number of non-zero variables in x∗ and is always at least 1,

yet may vary depending on i.

3 Because of the choice of πi, we actually prove the slightly stronger bound where we maximize over zi ≤ 2qi
2−(e−2)qi

.

4 The choice of πi suggests that the random variables are not picked deterministically, but with probability less than
1, since πi < z

∗
i if z∗i > 0. However, as noted in the beginning of the proof, because of linearity of the objective in each

variable, there is always an extreme optimal solution where the random variables are picked deterministically.
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Bounding ϕ by 1 − 1/e If ϕk(i)(z
∗
i ) ≥ 1 − 1

e
, then we can bound (P) from below by∑

i∈N biz
∗
i ϕk(i)(z

∗
i ) ≥ (1− 1

e
)
∑

i∈N biz
∗
i and the Bernoulli Selection Lemma is proved. Hereto, we

show for any n≥ 2 and y ∈ [0,1], ϕn(y)≥ 1− 1
e
. Recall that

ϕn(y) =
2

2 + (e− 2)y

2n+ (e− 2)(1− y)

2(n+ 1)(1− y)

(
1−

(
1− 2(1− y)

2n+ (e− 2)(1− y)

)n+1
)
. (6)

We start with a lemma that rephrases this claim. Since the proof basically consists of algebraic
manipulations, we defer it to Appendix A.

Lemma 2. Let ϕn(y) be as defined in (6) and let

hn(x) :=
1

n+ 1
− (1−x)n+1

n+ 1
− e− 1

2
x+

(e− 1)(e− 2)n

e(2− (e− 2)x)
x2 .

Then, ϕn(y)≥ 1− 1
e

for all y ∈ [0,1] and all n≥ 2 if and only if hn(x)≥ 0 for all n≥ 1 and x∈ [0, x̄],
where x̄= 1/(n− 1 + e/2).

Hence, according to this lemma, we only need to prove that hn(x)≥ 0 for all n≥ 1 and x∈ [0, x̄].
This is the subject of the following lemma, the proof of which can be found in Appendix A for the
same reason as for the proof of the previous lemma.

Lemma 3. hn(x)≥ 0 for all n≥ 1 and x∈ [0, x̄].

From Lemmata 2 and 3 we conclude that indeed ϕn(z∗i )≥ 1− 1
e

for all z∗i ∈ [0,1] and n≥ 2.

2.1. Tightness We now provide a family of instances that shows that the 1−1/e bound in the
Bernoulli Selection Lemma is actually best possible. First note that tightness with respect to the
first inequality of the lemma is immediate by taking n Bernoulli random variables with parameter
1/n and all prizes equal to 1. To obtain tightness with respect to the second inequality we need a
more involved instance. Consider thus n2 independent and identically distributed Bernoulli random
variables with parameter 1/n and prizes b1 = n/(e− 2) and bi = 1 for 2≤ i≤ n2. The expectation
of the maximum prize is given by

E
[

max
1≤i≤n2

{biYi}
]

=
1

e− 2
+

(
1− 1

n

)(
1−

(
1− 1

n

)n2−1
)
−→ 1

e− 2
+ 1 .

In this particular setting, where the Bernoulli random variables are i.i.d., the best strategy is to sort
by prize and take some subset with those of higher prize. This means to choose the first random
variable and a subset of size k− 1 of the rest for some 1≤ k ≤ n2. This yields an expected prize
that is equal to (

1−
(

1− 1

n

)k) n
e−2 + k− 1

k
≤

(
1−

(
1− 1

n

)k)(
n

k(e− 2)
+ 1

)
.

Setting x= k
n

, as n→∞, the above converges to

max
x≥0

(1− e−x)
(

1

x(e− 2)
+ 1

)
.

Proposition 3, in Appendix A shows that this expression is maximized at x= 1. This yields, for

n→∞, the value (1− e−1)
(

1
e−2 + 1

)
= (1− 1/e)E[max1≤i≤n2{biYi}].
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3. Non-Adaptive Threshold Rule The Bernoulli Selection Lemma can be extended to
more general random variables, i.e., to the prophet inequality setting.

Theorem 1. Given n independent non-negative random variables X1, . . . ,Xn with Xi ∼ Fi.
There exist values τ1, . . . , τn such that

E
[∑n

i=1XiYi∑n

i=1 Yi

]
≥
(

1− 1

e

)
E
[

max
i=1,...,n

{Xi}
]
,

where Yi is a Bernoulli random variable that has value 1 if Xi > τi. Here, when evaluating the
expectation on the left hand side, we define 0/0 = 0.

Proof. Assume first that the Fi are continuous for all i. Let qi = P(Xi ≥ Xj, ∀j = 1, . . . , n)
be the probability that Xi is the largest and αi be a value for which 1 − Fi(αi) = qi. Consider
bi = E[Xi |Xi >αi] and the Bernoulli random variables Z1, . . . ,Zn where Zi has parameter qi. We
apply the Bernoulli Selection Lemma to this instance, and thus let S ⊆ {1, . . . , n} be a set for which
the lemma holds. Now define τi = αi for i ∈ S and τi =∞ otherwise, and note that for i 6∈ S, we
have Yi = 0 almost surely, and for i∈ S, we have P(Xi >αi) = P(Yi = 1) = qi. It follows that

E
[∑n

i=1XiYi∑n
i=1 Yi

]
=
∑

i∈S E
[

XiYi∑
j∈S Yj

]
=
∑

i∈S E[Xi | Yi = 1]E
[
(1 +

∑
j∈S\{i} Yj)

−1
∣∣∣Yi = 1

]
P(Yi = 1)

=
∑

i∈S E[Xi |Xi >αi]E
[

Yi∑
j∈S Yj

]
=E

[∑
i∈S E[Xi|Xi>αi]Zi∑

i∈S Zi

]
≥ e−1

e
maxzi≤qi

{∑n

i=1E[Xi |Xi >αi]zi

∣∣∣ ∑n

i=1 zi ≤ 1
}

≥ e−1
e

∑n

i=1E[Xi |Xi >αi]qi ,

where the second to last inequality follows from the Bernoulli Selection Lemma, while the last
holds since

∑n

i=1 qi = 1. Now note that E [maxi=1,...,n{Xi}] =
∑n

i=1E[Xi |Xi ≥Xj, ∀j = 1, . . . , n]qi.
To finish the proof, it suffices to show that

E[Xi |Xi >αi]≥E[Xi |Xi ≥Xj, ∀j = 1, . . . , n] .

Indeed, if x>αi, we have P(Xi >x |Xi >αi) =
∫∞
x

1
qi
dFi(t), while, if x≤ αi, this probability equals

1. On the other hand,

P(Xi >x |Xi ≥Xj ∀j = 1, . . . , n) =

∫ ∞
x

∏
j 6=iFj(t)

qi
dFi(t) .

From this, it follows that P(Xi >x |Xi >αi)≥ P(Xi >x |Xi ≥Xj, ∀j = 1, . . . , n) for all x≥ 0. Thus,
Xi | (Xi >αi) stochastically dominates Xi | (Xi ≥Xj ∀j = 1, . . . , n), and the conclusion follows.

When some Fi are not continuous, it could be the case that there is no αi such that 1−Fi(αi) = qi
or that

∑
qi > 1. If the former happens, the result still holds provided αi is chosen randomly. The

latter case is solved by slightly perturbing the support of the random variables in a way that the
probability that two or more are the maximum simultaneously is negligible. �

In the case of continuous distributions, the algorithm that achieves this result becomes remark-
ably simple. The algorithm, while randomized, can be derandomized using the method of condi-
tional expectations, see, e.g., [34, Section 5.6].

Input: Random variables Xi, i∈N with distributions Fi.
Algorithm 1:

(1) Compute qi = P (Xi = maxj∈N{Xj}).
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(2) Set threshold τi =

{
F−1i (1− qi) w.p. 2

2+(e−2)qi
,

∞ otherwise.
(3) Accept the first random variable having Xi > τi.

To see that Algorithm 1 indeed yields an expected reward of at least 1− 1/e of the reward of
a prophet, we note that in the proof of the Bernoulli Selection Lemma (Lemma 1), we set the
variables πi = 2qi

2+(e−2)qi
. Therefore, the probability that we include a random variable in the set S

is equal to χi = 2
2+(e−2)qi

, which is exactly the probability that we set a finite threshold for variable

Xi in step (2) of the algorithm. Furthermore, the thresholds αi, defined in the proof of Theorem 1,
are equal to F−1(1− qi) for continuous distributions.

