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Abstract: The accurate and effective prediction of the traffic flow of vehicles plays a significant role
in the construction and planning of signalized road intersections. The application of artificially
intelligent predictive models in the prediction of the performance of traffic flow has yielded positive
results. However, much uncertainty still exists in the determination of which artificial intelligence
methods effectively resolve traffic congestion issues, especially from the perspective of the traffic
flow of vehicles at a four-way signalized road intersection. A hybrid algorithm, an artificial neural
network trained by a particle swarm optimization model (ANN-PSO), and a heuristic Artificial
Neural Network model (ANN) were compared in the prediction of the flow of traffic of vehicles
using the South Africa transportation system as a case study. Two hundred and fifty-nine (259) traffic
datasets were obtained from the South African road network using inductive loop detectors, video
cameras, and GPS-controlled equipment. For the ANN and ANN-PSO training and testing, 219 traffic
data were used for the training, and 40 were used for the testing of the ANN-PSO model, while
training (160), testing (40), and validation (59) was used for the ANN. The ANN result presented
a logistic sigmoid transfer function with a 13–6–1 model and a testing R2 of 0.99169 compared to
the ANN-PSO result, which showed a testing performance of R2 0.99710. This result shows that
the ANN-PSO model is more efficient and effective than the ANN model in the prediction of the
traffic flow of vehicles at a four-way signalized road intersection. Furthermore, the ANN and ANN-
PSO models are robust enough to predict traffic flow due to their better testing performance. The
modelling approaches proposed in this study will assist transportation engineers and urban planners
in designing a traffic control system for traffic lights at four-way signalized road intersections. Finally,
the results of this research will assist transportation engineers and traffic controllers in providing
traffic flow information and travel guidance for motorists and pedestrians in the optimization of
their travel time decision-making.

Keywords: artificial neural network; particle swarm optimization; traffic congestion; artificial intelli-
gence; artificial neural network-particle swarm optimization; traffic flow; signalized road intersection

1. Introduction

In developed and developing countries, traffic congestion at signalized road inter-
sections has become a central issue. Efficient and effective traffic flow prediction in road
transportation is one of the most fundamental characteristics of smart cities and intelligent
transportation systems [1]. It is imperative to transportation researchers and pedestri-
ans [1]. Having up-to-date traffic flow information for traffic congestions on freeways
and knowing the level of the traffic volume of vehicles at road intersections in advance
plays an important role in assisting transportation and civil engineers in developing and
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implementing transportation planning strategies, improving the efficiency of traffic net-
work operations, and reducing the problem of traffic congestions on freeways and road
intersections. Another advantage of having up-to-date traffic flow information is that it
assists road users in orientating the travel routes to use when traveling to avoid getting
stuck in traffic. It also reduces travel times on the road.

Therefore, these advantages listed above have made traffic flow prediction an in-
dispensable branch of road transportation and have attracted attention from various
transportation researchers over the last few decades. However, transportation researchers
have made many attempts to improve traffic flow prediction using outdated and classical
models. Many have applied traditional statistical techniques to predict traffic flow prob-
lems in the last 20 years, such as the Autoregressive Integral Moving Average (ARIMA) [2].
This traditional model is only appropriate for traffic flow predictions that are linear in
nature and stable [3]. Other traditional models—such as the Support Vector Machine
(SVM) [4], Support Vector Regression Machine (SVR) [5,6], Bayesian method [7], and K-
nearest neighbour [8]—are models which are all applied in traffic flow prediction, with
the aim of processing non-linear traffic datasets. Still, their prediction performance de-
pends on cautious characteristic engineering, making these models inapplicable to the
Spatio-temporal correlation analysis of traffic flow datasets.

Over the last few years, many machine-learning methods have been used to address
the problems of traffic flow predictions. A typical example of this is when [9] applied a
Graph Convolutional Network (GCN) to accurately extract the spatial characteristics of a
traffic road network. However, all of these traditional statistical methods have yielded pos-
itive results in the prediction of traffic flow. However, past related research has shown that
most of these neural networks still lack accuracy and effectiveness in terms of regression
values when compared to heuristics and hybrid models.

Research findings, over the years, have proven that traditional models cannot handle
a large volume of traffic data. One major theoretical issue that has dominated the field of
transportation for many years is that if a large volume of traffic datasets is not handled
(divided into inputs and outputs) properly, this can decrease the accurate prediction of
traffic flow at road intersections or freeways. ANN-PSO was used in this study because
many researchers have used particle swarm optimization modelling to develop a predictive
approach in different areas of studies; notably, among them is [10], who used the ANN-
PSO model to predict thermal properties; [11] used different types of particle swarm
optimization algorithms, such as basic particle swarm optimization (PSO), to find solutions
to three primary aspects (synaptic weights, architecture, and transfer functions neurons) of
an ANN network. [12] used another form of hybrid particle swarm optimization called
social learning particle swarm optimization (SL-PSO) to solve real-time traffic signal control.
During this research, it was discovered that a hybrid ANN-PSO model, to the best of the
author’s knowledge, has never been used before to predict or model the traffic flow
performance of vehicles at four-way signalized road intersections.

1.1. Motivation and Contribution of the Research

The primary reason why a hybrid ANN-PSO was used in this study was that [12]
stated that PSO can be defined as an optimization technique that performs a rapid conver-
gence to optimal performances. This characteristic is desirable when evaluating different
traffic conditions (traffic flow, traffic density, and vehicular speed). Besides this, a canonical
PSO algorithm is easy to use and requires very few adjustment parameters. The main
objective of this study was to carry out an extensive comprehensive analysis of the predic-
tion performance of the traffic flow of vehicles by comparing the traffic flow prediction
performance of a heuristic ANN model and a hybrid ANN-PSO model. Another pri-
mary objective of this research study was to examine the emerging role of soft computing
techniques (ANN and ANN-PSO) in the context of traffic flow modelling at a signalized
road intersection. This research study will provide a significant opportunity to advance
the understanding of the application of an artificial neural network model (ANN) and
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an artificial neural network trained by particle swarm optimization (ANN-PSO) in the
modelling of the traffic flow of vehicles at a four-way signalized road intersection. Another
significant contribution of this research is that it will assist various developed and develop-
ing countries to advance their traffic management techniques in curbing traffic congestion
at road intersections.

1.2. Organization of the Research

This paper has been divided into five parts. The first part deals with the overview and
significance of the study. The second part begins by laying out the theoretical dimensions
of the research and looks at related studies on ANN and ANN-PSO. The third part is
concerned with the methodology used in this research study and a detailed explanation
of the traffic control delay at a four-way signalized road intersection. The fourth part
presents the findings of the research. The final part draws upon the entire paper, tying up
the various theoretical and empirical findings to contribute to the field of transportation,
and areas for further research are identified.

