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Abstract

Complex non-linear prediction systems have become ubiquitous in numerous decision making
and other socio-technical systems. In recent years, the increased adoption and use of these
complex non-linear systems has been dominated by universal approximators such as neural
networks and Gaussian Processes. These systems’ applications span a large number of
critical domains, including transportation, drug design, law enforcement, financial services,
energy planning, and pandemic forecasting.

The aforementioned critical nature of the application domains necessitates the need
to study the inference methods for training or calibration of these systems’ parameters.
Further to this, inference methods coupled with estimators of the uncertainty around the
system’s predictions and measures of the relative influence of its inputs aid in managing
the very high societal risks associated with incorrect predictions. This thesis investigates
probabilistic parameter inference methods that provide both the required uncertainty and
relevance measures.

We first introduce Metropolis Hastings (MH) and Hybrid Monte Carlo (HMC) methods
for parameter inference in Bayesian Neural Networks (BNNs) with applications in credit risk
modelling and South African wind energy resource planning.

We further utilise a Separable Shadow Hamiltonian Hybrid Monte Carlo (S2HMC)
method for the first time in the inference of BNN parameters. S2HMC addresses traditional
MCMC methods’ discretisation constraints by using a perturbed Hamiltonian, which is
conserved at a higher-order by the numerical integration scheme. Experimental results on
wind energy and credit datasets find that S2HMC yields higher effective sample sizes than
the competing Hybrid Monte Carlo (HMC). The predictive performance of S2HMC and
HMC based BNNs is found to be similar.

We thirdly perform hierarchical inference for BNN parameters by combining the S2HMC
sampler with Gibbs sampling of hyperparameters for Automatic Relevance Determination
(ARD). A generalisable ARD committee framework is introduced to synthesise various
sampler’s ARD outputs into robust feature selections. Experimental results show that this
ARD committee approach selects features of high predictive information value. Further,
the results show that dimensionality reduction performed through this approach improves



xii

the sampling performance of samplers which suffer from random walk behaviour such as
Metropolis-Hastings (MH).

The thesis also addresses predictive distribution calibration pathologies of the existing
product of Gaussian Process expert models. We introduce a solution to the predictive
dominance of uninformed experts through expert combination via the Wasserstein Barycenter
and sparsity control through tempered softmax weightings. These proposals are empirically
shown to outperform other product of experts (PoE) methods. The proposed PoE are also
found to outperform BNNs on wind speed forecasting regression tasks.

Finally, the thesis provides a Bayesian inference approach to change point determina-
tion in the spreading rates of the novel Severe Acute Respiratory Syndrome Coronavirus 2
(SARS-CoV-2) in South Africa. This approach is a first in literature, probabilistically princi-
pled method for quantifying the relative efficacy of the various South African government
interventions to slow the spread of SARS-CoV-2.

Keywords:
Bayesian Neural Networks; Markov Chain Monte Carlo; Separable Hamiltonian; Shadow
Hybrid Monte Carlo; Automatic Relevance Determination; Gaussian Process; Products of
Experts; Wasserstein Barycenter; Compartmental Models; SIR; SEIR.
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Chapter 1

Introduction

Complex non-linear systems, in particular machine learning models, have become highly
prevalent in numerous aspects of modern-day life. Applications driven by machine learning
models include inter alia health care, financial services, transportation and energy [80, 86,
85, 6, 73].

Applications that utilise machine learning models rely on training a learning machine
that encodes the relationship between the inputs and outputs of the specific phenomenon
being modelled. These input-output relationships are extracted from data generated by
the phenomenon [70]. Such learning machines leverage non-linear relationships that were
typically considered computationally prohibitive [81]. Recent advances in microprocessor,
graphical processor, and data storage technology have increased computational efficiency
that allows for both offline training and prediction as well as real-time-online training and
prediction.

Learning machines can be parameterised to encode relationships exhibited within the data
generated by a specific phenomena being modelled. Popular learning machines in literature
and practice include artificial neural networks, decision trees, support vector machines and
ensembles or weighted committees of each of the respective models such as random forests,
bagged and boosted models[16, 56].

In the past, the predictive performance of such learning machines significantly relied on
domain-specific expertise to design inputs or features that represent the signals emanating
from the phenomenon that is being modelled [70]. This has significantly changed with the
development of deep learning models that can learn representations, such as convolutional
neural networks. A direct result of the advancements in representation learning is the
increased application of learning machines in many critical domains such as X-ray analysis
and autonomous driving without a domain expert’s presence or supervision.
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The process of training these learning machines has thus become a focal area due to the
critical nature of the tasks where learning machines are deployed [45]. The training process
is the process through which we obtain model parameters that are used for future predictions.
In statistical literature, this process is referred to as inference. In essence, model parameters
and the data used to train or infer them encapsulate both the model’s predictive potential and
the risk associated with incorrect predictions. The societal cost of incorrect predictions can
be as high as resulting in automotive or aviation accidents, incorrect forecasts of pandemic
trajectories, clinical misdiagnosis and unfair bias or prejudice [45]. Thus ideal parameter
inference methods for critical applications should adequately reflect the level of uncertainty
around such parameters and their associated predictions.

This thesis investigates probabilistic approaches to parameter inference that yield such
required confidence estimates on both parameters and predictions. This aids in both analysis
and decision making based on predictions from learning machines.

1.1 Neural Networks

Artificial Neural Networks (ANNs) are learning machines that are inspired by models
of neurological processes in living organisms. Neural Networks (NN) have been widely
used as universal approximators of many complex systems [86]. In this work we focus
on the Multilayer Perceptron (MLP) [80]. In the MLP we aim to learn input - output
mappings by propagating inputs through a sequence of hidden layers of weighted non-linear
transformations [86]. We then search for an optimal set of weights that minimizes an
objective function defined in terms of a distance metric between the network outputs and the
true values in a training data set. Cybenko [32] showed that an MLP with a single hidden
layer can approximate any function of arbitrary complexity defined in a compact domain
provided it has sufficient hidden units. Figure 1.1 shows an example of an MLP similar to
those considered in this work. The outputs of a regression network with a single output as
depicted in Figure 1.1 are defined as follows:

fk(x) = bk +∑
j

v jkh j(x) (1.1)

h j(x) = tanh
(

a j +∑
i

wi jxi

)
(1.2)

Where wi j is the weight connection for the ith input to the jth hidden unit and v jk is
the weight connection between the jth hidden unit to the kth output - in our case k = 1.
The activation function tanh provides the non-linearity required to approximate complex
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Figure 1.1 An example of a feed-forward MLP with five inputs, three hidden nodes and one
output. The inputs are fed-forward such that values of the units in a particular layer are a
non-linear transformation of a weighted sum of those in the preceding layer [86]

non-linear relationships. There are a variety of common activation functions in literature.
These include functions such as the sigmoid and rectified linear unit (ReLU) [79].

In deriving the input-output approximation of the MLP, network weights and biases
are tuned to minimise the errors in mapping outputs of a training dataset. The weights,
therefore, can be considered as an encoding of such an input-output relationship. This error
minimisation on a dataset D = {x(i), t(i)} is defined by the equation [49]:

ED =
1
2

N

∑
i=1

(
t(i)− y(X (i);w)

)2

(1.3)

In the classification case the error is defined by the cross-entropy between the output
and the target vectors. On a data set D = {xi, ti} with i = 1, ...,N, with K classes, the total
network error ED is defined by:

ED =−
N

∑
i=1

K

∑
k=1

tik logyik (1.4)
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The output layer activation function in classification networks is often in the form of a
softmax function:

yk =
eyin

k

∑
nclass
k eyin

k
(1.5)

1.2 Methods of Parameter Inference

There exists a myriad of methods in literature for performing inference of model parameters.
We discuss the main ideas around these methods below.

1.2.1 Gradient Descent Methods

A natural approach to solve the inverse problem of parameter inference is the use of gradient-
based optimisation. A gradient descent approach aims to find an optimal set of parameters
that minimises a learning machine’s error based on a specified distance metric between a
learning machine’s outputs and real-world outcomes or targets.

Parameters of learning machines are generally high dimensional with a limited allowance
for closed-form solutions. Gradient descent methods minimise a learning machine’s error
by iteratively updating its parameters in the opposite direction of the gradient of its error
function [106]. The general structure of gradient descent updates that sequentially step
through the error surface is defined by equation 1.6.

wt+1 = wt−η
∂ED(wt)

∂w
(1.6)

The size of the jumps in gradient descent is regulated by the learning rate η . This update
process is repeated until a convergence criterion is met or a pre-specified maximum number
of iterations is reached.

There are variations and extensions of gradient descent in literature [106, 16]. These
include stochastic gradient descent that randomly shuffles the training data and adapts
parameters one example at a time. The addition of momentum parameters is also common to
allow for acceleration on rugged error surfaces [96]. Variations that employ adaptive learning
rates such as Adam [68], Adagrad [39] and RMSProp are also commonly used in practice.

1.2.2 Meta-heuristic Methods

Meta-heuristic methods are generalised algorithmic structures that simulate metaphoric
observations in optimisation or search procedures occurring in biological systems, physics,
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and population dynamics [1]. Popular meta-heuristic methods include the genetic algorithm
(GA) and Particle Swarm Optimisation (PSO).

Genetic Algorithm (GA)

The biological process of natural selection inspires the GA. In GA, candidate solutions are
individuals within the population. Each individual’s fitness is evaluated based on a cost
function. At each iteration, three evolutionary procedures, selection, crossover and mutation,
are executed to obtain a global minimum. First, certain individuals are sampled from the
population (the selection step) for a crossover where parts of the selected individuals are
randomly exchanged. Next, another set of randomly selected individuals are also mutated.
In my earlier work [85], I use a continuous GA to optimise the parameters of an Adaptive
Neuro-Fuzzy Inference System (ANFIS) model where the mutation is performed by adding
Gaussian noise to randomly selected parts of the vector of the unknown parameters. The
process continues until the algorithm converges or a specified maximum number of iterations
is executed.

Particle Swarm Optimisation (PSO)

The PSO is one of the most recognised meta-heuristic optimisation algorithms that is inspired
by the natural process of flocking birds searching for food. In the PSO algorithm, each
particle in a swarm is considered a candidate solution for the optimisation problem. In this
algorithm, each particle is updated in each iteration using the following equation [85]:

P(i+1) = P(i)+V (i+1) (1.7)

Where V (i+1) is the particle’s velocity which is updated by [85]:

V (i+1) = w0V (i)+ c1r1(Pbest−P(i))+ c2r2(Gbest−P(i)) (1.8)

Where w0 is the inertia weight which maintains previous velocity. c1 is the particle’s
acceleration constant towards its personal best solution PBest , while c2 is the acceleration of
the particle towards the best known position amongst all particles. r1 and r2 are randomly
selected from a uniform distribution U(0,1) where these two parameters are used to add
randomness to the search space exploration. These updates continue until the algorithm
converges or a specified maximum number of iterations is executed.



6 Introduction

Start

Initialise population positions 
and velocities

Draw a random number  R(i)

Is R(i) less than threshold T ?
Update velocities 

and positions
Yes

No

Crossover

Mutation

Reached Stopping Criteria?