Algorithm 1 may seem counter-intuitive since, in step (2), the higher the probability is that
a random variable is the maximum, the higher the probability is that the algorithm rejects it a
priori (by setting a threshold of ∞), though the probability of rejecting any random variable is
at most 1− 2

e
. The following example gives some intuition on why random variables need to be

rejected. Consider just two random variables: X1 who has deterministic value equal to 1, and X2

who has a value of 100 with probability 1/10 and 0 with probability 9/10. In this situation, the
expectation of the maximum equals 10 + 9/10. Note that in this instance X1 is much more likely
to be the maximum, however a non-adaptive algorithm that never discards it can get at most
50.5 when X2 evaluates to 100 due to the random order. Therefore it can get in total at most
(1/10)(50.5) + (9/10)(1) = 5.95, which is not within the claimed ratio of the expectation of the
maximum. Another somewhat surprising element of Algorithm 1 is that the probability of not
accepting any random variable can be computed as

∏
i∈N(1−2qi/(2 + (e−2)qi))≥ 2/e. Again, the

previous example provides intuition to the fact that, if we shoot for an algorithm that accepts too
frequently, we risk settling for too low a prize. This intuition does not hold in the adaptive case.

3.1. Tight instance with i.i.d. distributions We construct a family of instances with
i.i.d. random variables, such that, for all ε > 0, there is an instance from this family for which no
non-adaptive threshold rule can achieve an expected value within a factor (1 + ε)(1− 1/e) of the
expected maximum. The idea is to mimic the instance that makes the Bernoulli Selection Lemma
tight, but here we achieve this with i.i.d. distributions. Consider n2 independent and identically
distributed random variables following the law

X =


n
e−2 w.p. 1

n3 ,

1 w.p. 1
n
,

0 w.p. 1− 1
n
− 1

n3 .

Then, a prophet that can foresee all future prizes, obtains an expected reward of (e− 1)/(e− 2)
as n→∞. On the other hand, the best non-adaptive stopping rule sets a threshold of 1 for, say,
random variables X1, . . . ,Xk and n/(e−2) for the remaining random variables. The best value for k
turns out to be roughly n, see Appendix B. The expected reward for this stopping rule approaches
( 1
e−2 + 1)(1− e−1) in the limit.

4. Adaptive threshold rule In the previous section we considered the setting in which the
threshold value only depends on the random variable Xi, not on the order. Furthermore, we saw
that even when the distributions are i.i.d., no better factor than 1− 1/e could be achieved under
these assumptions. In this section we consider the setting in which the threshold value may depend
both on Xi and on the prizes that were rejected earlier. For i.i.d. random variables we design an
adaptive threshold strategy that achieves an expected revenue of at least a 1/β∗ ≈ 0.745 fraction
of the expected maximum value.
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Table 1. Notation used in Section 4

R(q) =
∫ q
0
F−1(1− θ)dθ Expected reward of variable accepted with probability q.

Ai = [εi−1, εi] Interval for ith acceptance probability qi.
ψ(q) = (n− 1)(1− q)n−2
γi =

∫
q∈Ai

ψ(q)dq Normalization parameter.

fi(q) = ψ(q)/γi Probability density function for choosing qi.
ρ1 = 1/γ1

ρi+1 = ρi
γi+1

∫
q∈Ai

ψ(q)(1− q)dq

To achieve this result we use a quite natural idea: we start with a high threshold and as fewer
random variables are left, the thresholds will decrease. Besides this, the key ingredient of our
algorithm is to use random thresholds drawn from a well chosen distribution that mimics an
expression we obtain for the expected maximum value. In subsection “Quantile stopping rule”, we
describe the following algorithm that achieves the bound in Theorem 2 in the case of continuous
distributions. Like Algorithm 1, this algorithm can also be derandomized using the method of
conditional expectations, see, e.g. [34, Section 5.6].

Input: I.i.d. random variables Xi, i∈N each with distribution F .
Algorithm 2:

(1) Partition the interval [0,1] into intervals Ai = [εi−1, εi], s.t. ε0 = 0, εn = 1.
(2) Sample qi from Ai with an appropriately chosen distribution that only depends on n.5

(3) When the i−th random variable comes, set threshold τi = F−1(1− qi).

In the remainder of this section, we prove the bound of 0.745 for our adaptive threshold rule.
Hereto, some notation is introduced and this is summarized in Table 1.

For X1, . . . ,Xn non-negative i.i.d. random variables, we take F as their probability distribution
function and refer to X as a random variable with the same common distribution. Let F−1(q) =
inf{x≥ 0 | F (x)≥ q} be the generalized inverse of F (or quantile function) and let τ(q) = F−1(1−q).
Therefore, we have that P(X ≥ τ(q))≥ q≥ P(X > τ(q)) = 1−F (τ(q)), and this holds with equalities
if F is continuous at τ(q). We start by deriving an expression for the expectation of the maximum
of X1, . . . ,Xn. Let R(q) =

∫ q
0
F−1(1− θ)dθ, which, as we will see later, is equal to the expected

reward from a random variable that is accepted with probability q. Now, we use Fubini’s Theorem,
and integration by parts on the product of u(q) = (1− q)n−1 and v′(q) = F−1(1− q):

E(max{X1, . . . ,Xn}) =

∫ ∞
0

1−F n(t)dt (7)

=

∫ 1

0

F−1( n
√
z)dz

= n

∫ 1

0

(1− q)n−1F−1(1− q)dq

= n

∫ 1

0

(n− 1)(1− q)n−2
(∫ q

0

F−1(1− θ)dθ
)
dq

= n

∫ 1

0

(n− 1)(1− q)n−2R(q)dq .

Rather than directly constructing a threshold rule, our approach is to choose at each step a
probability of acceptance, which naturally will be increasing as less random variables are left.

5 More precisely the distribution has density exactly proportional to (n−1)(1−q)n−2 in the interval Ai. Naturally, as
the intervals Ai contain larger values as i progresses, the sampled quantiles will increase and the thresholds decrease.
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One could compute the optimal threshold at each step. However, the analysis of such an optimal
strategy becomes difficult. Here we use a less direct algorithm but obtain two big advantages: first,
the thresholds that we end up with are explicit, and second, the posterior analysis becomes quite
simple.

Specifically when faced with a random variable X, we select a proper acceptance probability q.
Now if F is continuous at τ(q) we stop if X ≥ τ(q) (so the acceptance probability is q). Otherwise
(there is mass at τ(q)), there may be no value that accomplishes the previous condition, so we stop
if X > τ(q) and if X = τ(q) we stop with probability s= [q−P(X > τ(q))]/P(X = τ(q)) (so again
the acceptance probability is q). The goal behind this seemingly obscure rule is that, if at a given
step we are faced with a random variable X and have decided on an acceptance probability q, the
expected reward in that step equals R(q). Indeed, the reward can be calculated as:

R(q) = P(X = τ(q)) · s · τ(q) +P(X > τ(q))E[X|X > τ(q)]

= (q−P(X > τ(q)))τ(q) +P(X > τ(q))

∫ ∞
0

P(X > t|X > τ(q))dt

= (q−P(X > τ(q)))τ(q) +P(X > τ(q))

(
τ(q) +

∫ ∞
τ(q)

P(X > t|X > τ(q))dt

)
= qτ(q) +

∫ ∞
τ(q)

1−F (t)dt=

∫ q

0

F−1(1− θ)dθ ,

where the last equality follows from the definition of τ(q).

Quantile stopping rule As described in Algorithm 2, our stopping rule is constructed as
follows. We first partition the interval A= [0,1] into n intervals Ai = [εi−1, εi], with 0 = ε0 < ε1 <
. . . < εn−1 < εn = 1. For random variable Xi, we draw an acceptance probability qi at random from
the interval Ai, according to probability density function fi(q) = ψ(q)

γi
, where ψ(q) = (n−1)(1−q)n−2

and γi is a normalization parameter equal to γi =
∫
q∈Ai

ψ(q)dq. As this qi is the acceptance
probability of variable Xi, the corresponding threshold at step i is τi = τ(qi). With all the qi’s at
hand, we scan X1, . . . ,Xn and stop at step i with probability qi using the previously described rule
(i.e., if F is continuous at τ(qi) we stop if X ≥ τ(qi); otherwise we stop for sure if X > τ(qi), and
if X = τ(qi) we stop with probability si = [qi−P(X > τ(qi))]/P(X = τ(qi))).

The next two lemmata allow us to write the expected value of our algorithm as a constant (that
only depends on n) times the expectation of the maximum Xi. In Lemma 4, we first write the
value as the sum of the expected values that the algorithm would get from each of the Xi’s, while
Lemma 5 states that by fine-tuning the εi’s we can obtain the desired result.

Lemma 4. Let ρ1 = 1
γ1

and ρi+1 = ρi
γi+1

∫ εi
εi−1

ψ(q)(1− q)dq for i= 1, . . . , n−1. Then the expected

value of the random variable at which we stop, Xr, satisfies

E(Xr) =
n∑
i=1

ρi

∫ εi

εi−1

(n− 1)(1− q)n−2R(q)dq .