2. Literature Review
2.1. Related Studies

In the last few years, transportation researchers have carried out a lot of research on
the occurrence of traffic congestion in road transportation and the prediction of the traffic
flow at various road networks. However, few researchers have drawn on any structured
research into traffic flow prediction at signalized road intersections using hybrid and
heuristic predictive models. Previous studies by D’Andrea and his co-worker Marcelloni
created an expert system for detecting traffic congestions at various road networks by
using traffic data that comprises the past and current vehicular speed [13]. Related research
to [13] was proposed by [14], in which a method called “scalable” was used to predict
the traffic congestion of vehicles in a grid framework. Anwar and co-workers applied a
spectral clustering-based method to supervise traffic congestions [15]. Considering the
traffic flow density and different types of roads, Liang and co-workers developed a novel
prediction model capable of estimating the next-time step traffic volume using a single
road traffic segment to clarify traffic congestions using traffic flow variables such as the
current inflow, outflow, and traffic volume, etc. [16].

However, the research carried out by Xiangjie and co-workers improved the model
of [16] by using a support vector machine (SVM) for the prediction of the next time-
step traffic speed and traffic volume and used it in the estimation of traffic congestion
of segments roads [17]. Researchers such as [18] proposed a specialized density-based
spatial clustering application (DBSCAN) using a noise algorithm. This was developed for
the detection and analysis of a consistent congested cluster of grids. They investigated
a deep-learning-based prediction model using a restricted Boltzmann Machine and a
Recurrent Neural Network to predict the traffic flow at congested roads [18]. A practical
traffic flow parameter prediction model was created for traffic flow conditions estimations.
An autoregressive model was combined with other predictive models [17,19]. In their
research, [20] developed a model combining artificial neural networks and root mean
squared error. Both were used as a metric by applying singular point probabilities. Traffic
congestion has become a global pandemic that transportation researchers are racing against
time to improve the effectiveness of intelligent transportation systems. Some researchers
have been able to achieve good results when it comes to traffic flow prediction. Traffic flow
prediction techniques are categorized into:

• Traditional statistical techniques.
• Traditional machine learning techniques.
• Deep learning methods.

Traditional statistical techniques comprise the historical average method (HA) and a
statistical technique called Autoregressive Integrated Moving Average (ARIMA) [2]. Sub-
sequently, the features of the ARIMA model consist of the combination of several models,
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such as ARIMA time series models (KARIMA) [21] and the Seasonal Autoregressive Inte-
grated Moving Average (SARIMA) [22]. However, the major disadvantage of this type of
model is the limitation in the processing capacities in terms of non-linear and challenging
traffic flow data [23].

Compared with the above traditional models, traditional machine learning techniques
can efficiently model complex non-linear traffic data. Typical examples are SVM [4,24,25]
and SVR [5,26]. These traditional models can map low-dimensional non-linear data to
high-dimensional space using kernel functions to evaluate traffic data characteristics for
prediction. However, the selection of the kernel function is a primary determinant affect-
ing the performance of predictive models. Apart from Bayesian models [7], K nearest
neighbours [8,27,28] and Artificial Neural Networks (ANN) [29] have been applied for
the prediction of traffic flow. The significant drawback of traditional machine learning
is their reliance on engineering and the experience of experts [30]. However, for these
traditional methods, it is complex to improve the efficiency of these predictive models
when processing and evaluating complex and highly non-linear data [3,31]. Currently,
deep learning techniques in transportation have yielded good results, especially in image
processing and natural language processing [32].

Nowadays, transportation researchers are applying deep learning methods in traffic
data mining using temporal and spatial correlation. Previous research performed by [6,33],
in which they applied Deep Belief Networks (DBN) and Stacked Autoencoder Models
(SAEs) to extend and deepen the network layers for the learning of the features in traffic flow
data. Then, researchers such as [34] applied the combination of traffic flow and weather
information to enhance the predictive performance of the DBN model. Models such as
Long Short-Term Memory (LSTM) [35–38], Gated Recurrent Unit Network (GRU) [39],
and Nonlinear Autoregressive with External Input (NARX) [36] were applied for the
temporal correlation of traffic flow data to improve the traffic flow prediction. However,
these predictive models failed to consider the spatial relationship in the structure of the
traffic network. Even though Convolutional Neural Networks (CNNs) [40–42] have made
significant headway in the field of vision, transportation researchers went further in
applying CNN to traffic flow prediction to capture local spatial characteristics. Hence, [43]
suggested Deep Spatio-Temporal Residual Networks (STResNet) to predict the flow of
people in a transportation system.

Few recent surveys have comprehensive literature reviews on traffic flow prediction
in specific contexts from various perspectives of road transportation, especially from the
traffic flow of vehicles at road intersections. For example, [44] investigated the techniques
and applications from the past decade and explained in detail the ten challenges and
issues experienced by pedestrians and motorists in terms of traffic flow. The investigations
carried out by [44] were more aimed at considering short-term traffic flow prediction. The
literature reviews involved were primarily dependent on the conventional methods of
traffic flow prediction. Another piece of research by [45] focused on the prediction of
short-term traffic flow by summarizing the methods applied in the prediction of traffic
flow. They also made some cogent suggestions for future research.

Furthermore, research carried out by [46] explained, in detail, how to acquire traffic
data and aimed their research at conventional machine learning techniques. In addition to
these, [47] indicated the contributions and research frameworks of traffic flow prediction.
The research carried out by [48–51] summarized the applicable models that depend on
conventional techniques and some early deep learning techniques. Alexander et al. [52]
outlined a comprehensive survey of deep neural networks to predict the traffic flow of
vehicles. Their research discussed three well-known deep neural architectures compris-
ing convolutional, recurrent, and feed-forward neural networks. However, some recent
technological innovations involving graph-based deep learning were not discussed in their
research [52]. Likewise, researchers such as [53] investigated a well-detailed survey of
graph-based deep learning architecture, including their applications in the field of traffic
flow. Furthermore, [54], in their research, outline a survey aimed at applying deep learning
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models in the evaluation and analysis of traffic flow data. However, their research neglects
to focus on other areas of road transportation. They only carried out their investigations on
the prediction of traffic flow. In general, there is other research on the prediction of traffic
flow in road transportation that possesses standard features. It is always advantageous
to consider all of the areas of traffic flow. Therefore, there is still insufficient research that
contributes to traffic flow prediction, especially when it comes to traffic flow prediction
using heuristics and nature-inspired algorithms.