Yes

End

No

Update Pbest and Gbest

Figure 1.2 Flowchart showing the GAPSO algorithm.

Hybrid Meta-heuristic Approaches

Generally, the GA’s main issue is the lack of memory since the information contained by the
candidate solution that has not been selected for a crossover (or mutation) may be lost to
future generations [48]. In my earlier work [85], the two-hybrid methods between GA and
PSO below are proposed such that the GA can be further improved by the memory and social
learning elements of the PSO algorithm.

1. GA with PSO Crossover (GA-PSO) Here we adapt the GA crossover by probabilis-
tically alternating the standard GA crossover and the PSO velocity updates. This
algorithm is shown in Figure 1.2.

2. GA with PSO initialisation (GAPSO-I) Here we run the PSO algorithm for a limited
number of iterations. Simultaneously, the best particle obtained by the PSO is used
as one of the individuals that initialise the GA population. This is most similar to the
algorithm proposed by Yu et al. [136]. However, we use only one particle from the
PSO rather than all the M best particles in the GA initialisation; using just the best
particle from the PSO with other random initialisations increases the search space of
the GA, while using M particles could localise the search at very early stages.

1.2.3 Bayesian Inference

The Bayesian inference framework provides a unifying paradigm between the observed data
and the modeller’s prior hypothesis on the model parameters [75]. This framework’s result is
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a posterior probability distribution on the model parameters [93]. This posterior distribution
is governed by Bayes theorem as follows:

P(w|D,H) =
P(D|w,H)P(w)

P(D)
(1.9)

where P(w|D,H) is the posterior distribution of a vector of model parameters (w) given the
model (H) and observed data (D), P(D|w,H) is the data likelihood and P(D) is the evidence.

The Bayesian framework deviates from the other optimisation methods discussed above
as they are based on maximum likelihood estimation of a single set of parameters. Machine
learning models such as neural networks typically result in multi-modal loss surfaces, with
multiple ridges and local minima [24]. Probabilistic exploration of such surfaces presented
by the Bayesian framework thus aids the exploration of globally optimal parameters.

Prior distributions in the Bayesian framework introduce model regularisation in a prin-
cipled way [74]. Regularisation is often critical for inverse problems such as parameter
inference to reduce over-fitting. In practice, posterior inference is not tractable in closed
form; numerous approximate inference techniques are employed to perform posterior in-
ference, including Laplace approximation, variational inference and Markov Chain Monte
Carlo.

Laplace Approximation

The Laplace approximation to the posterior utilises a localised multivariate Gaussian approx-
imation around the mode of the posterior [74]. A second order Taylor expansion of the log
posterior ln(P(w|D,H)) around the mode can be defined as :

ln(P(w|D,H)≈ ln(P(w0|D,H)− A
2
(w−w0)

2 (1.10)

Where w0 is the local maximum and A is the Hessian evaluated at w0

A =− ∂ 2

∂w2 lnP(w|D,H)

∣∣∣∣
w=w0

(1.11)

Since equation 1.10 is evaluated at w0 which is a saddle point the first term becomes zero
leaving the approximate Gaussian distribution as N (w0,A−1).
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Variational Inference

Variational inference methods address the posterior inference problem as an optimisation
problem [19]. Variational inference aims to minimise the Kullback-Leibler divergence
between approximate densities q(w) and the true posterior distribution P(w|D,M). The
optimised approximate density is such that

q∗(w) = arg min
q(w)∈Q

KL
(

q(w||p(w|D,m)

)
(1.12)

Where Q is a family of approximate densities. The Mean-field variational family of densities
is often computationally convenient as it partitions elements of w into disjoint independent
blocks with unique factors in the variational density [16, 19].

Markov Chain Monte Carlo Methods (MCMC)

Markov Chain Monte Carlo (MCMC) methods use a Markov Chain with a stationary distri-
bution that converges to P(w|D,M) to draw samples from the posterior distribution, where a
Markov Chain is a sequence of random variables wt such that:

P(wt+1|w1, ...,wt) = P(wt+1|wt)

An advantage of MCMC methods over other approximate inference methods is that
they are asymptotically guaranteed to converge to the true posterior distribution [19]. These
distinctions are illustrated in Figure 1.3

The Metropolis Hastings (MH) algorithm is one of the simplest algorithms for generating
a Markov Chain which converges to the correct stationary distribution. The MH generates
samples using a proposal distribution. A common proposal distribution is a symmetric
random walk obtained by adding Gaussian noise to a previously accepted parameter state.
The random walk behaviour of such a proposal typically results in low sample acceptance
rates. In this thesis, we explore in detail dynamical MCMC methods that address the
drawbacks of MH.

1.3 A Review of Machine Learning in Critical Tasks

This thesis considers the Bayesian model parameter inference problem in the context of three
critical real-world tasks: short-term wind power forecasting, credit default modelling and
later pandemic trajectory modelling.
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Figure 1.3 An illustration of the approximate distributions from Laplace (red), Variational
(green) approximation and the true posterior distribution which is asymptotically equivalent
to MCMC (mustard) [16].

1.3.1 Credit Default Modelling

Credit default risk modelling is critical to the loss management of credit portfolios for
financial institutions. Effective credit risk estimation prevents and manages losses that arise
when borrowers cannot make the necessary credit repayments on agreed terms. Accurate
estimation of an individual’s credit risk is of benefit both to the lending institution and
the borrower in any credit agreement [55]. The lending institution benefits from increased
profits or reduced losses while the borrower benefits by only being involved in transactions
within their ability of fulfilment. Subjective expert judgement has historically been used to
determine the credit risk presented by a borrower [129]. This clearly presents challenges
of introducing cognitive biases and does not allow for streamlined operational efficiency in
large financial institutions [129].

In recent times, increased demand for credit and the development of efficient computing
systems has given prominence to sophisticated machine learning techniques in the credit
risk determination process [55]. Tree-based models and artificial neural networks (ANNs)
dominate literature in machine learning approaches to credit risk modelling [10, 135].

Xia et al. [134] proposed an Xtreme Gradient boosting (XGboost) tree model for credit
scorecard creation. Their results show that XGboost after Bayesian parameter tuning out-
performs random forests (RF) and support vector machines (SVMs) based on accuracy and
the Area Under the Curve (AUC) measures on five benchmark credit datasets. Twala [124]
shows that ensemble tree-based classifiers demonstrate superior predictive performance when
noise is introduced to credit scoring attributes.
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Sun and Vasarhelyi [118] compare deep neural networks (DNNs) and simple ANNs in
predicting credit default on a Brazilian Banking Dataset. Their results show that simple ANNs
and DNNs outperform logistic regression and tree-based methods on the AUC performance
measure. The work of Angelini et al. [6] similarly finds that low classification errors can be
obtained when using ANNs to predict credit default for Italian Small businesses. Yeh and
Lien [135] use ANNs to predict credit card default for Taiwanese credit cardholders. Their
results show that ANNs produced the lowest errors when predicting the probability of default
than K-nearest neighbours, logistic regression and decision trees. The work of Hamori
et al. [54] shows that the performance of ANNs in credit default modelling is significantly
affected by choice of activation function and the dropout mechanism employed. Baesens
et al. [10] benchmarks classification algorithms on eight benchmark data sets with several
performance measures. Their overall results show that Hill Climbing Ensemble Selection
with bootstrapping method outperformed other methods with ANNs performing second.

While ANN methods are well covered in the literature, there has been no attempt to
address some of their shortcomings regarding their applications to credit risk modelling.
These shortcomings include the fact that traditional ANNs do not give an indication of
which attributes are relevant for the prediction of credit risk, and this does not aid in the
transparency of the credit granting process, which might be required by regulations such as
General Data Protection Regulation (GDPR)’s ’right to explanation’ in the European Union
[50]. The second drawback which applies to both ANNs and tree-based models is that they
give the probability of default but do not address the level of uncertainty behind such a
probability - this does not aid in the reliability analysis and risk appetite assessment of the
lending institution. In this work, we develop probabilistic formulations of ANNs that will
address the two shortcomings identified above.

1.3.2 Short Term Wind Power Forecasting

Climate change and the reduction of greenhouse gas emissions have become central items on
the global sustainability agenda. This has culminated in the Paris climate accord of 2015
between over 192 state parties [125]. The agreements, amongst other things, commit these
states to a just transition from fossil fuels to renewable energy sources such as wind and solar
[86].

The main reservation around large-scale wind energy adoption is its intermittency as
energy production is directly dependent on uncertain future atmospheric conditions [40].
Forecasting of short term wind energy production has thus become critical to operations
management and planning for electricity suppliers [82]. Such forecasts can then be used
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for proactive reserve management and energy market trading to ensure that electricity load
demands are optimally met [82, 100].

Statistical and machine learning methods have become increasingly prominent in wind
power forecasting. These are based on refining predictions from Numerical Weather Pre-
dictions (NWP) into localised predictions for the wind farms in question. Eseye et al. [42]
propose a two-stage Adaptive Neuro-Fuzzy Inference System (ANFIS) with the first stage
refining the NWP winds speeds. In contrast, the second stage uses the refined wind speed
estimate for wind power prediction. ANNs are used by Eseye et al. [41] for day ahead
predictions trained based on both observed wind speed data and NWP windspeed data for
wind speed predictions. A combination of Radial Basis Function (RBF) NNs and fuzzy
inference is employed by Sideratos and Hatziargyriou [111] with significant improvement
over baselines. Fugon et al. [44] uses random forest models trained on NWP wind speed and
direction forecasts to outperform NNs, linear regression and other ensemble decision trees
on prediction horizons of 1 to 60 hours. Daniel et al. [33] compares ANNs, boosted decision
trees and generalised additive models for wind speed forecasting in South Africa. They
find significant outperformance by ANNs with additional improvements given by forecast
combination methods.

Mbuvha et al. [86] uses a Laplace approximation Bayesian Neural Network (BNN) to
forecast wind power in a Norwegian wind farm. Mbuvha et al. [84] further shows that
BNNs significantly outperform MLPs trained by maximum likelihood and are capable of
identifying relevant inputs for prediction. In this thesis, we further explore the idea of BNNs
in wind power prediction with parameter inference using more theoretically accurate MCMC
methods.

I will now illustrate the efficacy of using NNs over other popular models such as ANFIS
for this task using my earlier work in Mbuvha et al. [85]. The details of the workings of
ANFIS are outlined in Appendix A.

The relative performance of the proposed hybrid methods meta-heuristic methods dis-
cussed in Subsection 1.2.2 is investigated when training an ANFIS for predicting one-hour
ahead wind power production. I use the Norwegian Wind Farm dataset described in Ap-
pendix A.3. The data is split date wise into 70% for training and 30% for testing. The model
performance is evaluated based on Root Mean Square Error (RMSE) as defined in equation
2.26.