Proof. We have already shown that the expected value at step i equals R(qi). On the other hand,
the probability that we get to step i is equal to

∏i−1
j=1(1− qj). Hence, by linearity of expectation

and independence of the qi’s, the expected value of Xr is:

E(Xr) =
n∑
i=1

E(R(qi))
i−1∏
j=1

E(1− qj)

=
n∑
i=1

∫ εi

εi−1

(n− 1)(1− q)n−2R(q)dq

∏i−1
j=1

∫ εj
εj−1

ψ(q)(1− q)dq∏i

j=1 γi
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=
n∑
i=1

ρi

∫ εi

εi−1

(n− 1)(1− q)n−2R(q)dq ,

where the last equality come from the definition of ρi. �
Our stopping rule still has freedom in the choice of ε1, . . . , εn−1. The next lemma tells us that an

appropriate choice leads to an expression of the expected value of Xr in terms of the expectation
of the maximum of X1, . . . ,Xn .

Lemma 5. If we choose ε1, . . . , εn−1 such that ρ1 = ρ2 = . . .= ρn, then

E(max{X1, . . . ,Xn}) = nγ1E(Xr) .

Proof. If we choose ε1, . . . , εn−1 such that ρi = ρ1 = 1
γ1

for all i, then by (7) and Lemma 4 we
can express

E(max{X1, . . . ,Xn}) = n

∫ 1

0

(n− 1)(1− q)n−2R(q)dq

= nγ1ρ1

n∑
i=1

∫ εi

εi−1

(n− 1)(1− q)n−2R(q)dq

= nγ1

n∑
i=1

ρi

∫ εi

εi−1

(n− 1)(1− q)n−2R(q)dq

= nγ1E(Xr) . �

Bounding γ1 Since ρi+1 = ρi
γi+1

∫ εi
εi−1

ψ(q)(1− q)dq for all i, choosing ε1, . . . , εn−1 such that all

ρi are equal amounts to choosing them such that
∫ εi+1

εi
ψ(q)dq=

∫ εi
εi−1

ψ(q)(1− q)dq for all i. By the

definition of ψ(q), this is equivalent to choosing them such that for all i

n− 1

n
((1− εi−1)n− (1− εi)n) = (1− εi)n−1− (1− εi+1)

n−1 .

Substituting xi = 1− εi we obtain the following equivalent recursion on xi:

xi−1
n

n
− xi

n

n
=
xi
n−1

n− 1
− xi+1

n−1

n− 1
, (8)

where x0 = 1 and xn = 0. With these boundary constraints, we can write this recursion as follows:

xi+1 =

(
n− 1

n
xi
n− αn

n

)1/(n−1)

. (9)

When we substitute αn = n−1−nx1
n−1, then (9) is the recursion from Hill and Kertz [23]. Indeed,

for i= 1 equation (8) gives

x2 =

(
x1

n−1 +
n− 1

n
x1

n− n− 1

n

)1/(n−1)

. (10)

Now, suppose (9) holds for i= 1, . . . , j. From (8), we have that

xj+1
n−1 = xj

n−1 +
n− 1

n
xj
n− n− 1

n
xj−1

n

=
n− 1

n
xj−1

n +x1
n−1− n− 1

n
+
n− 1

n
xj
n− n− 1

n
xj−1

n

=
n− 1

n
xj
n +x1

n−1− n− 1

n
.
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Note that our quantity of interest γ1 is equal to
∫ ε1
0
ψ(q)dq = 1 − x1

n−1. Therefore, if n(1 −
x1

n−1)≤ β∗, the expected value of the maximum is at most that of our stopping rule times β∗. Note
that the value of x1 (and all of the recursion) depends on n, but we have omitted this dependency
for simplicity.

Observe that n(1−x1
n−1)≤ β is equivalent to x1 ≥ (1− β

n
)1/(n−1). Thus, if we find the minimum

value of β such that x1 < (1− β
n

)1/(n−1) implies xn < 0, we know that x1 ≥ (1− β
n

)1/(n−1) for that
value of β. Hence, we proceed by showing an upper bound on the value of xn.

Comparing this to Hill and Kertz [23], they prove that the smallest possible value an that satisfies
their initial recurrence is equal to 1 + αn, and therefore we can write an in terms of this new
recursion as an = n(1−x1

n−1). By bounding γ1, we thus also bound their quantity of interest and
prove their conjecture.

Bounding the recursion through a differential equation In the following, we show that
each of the terms xi in the recursion can be upper bounded by a function y(t) : [0,1]→R, defined
through the differential equation:6

y′(t) = y(t)(ln(y(t))− 1)− (β− 1) ,
y(0) = 1 .

(ODE)

Furthermore, y(1) := limt↑1 y(t) is the continuous extension of y(t).
Later, we choose β = β∗ ≈ 1.341. For this β, we have y ∈ [0,1], so we restrict our analysis of

(ODE) to this interval. We assume β > 1.25 and y ∈ [0,1]. We validate these assumptions at the
end of our analysis.

In the proof of Theorem 2, we use the following two lemmata. The proofs of these lemmata are
deferred to Appendix D.

Lemma 6. Differential equation (ODE) has a unique solution y(t), which is a decreasing and
strictly convex function on the interval [0,1]. Furthermore, y′′′(t)> 0 for y ∈ (0,1).

The following lemma shows that the solution of (ODE) dominates the terms of the recurrence.

Lemma 7. For x1 < (1− β
n

)
1

n−1 , we have xi
n−1 < y( i

n
) for i= 1, . . . , n, where y(t) is the unique

solution of (ODE).

Now we are ready to prove Theorem 2.

Theorem 2. Given non-negative i.i.d. random variables X1, . . . ,Xn, there exist thresholds
τ1, . . . , τn, such that

E(max{X1, . . . ,Xn})≤ β∗E(Xt) ,

where t := min{i∈ {1, . . . , n} :Xi ≥ τi} and β∗ ≈ 1.341> 1
0.745

is the unique solution to∫ 1

0

1

y(1− ln(y)) + (β− 1)
dy= 1 . (2)

Proof. Consider the thresholds of the optimal threshold strategy, which can be easily computed
by dynamic programming trough the recurrence:{

τn = 0, Vn =E(X)

τi = Vi+1, Vi =E(X|X ≥ τi), i= n− 1 , . . . ,1.

6 All derivatives of y are with respect to t.
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Note that under these thresholds, it is irrelevant whether to stop when X ≥ τi or X > τi, since
they are constructed such that there is indifference between selecting a variable and keeping its
value, or to continue for the expected value of the remaining variables. Therefore, any stopping
rule that uses deterministic thresholds obtains an expected reward less or equal than E(Xt).

We argue that the expected reward obtained by our randomized threshold rule E(Xr) is upper
bounded by the reward of a rule that uses only deterministic thresholds. Recall that our stopping
rule randomizes at step i every time the corresponding threshold τ(qi) has mass, choosing between
accepting when X > τ(qi) or X ≥ τ(qi). If we denote q̄i = P(X ≥ τ(qi)) and q

i
= P(X > τ(qi)), then

F−1(1− q) is constant in [q
i
, q̄i]. Thus, R(q) =

∫ q
0
F−1(1− θ)dθ is linear in that interval, implying

that E(Xr) is linear as a function of qi when τ(qi) has mass. This means that either the strategy
that stops in step i whenever X ≥ τ(qi), or the strategy that does so when X > τ(qi), attains
a larger expected reward than E(Xr), and because both these strategies use only deterministic
thresholds, they are in turn upper bounded by E(Xt). Then, we know by Lemma 5 that

E(max{X1, . . . ,Xn})≤ nγ1E(Xr)≤ nγ1E(Xt) ,

where γ1 = 1−x1
n−1.

It remains to show that n(1−xn−11 )≤ β∗ for β∗ ≈ 1.341. Lemma 7 yields xn < y(1), so we choose
β such that y(1) = 0 to reach a contradiction with the fact that xn = 0. Note that this indeed
implies y ∈ [0,1] as we assumed. Hereto, note that y(t) is invertible by Lemma 6. Hence, we can
consider t as a function of y, for which we know t(1) = 0, and we want to choose β such that
t(0) = 1. In particular, we have that

t(1) = t(0) +

∫ 1

0

dt

dy
dy= 1 +

∫ 1

0

1
dy
dt

dy= 1−
∫ 1

0

1

y(1− ln(y)) + (β− 1)
dy.

So β∗ is the value such that the last integral equals 1. This yields β∗ ≈ 1.341. �
Remark. A routine exercise shows that the sequence an defined by Hill and Kertz [23] exactly
equals our nα1. Note here that our α1 does depend on n, though we have omitted this dependency
for simplicity of notation. Thus our result implies that an ≤ β∗ for all n > 1, and by the work of
Kertz [26] we know that an→ β∗. Let Tn be the set of stopping rules for X1, . . . ,Xn. Recalling that
an is the smallest possible value for which

E(max{X1, . . . ,Xn})≤ an sup{E(Xt) : t∈ Tn} , (11)

we know that β∗ is the smallest value satisfying (11) for all n> 1, and hence, it is tight.