Comparing different model specifications shows that testing results are significant in
supporting the usefulness of a proposed prediction model. For example, [3] investigated
the usefulness and effectiveness of recent comparative research based on short-term traffic
flow forecasting. They stated that not all model comparisons are efficient, especially when
comparing a complex non-linear model and a simple linear model. In addition, there exists
an almost non-existent difference between the accuracy, simplicity, and suitability of a
model (Occam’s razor). In their research, [55] recommend that as much as model accuracy
is very significant, it shouldn’t only be used as a yardstick in determining the appropriate
methodology for the prediction of the traffic flow of vehicles. Other challenges, such as
time and effort, should be considered when determining the development of the model,
techniques, and expertise, resulting from the transferability and suitability to changes in
the temporal behaviour of traffic flow [55–57].

Even though choosing the “best” model in a group of baseline models using testing
and comparison is significant, there is a need for a practical option to select a heuristic or
metaheuristic approach to combine traffic flow predictions. The combination of predictive
models may not likely result in a single well-specified model. A well-known case is the
forecasting of complex traffic datasets. Different researchers in traffic flow forecasting have
carried out this approach of combining predictive models; [58] carried out research in which
they offered statistical guidelines for traffic flow by dynamically shifting between different
models. The only disadvantage of their research is that they did not provide combined
forecasts of traffic flow. Furthermore, [59] researched the combination of traffic flow
forecasts from two neural networks by applying the Bayesian rule. In their research, [60]
investigated the combination of traffic flow predictions from various types of predictive
models, while [61] applied a fuzzy logic model to combine traffic flow forecasts. The
research of [62] was based on combining forecasts from three models by applying neural
networks.

2.2. Traffic Flow Patterns at a Signalized Road Intersection

This subsection describes the use of a time-space diagram (Figure 1) to explain the
traffic flow patterns at a four-way signalized road intersection.

When drivers arrive at a signalized road intersection, the driver’s response to traffic
lights is important in understanding the traffic flow patterns at a road intersection, i.e.,
the response of drivers when the traffic lights turn red, the beginning of the traffic signal
interval when the traffic lights turn green, and the queue of the vehicles clearing from the
road intersection without any traffic control delays. This process continues back and forth
from traffic lights turning to red, then to green, and back to yellow, then to red again. These
are the basic concepts behind the traffic flow of vehicles at signalized road intersections.
To explain these concepts efficiently, we are going to use a time-space diagram. Some
assumptions were made trying to explain these time-space diagrams. These assumption
diagrams can be found in the book written by [63].

Assumption 1

Let us assume that three vehicles are traveling at a uniform speed and are approaching
a signalized road intersection. The “space” between the vehicles and the road intersection
is shown on the y-axis, while the time is on the x-axis. The three circles display the traffic
lights. These traffic lights can be either green, yellow, or red, depending on real-time
traffic flow.
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Assumption 2

These three vehicles have been traveling at a uniform speed. These vehicles’ tra-
jectories are parallel and linear. The traffic lights turn red as these vehicles reach the
road intersection.

Assumption 3

As the traffic lights turned red, the three vehicles approaching the intersections had to
stop, and their speed dropped drastically. Two incoming vehicles meet the three vehicles
at the road intersection, making it five vehicles in a queue at the intersection. Deceleration
has occurred, and the vehicular speed is zero. In Assumption 3, as the speed of the
vehicle drops due to the traffic lights turning red, the duration of time spent at the road
intersection increases.

Assumption 4

As the traffic lights turn green, the vehicles already waiting in a queue at the road
intersection start accelerating and driving into the intersection.

Assumption 5

The vehicles arriving at the road intersections after the queue has cleared will be
delayed, as the traffic lights are still green.

Assumption 6

This is when vehicles arrive at the road intersections when the traffic lights turn yellow.
Their speed gradually reduces as they drive towards the road intersection, as the traffic
lights can turn red anytime.

Assumption 7

Now that the traffic lights have turned red, the incoming vehicles must stop and
adhere to this traffic control delay and form a new queue.

Assumption 8

1. This is called the “traffic shockwaves” of the queues of vehicles forming at a road
intersection when the traffic lights turn red.
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2. This is a traffic shockwave of vehicles when the traffic lights turn green.
3. This is a traffic control delay for each vehicle at the intersection. This is the arrival

time when vehicles arrive at a road intersection and when they leave the intersection.
4. This is when two vehicles depart at the same time from the road intersection. It is

called “saturation headway”.
5. This is the speed of the vehicles as they arrived at and departed from the road

intersection.
6. This is called the time gap. It usually occurs between the departing vehicle and the

arriving vehicle.

Assumption 9

The driver responses at signalized road intersections are shown in the Assumption 9
diagrams using figures.

1. The driver stopped because the traffic light was red.
2. This is the driver driving through the intersection when the traffic light is green.
3. This is the driver driving through the intersection when the queue is cleared and no

vehicles are waiting at the road intersection.
4. This is the driver reducing their speed because the traffic light has turned green.

3. Methodology

The workflow of the methodologies used in this research is shown in Figure 2.
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3.1. Research Design

This research was designed to determine the ways in which issues of traffic con-
gestion can be addressed from the perspective of the traffic flow at four-way signalized
road intersections. This was achieved by designing a classical and generic traffic flow
model for signalized road intersections, considering the selected metropolitan section of
Gauteng province in South Africa. This research focused mainly on the qualitative and the
quantitative techniques of addressing traffic congestion issues.

3.2. Population of the Research

One of the very few companies known for traffic monitoring solutions and traffic
safety is the study’s population. The company is known as Mikros Traffic Monitoring
(MTM) Company, a subsidiary of the Syntell group of companies. This company works in
conjunction with the South Africa Ministry of Transportation and South Africa National
Roads Agency Limited (SANRAL).

3.3. Size of Traffic Data

The size of the dataset considered in this study is limited to 259 traffic datasets
obtained from MTM, focusing on a four-way signalized road intersection within the
investigation period.

3.4. Method of Traffic Data Collection

The technique used for the traffic data collection comprises primary and secondary
techniques. The primary technique used in this study comprises the collection of traffic
flow data from South African four-way signalized road intersections using inductive loop
detectors, video cameras, and road-wide stationed GPS-controlled equipment. The sec-
ondary data has to do with direct visits to the Mikros Traffic Monitoring (MTM) Company
and interaction with the strategic and operational staff of MTM to obtain information on
traffic flow situations at various intersections.

3.5. Sample and Sampling Methods

Sampling is defined as the selection of a subcategory of samples from a statistical
population to evaluate the traffic dataset. A fraction of two hundred and fifty-nine (259)
datasets were selected to evaluate the traffic data’s entirety, representing the vehicles
manoeuvring at a four-way signalized road intersection in the Gauteng province within the
investigation period. The traffic engineers in the South Africa Ministry of Transportation
carried out the data cleaning on the traffic datasets to remove any duplication or unwanted
traffic data.