An ANFIS with 3 Gaussian membership functions (MFs) for each input was trained using
a) Hybrid backpropagation least squares (BP-LS) method of Jang [65], b) The normal GA
[28], c) The proposed GAPSO, d) The GAPSO-I, e) An MLP trained by backpropagation.
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To allow for the stochastic effects of random initialisation, each algorithm’s training
is repeated 30 times. This also allows us to perform statistical significance tests on the
results using a non-parametric Kruskal-Wallis (KW) [89] and post-hoc bonferorni [62] test
for pairwise comparisons. An MLP with three hidden neurons is also trained for comparison
purposes.

BP-LS GA GAPSO GAPSO-I MLP-BP
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Figure 1.4 Boxplot showing the distribution of testing RMSE from the thirty trials of each
method

The boxplot in Figure 1.4 shows the distribution of testing RMSE from the different
models. It can be seen from the plot that an MLP trained by backpropagation shows the
lowest mean RMSE of 2870.30 kWh. This is followed by an ANFIS trained using the
proposed GAPSO-I method.

The results also show that the RMSE for the evolutionary techniques has greater variation
than the BP-LS. This is because there are more stochastic elements in the algorithms than
just in the initialisation of the backpropagation-based methods.

Table 1.1 Results showing the mean RMSE from 30 trails for one-hour ahead wind power
prediction.

Model Mean Training RMSE (kWh) Mean Testing RMSE (kWh)
ANFIS BP-LS 2955.34 2971.57
ANFIS GA 3012.07 2959.54
ANFIS GAPSO 2998.24 2941.02
ANFIS GAPSO-I 2989.17 2919.60
MLP BP 2865.50 2870.30
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A KW statistical test performed on the testing RMSE gives a p-value of 2.2298e−22,
indicating that the differences in model performance are statistically significant. A further
Bonferroni test for pair-wise differences shows that the difference between the testing RMSE
from the evolutionary techniques and the BP-LS is statistically significant in all cases at
an acceptance level of α = 0.05. The Bonferroni test also showed that the MLP-BP had a
statistically significant lower RMSE than all the ANFIS methods.

We note in these illustrative results that the MLP outperformed ANFIS under numerous
training regimes in a statistically significant manner. This result is consistent with Şahin and
Erol [108], Sobhani et al. [115], Zamani et al. [138] and Armaghani and Asteris [8]. Other
reasons why ANN-based models can be preferred relative to ANFIS include; the flexibility
in architecture (the possibility of Deep Neural Networks), continuity of loss functions, and
the active research community’s general size.

1.4 Thesis Scope

This thesis is aimed at probabilistic parameter inference using MCMC methods in predictive
models with a focus on neural networks. This thesis has the following limitations:

• Applications are limited to credit default modelling, wind power forecasting and
COVID-19 forecasting.

• Only dynamical MCMC methods with separable Hamiltonians are considered.

1.5 Contributions of this Thesis

The issues of probabilistic parameter inference span numerous model types and many related
applications. The contributions in this work transcend both algorithm theory and application
spheres. More precisely, the contributions of this work are as follows;

• Firstly, this work provides a first implementation and evaluation of the Separable
Shadow Hamiltonian Hybrid Monte Carlo (S2HMC) of Sweet et al. [119] in the
inference of Bayesian Neural Network (BNN) parameters. S2HMC addresses the
deterioration of acceptance rates and effective sample sizes in MCMC algorithms.

• Secondly, This work combines automatic relevance determination (ARD) using Gibbs
sampling and S2HMC to further infer regularisation hyperparameters on neural network
inputs. A generalisable ARD committee framework is also introduced to synthesise
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various sampler’s ARD outputs into robust feature selections. This framework can be
easily adapted to any odd number of feature selectors and relevance metrics.

• Thirdly, this work proposes novel solutions to the predictive dominance of weak experts
in products of Gaussian Process (GP) experts models (PoEs). Existing pathologies
of PoEs are addressed via prediction aggregation using a Wasserstein barycenter and
sparsity control through tempered softmax weightings.

• Fourth, this work utilises MCMC methods to infer change points in the spreading rates
of the novel coronavirus (COVID-19) in South Africa. This contribution addresses
essential societal questions on the relative efficacy of state-led non-pharmaceutical
interventions (NPIs) in South Africa.

• It is also important to note that this work presents a first in literature application of
BNNs and PoEs on the Wind Atlas for South Africa (WASA) datasets.

1.6 Publications

The following peer reviewed publications and preprints were published in the period corre-
sponding to the duration of this study:

1.6.1 Conference Proceedings

• Mbuvha, R., Boulkaibet, I., Marwala, T., & de Lima Neto, F. B. (2018, June). A
hybrid GA-PSO adaptive neuro-fuzzy inference system for short-term wind power
prediction. In International Conference on Swarm Intelligence (pp. 498-506). Springer,
Cham.

• Mbuvha, R., Boulkaibet, I., & Marwala, T. (2019, September). Bayesian automatic rel-
evance determination for feature selection in credit default modelling. In International
Conference on Artificial Neural Networks (pp. 420-425). Springer, Cham.

• Cohen, S., Mbuvha, R., Marwala, T., & Deisenroth, M. (2020, November). Heal-
ing products of Gaussian process experts. In International Conference on Machine
Learning (pp. 2068-2077). PMLR.
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1.6.2 Journals

• Mbuvha, R, Marwala,T (2020). Bayesian inference of COVID-19 spreading rates in
South Africa. PloS one 15(8): e0237126.

• Daniel, L. O., Sigauke, C., Chibaya, C., & Mbuvha, R. (2020). Short-Term Wind
Speed Forecasting Using Statistical and Machine Learning Methods. Algorithms,
13(6), 132.

• Mutavhatsindi, T., Sigauke, C., & Mbuvha, R. (2020). Forecasting Hourly Global
Horizontal Solar Irradiance in South Africa Using Machine Learning Models. IEEE
Access, 8, 198872-198885.

• Ngwenduna, K. S., & Mbuvha, R. (2021). Alleviating Class Imbalance in Actuarial
Applications Using Generative Adversarial Networks. Risks, 9(3), 49.

• Mongwe, W. T., Mbuvha, R., & Marwala, T. (in press). Antithetic Magnetic And
Shadow Hamiltonian Monte Carlo. IEEE Access.

1.6.3 Preprints

• Mbuvha, R., Boulkaibet, I., & Marwala, T. (2019). Automatic Relevance Determi-
nation Bayesian Neural Networks for Credit Card Default Modelling. arXiv preprint
arXiv:1906.06382.

• Mbuvha, R., Boulkaibet, I., & Marwala, T. (2020). An Automatic Relevance Deter-
mination Prior Bayesian Neural Network for Controlled Variable Selection. arXiv
preprint arXiv:2001.01765.

• Mbuvha, R., & Marwala, T. (2020). On Data-Driven Management of the COVID-19
Outbreak in South Africa. medRxiv.

1.7 Outline of this Thesis

• Chapter 2 introduces probabilistic inference in Bayesian neural networks using
MCMC with applications in wind speed forecasting and credit default prediction.

• Chapter 3 introduces Separable Shadow Hamiltonian (S2HMC) Hybrid Monte Carlo
for sampling BNN posteriors.
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• Chapter 4 augments S2HMC with automatic relevance (ARD) to create a framework
for robust feature selection.

• Chapter 5 identifies current challenges with products of Gaussian Process expert
models and proposes novel weighting schemes for improved prediction calibration.

• Chapter 6 employs probabilistic inference methods in change point detection on
COVID-19 spreading rates in South Africa.

• Chapter 7 gives a conclusion and possible future improvements to this work.



Chapter 2

Markov Chain Monte Carlo in Neural
Networks

This chapter provides the necessary background to the probabilistic inference of neural
network parameters. Bayesian Neural Networks are first set out in Section 2.2, proceeding to
classical MCMC methods for inference encompassing Metropolis Hastings MH and Hybrid
Monte Carlo (HMC). Experiments in both classification and regression are then presented,
followed by an analysis of results and conclusion. Parts of the work in this chapter also
appears in Mbuvha et al. [84].

2.1 Introduction

The Bayesian formulation of ANNs was first proposed by MacKay [76]. MacKay [76] pro-
posed a Laplace approximation to the posterior distribution, which uses a single multivariate
Gaussian centred around the maximum posterior estimate (MAP) with co-variances defined
by the Hessian of the log posterior in the vicinity of the MAP. This method has shown supe-
rior performance relative to gradient descent methods in numerous applications, including
conflict analysis [69], energy consumption modelling [75] and wind power forecasting [86].
Some drawbacks of such an approximation include the inability to address multiple local
minima and the need for enormous amounts of data if the approximation is to hold for highly
complex models [93].

MCMC techniques are theoretically guaranteed to ergodically explore the posterior
parameter space [95] thus implicitly addressing issues of multimodality. Naive MCMC
techniques such as MH suffer from inefficiencies resulting from random walk behaviour.
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Random walk behaviour results in highly correlated samples that make exploration of the
posterior distribution extremely slow.

Dynamical MCMC methods are often used to suppress random walk behaviour exhibited
by MH. Such methods use the gradient information of the negative log posterior distribution
to make an efficient distant proposal with high acceptance probabilities. HMC, which was
first proposed by Duane et al. [38], uses auxiliary variables to simulate the fictitious dynamics
of a Hamiltonian system. Parameter distributions are obtained by marginalising over the
auxiliary momentum variables. HMC was first applied as a sampling technique for Bayesian
Neural Network models (BNNs) in the seminal work of Neal [93]. Since then, HMC has
proved to be the most effective way to obtain such samples from the posterior distribution of
BNNs, outperforming other approximate inference methods such as Gaussian approximation
of MacKay [75] and variational inference of Hinton and Van Camp [61] ([131],[15]).

2.2 Bayesian Neural Networks

The NN models described in Section 1.1 can be parametrised to make probabilistic assump-
tions about the data [80]. This parametrisation is obtained via the Bayesian framework. MLP
models trained by minimising error through backpropagation, as discussed in Section 1.1
can be seen in a frequentist light as yielding the most probable set of weights given the data,
i.e. maximum likelihood estimation.

The Bayesian framework allows for the use of prior conditions on the distribution of
network weights. These conditions can be defined individually or globally for all the weights
in the network.

The Bayesian framework’s foundation emanates from Bayes theorem, which defines the
posterior distribution of parameters given the data and prior distributional assumptions. In
the context of a neural network model with architecture H, weights w, and training dataset
D, Bayes theorem translates to [86, 75]:

P(w|D,H) =
P(D|w,H)P(w|H)

P(D|H)
(2.1)

where P(w|D,H) is the posterior probability of the weights given the data and model ar-
chitecture, P(D|w,H) is the likelihood of the data given the model. P(w|H) is the prior
probability of the weights. P(D|H) is the probability of the data given the model - this is
referred to as the evidence [86].

We now set out the components of a Bayesian formulation of the MLP proposed by
MacKay [76].
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2.2.1 The Likelihood

In the probabilistic formulation, we interpret the error function defined in equation 1.3 as the
negative log-likelihood of the network noise model. On the assumption of a Gaussian noise
model with a precision parameter β , the likelihood is then defined as [86]:

P(D|w,β ,H) =
1

ZD(β )
exp(−βED) (2.2)

=
1

ZD(β )
exp

(
− β

2

N

∑
i=1

(
t(i)− y(X (i);w)

)2)
(2.3)

where ZD(β ) is a normalising constant.