5. Application to posted price mechanisms In this section we discuss how our results
can be applied to the setting of posted price mechanisms. In this setting, a seller has a single
item to sell to a given set of customers I. We assume that the seller has no value for keeping the
item. Customers have independent random valuations for the item with customer i ∈ I valuing
the item at vi, drawn from distribution Fi(·). Customers arrive in (uniformly) random order, and
upon arrival of a customer, the seller offers a price as a take-it-or-leave-it offer, with the goal of
maximizing his expected revenue. Similar to our optimal stopping problem, here we consider a
non-adaptive and an adaptive scenario.
Non-adaptive: The seller sets prices pi ≥ 0 for all i ∈ I, with the goal of maximizing his expected
revenue, defined as ∑

i∈I

piP
[
i= arg min

j∈I
{σ(j) |vj ≥ pj}

]
,

where the probability is taken over the arrival permutation σ and the customers’ valuations v.
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Adaptive: The seller offers each customer a price as she arrives. So, the seller sets functions pi : 2I→
R for each customer i, such that, if S is the set of customers who already arrived and declined the
offer, pi(S) is the price offered to customer i if she is next to arrive. For an arrival permutation σ,
we denote pi(σ) = pi({σ−1(1), . . . , σ−1(σ(i)− 1)}), and therefore we can write the sellers expected
revenue as

E

[∑
i∈I

pi(σ)P
[
i= arg min

j∈I
{σ(j) |vj ≥ pj(σ)}

]]
,

where the expectation is taken over the arrival permutation σ, and the probability is taken over
the customers’ valuations v.

Our prophet inequalities translate into this posted price setting by a nice connection first made
by Chawla et al. [10]. To briefly describe this connection we first need a standard in the literature:
we say that a valuation distribution Fi is regular if the virtual value function ci(v) = v − (1 −
Fi(v))/fi(v) is non-decreasing, where fi is the density of Fi. A classic result of Myerson [35] states
that the expected revenue of the optimal auction for selling a single item to the buyers in I equals
the expectation of the maximum virtual value, E(maxi∈I{ci(v)}). On the other hand, if X is the
positive part of the virtual valuation of a non-negative random variable V with regular distribution
F , then one can show that for τ ≥ 0 we have E (X |X > τ) = F−1 (1− q), where q = P (X > τ).
These two facts (with a slightly more involved version in case the distributions are not regular)
amount to the conclusion that a comparison of posted price mechanisms to the optimal mechanism
can be seen as a prophet inequality on the virtual values. Therefore prophet inequalities can be
applied in the context of posted price mechanisms and thus we obtain the following results7.

Corollary 1. For any given set of potential customers I, there exists a non-adaptive posted
price mechanism that achieves an expected revenue of at least a 1−1/e fraction of that of Myerson’s
optimal auction on I.

Corollary 2. For any given set of potential customers I whose values are independent and
identically distributed, there exists an adaptive posted price mechanism that achieves an expected
revenue of at least a 1/β∗ > 0.745 fraction of that of Myerson’s optimal auction on I, where β∗ is
the unique value satisfying (2).

For the non-adaptive result, in the case of monotone virtual valuations, the mechanism can be
directly derived from the threshold rule, and it becomes remarkably simple.

Input: Customers i∈ I with valuation distributed according to Fi.
Algorithm 3:

(1) Compute qi = probability that optimal auction assigns to i.
(2) Discard customer i with probability 1− 2

2+(e−2)qi
.

(3) Offer non-discarded customers price F−1i (1− qi).
(4) Item is allocated to a random customer accepting the offer.

When valuations are non-regular, i.e., the virtual values are not monotone, the price offered in
step (3) is chosen randomly between two prices, see e.g. [14].

We remark that the tight instance constructed to prove the tightness of the Bernoulli Selection
Lemma (Lemma 1) is also a valid instance for the non-adaptive setting of a posted price mechanism.

7 One may think here that the right benchmark should be the expectation of the maximum valuation. However,
this cannot yield useful results. Consider a single customer whose valuation lies in [1,+∞) distributed according
to F (v) = 1− 1/v. Clearly, if we charge price p the acceptance probability is 1/p, for a total revenue of 1. On the
other hand, the expectation of the valuation is actually +∞. This example can easily be turned into one with finite
expectation but arbitrarily large ratio between the optimal pricing and the expectation of the random variable.
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The basic observation here is that in that instance the expectation of the maximum valuation and
that of the optimal auction coincide, implying that the result from Corollary 1 is tight.

In the adaptive setting, our mechanism is as follows:

Input: Customers i∈ I with valuation i.i.d. according to F .
Algorithm 4:

(1) Partition the interval [0,1] into intervals Ai = [εi−1, εi], s.t. ε0 = 0, εn = 1.
(2) Sample qi from Ai with an appropriately chosen distribution.
(3) When the i−th buyer comes, offer price pi = max{F−1(1−qi), v∗}, where v∗ is the reservation

price of the optimal auction.

The assumption here is again that virtual valuations are monotone, and as is the case for the
non-adaptive algorithm, if the distribution is non-regular, it suffices to set some prices as a lottery
between two other prices.

Derivation of the adaptive posted price mechanism Unlike the non-adaptive case, to
derive the previous algorithm starting from the threshold rule is not as straightforward, due to
the fact that we need to take a reservation price in the optimal auction into account. First we
derive an exact expression for the expected revenue of the optimal auction for i.i.d. customers
with cumulative distribution function F (·) and probability density function f(·). As in [35], we
define the virtual valuation as c(v) = v− 1−F (v)

f(v)
and the ironed virtual valuation as c̄(v) =G′(F (v)),

where G= conv(H) is the convexification of the negative revenue curve H(q) =
∫ q
0
c(F−1(θ))dθ as a

function of the acceptance probability q. Let E(MY(n,F )) be the expected revenue of the optimal
auction over n customers with values drawn from distribution F .

Lemma 8. For a given set of n i.i.d. potential customers with cumulative distribution function
F (·), the expected revenue of Myerson’s optimal auction is

E(MY(n,F )) = n(n− 1)

∫ 1

0

(1− q)n−2Ḡ(1− q)dq , (12)

where

Ḡ(1− q) =

{
−G(1− q) if 1− q > F (v∗) ,

v∗(1−F (v∗)) otherwise .

Proof. As mentioned before, the expected profit of the optimal auction equals its expected
virtual surplus, i.e., the sum over all customers of the expected value of the maximum of c̄ above
zero. Note that c̄ is an increasing function, and let v∗ be the value at which c̄(v∗) = 0 or zero, if no
such value exists. Then, the latter can be evaluated as:

E(MY(n,F )) =

∫ ∞
v∗

nF (v)n−1c̄(v)f(v)dv .

Performing the change of variables q= 1−F (v) and α∗ = 1−F (v∗), we obtain

E(MY(n,F )) = n

∫ α∗

0

(1− q)n−1c̄(F−1(1− q))dq

= n

∫ α∗

0

(1− q)n−1G′(1− q)dq

=−nG(1− q)(1− q)n−1
∣∣∣α∗
0
−
∫ α∗

0

n(n− 1)(1− q)n−2G(1− q)dq

= nG(1)−nG(F (v∗))F (v∗)n−1−n(n− 1)

∫ α∗

0

(1− q)n−2G(1− q)dq .
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Since c̄(v∗) = 0, we know that G attains a minimum at F (v∗) and, therefore, equals H(F (v∗)) at

that point. Now, observe that

H(q) =

∫ q

0

F−1(θ)− 1− θ
f(F−1(θ))

dθ=−(1− q)F−1(q) .

Therefore, we can conclude that

E(MY(n,F )) =−nH(F (v∗))F (v∗)n−1−n(n− 1)

∫ α∗

0

(1− q)n−2G(1− q)dq

= nv∗(1−F (v∗))F (v∗)n−1−n(n− 1)

∫ α∗

0

(1− q)n−2G(1− q)dq .

Using the definition of Ḡ, we can write the expected revenue of the optimal mechanism as (12)

and the proof is complete. �
We note that expression (12), although fairly natural to derive from (7), appears to be new. In

the adaptive setting, the price offered to every customer also depends on the set of customers that

previously declined their offer. However, since the customers are i.i.d., it suffices to know only how

many customers arrived before the current customer.