3.6. Location of the Study

The input and output variables used for the ANN and ANN-PSO network are shown
in Table 1. This input and output variable approach was based on the approach used
by [64,65]. The preparation of the traffic dataset is followed by the structuring of the
architecture of the algorithms. MATLAB user interface tools and command-line function-
ality were used to oversee the ANN and ANN-PSO models’ development, training, and
testing. The 259 traffic datasets used in this traffic prediction study were obtained from
the N1: Allandale Interchange (Figure 3). This N1 interchange during the traffic flow peak
period accommodates more than 90,000 automatic and manually driven vehicles traveling
southbound and northbound and over 72,000 vehicles moving northbound every day.
The N1 Allandale Interchange is a South African Government (National) road network
that links Johannesburg through Pretoria, Bloemfontein, Polokwane, Capetown, and Beit
Bridge. The traffic flow variables used for the development of the ANN and ANN-PSO
model are listed in Table 1 and Figure 4 below:
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Table 1. Categorization of the traffic datasets into the inputs and output.

Input Variables Output Variables

Traffic density Traffic Volume
The Number of light vehicles

The average speed of light vehicles
Time of day of light vehicles

The average speed of a long truck
Time of day of long truck

Number of long trucks
The average speed of a medium truck

Time of day of medium truck
The Number of medium trucks

The Number of short trucks
The average speed of a short truck

Time of day of short truckSustainability 2021, 13, x FOR PEER REVIEW 10 of 29 
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Figure 4. The South Africa transportation system traffic datasets.
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3.7. Collection and Extraction of the Traffic Datasets

This research study collected traffic datasets from a four-way signalized road intersec-
tion which is located on Johannesburg to Pretoria Road, one of Southern Africa’s busiest
roads. Each roadsite has a different number of lanes, and they all move in the south-
bound direction. For the present study, only one direction of traffic was considered: the
southbound direction. The inductive loop detector and video cameras were permanently
installed at each of the four road intersections to obtain the necessary traffic data for the
ANN and ANN-PSO model training, testing, and validation. Traffic flow data was collected
from video cameras and inductive loop detectors for fifteen consecutive days (15 July to
29 July, 2019). The raw traffic flow data from the inductive loop detectors comprised the
class-wise vehicular traffic flow for every 60 s for 24 h, from midnight to midnight. The
description of these roadsites is in Table 2, and a sample of the traffic datasets collected from
these roadsites is shown in Table 3. The four-way signalized road intersections connected
to the N1 Allandale Interchange in which the traffic data was collected are:

• Brakfontein 1C N1 SB (Roadsite 1).
• Old Johannesburg Road SB off-ramp (Roadsite 2).
• Samrand Avenue SB off-ramp (Roadsite 3).
• Olifantsfnt SB off-ramp (Roadsite 4).

Table 2. Description of the four-way signalized road intersection.

Road
Intersections Date Distance

(m) Direction Number of
Lanes

Speed Limit
(Km/h)

Number of Vehicles
(Vehicles/h)

Roadsite 1 15 July 2019–27
July 2019 12.5 Southbound 7 120 1,097,152

Roadsite 2 15 July 2019–29
July 2019 9.40 Southbound 5 120 17,240,260

Roadsite 3 15 July 2019–29
July 2019 7.0 Southbound 7 120 12,448,023

Roadsite 4 15 July 2019–29
July 2019 3.70 Southbound 5 120 18,051,124

Table 3. Samples of the traffic datasets.

Light Vehicle Long Truck Medium Truck Short Truck

Speed
(m/s)

Number
of Light
Vehicles

Time (s) Speed
(m/s)

Number
of Long
Trucks

Time (s) Speed
(m/s)

Number of
Medium
Trucks

Time (s) Speed
(m/s)

Number
of Light
Vehicles

Time
(s)

115 1438 230 87 44 298 92 29 282 97 51 276
65 29,934 489 49 197 960 59 188 591 70 625 542
106 18,213 245 81 308 321 85 277 315 95 1056 278
103 223,44 255 82 321 316 85 263 308 97 865 271
109 3071 244 81 140 319 83 70 349 93 96 285
111 1234 237 82 115 313 84 35 306 95 54 277
60 28,844 565 52 258 833 52 206 750 65 635 586
107 24,793 241 83 338 310 88 332 298 99 1437 264
103 22,577 254 81 269 318 86 258 302 98 919 270
110 3432 241 81 162 320 84 91 315 95 94 278
113 1005 233 85 84 305 91 43 286 103 56 256
76 31,392 422 67 225 540 70 234 520 84 758 378
106 25,480 243 82 376 313 87 331 297 99 1503 266

3.8. Traffic Control Delay at Four-Way Signalized Road Intersections

To determine the control delay of vehicles at a road intersection, the queuing theory
is used. Let us assume that we have an accumulation of vehicles at a road intersection
waiting for the traffic lights to turn green. The accumulation of these vehicles at the road
intersections with the time delay at the road intersection will form a triangle-like shape.
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Let us use the mathematical expression of the area of the triangle. Figure 5, below, shows a
sketch of four-way signalized road intersections.

1
2

bh (1)
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Model Notation and Formulation

The following notations are used for the modelling of the traffic flow at signalized
road intersections. The following assumptions were made based on the parameters used
for the development of the model:

I = Intersection 1

J = Intersection 2

K = Intersection 3

L = Intersection 4

Aijkl = 1 or 0 (the lane belongs to the intersection (i, j, k, and l) or otherwise).
B fijkl = 1 or 0 (if road intersections i, j, k, and l have been controlled by phase f on the

road intersection (i, j, k, and l).
θijkl = the traffic signal offset at road intersections i, j, k, and l.
T = the traffic flow analysis period duration (in hours).
EFijkl = the adjustment factor of the road intersections i, j, k, and l (hours).
Cijkl = the traffic flow capacity of road intersections i, j, k, and l (vehicle/hour).
C = the traffic cycle length (seconds).
gijkl = the green time length at road intersections i, j, k, and l (seconds).
Xijkl = road intersections i, j, k, and l’s degree of saturation (seconds).
d1ijkl = intersections i, j, k, and l’s uniform delay (seconds/vehicle).
d2ijkl = intersections i, j, k, and l’s increment delay (seconds/vehicle).
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The control delay = d (C)ijkl is calculated as:

d (C)ijkl= ∑ijkl ε K Aijkl(d1ijkl(EFijkl) + d2ijkl) (2)

where,

d1ijkl=
0.5·C·

(
1− gijkl

C

)
2

1− min
(

1, Xijkl ·
gijkl
C

) (3)

The average delay at each road intersection is d(θ)ijkl , which equals out to Equation (4).

dθijkl =


∑

kεK

r f
g f

(
tijkl − θijkl

)
·B fijkl · i f

(
tijkl − g f ijkl

)
< θijkl < tijkl(

Tijkl − θijkl

)
i f tijkl<θijkl < ∑

kεK
tijkl +

(
c− g f ijkl

)
B fijkl

(4)

Cijkl = the cycle lengths of intersections i, j, k, and l.
g f ijkl = the green time lengths for intersections i, j, k, and l.
Lijkl = the lost time of intersections i, j, k, and l.
θijkl = the traffic flow conditions required for the calculation of the traffic signal offset

of intersections i, j, k, and l.
The travel time tijkl of each vehicle on the road intersections (i, j, k, and l) is calcu-

lated as:

tijkl= tijkl(0)

1 + 0.15

(
qijkl

cijl

)4
 (5)

The free flow travel time tijkl (0) of each vehicle on the intersections (i, j, k, and l) is
calculated as:

tijkl(0) =
Iijkl

Vijkl
(6)

Equation (6) validates the pre-existing equation related to the traffic flow at road
intersections, i.e., that speed = distance

time .
Using time as the subject of the formula.