2.2.2 The Prior

The prior imposes some subjective views on the distribution of the network weights. Often
the prior over the weights are defined by a Gaussian with zero mean and a precision α as
follows [86]:

P(w|α,H) =
1

ZW (α)
exp(−αEW ) (2.4)

=
1

ZW (α)
exp

(
− α

2 ∑
i

w2
i
)

(2.5)

Similarly ZW (α) is the normalising constant and EW can be considered as the log prior
probability distribution over the weights. Since α regulates how far we would expect
the weights to vary from the mean of zero, it is referred to as the regularisation or decay
parameter.

2.2.3 The Posterior

The posterior distribution over the weights is then derived from equation 2.1 as [75, 86] :

P(w|α,β ,H) =
1

Z(α,β )
exp(−(αEW +βED)) (2.6)

2.2.4 Predictive Distribution

The predictive distribution is the distribution from which we make predictions of the target
tN+1 given new inputs X (N+1). In the pure Bayesian sense this distribution is obtained by
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integrating the output distribution over the posterior parameter distribution as follows [86]:

P(t(N+1)|D,α,β ,H) =
∫

P(t(N+1)|w,β ,H)P(w|α,β ,H,D)dw (2.7)

The posterior distribution in equation 2.6 and its predictive distribution in equation 2.7
are intractable in closed form and require either approximate inference or sampling [16].

2.3 Monte Carlo Integration

Monte Carlo (MC) sampling techniques attempt to compute expectations over complex
distributions. MC methods generate a large number of realisations from the posterior
distribution that are representative of its distributional nature. This implies principled
handling of multiple modes and their relative weightings. Theoretically, an MC prediction at
a given data point x can be expressed by the integral over the parameters as [15]:

E[ fk(x,w)] =
∫

fk(x,w)P(w|α,β ,D)dw (2.8)

The corresponding MC estimate of this integral can be obtained using a mean over N
distributional samples of parameters w(t) as [15] :

E[ fk(x,w)]≈ 1
N

N

∑
t=1

fk(x,w(t)) (2.9)

The estimated standard error of such an estimate or the Monte Carlo standard error
(MCSE) for non correlated samples can be expressed as [23]:

MCSE =
σ√
N

where σ
2 = var

(
fk(x,w)

)
(2.10)

The challenge in arriving at these estimates becomes obtaining the samples that are
accurately representative of the posterior distribution.

2.4 Markov Chain Monte Carlo

MCMC generates samples of the target posterior distribution using a Markov chain which is
constructed such that its stationary distribution is the target posterior.
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A Markov Chain is a sequence of random variables w(1),w(2), ...,w(n−1),w(n) such that

P(w(n)|w(1),w(2), ...,w(n−1)) = P(w(n)|w(n−1)) (2.11)

A Markov chain is fully defined by an initial distribution P(w(1)) and a transition density
P(w(n+1)|w(n)) governing movements between states. A distribution P∗(w) is said to be a
stationary distribution of the chain if transitions P(w′|w) leave such a distribution invariant.
This condition can be defined as [94]:

P∗(w′) =
∫

P(w′|w)P∗(w)dw (2.12)

This condition can be simplified into a stronger criterion called detailed balance such that
∀ w′ and w:

P(w′|w)P∗(w) = P(w|w′)P∗(w′) (2.13)

Detailed balance ensures reversibility as it equates the probability of moving from w to w′

the probability of moving in the reverse direction. If such a Markov chain is ergodic, its
stationary distribution is unique and can be attained from any initial distribution. Thus a
Markov chain with a stationary distribution P∗(w) can be used to estimate expectations with
respect to P∗(w) [93]. We now look at two methods for constructing such Markov chains,
the Metropolis-Hastings algorithm (MH) and Hybrid Monte Carlo (HMC).

2.4.1 Metropolis Hastings Algorithm

The MH algorithm is one of the simplest algorithms for generating a Markov Chain which
converges to the correct stationary distribution. The MH generates proposed samples using a
proposal or transition distribution P(w∗|w). A new parameter state w∗ is accepted or rejected
probabilistically given the current state w based on the posterior likelihood ratio [23]:

P
(
accept

(
w∗

))
= min

(
1,

P(w∗)P(w|w∗)
P(w)P(w∗|w)

)
(2.14)

A common proposal distribution is a symmetric random walk obtained by adding Gaussian
noise to a previously accepted parameter state which becomes known as random walk
Metropolis (RwM). In RwM, the transition density is N (w,εΣ) where ε is the noise scaling
constant.
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When such a proposal or transition density is symmetric, it implies that P(w|w∗) =
P(w∗|w) reducing equation 2.14 to a ratio of posterior likelihoods as follows [113]:

P
(
accept

(
w∗

))
= min

(
1,

P(w∗)
P(w)

)
(2.15)

Random walk behaviour of such a proposal typically results in low sample acceptance rates,
slow convergence to stationary distribution and highly correlated samples. The effect of
random walk behaviour can be suppressed using a more intelligent proposal that leverages
gradient information. Algorithm 2.1 provides a summary of MH when applied to BNNs.

Algorithm 2.1 Metropolis Hasting Algorithm for BNNs.

Data: Training dataset {X(i), t(i)}
Result: N Samples of BNN weights w
initialise the network weights w
w0← winit
for n← 1 to N do

Generate Candidate weights w∗ using the transition density P(w∗|w)
Metropolis Update step:
wn← w∗ with probability:

min
(

1, P(w∗)P(w|w∗)
P(w)P(w∗|w)

)
end

2.4.2 Gibbs Sampling

Gibbs sampling, like MH, is one of the simpler MCMC techniques [94]. The Gibbs sampler
partitions the multidimensional vector of parameters Rp into smaller blocks Rp1,Rp2, ...Rpm

such that p1+ p2+ · · ·+ pm = p [113]. These m blocks are selected such that the conditional
distributions are easier to compute in closed form. Samples are then generated from the
conditional of a specific block of parameters given fixed values (immediate past samples) of
the other blocks of parameters. Algorithm 2.2 shows the pseudo-code for the Gibbs sampler.
Given the requirement for simplified conditionals [94], Gibbs sampling cannot be used for
sampling BNN weights. However, Gibbs sampling can be used in conjunction with other
MCMC samplers for hyperparameter sampling - we discus this setup in detail in Chapter 4.
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Algorithm 2.2 Pseudo code for the Gibbs Sampler.
Data: a vector of parameters w = {w1,w2, . . . ,wp} with p blocks
Result: N Samples of parameter vector w
Initialise starting value w(0)

for n← 1 to N do
Draw w(n)

1 from P(w1|w
(n−1)
2 , . . . ,w(n−1)

p )

Draw w(n)
2 from P(w2|w

(n−1)
1 ,w(n−1)

3 ,w(n−1)
4 , . . . ,w(n−1)

p )

Draw w(n)
3 from P(w3|w

(n−1)
1 ,w(n−1)

2 ,w(n−1)
4 , . . . ,w(n−1)

p )
.
.
.
Draw w(n)

p from P(wp|w(n−1)
1 ,w(n−1)

2 ,w(n−1)
3 , . . . ,w(n−1)

p−1 )

end

2.4.3 Hybrid Monte Carlo

HMC proposed by Duane et al. [38] reduces random walk behaviour by adding auxiliary
momentum variables to the parameter space [83]. HMC creates a vector field around the
current state using gradient information, which assigns the current state a trajectory towards
a high probability next state [83]. The dynamical system formed by the model parameters w
and the auxiliary momentum variables p is represented by the Hamiltonian H(w,p) written
as follows [93, 83]:

H(w,p) = L(w)+K(p) (2.16)

Where L(w) is the negative log-likelihood of the posterior distribution in equation 1.9, also
referred to as the potential energy. K(p) is the kinetic energy defined by the kernel of a
Gaussian with a covariance matrix M [94]:

K(p) =
pT M−1p

2
(2.17)

In this work we consider M as to the identity matrix.
The trajectory vector field is defined by considering the parameter space as a physical

system that follows Hamiltonian dynamics [83]. The dynamical equations governing the
trajectory of the chain are then defined by Hamiltonian equations at a fictitious time t and
dimensions i = 1, . . . ,d as follows [93]:

∂wi

∂ t
=

∂H
∂ pi

(2.18)
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∂ pi

∂ t
=− ∂H

∂wi
(2.19)

In practical terms, the dynamical trajectory is discretised using the leapfrog integrator. In
the leapfrog integrator to reach the next point in the path, we take half a step in the momentum
direction, followed by a full step in the direction of the model parameters - then ending with
another half step in the momentum direction.

pi(t + ε/2) = pi(t)+(ε/2)
∂H
∂wi

(
wi(t)

)
(2.20)

wi(t + ε) = wi(t)+ ε
pi(t + ε/2)

mi
(2.21)

pi(t + ε) = pi(t + ε/2)+(ε/2)
∂H
∂wi

(
wi(t + ε)

)
(2.22)

Due to the discretising errors arising from leapfrog integration a Metropolis acceptance
step is then performed in order to accept or reject the new sample proposed by the trajectory
[95, 83]. In the Metropolis step the parameters proposed by the HMC trajectory w∗ are
accepted with the probability [93]:

P(accept) = min
(

1,
P(w∗|D,H)

P(w|D,H)

)
(2.23)

Algorithm 2.3 shows the pseudo-code for the HMC where ε is a discretisation step size.
The leapfrog steps are repeated until the maximum trajectory length L is reached. The HMC
algorithm has multiple parameters that require tuning for efficient sampling, such as the step
size and the trajectory length [87]. In terms of trajectory length, a trajectory length that is too
short leads to random walk behaviour similar to MH. While a trajectory length that is too
long results in a trajectory that inefficiently traces back [63]. The step size is also a critical
parameter for sampling, small step sizes are computationally inefficient leading to correlated
samples and poor mixing while large step sizes compound discretisation errors leading to
low acceptance rates.

2.4.4 Step Size Tuning by Dual Averaging

The issue of step size selection for HMC, MH and later Separable Hamiltonian Hybrid Monte
Carlo (S2HMC) is addressed through dual averaging during multiple initial trail runs of each
sampler [63]. We target a Metropolis acceptance rate δ using dual averaging updates as
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Algorithm 2.3 Hybrid Monte Carlo Algorithm for BNNs.
Data: Training dataset {X, t}
Result: N Samples of BNN Weights w
w0← winit

for n← 1 to N do
sample the auxiliary momentum variables p
p∼N (0,M)
Use leapfrog steps to generate proposals for w
for t← 1 to L do

p(t + ε/2)← p(t)+(ε/2)∂H
∂w

(
w(t)

)
w(t + ε)← w(t)+ ε

p(t+ε/2)
M

p(t + ε)← p(t + ε/2)+(ε/2)∂H
∂w

(
w(t + ε)

)
end
Metropolis Update step:
(p,w)n← (p(L),w(L)) with probability:
min

(
1, P(w(L)|D,H)

P(w(n−1)|D,H)

)
end

follows:

εt+1← µ−
√

t
γ

1
t + t0

t

∑
i=1

Hi (2.24)

ε̄t+1← ηtεt+1 +(1−ηt)ε̄t (2.25)

where µ is a free parameter that εt gravitates to and γ controls the convergence towards µ .
ηt is a decaying rate of adaptation in line with Andrieu and Thoms [5]. Ht is the difference
between the target acceptance rate and the actual acceptance rate. Our dual averaging updates
are such that:

E[Ht ] = E[δ −αt ] = 0.