As in Section 4 we partition the interval A= [0,1] into n intervals Ai = [εi−1, εi] with 0 = ε0 < ε1 <

. . . < εn = 1. We draw an acceptance probability qi for the i-th customer who arrives from interval

Ai according to probability density function ψ(qi) = (n−1)(1−qi)n−2

γi
, where γi is a normalization

factor. We offer the customer a price of max{F−1(1− qi), v∗}, where v∗ is the reservation price of

the optimal auction.

The expected revenue from selling the item to customer i is Ḡ(1− qi). To see this, suppose that

qi < 1−F (v∗). Then, for monotone virtual valuations, the price offered to customer i is F−1(1−qi),
and thus the expected revenue is qiF

−1(1− qi) = −G(1− qi) = Ḡ(1− qi). On the other hand, if

qi > 1−F (v∗), the price offered to customer i is v∗ which is accepted with probability 1−F (v∗).

Similar arguments hold when the virtual valuation is not monotone, where it might be the case

that qiF
−1(1−qi) =−H(1−qi)< Ḡ(1−qi), and by offering a price F−1(1−qi) we might not get the

best revenue. To circumvent this problem, we can randomize between two acceptance probabilities

qi1 and qi2 such that G(1− qi) = γH(1− qi1) + (1− γ)H(1− qi2) and qi = γqi1 + (1− γ)qi2.

Following the same reasoning as in Section 4, we can bound the expected revenue of this adaptive

posted price mechanism by

n∑
i=1

ρi

∫ εi

εi−1

(n− 1)(1− q)n−2Ḡ(1− q)dq ,

where ρ1 = 1
γ1

and ρi+1 = ρi
γi+1

∫ εi
εi−1

ψ(q)(1−q)dq for i= 1, . . . , n−1. Again, if we choose ε1, . . . , εn−1
such that ρ1 = ρ2 = . . .= ρn and solve the recurrence on the εi values, this quantity can be lower

bounded by
1

nγ1
E(MY(n,F ))≥ 1

β∗
E(MY(n,F ))≈ 0.745E(MY(n,F )) .

Corollary 2 follows. As Correa et al. [14] show that the family of instances provided by Hill and

Kertz [23] in the context of prophet inequalities for i.i.d. random variables can be transformed into

a tight family of instances, the bound in Corollary 2 is tight.



Correa et al.: Posted Price Mechanisms and Optimal Threshold Strategies for Random Arrivals
20 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

6. Concluding remarks In this paper, we studied prophet inequalities in two contexts. First,
we studied the prophet secretary problem in which the random variables are independent but
distributed differently and are presented to the gambler in uniform random order. For this problem
we obtain a collection of thresholds, one for each random variable such that the associated stopping
rule guarantees, in expectation, a value of at least 1− 1/e for the expectation of the maximum
value. In recent work this bound has been beaten by Azar et al. [5] and further improved by Correa
et al. [15]. Also, recent work of Eshani et al [16] shows that the bound of 1− 1/e can be obtained
by a simpler, single threshold stopping rule.

Then, we studied the i.i.d. prophet inequality, in which the random variables are independent
and identically distributed. We obtain the best possible prophet inequality in this setting solving an
open problem of Hill and Kertz [23]. Interestingly, the optimal stopping rule can be obtained using
a quantile strategy that, even before knowing the distribution, fixes the probabilities of stopping
at each point in time.

An important problem that remains open is to find the optimal prophet inequality for the prophet
secretary problem. Recently, it was discovered that the worst case for this problem is not the i.i.d.
case [15] but it is perfectly plausible that the worst case consists of n− 1 i.i.d. random variables
plus one deterministic one.

The main obstacle in applying our technique for the multi-unit case is that we do not have the
clean expression for the expectation of the maximum. This is key to our approach as we basically
use this seemingly new expression for the expectation of the maximum of n i.i.d. random variables
to guide the decision rule at each step. This guidance is such that overall we recover a constant
times the same area that is represented by the latter expectation. In the multi-unit case we lose this
clean expression and therefore our approach falls apart. Moreover, it is not even clear whether a
quantile approach is best possible in this more general setting. Finally, it should be noted that this
problem is essentially solved in the literature. Indeed, Ezra et al. [18] get a guarantee approaching
to 1 exponentially fast as the number of items to select grows. This bound even works in the more
general prophet secretary setting (not necessarily i.i.d.).

In the remainder of the paper we present some technical results. First, in Appendix A we present
the many technicalities required to complete the picture of Section 2. In Appendix B we analyze
the tight instance for our approach for the prophet secretary problem with i.i.d. random variables.
Later, in Appendix C we present an alternative derivation of the Bernoulli Selection Lemma based
on a recent result of Ehsani et al. [16], while in Appendix D we present the technical details
concerning the ODE of Section 4.
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Appendix A: Proofs and proposition of Section 2

Lemma 2. Let ϕn(y) be as defined in (6) and let

hn(x) :=
1

n+ 1
− (1−x)n+1

n+ 1
− e− 1

2
x+

(e− 1)(e− 2)n

e(2− (e− 2)x)
x2 .

Then, ϕn(y)≥ 1− 1
e

for all y ∈ [0,1] and all n≥ 2 if and only if hn(x)≥ 0 for all n≥ 1 and x∈ [0, x̄],
where x̄= 1/(n− 1 + e/2).

Proof. Consider the variable change

x=
2(1− y)

2(n− 1) + (e− 2)(1− y)
,

so that

y=
2− (2(n− 1) + e− 2)x

2− (e− 2)x
.

As y ranges from 0 to 1, x ranges from 0 to 1
n−2+e/2 . Note that

2

2 + (e− 2)y
=

2(2− (e− 2)x)

e(2− (e− 2)x)− 2(e− 2)(n− 1)x
.

Substituting this, we see that ϕn(y)≥ e−1
e

holds for all y ∈ [0,1] and n≥ 2 if and only if

1

n
(1− (1−x)n)≥ e− 1

e
x
e(2− (e− 2)x)− 2(e− 2)(n− 1)x

2(2− (e− 2)x)
,

for all x∈ [0, 1
n−2+e/2 ] and n≥ 2. Moving the index of n by 1, the result follows. �

Lemma 3. hn(x)≥ 0 for all n≥ 1 and x∈ [0, x̄].

Proof. We split the proof into the following parts which together imply the result. All derivatives
are with respect to x.
(i) hn(0) = 0 for all n≥ 1,
(ii) hn(x̄)≥ 0 for all n≥ 1,
(iii) h′n(0)> 0 for all n≥ 1,
(iv) h′n(x̄)< 0 for all n≥ 1,
(v) h′′′n (x)> 0 for all x∈ [0, x̄] and n≥ 1.

First we show how the lemma follows from these parts (see also Figure 1). Assume (i)–(v)
hold. We prove hn(x) ≥ 0 by contradiction. Assume that for some n there exists an x1 ∈ [0, x̄]
such that hn(x1) < 0. As hn(x) is differentiable and hn(x̄) ≥ hn(0) = 0, there exists an x2 such
that hn(x2)< 0 and h′n(x2) = 0. Since hn increases from a negative value in x2 to a non-negative
value in x̄, there exists some x3 ∈ (x2, x̄) such that h′n(x3)> 0. However, as h′n(x̄)< 0 and h′n(x3)> 0,
there exists an x4 ∈ (x3, x̄) with h′′n(x4) = 0. By symmetry, the same analysis holds in the interval
(0, x2) and, therefore, there also exists an x5 ∈ (0, x2) with h′′n(x5) = 0. However, this contradicts
(v) as h′′n is strictly increasing in x.

To prove the required statements, we compute the first three derivatives of f with respect to x:

h′n(x) = (1−x)n− e− 1

2
+
n(e− 1)(e− 2)

e

(
4x− (e− 2)x2

(2− (e− 2)x)2

)
,

h′′n(x) = n

(
−(1−x)n−1 +

8(e− 1)(e− 2)

e(2− (e− 2)x)3

)
,

h′′′n (x) = n

(
(n− 1)(1−x)n−2 +

24(e− 1)(e− 2)2

(2− (e− 2)x)4

)
.

We finish the proof by proving the five statements.
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0 x̄

hn(x1) < 0

h′
n(x2) = 0

h′
n(x3) > 0

h′′
n(x4) = 0

h′′
n(x5) = 0

Figure 1. Example function hn(x) with all implications of (i)–(v).

(i) hn(0) = 0 for all n≥ 1 by a direct calculation.
(ii) From the proof of Lemma 2, it follows that hn(x̄)≥ 0 for all n≥ 1 is equivalent to ϕn(z∗i )≥

1−1/e for z∗i = 0 and all n≥ 2. By direct evaluation, we see that the latter is true for n= 2,3,4.
Thus, it remains to show that for all n≥ 5, we have

n− 1 + e−2
2

n

(
1−

(
1− 1

n− 1 + e−2
2

)n)
≥ 1− 1

e
,

or equivalently, that for all n≥ 4, we have

n− 1 + e
2

n+ 1

(
1−

(
1− 1

n− 1 + e
2

)n+1
)
≥ 1− 1

e
.