Time =
distance

speed
(7)

In Equation (7), time is tijkl , distance is Iijkl and speed is Vijkl .
II Jkl = the distance which has already been covered by the vehicles before arriving at

the road intersections (i, j, k, and l) [m].
VI Jkl = the free-flow speed of the vehicles at each road intersection (i, j, k, and l) [m/s].
qI Jkl = the number of vehicles at each road intersection (i, j, k, and l) [veh/h].
CI Jkl = the road intersection’s capacity (i, j, k, and l) [veh/h].
The primary aim of using this equation is to reduce the total travel time of vehicles at

road intersections [TTT]. Let us assume that the number of vehicles reaching these road
intersections during the simulation time is maximized.

TTT = ∑(i,j, k, l) TTTi,j, k,l= ∑(i,j, k, l)∈A qij, k, ldij, k, l (8)

The total delay (dijkl) of the vehicles at the road intersections is the sum of the control

delay
(

d(C)ijkl

)
at each intersection, the average delay, and the travel time of vehicles at

each road intersection (tijkl).

dijkl=
(

d(C)ijkl

)
+
(

d(θ)ijkl

)
+tijkl (9)
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The objective function of controlling real-time traffic flow at each road intersection in
this study is minimized to the total travel time (TTT) at each road intersection.

To minimize TTT:
∑
(

g f ijkl

)
= Cijkl−Lijkl (10)

Through the combination of Equations (8) and (9), we get (10):

TTT = ∑(ijkl)∈A qijkl

(
d(C)ijkl

)
+
(

d(θ)ijkl

)
+ tijkl) (11)

The relationship between the cycle lengths at each road intersection Cijkl , the green
time lengths at each road intersection (g f ijkl) and the lost time (Lijkl) at each road intersection
is explained by the constraints in (10) above. The condition required for the calculation of
the signal offset (θijkl) on the network is described by the constraint below (where

∑(θ)ijkl+∑(Cijkl − (θ)ijkl) = nh·Cijkl (12)

and nh is loop multiplication);
The constraint in Equation (13) defines the interval of the feasible cycle length values

at each road intersection.
Cmin<= Cijkl ≤ Cmax (13)

g f min<= g f ijkl ≤ g f max (14)

The constraint in Equations (13) and (14) above explains the interval of the feasible
green time length values at each road intersection i, j, k, and l.

0 <= (θ)ijkl≤ Cijkl (15)

The constraints in Equation (15) are the interval of the feasible traffic signal offset time
length values at each road intersection.

3.9. Development of the ANN-PSO Model

Kennedy and Eberhart initially created the PSO method in the late 1990s [66]. This
evolutionary algorithm benefits from a rapid rate of convergence when compared to
other evolutionary algorithms, and it is a continuous process [67]. Therefore, it has been
applied to perfection in many engineering applications [68–70]. In this technique, a cost
function that is supposed to undergo minimization and maximization is defined. Then,
a swarm of particles is created and distributed in the problem’s ‘D’ dimensional space.
Each particle comprise the problem variables, making it easier to calculate the cost fitness
function. Conclusively, the velocity and position of each particle are updated with regard
to Equation (17), until the PSO algorithm undergoes convergence.

Vk+1
t = w·Vk

t + C1·r1·
(

ρk
best,i − ρk

i

)
/∆t + C2r2·

(
Gk

best − ρk
i

)
/∆t

ρk+1
i = ρk

i + Vk+1
i ·∆t

(16)

where,
i and k are known as the particle and number of iterations.
ρi =

{
ρi1, ρi2 . . . . . . , ρij, . . . . . . , ρiD

}
and Vi =

{
Vi1, Vi2 . . . . . . , Vij, . . . . . . , ViD

}
are

known as the position and velocity vectors.
Pk

best,i =
{

ρi1, ρi2 . . . . . . , ρij, . . . . . . , ρiD
}

and Gk
best = {g1, g2, . . . . . . , gD} are the best

position in terms of the ith particle, considering its history to iteration k.
i = 1, 2, 3 . . . . . . N is the number of particles in the iteration, and D is the number of

different problem dimensions.
Furthermore C1 is a cognitive variable displaying the degree of the local search, but

C2 is a social variable for a global search. Besides this, r1 a and r2 a are two non-dependant
variables s uniformly distributed between zero and one, and ‘w’ is known as the inertia
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weight applied in preserving the previous velocity of the particles during the process of
optimization. Dt represents the time interval between the position and velocity when they
are updated. Usually, the parameters during the updates are equal to 1. The artificial
neural network model training is efficient when a problem has been minimized, which can
be solved by applying a conventional or metaheuristic algorithm. However, in a hybrid
artificial neural network trained by particle swarm optimization, the PSO functions to
minimize errors during the ANN model training by knowing the optimum parameters for
weights and biases of the ANN-PSO model [71]. Therefore, in this research, variables are
known as the weights and biases, and the feasible space of the problems is dependent on
the interval time at which these variables change. The cost function (fitness function) of the
ith particle can be explained in terms of the root mean squared error [72]:

E(w1, bi) =

√
1
S ∑S

k=1

[
∑O

l=1{Tkl − Pkl(w1, bi)}2
]

(17)

where:
E = the cost fitness parameter
Tkl is the cost (fitness) value, and also the target value.
Pkl is the output predicted depending on the wi (weights)and bi(biases)
S is the number of training data.
O = the number of neurons.
To develop an ANN-PSO model, these steps must be adhered to:

1. Take into consideration the number of hidden neurons in the hidden layers and
develop a neural network model using the initial weights and biases.

2. The reformation of the weights and biases, where there can be a representation of the
location of a particle in a D-dimensional space of the problem, and D is the number of
weights and biases.

3. During the iteration of each of the particles, the output values can be predicted and
then mathematically calculated for the value of the cost function in Equation (18).

4. Update the location of particles in the PSO algorithm for a number of populations and
iterations until the target output is fulfilled. In summary, there will be a minimization
of the cost function.