This has the effect of updating the step size towards the target acceptance rate δ .

2.5 Experiment Setup

MCMC methods for inference of BNN parameters are evaluated in both credit default
modelling and wind speed forecasting tasks. On each dataset, HMC and MH are employed to
draw 5000 samples for a BNN with a single hidden layer and 5 hidden neurons. This simple
architecture was chosen based on an initial architecture search which showed reasonable



26 Markov Chain Monte Carlo in Neural Networks

performance across datasets. As the experiments are to evaluate the relative efficacy of the
samplers - the architecture can be considered as a control variable.

2.5.1 Credit Datasets

Credit datasets used in this thesis are from UCI machine learning repository [37]. These
include the Taiwan credit dataset of Yeh and Lien [135], the German credit dataset and the
Australian credit dataset. Table 2.1 gives a summary of each of these datasets. A description
of features in the Taiwan credit dataset is given in Table 2.2. Feature descriptions for the
German and Australian datasets are not shown as they are anonymised. The types of features
in these datasets are client descriptive information as well as recent repayment patterns. All
credit datasets are randomly split into 70% for training and 30% testing partitions.

Table 2.1 Summary information for the credit datasets.

Dataset Features N
Taiwan credit 24 30000
Australian credit 14 690
German credit 24 1 000

2.5.2 WASA Meteorological datasets

The wind speed datasets used in this thesis are based on meteorological observations collected
from three weather stations participating in the Wind Atlas for South Africa (WASA) project
[52]. The locations of the three weather stations considered in this work are indicated by
the map in Figure 2.1. The stations are selected to represent wind speed patterns along the
coast of South Africa. The training and testing data split for this data is based on calendar

Table 2.2 Features in the Taiwan credit dataset.

Attribute Attribute Name
X1 Amount of the given credit
X2 Gender
X3 Education
X4 Marital status
X5 Age (years)

X6 - X11 History of past payment - each of the last six months
X12 - X17 Amount of bill statement - each of the last six months
X18 - X23 Amount of previous payment - each of the last six months
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Figure 2.1 Map showing the locations of the weather stations included in the wind datasets.

dates. The training date range is 01/01/2016-31/12/2016, while the testing date range is
01/01/2017-30/06/2017 across all stations. Details of station-specific data characteristics
are in Table 2.3. Observations at every station are recorded in 10-minute intervals. The date
range across the stations is the same, minor differences in dataset sizes are purely because of
short periods of equipment malfunction. The prediction task on this datasets is to forecast
hour-ahead wind speed at the height of 62 meters given observations in the previous hour
and some generalised features as described in Table 2.4. A height of 62 meters is selected as
it is the typical hub height of wind turbines [33].

Table 2.3 Locations of weather stations considered for wind speed modelling.

Station Name Features N Latitude Longitude
WM01 Alexander Bay 19 78642 -28.60 16.66
WM05 Napier 19 78761 -34.61 19.69
WM13 Jozini 19 78658 -27.43 32.17

Normalisation of attributes has been shown to improve the performance of NN models
[54]. Thus, each of the attributes of all the datasets above is pre-processed by projecting it
onto the range [0,1] using min-max normalisation.
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Table 2.4 Descriptions of features utilised in the WASA data sets. All summary statistics
(mean, max, etc.) are over ten minutes intervals.

Feature Description
WS_62_mean Mean wind speed in m/s at 62 meters
WS_62_min Minimum wind speed in m/s at 62 meters
WS_62_max Maximum wind speed in m/s at 62 meters
WS_62_stdv Standard deviation of wind speed in m/s at 62 meters
WS_60_mean Mean wind speed in m/s at 60 meters
WS_40_mean Mean wind speed in m/s at 40 meters
WS_20_mean Mean wind speed in m/s at 20 meters
WS_10_mean Mean wind speed in m/s at 10 meters
WD_60_mean Mean wind direction (angle) in m/s at 60 meters
WD_20_mean Mean wind direction (angle) in m/s at 20 meters
Tair_mean Mean air temperature in degrees Celsius at 20 meters
Tgrad_mean Mean air temperature difference between 60 meters and 10 meters
Pbaro_mean Barometric pressure in hpa
RH_mean Relative Humidity (%)
Hour Previous Hour
Month Calender Month
ws_mean_lag_1 1 hour lagged mean wind speed at 62 meters
ws_mean_lag_2 2 hour lagged mean wind speed at 62 meters
ws_mean_lag_1_day 1 day lagged mean wind speed at 62 meters

2.5.3 Performance Evaluation

The metrics detailed in this section are utilised to evaluate predictive performance and
sampling performance throughout Chapters 2 to 4.

Area Under the Receiver Operating Characteristic Curve

The Area Under the Receiver Operating Characteristic Curve (AUC) is used to evaluate
classification predictive performance. The AUC can be interpreted as the probability of
the model correctly assigning a higher probability of default to defaulters relative to non-
defaulters. The AUC is a more robust metric in imbalanced credit classification problems
where datasets are often biased towards non-defaulters [6].

Root Mean Squared Error

Root Mean Square Error (RMSE) is used as the evaluation metric for regression models.
RMSE is defined for observation series T and corresponding model prediction series Y as
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follows:

RMSE =

√
1
N

N

∑
i=1

(
Ti−Yi

)2 (2.26)

Effective Sample Sizes

The main indicator of an MCMC sampler’s efficiency is the auto-correlation between samples.
Samplers that exhibit high correlation levels between samples result in poor mixing since
multiple samples will effectively represent very similar points in the posterior distribution.
Thus a larger number of samples will be required to obtain a sample set that adequately
represents the entire distribution. The effective sample size (ESS) is a metric that measures
the number of adequately independent samples. In this thesis, we make use of the multivariate
ESS of Vats et al. [126] defined as

ESS= N×
(
|Λ|
|Σ|

) 1
p

(2.27)

where N is the number of generated samples, p is the dimensionality of parameters, Λ is the
sample covariance matrix, and Σ is the estimate of the MCSE. This metric takes into account
the internal correlations between the dimensions of each sample, which would not otherwise
be accounted for in univariate ESS.

2.5.4 Experimental Parameter Settings

The detailed parameter settings for the experiments are documented in table 2.5.

Table 2.5 Experimental Settings for the BNNs and Sampling runs.

Setting Value

BNN Number of Hidden Layers 1
BNN Number of Hidden Neurons 5
BNN Activation Function ReLu
Sampling Trajectory Length (HMC) 100
Number of Samples 5000

2.5.5 Preliminary Step Size Tuning Runs

The dual averaging method detailed in Section 2.4.4 is employed to inform the setting of step
sizes for each dataset problem as step sizes are inherently dependent on the specific posterior
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likelihood landscape. These preliminary runs entail 5000 samples with a target acceptance
rate of 75%. Table 2.6 shows the resultant step size after these tuning runs for each dataset.

Table 2.6 Step size selections for each dataset after initial dual averaging runs.

Dataset Step Size

Australian credit 0.038
German credit 0.026
Taiwan credit 0.004
WM01 Alexander Bay 0.161
WM05 Naiper 0.146
WM13 Jozini 0.176

More complex classification likelihoods tend to have resulted in smaller step sizes when
compared to regression likelihoods. The regression datasets converged to relatively close
step sizes. This is to be expected as they are of the same dimensionality and similar dataset
sizes. These steps size are used for all BNNs across Chapters 2 to 4.

2.6 Results and Discussion

The results discussion and analysis in this section are based on 10 independent chains with
5000 samples for each inference method.

2.6.1 Sampling Performance

Figure 2.2 shows the negative log likelihood trace plots across all datasets. It can be seen that
HMC converges at lower levels of the posterior negative log-likelihood across all datasets.
This illustrates that samples drawn through HMC are more probable given the data and the
prior distribution on parameters. Early convergence of HMC relative to MH can be seen
from the early flattening of the trace plots.

Figure 2.3 shows the distributions of ESS across the different datasets. It can be seen from
Table 2.7 the ESS values for MH are zero. This implies that random walk exploration of the
posterior is highly ineffective for BNNs resulting in high auto-correlations between samples.
This does not necessarily imply that ESS is zero across all dimensions as the dimensions
with highest auto-correlations are significant contributors to the ESS value [126].

The relatively high sample sizes of HMC indicate the gradient information in HMC result
in distant sample proposals that exhibit significantly lower auto-correlations compared to
MH. The effective sample size also tends to take on low values for smaller datasets such as
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Australian credit and German credit, showing that larger datasets aid in exploration of the
posterior.

Table 2.7 Mean ESS statistics over ten independent chains each with 5000 samples using
MH and HMC on all datasets.

Dataset MH HMC
Australian credit 0 2360
German credit 0 2067
Taiwan credit 0 631
WM01 Alexander Bay 0 4302
WM05 Naiper 0 3714
WM13 Jozini 0 4572

Overall Average 0 2848

The acceptance rate statistics are depicted in Table 2.8. HMC achieves significantly
higher acceptance rates relative to MH across all datasets on the same dataset-specific step
sizes. The high rejection rate of MH can also be seen in the relatively flat level of the
negative log-likelihood from Figure 2.2, which implies little movement in the chains. The
deterioration in acceptance is observed to further increase for the larger wind speed regression
datasets.

Table 2.8 Mean acceptance rate (%) statistics over ten independent chains each with 5000
samples using MH and HMC on all datasets.

Dataset MH HMC
Australian credit 43.734 67.076
German credit 41.770 78.22
Taiwan credit 59.604 78.134
WM01 Alexander Bay 23.096 78.624
WM05 Naiper 26.05 79.516
WM13 Jozini 23.202 79.248

Overall Average 36.242 76.803

2.6.2 Predictive Performance

Predictive performance in terms of AUC for classification and RMSE for regression mirrors
the sampling performance. The ROC curves in Figure 2.4 indicate superior performance of
HMC over MH across all credit datasets with AUCs of 0.93 for Australian credit, 0.78 for
German credit and 0.78 for Taiwan credit.
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A similar phenomenon is also observed on wind speed datasets. These performance
differences again point to the value of gradient information in the exploration of the posterior
as the predictive performance metrics mirror the convergence levels of the negative log-
likelihood in Figure 2.2.

Table 2.9 Mean testing RMSE resulting from BNNs trained using MH and HMC.