We write this as (
1− 1

n− 1 + e
2

)n+1

≤ 1−
(n+ 1)(1− 1

e
)

n− 1 + e
2

=
n+1
e

+ e
2
− 2

n− 1 + e
2

,

and multiplying both sides by (1− 1/(n− 1 + e/2))
(e−5)/2

yields(
1− 1

n− 1 + e
2

)n+ e
2−

3
2

≤
n+1
e

+ e
2
− 2

n− 1 + e
2

(
1− 1

n− 1 + e
2

) e
2−

5
2

=
(n+1

e
+ e

2
− 2)(n− 1 + e

2
)

3−e
2

(n− 2 + e
2
)

5−e
2

.

According to Proposition 2 below, the left-hand side is non-decreasing and we see that it has
limit 1/e. For the right-hand side, note that the limit for n to infinity is also 1/e, and the
derivative with respect to n of the right-hand side is

4
3− e
e

(1− (3− e)n)
(2n+ e− 2)

1−e
2

(2n+ e− 4)
7−e

2

,

which is negative for n≥ 4. The proof of (ii) is complete.
(iii) h′n(0) = 1− (e− 1)/2> 0.
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(iv) For n = 1 and n = 2, direct evaluation of h′1(x̄) and h′2(x̄) gives negative values. For n ≥ 3,
proving that

h′n(x̄) =

(
1− 1

n+ e
2
− 1

)n
+

(e− 1)((e− 2)2 + 2n(e− 4))

4en
< 0 ,

is equivalent to proving that

e

(
1− 1

n+ e
2
− 1

)n
+

(e− 1)(e− 2)2

4n
<

(e− 1)(4− e)
2

.

According to Proposition 2 below,
(

1− 1
n+ e

2−1

)n
is non-decreasing and by taking its limit and

using n≥ 3 for the second term, we get

e

(
1− 1

n+ e
2
− 1

)n
+

(e− 1)(e− 2)2

4n
< 1 +

(e− 1)(e− 2)2

12
<

(e− 1)(4− e)
2

< 0 .

(v) Since 0≤ x≤ x̄ < 1 for all n, h′′′n (x) consists of sums, products, and quotients of only strictly
positive terms. �

To complete the proof of the Bernoulli Selection Lemma, we need to prove Propositions 1 and 2.

Proposition 1. Consider the problem minx∈RM
+
{fM(x) :

∑
i∈M xi ≤ a}, where a≤ 1 and

fM(x) =

(∏
j∈M

1

2 + (e− 2)xj

)∑
S⊆M

 2|S|

1 + |S|

(∏
j∈S

xj

) ∏
j∈M\S

(2− (4− e)xj)

 .

An optimal solution satisfies that all non-zero variables have to be equal and
∑

i∈M xi = a.

Proof. Consider an optimal solution x∗, and assume its support is M ′ ⊆M . Let y∗ be the
restriction of x∗ to M ′. Then, fM(x∗) = fM ′(y

∗) and y∗ minimizes fM ′ . Consider the function
f(y1, y2) as the function fM ′ restricted to the first two variables, while the others are fixed to
y∗i . Clearly, y∗1 , y

∗
2 minimize f(y1, y2) subject to the constraints that y1, y2 > 0, and y1 + y2 ≤ a−∑

i∈M ′\{1,2} y
∗
i . Now f(y1, y2) can be written as

f(y1, y2) =
A+By1 +By2 +Cy1y2

(2 + (e− 2)y1)(2 + (e− 2)y2)
,

where

A= 4

( ∏
j∈N ′

1
2+(e−2)y∗j

) ∑
S⊆N ′

(
2|S|

1+|S|

(∏
j∈S

y∗j

)( ∏
j∈N ′\S

(2− (4− e)y∗j )

))
,

B = e−4
2
A+ 2

( ∏
j∈N ′

1
2+(e−2)y∗j

) ∑
S⊆N ′

(
2|S|+1

2+|S|

(∏
j∈S

y∗j

)( ∏
j∈N ′\S

(2− (4− e)y∗j )

))
,

C = e−4
2
B+

( ∏
j∈N ′

1
2+(e−2)y∗j

) ∑
S⊆N ′

(
2|S|+2

3+|S|

(∏
j∈S

y∗j

)( ∏
j∈N ′\S

(2− (4− e)y∗j )

))
,

with N ′ =M ′ \ {1,2}. Since the constraint y1 + y2 ≤ a−
∑

i∈N ′ y
∗
i is the only active constraint and

it is symmetric with respect to y1 and y2, the KKT conditions dictate that a minimum of f(y1, y2)
satisfies

∂f(z∗1 , z
∗
2)

∂z∗1
=
∂f(z∗1 , z

∗
2)

∂z∗2
. (13)
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Taking the derivatives

∂f(y1, y2)

∂y1
=

2B+ 2y2C − (e− 2)A− (e− 2)y2B

(2 + (e− 2)y1)2(2 + (e− 2)y2)
,

∂f(y1, y2)

∂y2
=

2B+ 2y1C − (e− 2)A− (e− 2)y1B

(2 + (e− 2)y1)(2 + (e− 2)y2)2
,

we see that (13) holds if and only if(
(4C − (e− 2)2A) + (2(e− 2)C − (e− 2)2B)(y2 + y1)

)
(y2− y1) = 0 .

So either y1 = y2, or at least one is strictly positive and

y1 + y2 =
(e− 2)2A− 4C

2(e− 2)C − (e− 2)2B
.

We evaluate the right-hand side of the latter, using the formulae for A, B, and C. Note first that
A≥ 0, and observe that

B = e−4
2
A+ 2

( ∏
j∈N ′

1
2+(e−2)y∗j

) ∑
S⊆N ′

(
2|S|+1

2+|S|

(∏
j∈S

y∗j

)( ∏
j∈N ′\S

(2− (4− e)y∗j )

))

≤ e−4
2
A+ 4

( ∏
j∈N ′

1
2+(e−2)y∗j

) ∑
S⊆N ′

(
2|S|

2+|S|

(∏
j∈S

y∗j

)( ∏
j∈N ′\S

(2− (4− e)y∗j )

))
≤ e−4

2
A+A= e−2

2
A. (14)

Now, note that 2|S|+i+1

i+2+|S| ≥
2|S|+i

i+1+|S| for all i, |S| ∈R+. We can bound C by

C = e−4
2
B+

( ∏
j∈N ′

1
2+(e−2)y∗j

) ∑
S⊆N ′

(
2|S|+2

3+|S|

(∏
j∈S

y∗j

)( ∏
j∈N ′\S

(2− (4− e)y∗j )

))

≥ e−4
2
B+

( ∏
j∈N ′

1
2+(e−2)y∗j

) ∑
S⊆N ′

(
2|S|+1

2+|S|

(∏
j∈S

y∗j

)( ∏
j∈N ′\S

(2− (4− e)y∗j )

))
≥ e−4

2
B+ 1

2
B− (e−4)

4
A

≥ e−3
2
B− (e−4)

4
A

≥ (e−3)(e−2)
4

A− (e−4)
4
A

= e2−6e+10
4

A, (15)

where the last inequality follows from (14). Now, using (14) and (15), we bound

y∗1 + y∗2 =
(e− 2)2A− 4C

2(e− 2)C − (e− 2)2B

≤ (e− 2)2A− (e2− 6e+ 10)A
(e−2)(e2−6e+10)

2
A− (e−2)3

2
A

=
(2e− 6)A

(e−2)((e2−6e+10)−(e−2)2)
2

A

=
2(2e− 6)

(e− 2)(6− 2e)
,

which is negative. This contradicts the constraint y1, y2 > 0. As the choice of the index {1,2} is
arbitrary, we conclude that all coordinates of y∗ have to be equal.
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To finish the proof, we still need to show that in an optimal solution, the constraint
∑

i∈M x∗i =∑
i∈M ′ y

∗
i ≤ a is tight. As all coordinates of y∗ are equal, we know that y∗i = ȳ, for some ȳ. Let k

denote the number of non-zero variables in x∗, i.e., k= |M ′|. Then, abusing notation, we let

fM ′(ȳ) =

∏
j∈M ′

1

2 + (e− 2)ȳ

 ∑
S⊆M ′

 2|S|

1 + |S|

(∏
j∈S

ȳ

) ∏
j∈M ′\S

(2− (4− e)ȳ)


= (2 + (e− 2)ȳ)−k

k∑
`=0

(
k

`

)
2`

1 + `
ȳ`(2− (4− e)ȳ)k−`

=
(2 + (e− 2)ȳ)k+1− (2− (4− e)ȳ)k+1

(2 + (e− 2)ȳ)k · 2ȳ(k+ 1)
.