The ANN-PSO used in this research study was developed in the MATLAB environ-
ment, with different artificial neural network architecture layers. The number of input
variables is 13, which is also equal to the number of independent variables. The number
of output neurons is also one, in tandem with the overall number of dependent variables.
This study’s number of neurons used varied between five (5) and ten (10), respectively.
In this research study, we took into consideration the acceleration factors (C1 and C2), the
swarm population size, and the number of neurons. The acceleration factors were selected
randomly between 1 and 3, and the swarm population size was chosen from the options
of 10, 20, 50, 100, 200, and 400. This research study considered 5, 6, 7, 8, 9, and 10 number
neurons to achieve the best optimal results of the ANN-PSO model. The ANN-PSO model
training will only be stopped or terminated when the objective function iteration has been
fulfilled. The following benchmark was adhered to. The benchmark was:

1. A maximum iteration of 1000.
2. The training run will be terminated if the objective function is not up to a specific

fixed parameter.

The number of neurons, the swarm population size, the accelerating factors C1 and C2,
and the time is taken to train each number of neurons was taken into consideration. The
MATLAB codes used to develop the ANN-PSO model have been deposited in a GitHub
repository. This is the link to the MATLAB codes: https://github.com/Olayode1989/
ANN-PSO-codes.git, accessed on 1 September 2021. The ANN-PSO training and testing
were carried out in the MATLAB environment by following the steps in Figure 6.

https://github.com/Olayode1989/ANN-PSO-codes.git
https://github.com/Olayode1989/ANN-PSO-codes.git
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3.10. Development of the ANN Model

ANN models are intelligent models motivated by the biological neural networks of
both human beings and animals. This provides the learning patterns and high accuracy
of model predictions of model problems in high-dimensional space [73–76]. An artificial
neural network model can map the association between the inputs and outputs even if
the datasets are complex or noisy. A Multilayer Perceptron (MLP) is not too complex.
It possesses an effective feed-forward neural network model. An MLP neural network
comprises an input layer, hidden layers (depending on the neural network model), and an
output layer [77,78]. The input layer comprises of input parameters and transfers them to
the neurons in the hidden layer. The value of these inputs, combined with a value of bias,
is transformed by an activation function, as explained figuratively in Figure 7. Thereafter,
the output signal is moved to the neurons in the next layer.
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The mathematical formulation of Figure 7 is shown below:

yj = f

(
n

∑
i=1

wijxi + bj

)
(18)

xi and yj are the nodal values in the preceding layer, I, and the present layer, j.
n is the overall number of the nodal values from the preceding layer.
wij and bj are the weights and biases of the ANN.
The artificial neural network needs to be trained to display effective regression values

performances. ANN model training means that the weights and biases of the ANN
network are dependent on the minimal error between the relationships between the actual
and network values. Therefore, the ANN network training process leads to the gradual
minimization of the problem. Backpropagation (BP) algorithms are primarily applied for
neural network training [79,80]. The Levenberg–Marquardt Algorithm (LMA) is usually
identified as the fastest and most reliable training algorithm [81,82]; thus, we applied the
backpropagation algorithm in this research study. When an artificial neural network is
adequately trained in the MATLAB environment, it will function as a black-box model,
explaining the relationship between a complex dataset, which comprises an input and
output (irrespective of the number of variables). An ANN comprises complex mathematical
processing units known as neurons. These neurons are situated in a place called the black
box. These neurons will create a bond using weights and biases. Even though they consist
of neurons, they also comprise of three significant layers, namely input layers, hidden
layers, and output layers. The neurons are placed in the hidden and output layers, while
the input layers do not contain neurons. In recent years, Artificial Neural Networks (ANN)
have become a significant option in modelling due to their reduced computational time,
efficient accuracy, and capability to show the relationships between inputs and outputs,
depending on the data. The application of ANNs is limited to approximation; however,
they also comprise classification, clustering, forecasting, pattern recognition, and image
processing. There are different types of ANN depending on their architecture and model
variables. The most widely used ANN is the backpropagation feedforward neural network,
also known as a Multi-layer Perceptron (MLP), as shown in Figure 8.
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Figure 8. An example of a single hidden layer MLP architecture (4–4–2) consisting of four inputs,
four neurons, and two outputs. Reprinted with permission from ref. [83]. Published by Elsevier B.V.
Copyright © 2021 Elsevier Ltd. All rights reserved.

After the neural network toolbox is opened in MATLAB, the training will be conducted
using the input traffic flow datasets and the output traffic datasets (traffic volume). The
inputs are categorized into thirteen columns, while the output traffic datasets (traffic



Sustainability 2021, 13, 10704 18 of 28

volume) are in the same Microsoft excel sheet used for the input datasets (Table 1 shows the
traffic data inputs and output). The traffic datasets’ training was carried out to investigate
the optimal traffic flow variables of various types of weights and biases of the ANN model.
When the ANN model training has been carried out on the datasets, the neural network’s
performance is validated by applying independent variables. The ANN model training
and testing are regarded as optimal when the fitness function characteristics, such as the
R2, are of values that are closer to one.

4. Results and Discussions
4.1. Four-Way Signalized Road Intersection Vehicular Traffic Flow

The vehicular traffic flow of the four road intersections focused on in this research
study is explained in the Appendix A section (Figure A1A–D). The traffic flow changes
in these four roadsites were compared by plotting a bar chart pattern of the number of
vehicles on each roadsite against the period of the day. The period of the day was divided
into five periods within 24 h:

1 = 00:00:00 a.m.-04:59:59 a.m.

2 = 05:00:00 a.m.-09:59:59 a.m.

3 = 10:00:00 a.m.-14:59:59 p.m.

4 = 15:00:00 p.m.-19:59:59 p.m.

5 = 20:00:00 p.m.-23:59:59 p.m.

It is apparent from Figure A1A–D that there are very few vehicles on the road between
00:00:00 a.m. and 04:59:59 a.m. due to the number of vehicles on the road. Strong evidence
of a high traffic volume was found during the day between 3 (10:00:00 a.m. to 14:59:59 p.m.)
and 4 (15:00:00 p.m. to 19:59:59 p.m.) because a large volume of vehicles was found on
each of the four intersections. The single most striking observation to emerge from the
vehicular traffic flow bar chart interpretation below is that the number of vehicles on the
road determines the traffic volume at any period of the day. Another observation is that
there are no significant differences between the number of vehicles at period 5 (20:00:00 p.m.
to 23:59:59 p.m.) for each road intersection.