Dataset MH HMC
WM01 Alexander Bay 4.229 2.057
WM05 Napier 5.748 2.111
WM13 Jozini 2.934 1.856
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(a) Australian credit (b) German credit

(c) Taiwan credit (d) WM01 Alexander Bay

(e) WM05 Napier (f) WM13 Jozini

Figure 2.2 Negative log-likelihood trace plots for MH and HMC for all datasets.
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Figure 2.3 Boxplots showing the distribution of ESS over ten independent chains on each
dataset.
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Figure 2.4 ROC curves based on mean class probabilities for the credit default datasets.
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2.7 Conclusion

This chapter introduced MCMC methods with a focus on performing parameter inference
for Bayesian Neural Networks. HMC and MH are introduced as algorithms for constructing
Markov Chains that converge to the required posterior distribution. A dual averaging scheme
for tuning the step size for HMC and variance of the random walk in MH is also introduced.

These samples are then applied in the inference of BNN parameters for credit default
and wind speed modelling. The results show that HMC outperforms MH in both sampling
efficiency and predictive performance. This finding demonstrates that gradient information
added by the Hamiltonian dynamics is essential in the efficient exploration of the target
distribution.

In the next chapter, we explore an enhancement of HMC to reduce discretisation error
by sampling from an importance distribution obtained from a shadow Hamiltonian. This
increases the acceptance of distant proposals, thus further improving ESS statistics.



Chapter 3

Separable Shadow Hamiltonian Monte
Carlo

HMC has been widely applied to numerous posterior inference problems. A significant
limitation to the increased adoption of HMC in inference for large scale machine learning
systems, such as deep neural networks, is the exponential degradation of the acceptance rates
and the corresponding effective sample sizes with increasing system size D due to numerical
integration errors. In this chapter, a solution to this problem is provided by sampling from a
modified or shadow Hamiltonian that is conserved to a higher-order by the leapfrog integrator
more inline with the principle of conservation of energy. Separable Shadow Hamiltonian
Hybrid Monte Carlo (S2HMC) allows for the feasibility of larger step and system sizes while
maintaining high effective sample sizes.

3.1 Introduction

Predictive models of high parameter dimensionality have become the mainstay across a
multitude of critical tasks such as medicine, law enforcement and self-driving automobiles
[66]. The inherent importance of such applications suggests a greater emphasis on the
understanding of predictive uncertainty arising from the models [84]. Bayesian Methods such
as BNNs allow for principled inference of posterior distributions of model parameters. The
Bayesian framework provides a principled approach to predictive uncertainty, theoretically
justified interpretations of regularisation and generalisation through prior distributions.

MCMC methods are fundamental in performing inference of large scale probabilistic
machine learning methods. HMC [95] and its variants have been a popular choice of
inference due to its ability to suppress random walk behaviour through the use of first-
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order gradient information [63]. While HMC has shown significant sampling efficiencies
relative to its random walk counterparts, it still exhibits numerous pathologies that hinder
its wide adoption for large scale practical applications. These include the need to tune
highly sensitive parameters such as the discretisation step size ε and integration path length
L as well as the requirement for computation of posterior likelihood gradients. Another
practical issue with HMC, particularly in relation to deep neural network applications is
the exponentially decreasing acceptance rates and the related effective sample sizes as the
number of sampling parameters D increases due to the compounding discretisation errors of
the leapfrog integration.

Recent advances in HMC literature have primarily focused on setting adaptive step
sizes, path lengths [63, 131] and numerical or stochastic gradient approximations [29, 13].
However, the issue of degeneration of HMC with increases in model dimensionality or system
size has received relatively little attention in machine learning literature.

Numerical integration errors which cause this degeneration in acceptance rates are
analysed through modified equations that are exactly conserved by the discrete integrator [112,
53]. These modified equations can be defined by suitably truncated asymptotic expansions in
the powers of the discretisation step size parameter [64, 112]. In Hamiltonian systems, such
modified equations result in modified or shadow Hamiltonians which are conserved with
higher-order accuracy relative to true Hamiltonian.

Since the discrete integrator produces a more accurate flow of the shadow Hamiltonian,
sampling from the shadow Hamiltonian thus facilitates efficient sampling with higher accep-
tance rates [21, 64]. The bias in canonical averages of parameters introduced by sampling
from the shadow Hamiltonian is then addressed by an importance sampling scheme based on
the true Hamiltonian as target distribution.

Numerous approaches to shadow Hybrid Monte Carlo (SHMC) have been put forward
such as Shadow Hybrid Monte Carlo (SHMC) [64], Targeted Shadow Hybrid Monte Carlo
[3] and Mix & Match Hamiltonian Monte Carlo [102]. The computational performance of
such approaches is limited by the need to either generate or partially refresh momenta to
increase the probability of acceptance from a nonseparable shadow Hamiltonian [119].

In this chapter, separable shadow Hamiltonian hybrid Monte Carlo (S2HMC) [119] which
employs a processed leapfrog integrator to generate momenta through a separable shadow
Hamiltonian, is introduced for sampling the Hamiltonian efficiently. This work is the first
such presentation of S2HMC in sampling parameters of BNNs.
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3.2 Shadow Hamiltonians

Shadow or modified Hamiltonians are perturbations of the Hamiltonian that are by design
exactly conserved by the numerical integrator. In the case of shadow Hamiltonian Hybrid
Monte Carlo, we sample from the importance distribution defined by the shadow Hamiltonian
as [53]:

π̂ ∝ exp
(
− H̃ [k](w,p)

)
(3.1)

Where H̃ [k] is the shadow Hamiltonian defined using backward error analysis of the
numerical integrator.

In backward error analysis the shadow Hamiltonian can then be defined by an asymptotic
expansion in the powers of the discretisation step size around the Hamiltonian [53]:

H̃ = H + εH2 + ε
2H3 + ε

3H4 + . . . (3.2)

This asymptotic expansion diverges in practice, however a kth order truncation of the
expansion is used [53]:

H̃ [k] = H + εH2 + ε
2H3 + ε

3H4 + . . .

= H̃ +O(εk)
(3.3)

The terms Hk can be determined by matching the corresponding components of the Taylor
series in terms of ε and the expanded exact flow of the modified differential equation of the
Hamiltonian. These modified equations can be proved to be Hamiltonian for symplectic
integrators such as the leapfrog [53].

In this work, we focus on a fourth-order truncation of the shadow Hamiltonian under
the leapfrog integrator. Since the leapfrog is second-order accurate (O2), the fourth-order
truncation is conserved with higher accuracy (O4) than the true Hamiltonian.

The fourth-order shadow Hamiltonian for the leapfrog after matching coefficients from
the flow and the asymptotic expansion becomes [119]:

H̃ [4] = U(w) + K(p) +
ε2

12
KT

p UwwKp − ε2

24
UT

w KppUw + O(ε4) (3.4)

where Uw,Uww,Kp and Kpp are Jacobians and Hessians of the potential and kinetic energies
respectively.

The shadow Hamiltonian in equation 3.4 is non-separable in terms of w and p, which
necessitates computational expensive momenta acceptance criteria for momenta and po-
tential tuning of additional parameters [64, 119]. This additional computational overhead
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is relatively reduced by pre and post processing positions and momenta before and after
propagating through the integrator [119].

3.2.1 Separable Shadow Hamiltonian Hybrid Monte Carlo

Separable Shadow Hamiltonian Hybrid Monte Carlo (S2HMC) [119] utilises a processed
leapfrog integrator to create a separable Hamiltonian. The separable Hamiltonian in S2HMC
is [119]:

H̃(w,p) =U(w)+K(p)+
ε2

24
UT

w M−1Uw +O(ε4) (3.5)

Propagation of positions and momenta on this shadow Hamiltonian is performed after
performing the reversible mapping (ŵ, p̂) = X (w,p) where (ŵ, p̂) are obtained through the
following fixed point iterations [119]:

p̂ = p− ε

24
(
Uw(w+ εM−1p̂)−Uw(w− εM−1p̂)

)
(3.6)

ŵ = w+
ε2M−1

24
(
Uw(w+ εM−1p̂)+Uw(w− εM−1p̂)

)
. (3.7)

After the leapfrog is performed this mapping is reversed using post-processing the following
fixed point iterations [119]:

w = ŵ− ε2M−1

24
(
Uw(w+ εM−1p̂)+Uw(w− εM−1p̂)

)
(3.8)

p = p̂+
ε

24
(
Uw(w+ εM−1p̂)−Uw(w− εM−1p̂)

)
(3.9)

Once the samples are obtained from S2HMC as depicted in algorithm 3.1, importance
weights are calculated to allow for the use of the shadow canonical density rather than
the true density. These weights are based on the differences between the true and shadow
Hamiltonians as follows [64, 119]:

wn = exp(−(H(w,p)− Ĥ(w′,p′)) (3.10)

Mean estimates of observables f (w) which are functions of the parameters w can be computed
as a weighted average.



3.3 Experiment Setup 41

Algorithm 3.1 Separable Shadow Hamiltonian Hybrid Monte Carlo
Data: Dataset {X,y}
Result: N samples of model parameters w
initialise the network weights w
w0← winit
for n← 1 to N do

sample the auxiliary momentum variables p
p∼N (0,M)
calculate H̃(w,p)
Apply the pre-processing mapping (ŵ, p̂) = X (w,p)
Use leapfrog steps on (ŵ, p̂)
for t← 1 to L do

p̂(t + ε/2)← p̂(t)+(ε/2)∂ Ĥ
∂ ŵ

(
ŵ(t)

)
ŵ(t + ε)← ŵ(t)+ ε

p̂(t+ε/2)
M

p̂(t + ε)← p̂(t + ε/2)+(ε/2)∂ Ĥ
∂ ŵ

(
ŵ(t + ε)

)
end
Apply the post-processing mapping (w∗,p∗) = X−1(ŵ, p̂)

Calculate H̃(w∗,p∗)
Metropolis update step: (w,p)n← (w∗,p∗) with probability:

min
(

1, Ĥ(w∗,p∗)
Ĥ(w,p)

)
end

3.3 Experiment Setup

The experiment setup in terms of datasets, BNN specification, step sizes and performance
measures followed in this chapter are similar to that used in Section 2.5. The main exception
to the previous experiment setup is the ESS calculation for S2HMC, as it is an importance
sampler. In order to account for non-uniform importance of samples, calculation of ESS
for S2HMC follows the ESSMCMC-IS suggested by Radivojević and Akhmatskaya [102]. An
initial ESS (M) is calculated using the expression for multidimensional ESS in equation 2.27.
M out of the total number of samples N are randomly selected to calculate ESSMCMC-IS as:

ESSMCMC-IS =

(
∑

M
m=1 wn

)2(
∑

M
m=1 w2

n
) (3.11)

where wn are the importance weights defined in equation 3.10.
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3.4 Results and Discussion

3.4.1 Step Size and Dimensionality Sensitivity

As an illustrative experiment, Figure 3.1 is based on simulated linear regression data and
shows the effect of increasing step size on the acceptance rates when using HMC and S2HMC.
The phenomena of degradation in acceptance rates in HMC becomes increasingly pronounced
at larger step sizes relative to S2HMC. Increased rejections result in repetition of samples,
which in turn drives down effective samples sizes due to higher auto-correlation. Figure
3.2 is also based on simulated linear regression datasets and shows similar degeneration
of acceptance rates with the number of parameters for HMC. At the same time, S2HMC
maintains high acceptance rates, which lead to better mixing and ESSs.
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Figure 3.1 Acceptance rate degradation with step size. Simulated dataset with N = 5000 and
D = 100.
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Figure 3.2 Acceptance rate degradation with number of model parameters at a constant step
size of 0.01 and N = 10000.
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3.4.2 Sampling Performance

Figure 3.3 shows the trace plots across datasets for MH, HMC and S2HMC. The rates and
levels of convergence of HMC and S2HMC are almost identical as they both inherently use
similar Hamiltonian dynamics in their proposals. If one looks at the negative log-likelihood
as a goodness-of-fit measure, a consequence of this similarity is that these methods will have
similar predictive performance in terms of RMSE and AUC for the two samplers.