We claim that fM ′(ȳ + ε) ≤ fM ′(ȳ), for small ε > 0 and ȳ < a
k
. Hereto, we take the derivative of

fM ′(ȳ) w.r.t. ȳ, and show that this is non-positive for ȳ ≥ 0, from which the claim follows. After
some tedious calculations, we have that

∂fM ′(ȳ)

∂ȳ
=

(2 + (e− 2)ȳ)−(k+1)

(k+ 1)ȳ2
(
(2− (4− e)ȳ)k(2 + (e− 2)ȳ+ 2kȳ)− (2 + (e− 2)ȳ)k+1

)
.

As ȳ ≥ 0, it is easy to see that the sign of the derivative is equal to the sign of (2− (4− e)ȳ)k(2 +
(e−2)ȳ+2kȳ)− (2+(e−2)ȳ)k(2+(e−2)ȳ). Therefore, to show that the derivative is non-positive
for ȳ≥ 0, we need to show that

(2 + (e− 2)ȳ)k+1 ≥ (2− (4− e)ȳ)k(2 + (e− 2)ȳ+ 2kȳ) . (16)

We prove this inequality by induction on k. For k= 1, we have

(2 + (e− 2)ȳ)2 = (2− (4− e)ȳ)(2 + (e− 2)ȳ+ 2ȳ) + 4ȳ2

≥ (2− (4− e)ȳ)(2 + (e− 2)ȳ+ 2ȳ) .

Assume that (16) is true for given k. Then,

(2 + (e− 2)ȳ)k+2 ≥ (2− (4− e)ȳ)k(2 + (e− 2)ȳ+ 2kȳ)(2− (4− e)ȳ+ 2ȳ)
= (2− (4− e)ȳ)k+1(2 + (e− 2)ȳ+ 2kȳ)

+ (2− (4− e)ȳ)k(2− (4− e)ȳ+ 2(k+ 1)ȳ)2ȳ
≥ (2− (4− e)ȳ)k+1(2 + (e− 2)ȳ+ 2kȳ) + (2− (4− e)ȳ)k+12ȳ
= (2− (4− e)ȳ)k+1(2 + (e− 2)ȳ+ 2(k+ 1)ȳ) ,

where the first inequality is due to the induction hypothesis. Hence, (16) is true. For each k ≥ 1
and ȳ ≥ 0, the derivative is non-positive, and fM ′(ȳ) is minimized for ȳ as large as possible, that
is,
∑

i∈M ′ ȳ= a. �

Proposition 2. Let c ∈ [0, 1
2
]. Then, f(x) =

(
1− 1

x+c

)x
is a non-decreasing function of x in

(1,∞).

Proof. Define g(x) = ln(f(x)) = x ln
(

1− 1
x+c

)
. We prove f(x) is non-decreasing by proving that

g′(x)≥ 0. Note that

g′(x) = ln

(
x+ c− 1

x+ c

)
+

x

(x+ c− 1)(x+ c)
,
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which is non-negative if and only if

x

(x+ c− 1)(x+ c)
≥ ln

(
1 +

1

x+ c− 1

)
.

We substitute 1
x+c−1 = z. Thus, the right-hand side becomes ln(1 + z), while the left-hand side

becomes
x

(x+ c− 1)(x+ c)
=

1
z
− c+ 1
1
z

+ 1
z =

1 + z− cz
1 + z

z =
z

1 + z
(1 + (1− c)z) .

We expand ln(1 + z) = z− z2

2
+ z3

3
− z4

4
± . . ., so it is sufficient to prove

z

1 + z
(1 + (1− c)z)≥ z− z

2

2
+
z3

3
− z

4

4
± . . . .

We multiply both sides by 1+z
z

to retrieve

1 + (1− c)z ≥ 1 +
z

2
− z

2

6
+
z3

12
− z4

20
± . . . .

As c≤ 1
2
, it suffices to prove − z2

6
+ z3

12
− z4

20
± . . .≤ 0, i.e.,

∞∑
i=2

(−1)izi

i(i+ 1)
≥ 0 .

We rewrite this as

∞∑
i=2

1

z

(−1)izi+1

i(i+ 1)
=
∞∑
i=2

1

z

∫ z

0

(−1)iti

i
dt=

1

z

∫ z

0

∞∑
i=2

(−1)iti

i
dt ,

so the proof is complete if we show
∞∑
i=2

(−1)iti

i
≥ 0 .

This is true, because

∞∑
i=2

(−1)iti

i
=−

∞∑
i=1

(−1)i+1ti

i
+ t=− ln(1 + t) + t≥ 0 ,

where the last inequality follows from t≥ ln(1 + t) for t≥ 0. �

Proposition 3. The function f(x) = (1− e−x)
(

1
x(e−2) + 1

)
has a global maximum in x= 1.

Proof. We compute the first two derivatives and find

f ′(x) =
−ex + (e− 2)x2 +x+ 1

(e− 2)x2
e−x ,

f ′′(x) =
2ex− ((e− 2)x3 +x2 + 2x+ 2)

(e− 2)x3
e−x .

We see that f ′(1) = 0. To show that x= 1 is a global maximum, we prove that f ′(x)> 0 for x< 1
and f ′(x)< 0 for x> 1.

To see this, first note that f ′′(x) has the same sign as the function

g(x) = 2ex−
(
(e− 2)x3 +x2 + 2x+ 2

)
.
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Note further that g(0) = 0. Since this is an exponential function with a positive coefficient minus
a polynomial with only positive coefficients, g(x) first decreases until some point because of the
polynomial, after which it is increasing because of the exponential term that starts to dominate
the polynomial. So there exists some x∗ > 0 such that g(x)< 0 for x < x∗, g(x∗) = 0 and g(x)> 0
for x> x∗. Since g(1) = e−3< 0, we know x∗ > 1. Therefore, f ′′(x)< 0 up to x∗ > 1 and f ′′(x)> 0
afterwards, and hence, f ′(x) is decreasing up to x∗ > 1 and increasing afterwards.

Since f ′(1) = 0 and f ′(x) is decreasing for x≤ 1, we know f ′(x)> 0 for x< 1.
Furthermore, f ′(x) < 0 for 1 < x ≤ x∗, since f ′(1) = 0 and f ′(x) is decreasing for 1 < x < x∗.

Since limx→∞ f
′(x) = 0 and f ′(x) is increasing from x∗ onward, we know f ′(x)< 0 for x> x∗, and

hence, f ′(x)< 0 for all x> 1.
Therefore, x= 1 is a global maximum. �

Appendix B: Proof for optimal non-adaptive threshold rule in Section 3.1 We now
perform the analysis of the tight instance with i.i.d. distributions. We note first that as n grows to
infinity the prophet’s reward approaches n/(e−2) · (1/n)+1 = (e−1)/(e−2). To upper bound the
expected reward of the best non-adaptive stopping rule, we condition on the number of random
variables that have a high value and then estimate the right value of k. Thus, let V denote the
random variable that has value equal to the reward that the stopping rule achieves. The expectation
of V can be computed by conditioning on the number of random variables Xi that have a high
value (i.e., value n

e−2). Denote the number of random variables Xi with high value by K, then

E[V ] = P[K = 0]E[V |K = 0] +P[K = 1]E[V |K = 1] +P[K ≥ 2]E[V |K ≥ 2] .

We bound each summand separately. The first term is straightforward.

P[K = 0]E[V |K = 0] =

(
1− 1

n3

)n2(
1−

(
1− 1

n

1− 1
n3

)k)
≤ 1−

(
1− 1

n

)k
≤ 1− e− k

n .

For the second term we additionally condition on how many of the k selected random variables
turn out to be 1.

P[K = 1]E[V |K = 1]≤

(
n2 1

n3

(
1− 1

n3

)n2) k∑
i=0

n
e−2 + i

i+ 1

(
k

i

)(
1

n

)i(
1− 1

n

)k−i
≤ 1

n

(
1 +

k∑
i=0

n
e−2

i+ 1

(
k

i

)(
1

n

)i(
1− 1

n

)k−i)

=
1

n

(
1 +

n2

(e− 2)(k+ 1)

k+1∑
i=1

(
k+ 1

i

)(
1

n

)i+1(
1− 1

n

)k+1−i
)

=
1

n

(
1 +

n2

(e− 2)(k+ 1)

(
1−

(
1− 1

n

)k+1
))

≤ 1

n

(
1 +

n2

(e− 2)k

(
1− e− k

n

))
≤ n

(e− 2)k

(
1− e− k

n

)
.



Correa et al.: Posted Price Mechanisms and Optimal Threshold Strategies for Random Arrivals
28 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

For the third term the probability is so tiny that the obtained reward becomes irrelevant.