4.2. Artificial Neural Network Model

In this research, an artificially intelligent model called an Artificial Neural Network
(ANN) model was used to model the traffic flow at a four-way signalized road intersection,
using the road transportation systems in South Africa as a case study. The traffic flow
parameters measured include the number of vehicles on the road, traffic density, vehicular
speed, traffic volume, and time, which were measured over a certain period of time. The
location of the road intersections was densely populated and comprised of seven days of
the week, which encompasses all the different likelihoods of what could hinder or interrupt
the free-flowing movement of vehicles, thereby causing traffic congestion. Two hundred
and fifty-nine (259) datasets were collected from these roadsites. These traffic datasets from
each of the four road intersections were used for the ANN and ANN-PSO training, testing,
and validation. The traffic dataset validation and testing were carried out to verify the
efficiency of the ANN and ANN-PSO model. The ANN and ANN-PSO training, validation,
and testing were executed in the MATLAB 2015a environment. The following traffic flow
variables from the South Africa Road Transportation Network were used for the model
training, validation, and testing:

1. Network inputs: The traffic density, number of light vehicles, average speed of light
vehicles, time of day of light vehicles, the average speed of long trucks, time of day of
long trucks, number of long trucks, the average speed of medium trucks, time of day
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of medium trucks, number of medium trucks, number of short trucks, the average
speed of short trucks and time of day of short trucks.

2. Network Output: Traffic volume.

The breakdown of how the traffic datasets were divided and used for the ANN
training, validation, and testing is shown in Table 4.

Table 4. The breakdown of the roadsites’ traffic datasets for the ANN model.

Roadsites. Training Validation Testing Total

Brakfontein 1C N1 SB (Roadsite 1) 36 15 10 61
Old Johannesburg Road SB off-ramp (Roadsite 2). 48 16 10 74

Samrand Avenue SB off-ramp (Roadsite 3). 41 13 10 64
Olifantsfnt SB off-ramp (Roadsite 4). 35 15 10 60

Total 160 59 40 259

Figure 9, below, shows the ANN model’s neural network architecture used for the
modelling of the traffic flow at the roadsites. There are 13 inputs and six hidden layers, and
the one output shows the best artificial neural network model.
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of the week, which encompasses all the different likelihoods of what could hinder or in-

terrupt the free-flowing movement of vehicles, thereby causing traffic congestion. Two 

hundred and fifty-nine (259) datasets were collected from these roadsites. These traffic 

datasets from each of the four road intersections were used for the ANN and ANN-PSO 

training, testing, and validation. The traffic dataset validation and testing were carried out 

to verify the efficiency of the ANN and ANN-PSO model. The ANN and ANN-PSO train-

ing, validation, and testing were executed in the MATLAB 2015a environment. The fol-

lowing traffic flow variables from the South Africa Road Transportation Network were 

used for the model training, validation, and testing: 

1. Network inputs: The traffic density, number of light vehicles, average speed 

of light vehicles, time of day of light vehicles, the average speed of long 

trucks, time of day of long trucks, number of long trucks, the average speed 

of medium trucks, time of day of medium trucks, number of medium trucks, 

number of short trucks, the average speed of short trucks and time of day of 

short trucks. 

2. Network Output: Traffic volume. 

 

The breakdown of how the traffic datasets were divided and used for the ANN train-

ing, validation, and testing is shown in Table 4. 

Table 4. The breakdown of the roadsites’ traffic datasets for the ANN model. 

Roadsites. Training Validation Testing Total 

Brakfontein 1C N1 SB (Roadsite 1) 36 15 10 61 

Old Johannesburg Road SB off-ramp 

(Roadsite 2). 
48 16 10 74 

Samrand Avenue SB off-ramp (Roadsite 3). 41 13 10 64 

Olifantsfnt SB off-ramp (Roadsite 4). 35 15 10 60 

Total 160 59 40 259 

Figure 9, below, shows the ANN model's neural network architecture used for the 

modelling of the traffic flow at the roadsites. There are 13 inputs and six hidden layers, 

and the one output shows the best artificial neural network model. 

 

Figure 9. The neural network of the traffic datasets at the roadsites. 

Figure 10 illustrates the best validation performance of the ANN model's training, 

testing, and validation at epoch 9. 

Figure 9. The neural network of the traffic datasets at the roadsites.

Figure 10 illustrates the best validation performance of the ANN model’s training,
testing, and validation at epoch 9.
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The best validation performance network for the traffic datasets is shown in Figure 10.
Figure 11 shows training, testing, and validation regression values of 0.96086, 0.99169,
0.97258, and an overall regressing value of 0.96722 for the traffic datasets at the four road-
sites. These results clearly show that the traffic data’s inputs and outputs are well correlated.
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Figure 10 shows the training variations of the mean square error (MSE) of the training,
testing, and validation data variations. The gradient epoch of the ANN performance of
the roadsite traffic datasets shows an epoch of 9 throughout the ANN model training
and testing. The validation check of the ANN model was at 0.97258. This indicates the
efficiency of the input and output variables. Figure 11, above, shows an overview of the
corresponding traffic performance evaluation indices of the MSE and R2 values for the
ANN model training and testing of the traffic data. It is apparent from Figure 11 that the
best optimum training performance was achieved when the number of hidden neurons
was 6, i.e., 13–6–1. The single most striking observation to emerge from this ANN model is
that the ANN parameters, number of hidden neurons, and number of epochs significantly
affect the traffic flow dataset’s performance prediction; the optimum networks obtained
considering the traffic dataset’s show a training performance of R2= 0.96086 and testing
performance of R2 = 0.99169, with six being the number of hidden neurons.

4.3. Artificial Neural Network—Particle Swarm Optimization Model

The breakdown of the way in which the traffic datasets were divided and used for the
ANN-PSO training and testing is shown in Table 5 below.
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Table 5. The breakdown of the roadsite traffic datasets for the ANN-PSO training.

Roadsites Training Testing Total

Brakfontein 1C N1 SB (Roadsite 1) 51 10 61
Old Johannesburg Road SB off-ramp (Roadsite 2). 64 10 74

Samrand Avenue SB off-ramp (Roadsite 3). 54 10 64
Olifantsfnt SB off-ramp (Roadsite 4). 50 10 60

259

The 259 traffic datasets from the four-way signalized road intersections were di-
vided into 219 and 40 for training and testing. To achieve the best optimum output, a
trial-and-error approach was used to discover the best value for the number of hidden
nodes, iterations, and acceleration factors. Sigmoid and linear functions were used for the
ANN-PSO model for the hidden and output node activation functions. The best optimal
parameters for both the training and the testing of the performance of the ANN-PSO model
of the traffic flow at the four intersections, as shown in Table 6, are:

Table 6. The parametric analysis of the hybrid ANN-PSO model training and testing results.