The boxplots in Figure 3.4 show the distribution of ESS across 10 independent chains
with the corresponding mean statistics represented in Table 3.1. It can be seen that across the
datasets, S2HMC yields higher ESSs relative to HMC. This experimental result supports the
modified equation theory which postulates that the shadow Hamiltonian is conserved at a
higher order than the Hamiltonian itself as detailed in Section 3.2 and suggested by Izaguirre
and Hampton [64], Skeel and Hardy [112] and Sweet et al. [119].

Table 3.1 Mean ESS statistics over ten independent chains each with 5000 samples using
MH, HMC and S2HMC on all datasets.

Dataset MH HMC S2HMC
Australian credit 0 2360 2354
German credit 0 2067 2093
Taiwan credit 0 631 642
WM01 Alexander Bay 0 4302 4352
WM05 Naiper 0 3714 3741
WM13 Jozini 0 4572 4616

Overall Average 0 2848 2914

The higher ESS statistics of S2HMC are further reinforced by the acceptance rate results
in Table 3.2. This again suggests marginally higher acceptance rates for S2HMC relative to
HMC at the same step size for each dataset.

3.4.3 Predictive Performance

Figure 3.5 shows the ROC curves for each sample based on the mean prediction of over
5000 samples and ten independent chains. As can be seen from the Figure, the predictive
performance of HMC and S2HMC based BNNs mirrors the observations from the trace plots
in Figure 3.3. The corresponding AUCs for both HMC and S2HMC are 0.93, 0,78 and 0.78
for the Australian, German and Taiwan credit datasets, respectively.

The regression results in terms of mean RMSEs in Table 3.3 indicate similar outcomes to
the credit classification experiments. The performance difference between HMC and S2HMC
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Table 3.2 Mean acceptance rates (%) over ten chains of 5000 samples for each sampler on all
datasets.

Dataset MH HMC S2HMC
Australian credit 43.734 67.076 70.290
German credit 41.770 78.22 79.260
Taiwan credit 59.604 78.134 80.690
WM01 Alexander Bay 23.096 78.624 80.942
WM05 Naiper 26.05 79.516 81.980
WM13 Jozini 23.202 79.248 81.322

Overall Average 36.242 76.803 79.087

is marginal, suggesting, as reflected in the trace plots, that their samples are relatively close
geometrically. This phenomenon results in almost equal predictive performance.

Table 3.3 Mean testing RMSE resulting from BNNs trained using ten independent chains of
MH, HMC and S2HMC at each of the weather stations.

Dataset MH HMC S2HMC
WM01 Alexander Bay 4.22 2.057 2.056
WM05 Napier 5.748 2.111 2.108
WM13 Jozini 2.934 1.856 1.858

In summing up the experimental results - an important finding is that both S2HMC and
HMC can sample sufficiently representative parameters of the BNNs across datasets. When
looking at sampling performance, the results suggest that the shadow Hamiltonian in S2HMC
marginally improves the acceptance rates and consequently the ESS.

3.4.4 Computation Time

Table 3.4 shows the mean computation time in minutes and the mean time normalised ESSs
when generating 5000 samples across all the datasets. S2HMC generates 197.760 effective
samples per minute relative to 459.809 effective samples per minute of HMC. This amounts
to an effective speedup of 2.329. The increase in computational burden of S2HMC emanates
from the additional steps that include pre-processing, calculation of the shadow Hamiltonian
and post-processing.
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Table 3.4 Mean computation time in minutes and mean time normalised ESSs for HMC and
S2HMC when generating 5000 samples across all six datasets.

Dataset Mean time (Minutes) Mean ESS/t
HMC 7.884 459.809
S2HMC 16.413 197.760
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(a) Australian credit (b) German credit

(c) Taiwan credit (d) WM01 Alexander Bay

(e) WM05 Napier (f) WM13 Jozini

Figure 3.3 Negative log-likelihood trace plots for MH (orange), HMC (blue), S2HMC (green)
for all datasets.
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Figure 3.4 Boxplots showing the distribution of ESS over ten independent chains on each
dataset.
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Figure 3.5 ROC curves based on mean class probabilities for the credit default datasets.
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3.5 Conclusion

This chapter presented the first implementation in literature of S2HMC in BNN inference.
Initial experiments on simulated data show the robustness of S2HMC as both step sizes
and problem dimensions increase. Experiments on real-world data for credit classification
and wind speed forecasting show marginally higher ESSs and acceptance rate statistics for
S2HMC relative to HMC. The predictive performance of S2HMC and HMC based BNNs
is found to be similar, suggesting that both samplers are effective in posterior exploration.
When considering these findings, it is important to take into account the additional com-
putations required in S2HMC (relative to HMC) for variable pre and post processing as
well as computation of the shadow Hamiltonians. S2HMC is found to increase the average
computation time per effective sample by a factor of 2.329.

In the next chapter, we explore alternating S2HMC and HMC with Gibbs sampling of
hyperparameters for the automatic relevance determination of features.



Chapter 4

Bayesian Variable Importance Using
Automatic Relevance Determination
Priors

The sampling methods discussed in Chapters 2 and 3 can be augmented with a hierarchical
structure such that the relevance of each input can be inferred. In this chapter, we investigate
automatic relevance determination priors in a hierarchical structure with MH, HMC and
S2HMC samplers.

4.1 Introduction

Traditional criticisms of NN models is their “black-box” nature, hindering the ability to
explain the influences of inputs on predictions. This becomes an impediment in applications
of high societal importance such as the ones we consider in this work (credit and energy)
[86, 84]. A natural question a banker will be asked when applying ML algorithms is “why
customer X’s credit was declined while customer Y’s credit was granted”. An electrical
utility’s management will typically ask themselves; “which data inputs are useful in predicting
the amount of wind energy output in the next hour?”

Various attempts have been made to endow NNs with interpreterbity to provide insights
on questions such as the above have primarily been based on perturbation or sensitivity
methods [9, 105, 7].

The Bayesian framework presents a principled mechanism for inferring the relevance of
various inputs using a stratified prior for each input called an automatic relevance determi-
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nation (ARD) prior [75]. This approach is theoretically justified and intuitive in terms of
probability theory.

4.2 Automatic Relevance Determination

The BNN formulation presented in Chapter 2 can be parameterised such that different groups
of weights can come from unique prior distributions and thus have unique regularisation
parameters αc for each group. An ARD prior is one where weights associated with each
network input have a distinct prior. Weights belonging to the same group (input) share the
same regularisation parameter. The loss function in ARD is as follows [75]:

P(w|D,α,β ,H) =
1

Z(α,β )
exp

(
βED +∑

c
αcEWc

)
(4.1)

The regularisation hyperparameters for each group of weights can be estimated online
during the inference stage. The resulting regularisation parameter αc for each input can be
inferred as denoting the relevance of each input. Irrelevant inputs will have high values of
the regularisation parameter, meaning that their weights will be forced to decay to values
close to zero. Conversely on the basis of the posterior variances 1

αc
, important inputs will

have weights with high variances while less important inputs will have low variances. Since
the mean for the weight priors is fixed at zero, it therefore follows that weights with high
variances are allowed to take values far from zero (thus higher influence), while those with
small variances are forced to take values close to zero (thus lower influence). Figure 4.1
shows this rationale graphically where larger variances allow for more density far from zero,
while low variances concentrate the density around zero.

4.2.1 Inference of ARD Hyperparameters

Inference of ARD hyperparameters is a fundamentally complex inverse problem due to the
multimodal and non-convex nature of the ARD loss function [93, 75, 110]. MacKay [75]
obtains estimates of the ARD hyperparameters by maximising the evidence. This procedure
only becomes possible because the simplifying assumptions of the Laplace approximation
result in a tractable closed form calculation of the evidence. This approach however, still
suffers from the drawbacks of Laplace approximation discussed in Chapter 2. A detailed
exposition of MacKay [75]’s approach is provided in Appendix B.

Neal [94] employs an alternating framework between Gibbs sampling for ARD hyper-
parameters from Cauchy, Gamma and Dirichlet posteriors while using HMC for network
weights. This approach, as it is based on MCMC converges to an asymptotically exact
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Figure 4.1 Prior distribution for weights under various variance settings.

posterior. However numerous design choices are still required such as the choice of prior
distribution.

In this work we employ a similar approach to Neal [94] by allowing the αc parameters to
follow a Gamma prior with a fixed shape parameter τ and a fixed rate parameter θ such that:

P(αc) =
θ τ

Γ(τ)
α

τ−1
c exp(−θτ) (4.2)

After taking into account the data likelihood on a given set of weights, the posterior for the
parameter αc corresponding to a particular group of parameters C becomes

P(αc|wi ∈C) ∝ α
τ+Nc−1
c exp

(
−αc(θ +EWc)

)
(4.3)

Where Nc is the number of weights in group C. Equation 4.3 is still in the canonical form
for a Gamma(τ +Nc,θ +EWc) distribution. This allows for Gibbs sampling of αc parameters
from the joint posterior given a fixed set of weights. Algorithm 4.1 shows a Gibbs step added
to S2HMC at the beginning of each iteration, the approach of Neal [94] is shown in Appendix
B Section B.3. In practice alternating between Gibbs sampling for hyper-parameters and
sampling for weights allows for several uninterrupted weight sampling iterations before the
update of hyper-parameters. This creates stability in the potential energy, which facilitates
the convergence of both chains.
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Algorithm 4.1 Separable Shadow Hamiltonian Hybrid Monte Carlo with ARD
Data: Dataset {X,y}
Result: N samples of model parameters w and N

nGibbs
samples of parameters αc.

initialise the network weights w for n← 1 to N do
if mod(n,nGibbs) = 0 then

Sample hyper-parameters αc from Gamma(τ +Nc,θ +EWc)
end
sample the auxiliary momentum variables p
p∼N (0,M)
Initialise H̃(w,p)
Apply the pre-processing mapping (ŵ, p̂) = X (w,p)
Use leapfrog steps on (ŵ, p̂)
for t← 1 to L do

p̂(t + ε/2)← p̂(t)+(ε/2)∂ Ĥ
∂ ŵ

(
ŵ(t)

)
ŵ(t + ε)← ŵ(t)+ ε

p̂(t+ε/2)
M

p̂(t + ε)← p̂(t + ε/2)+(ε/2)∂ Ĥ
∂ ŵ

(
ŵ(t + ε)