P[K ≥ 2]E[V |K ≥ 2]≤

(
1−

(
1− 1

n3

)n2

− n
2

n3

(
1− 1

n3

)n2)
n

e− 2

≤
(

1−
(

1− 1

n

)(
1 +

1

n

))
n

(e− 2)

≤ 1

n(e− 2)
.

Summing the three terms, and using Proposition 3, we conclude that for all ε > 0 there exists a
large enough n such that:

E[V ]≤ ε+ max
x

(1− e−x)
(

1 +
1

x(e− 2)

)
≤ (1− e−1)e− 1

e− 2
+ ε.

Appendix C: Alternative proof for the Bernoulli Selection Lemma In this section we
present an alternative proof of the Bernoulli Selection Lemma, based on a recent result of Ehsani
et al. [16].

Claim 1 ([16], Claim 23). Let Z1, . . . ,Zn be random variables such that
∑

i P(Zi > 0) ≤ 1.
Then, there exists a threshold τ such that the expected value of a random variable chosen uniformly
at random from the random set R= {i :Zi ≥ τ} is at least(

1− 1

e

) n∑
i=1

E[Zi] .

Using this claim we can prove Lemma 1 as follows. Let z∗ be the optimal (fractional) solution

to maxzi≤qi

{∑
i∈N bizi

∣∣∣ ∑zi ≤ 1
}

. Define the random variables

Zi =

{
biYi with probability z∗i /qi ,

0 with probability 1− z∗i /qi ,

which are well defined as z∗i ≤ qi. Also,∑
i

P(Zi > 0) =
∑
i

P(Zi = bi) =
∑
i

z∗i ≤ 1 ,

as z∗ is feasible. We now proceed to use the previous claim. Let Zτ be the value of the random
variable chosen from the random set R= {i :Zi ≥ τ}. Thus, there exists τ such that

E[Zτ ]≥ (1− 1/e)
∑
i

E[Zi] = (1− 1/e)
∑
i

biz
∗
i .

In the original proof for the Bernoulli Selection Lemma, we argue that

max
S⊆N

E
[∑

i∈S biYi∑
i∈S Yi

]
is in fact equivalent to the relaxation

max
0≤πi≤qi

∑
i∈N

biπi ∑
S⊆N\{i}

 1

1 + |S|

(∏
j∈S

πj

) ∏
j∈N\(S∪{i})

(1−πj)

 .
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Now, let T = {i : bi ≥ τ} denote the set of random variables that can possibly cross τ . Set

π∗i =

{
z∗i if i∈ T ,
0 otherwise .

Then,

∑
i∈N

biπ∗i ∑
S⊆N\{i}

 1

1 + |S|

(∏
j∈S

π∗j

) ∏
j∈N\(S∪{i})

(1−π∗j )


=
∑
i∈T

biz∗i ∑
S⊆T\{i}

 1

1 + |S|

(∏
j∈S

z∗j

) ∏
j∈T\(S∪{i})

(1− z∗j )


=
∑
i∈T

biz
∗
i

∑
S⊆T\{i}

1

1 + |S|
P(S =R \ {i})

=
∑
i∈T

E[Zi |Zi = bi]P(Zi = bi) ·P(i is chosen at random from R∪{i})

=
∑
i∈T

E[Zi | i∈R]P(i∈R, i is chosen at random from R)

=E[Zτ ] , ,

where the second and second to last equalities follow due the fact that for any i ∈ T , Zi = bi is
equivalent to Zi ≥ τ (or i∈R).

Appendix D: Proofs and proposition for Section 4

Lemma 6. Differential equation (ODE) has a unique solution y(t), which is a decreasing and
strictly convex function on the interval [0,1]. Furthermore, y′′′(t)> 0 for y ∈ (0,1).

Proof. Note that y′(0) = −β < 0 because y(0) = 1. For y ∈ (0,1], we know ln(y) ≤ 0. Also, as
β > 1, we conclude y′(t)< 0. Furthermore, y(t) is convex as for y ∈ [0,1),

y′′ = y′(ln(y)− 1) + y
y′

y
= y′ ln(y)> 0 ,

and y′′ = 0 for y= 1. Finally,

y′′′ = y′′ ln(y) + y′
y′

y
= y′ ln2(y) +

(y′)2

y
= y′

(
ln2(y) + ln(y)− 1− β− 1

y

)
.

We show that ln2(y) + ln(y) − 1 − β−1
y
< 0 for y ∈ (0,1) or, equivalently, that g(y) = y ln2(y) +

y ln(y)− y−β+ 1< 0 for y ∈ (0,1). To determine the maximum value of g(y), observe that

dg(y)

dy
= ln2(y) + 2y ln(y)

1

y
+ ln(y) + y

1

y
− 1

= ln2(y) + 3 ln(y) = ln(y) (ln(y) + 3) .

Note that dg(y)

dy
≥ 0 on y ∈ (0, e−3) and g′(y)< 0 on y ∈ (e−3,1). Hence, since g(y) is continuous, its

maximum is attained at y= e−3, and g(e−3) = 5e−3−β+ 1< 0 as β > 1.25.
Moreover, note that if y ∈ (0,1), then |y′′| is bounded, and hence y′ is Lipschitz continuous.

Therefore, by the Picard-Lindelöf Theorem [31], y(t) is unique on (0,1). As y(0) is given, and we
defined y(1) as the continuous extension of y(t), the solution y(t) is unique on [0,1]. �
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Lemma 7. For x1 < (1− β
n

)
1

n−1 , we have xi
n−1 < y( i

n
) for i= 1, . . . , n, where y(t) is the unique

solution of (ODE).

Proof. First note that x0 = y(0) = 1, by definition. Moreover, we already saw that y′(0) =−β.
As y(t) is strictly convex and, since x1 < (1− β

n
, we have that y(1/n)> y(0)− 1

n
β > x1

n−1, proving
the statement for i= 1. We proceed by induction assuming that xi

n−1 < y( i
n

). Taylor’s Theorem
states that there exists ζ ∈ [ i

n
, i+1
n

] such that

y( i+1
n

) = y( i
n

) +
1

n
y′( i

n
) +

1

2n2
y′′( i

n
) +

1

6n6
y′′′(ζ) .

The above expression follows from the mean value form of the remainder of the Taylor expansion
of y( i+1

n
) around i

n
. Now,

y( i+1
n

)> y( i
n

) +
1

n
y′( i

n
) +

1

2n2
y′′( i

n
) = y( i

n
) +

y′( i
n

)

n

(
1 +

ln(y( i
n

)

2n

)
= y( i

n
) +

y( i
n

)(ln(y( i
n

))− 1)− (β− 1)

n

(
1 +

ln(y( i
n

)

2n

)
≥ n− 1

n
y( i

n
)

n
n−1 − β− 1

n
>
n− 1

n
xi
n− β− 1

n
> xi+1

n−1 .

Here, the first inequality follows from y′′′ > 0, the second from Proposition 4 below, the third from
the induction hypothesis, and the last from equation (9) and the assumption that x1

n−1 < 1− β
n

.
�
To finalize the proof of Lemma 7, we show the following proposition.

Proposition 4. For x∈ (0,1] and n≥ 2 we have

x+
x(ln(x)− 1)

n
+

ln(x)(x(ln(x)− 1)− (β− 1))

2n2
≥ n− 1

n
x

n
n−1 .

Proof. Fix a value for n. Since −(β − 1) ln(x) is non-negative, and since x > 0, it suffices to
prove that

f(x) := 1 +
ln(x)− 1

n
+

ln(x)(ln(x)− 1)

2n2
− n− 1

n
x

1
n−1 ≥ 0 .

As f(1) = 0 for all n, showing that f is non-increasing completes the proof. We have that f ′(x) =
1
nx

(
1−x 1

n−1 + 1
2n

(2 ln(x)− 1)
)

, so f ′ has the same sign as g(x) := 1− x 1
n−1 + 1

2n
(2 ln(x)− 1) for

x∈ (0,1]. We prove that g has a maximum x∗ ∈ (0,1] with g(x∗)≤ 0. This implies that both g and
f ′ are non-positive. Indeed,

g′(x) =
1

nx
− x

1
n−1−1

n− 1
,

g′′(x) =− 1

nx2
+

n− 2

(n− 1)2
x

1
n−1−2 .

Thus, g′(x∗) = 0 only when x∗ = (n−1
n

)n−1. Furthermore, g′′ has the same sign as h(x) := − 1
n

+
n−2

(n−1)2x
1

n−1 , which is an increasing function in x for all n≥ 2. As h(1) =− 1
n(n−1)2 < 0, g′′ is negative.

Thus, g is concave and attains its maximum at x∗. Finally,

g(x∗) =
1

2n
+
n− 1

n
ln

(
1− 1

n

)
≤ 1

2n
+
n− 1

n

(
− 1

n

)
=

1

n2
− 1

2n
≤ 0 ,

where the last inequality follows from n≥ 2. �
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