Number of
Neurons

Swarm
Population Size C1 C2 Training (R2) MSE Testing (R2)

5 10 2.25 2 0.99600 22.228 0.9387
5 20 2.25 2 0.99392 27.429 0.9404
5 50 1.5 2.25 0.99966 19.522 0.7170
5 100 1 2.75 0.99863 15.463 0.9298
5 200 1.5 2 0.99951 23.388 0.9791
5 400 1.5 2 0.99952 23.161 0.9971
6 10 1 3 0.99127 34.088 0.8157
6 20 2 2.25 0.99629 21.404 0.8634
6 50 1 2.5 0.99948 24.253 0.9839
6 100 1 2.5 0.99917 32.025 0.9491
6 200 1 2.75 0.99769 17.855 0.8562
6 400 1 2.25 0.99961 20.907 0.9856
7 10 1.5 2.5 0.99324 29.150 0.4626
7 20 1 2.75 0.99807 16.893 0.9237
7 50 1 2.5 0.99939 26.448 0.2374
7 100 1 2.5 0.99906 34.934 0.9650
7 200 1.5 2.25 0.99893 38.076 0.9429
7 400 2 2 0.99847 15.881 0.8008
8 10 1 2.75 0.99697 19.679 0.7347
8 20 1 2.5 0.99944 25.211 0.9881
8 50 1.5 2.25 0.99955 22.507 0.9898
8 100 1 2.5 0.99974 17.675 0.9818
8 200 1 2.75 0.99943 25.388 0.9708
8 400 1 2.25 0.99974 17.496 0.9138
9 10 1 2.75 0.99307 29.775 0.3029
9 20 1 3 0.99206 32.091 0.9139
9 50 1.5 2.25 0.99895 37.571 0.7646
9 100 2 2 0.99911 33.780 0.9468
9 200 1.5 2.25 0.99807 16.890 0.8633
9 400 1 2.5 0.99973 17.962 0.9816

10 10 1 2.75 0.99900 36.389 0.7529
10 20 1.5 2.5 0.99871 15.261 0.8945
10 50 1.5 2.5 0.99896 37.306 0.6819
10 100 1 2.75 0.99741 18.641 0.8663
10 200 1 2.75 0.99920 31.178 0.9282
10 400 1.5 2.5 0.99799 17.088 0.9135
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(a) Number of hidden neurons = 5
(b) Swarm population size = 400
(c) Number of traffic datasets = 57
(d) C1 and C2 = 1.5 and 2
(e) Training (R2) = 0.99952
(f) Testing (R2) = 0.99710
Figure 12a, below, shows the result of the ANN-PSO model training response of

0.99952, considering the number of hidden neurons, the number of input and output
accelerating factors, and the swarm population sizes.
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Figure 12. (a) ANN-PSO training response of the best performance network of the traffic datasets (13–5–1). (b) ANN-PSO
testing response of the best performance network of the traffic datasets (13–5–1).

To evaluate the accuracy of the ANN-PSO model, the observed and predicted out-
put of the traffic volume of the vehicles at each of the four roadsites were compared in
Figure 12b, with the testing performance of the model being 0.9971. Table 6, above, shows
that the corresponding traffic performance evaluation indices of the MSE and R2 value for
the training and testing traffic datasets have been presented. It can be discerned from the
parametric study of the ANN-PSO hybrid model that the best optimum training perfor-
mance was obtained when the total number of neurons was 5, the swarm population size
was 400, and the best-achieving acceleration factors C1 and C2 were 1.5 and 2, respectively.
An evaluative observation made from Table 6 is that the ANN-PSO’s parameters affect
the traffic congestion dataset’s performance prediction. Besides this, the best training and
testing results were not the same. Therefore, the optimum network obtained considering
the traffic dataset’s training performance is training R = 0.99952. The traffic dataset’s best
testing performance is R2 = 0.9971, which has five hidden neurons. Figure 12a shows the
training of the traffic data yield R = 0.99952, MSE = 23.161, while during the testing and
validation of the results R2 = 0.9971 (Figure 12b).

5. Conclusions and Future work

The current study aimed to determine the comparative traffic flow prediction per-
formance between a heuristic ANN model and a hybrid ANN-PSO model in modelling
vehicles’ traffic flow at four-way signalized road intersections. A 259 traffic dataset database
was collected from four signalized road intersections in South Africa’s Road transportation
system. Thirteen input parameters and one output parameter were taken into considera-
tion. Based on these artificially intelligent approaches (ANN and ANN-PSO) used for the
traffic flow data, the following conclusions can be drawn from the present study:



Sustainability 2021, 13, 10704 23 of 28

1. One of the most significant findings to emerge from this study is that the comparison
of the ANN-PSO model and ANN model has shown that the ANN-PSO model is
far more accurate, easy to use, and efficient than the ANN model, with a testing
performance of 0.9971, compared to the ANN model’s testing performance of 0.99169.

2. This study also suggests that a Neural Network comprising five (5) neurons is the
best-performing neural network during the ANN-PSO model training of the traf-
fic datasets.

3. The investigation of the use of the ANN model to model self-driving vehicles at four-
way signalized road intersections has shown that the best training performance of the
traffic datasets was achieved when the number of hidden neurons is 6, which leads to
training (R) 0.96086, testing (R) 0.99169, validation (R) 0.97258, and All (R) 0.96722.

4. The most apparent findings from this research study are that the efficiency of the traffic
dataset’s prediction performance depends on the total number of input variables.
Further observation also showed that the number of parameters of the input variables
determined the predictor model’s accuracy (ANN and ANN-PSO model).

5. The evidence from this study suggests that ANN and ANN-PSO are reliable predictors
of the traffic flow of vehicles at a signalized road intersection.

6. An implication of the results of this research study is the possibility that transportation
researchers and civil engineers could apply the ANN and ANN-PSO model used
in this research study in the development of ways to improve road transportation
mobility through technologically advanced traffic management techniques.

7. This research study extends our knowledge of traffic flow modelling and the applica-
tion of soft computing techniques in vehicular traffic flow at a signalized road inter-
section.

It is recommended that further research be undertaken in the following areas:

1. A natural progression of this work is to determine whether transportation researchers
can use expanded and robust real-time traffic data to achieve a more profound impact
of these traffic variables on traffic flow prediction and thus improve the traffic flow
prediction efficiency and reliability.

2. A possible area of research is the application of statistical analysis in the validation of
the ANN and ANN-PSO model results of this study.

3. Another possible area of future research would be to investigate the possibility that,
due to traffic data’s sequential nature irrespective of whether it is traffic data from
developing or developed countries, it would be possible to conduct research by
following the deep learning methods explained by [37], such as artificial bee colony
optimization, grasshopper optimization algorithm, and bat algorithm. These methods
can all be tested and compared with the results obtained from this paper to determine
which one has a better testing performance (R2).

4. Further research regarding the prediction performance of ANN and ANN-PSO (using
convergent plots) in the modelling of the vehicular traffic flow at an un-signalized
road intersection would be interesting.
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