)
end
Apply the post-processing mapping (w∗,p∗) = X−1(ŵ, p̂)

Calculate H̃(w∗,p∗)
Metropolis update step:
(w,p)n← (w∗,p∗) with probability:

min
(

1, Ĥ(w∗,p∗)
Ĥ(w,p)

)
end

4.2.2 ARD Committees

In order to rationalise the feature relevance measures emanating from each method, we
propose a simple majority vote committee approach for feature selection. This approach
minimises reliance on one inference approach and thus adds some robustness to the feature
selection task. Table 4.1 gives an illustration of this committee framework with p features
and n samplers. In the ARD case each sampler gives a vote υik on the basis of some function
of the posterior variance. In this work, a vote is attributed to a sampler if the posterior
variance estimate 1

αik
, corresponding to feature i is within the top five features on the basis of

the ranked posterior variances from a particular sampler k. This can be defined as:

υik = f (αik) =

1, if 1
αik
≥ 1

αI5

0, otherwise
(4.4)
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where 1
αI5

is the fifth highest ranked posterior variance value amongst the p, 1
αik

values for
sampler k. Thus this voting mechanism looks for concordance between samplers with some
allowance for differences in feature rankings. In general f (αik) can be any well defined
function of a feature importance statistic of choice not limited to posterior variances (e.g.
coefficients , gini impurity). The framework also allows for f (αik) to include weighting of
votes using metrics such as the predictive accuracy of the method that gives a specific feature
importance statistic. This framework is consistent with Garcia-Chimeno et al. [47] who
use of RF, Boosted Trees, LASSO and uni-variate variable selection to arrive at committee
outputs. Pehlivanlı et al. [97] also employs a similar approach using t-statistics, Fisher scores,
the ReliefF algorithm and effective range based gene selection.

Table 4.1 An illustration of the ARD committee framework with p features and n samplers.

Feature Sampler 1 Sampler 2 ... Sampler k ... Sampler n Total Votes
Feature 1 υ11 υ11 ... υ1k ... υ1n ∑

n
k=1 υ1k

Feature 2 υ21 υ21 ... υ2k ... υ2n ∑
n
k=1 υ2k

... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ...
Feature i υi1 υi2 ... υik ... υin ∑

n
k=1 υik

... ... ... ... ... ... ... ...

... ... ... ... ... ... ...
Feature p υp1 υp2 ... υkp ... υ1n ∑

n
k=1 υpk

4.3 Experiment Setup

We demonstrate ARD using the samplers and datasets already discussed in this work. Signifi-
cant attention will be given to the Taiwan credit and the WASA datasets due to their publicly
available feature labels. The experimental settings are described in Table 4.2. After the
committee selections, the BNNs are then retrained on only the selected features to investigate
the selection’s efficacy based on the retrained models’ predictive performance.

4.4 Results and Discussions

Figure 4.2 shows ROC curves generated from mean predictions of NNs with ARD trained
using HMC, MH and S2HMC, respectively. It can be seen that models trained with Hamilto-
nian dynamics based samplers significantly outperform MH. In the ARD case with additional
hyperparameters to sample, the performance of MH deteriorates to below random guessing.
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Table 4.2 Experimental Settings for ARD Sampling Runs.

Setting Value
BNN Number of Hidden Layers 1
BNN Number of Hidden Neurons 5
BNN Activation Function ReLU
Sampling Trajectory Length (HMC/S2HMC) 100
Number of samples between hyper-parameter Samples (nGibbs) 50

The reasoning for such outperformance is similar to the discussions in Chapters 2 and 3. In
this case, a slight decline in performance overall can be explained by the effect of additional
regularisation in the input space. This effect typically occurs when the number of noisy
features is low or non-existent [94].

4.4.1 Predictive Performance
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Figure 4.2 ROC curves for MH-ARD, HMC-ARD and S2HMC-ARD on the Taiwan credit
dataset.

Table 4.3 shows the mean testing RMSE of the ARD BNNs on the windspeed datasets.
As it follows from previous findings, MH-ARD is outperformed by HMC-ARD and S2HMC-
ARD, respectively. It is important to note that with the introduction of the ARD prior on the
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wind speed datasets there was an improvement in RMSE compared to the results without
ARD reported in Section 3.4. Thus ARD in the context of these regression datasets has the
desired effect of introducing sparseness in their input space. This sparseness reduces the
influence of noisy inputs. This finding is also similar to those of MacKay [75], Neal [94] and
Mbuvha et al. [86] using both Laplace approximation and MCMC inference.

Table 4.3 Mean testing RMSE resulting from BNNs trained using ten independent chains of
MH, HMC and S2HMC at each of the weather stations.

Dataset MH HMC S2HMC
WM01 Alexander Bay 8.939 1.642 1.651
WM05 Napier 8.466 1.496 1.527
WM13 Jozini 7.423 1.425 1.420

4.4.2 ARD Committees and Feature Importance

The plots in Figures 4.3 - 4.5 and the ARD committees in Tables 4.4 - 4.7 are utilised to
decode the ARD relevance statistics. The ARD committee considers “votes” from each
method based on the top 5 highest posterior variances. Features with more than 2 votes
are then considered highly relevant. On an overall level, it can be seen from the posterior
variance plots that HMC-ARD and S2HMC-ARD result in clearer sparsity when compared
to regularisation by MH-ARD. Confidence in the relative feature importance can implicitly
be assigned based on the predictive performance of each inference method.

In the Taiwan credit dataset, education is found to be highly important across all inference
methods. This finding aligns well with known findings on the relationships between income,
education, and creditworthiness [91, 11]. Bill amounts six months ago, payments in the first
and third month are also found to be important with concurrence between inference methods.
There is significant congruence between the feature relevance found in this dataset and similar
studies by Mbuvha et al. [83] and Sariannidis et al. [109] using Gaussian approximation and
ensemble tree-based methods, respectively

In the WM01 Alexander Bay dataset, calendar month emerges as highly important,
signalling a strong seasonal effect on wind speed patterns. Atmospheric pressure and relative
humidity also have high posterior variance. This relationship between atmospheric pressure,
relative humidity and wind speed is well documented in atmospheric physics literature [77].
One day lagged wind speeds for the same hour also are highly important, suggesting within-
day cycles. Strong lagged dependencies were similarly found in a study of the Norwegian
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(a) Taiwan credit
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(b) WM01 Alexander Bay
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(c) WM05 Napier
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(d) WM13 Jozini

Figure 4.3 Mean posterior variances from the MH-ARD model which indicate the relevance
of each attribute.

wind farm dataset by Mbuvha et al. [86]. Wind speeds at lower altitudes, i.e. 40 meters and
20 meters, are also found to be significant.

Posterior variances at WM05 Napier and WM13 Jozini sites show some overlap with the
first site with a few site-specific variations. Air temperature and temperature gradients start
to emerge as relevant features. This finding again reconciles well with atmospheric physics
theory concerning causal links between atmospheric temperature, barometric pressure and
wind speed [2]. Further evidence of intra-day and monthly cycles in wind speed patterns is
also observed.
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(b) WM01 Alexander Bay
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(c) WM05 Napier
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(d) WM13 Jozini

Figure 4.4 Mean posterior variances from the HMC-ARD model which indicate the relevance
of each attribute.
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(a) Taiwan credit
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(b) WM01 Alexander Bay
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(c) WM05 Napier
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(d) WM13 Jozini

Figure 4.5 Mean posterior variances from the S2HMC-ARD model which indicate the
relevance of each attribute.

4.4.3 Re-training BNNs on Relevant Features

The robustness of the feature selections in the previous sections is investigated by retraining
the BNNs on a reduced set of features corresponding to the ARD committee results.

Figure 4.6 depicts the ROC curves from the mean predictions of the retrained BNNs.
A reduction in AUC from 0.78 to 0.70 for HHC/S2HMC is observed. It is important to
note that the retrained models use only 4 of the 23 features (17%). This suggests that the 4
identified features, which is only (17%) of predictors, are responsible for about 90% of the
predictive performance. Thus on this evidence, the ARD committees were able to identify
highly relevant predictors. Notably, the predictive performance MH based BNNs improves
from 0.56 to 0.58. Thus, in addition to inferences on the quality of the selected features, it is
also implied that the MH sampler benefits from the significant reduction in the dimensionality
of the problem.



60 Bayesian Variable Importance Using Automatic Relevance Determination Priors

Table 4.4 Committee table of ARD feature selections based on the top 5 features from each
inference method on the Taiwan credit dataset.

Feature MH HMC S2HMC Total Votes
LIMIT_BAL 1 1
SEX 1 1
EDUCATION 1 1 1 3
MARRIAGE 0
AGE 0
PAY_0 0
PAY_2 0
PAY_3 0
PAY_4 0
PAY_5 0
PAY_6 1 1
BILL_AMT1_pc 0
BILL_AMT2_pc 0
BILL_AMT3_pc 0
BILL_AMT4_pc 0
BILL_AMT5_pc 0
BILL_AMT6_pc 1 1 1 3
PAY_AMT1_pc 1 1 2
PAY_AMT2_pc 0
PAY_AMT3_pc 1 1 2
PAY_AMT4_pc 0
PAY_AMT5_pc 1 1
PAY_AMT6_pc 1 1

Retraining results on the WASA datasets are similar to those on the classification dataset.
While there is some deterioration in the HMC and the S2HMC based BNNs, MH based
BNNs improve on all sites. A point worth noting is that the deterioration in the predictive
performance of HMC/S2HMC based BNNs is not commensurate with the significant 59%
reduction in the number of features. Again, the implication thereof is that the MH sampler
gains additional efficiencies from the selection of high information quality features and the
reduction in the dimensionality of the problem. Predictive performance robustness after
dimensionality reduction through ARD is similarly found in the work of Mbuvha et al. [86]
using the Gaussian Approximation approach.
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Table 4.5 Committee table of ARD feature selections based on the top 5 features from each
inference method on the WM01 Alexander Bay dataset.

Feature MH HMC S2HMC Total Votes
WS_62_mean 1 1
WS_62_min
WS_62_max
WS_62_stdv
WS_60_mean 1 1
WS_40_mean 1 1 2
WS_20_mean 1 1 2
WS_10_mean
WD_60_mean
WD_20_mean
Tair_mean
Tgrad_mean
Pbaro_mean 1 1 2
RH_mean 1 1 2
hour
month 1 1 2
ws_mean_lag_1
ws_mean_lag_2
ws_mean_lag_1_day 1 1 2



62 Bayesian Variable Importance Using Automatic Relevance Determination Priors

Table 4.6 Committee table of ARD feature selections based on the top 5 features from each
inference method on the WM05 Napier dataset.

Feature MH HMC S2HMC Total Votes
WS_62_mean 1 1
WS_62_min 1 1
WS_62_max
WS_62_stdv
WS_60_mean
WS_40_mean
WS_20_mean 1 1 1 3
WS_10_mean
WD_60_mean
WD_20_mean
Tair_mean 1 1 1 3
Tgrad_mean 1 1
Pbaro_mean
RH_mean 1 1 1 3
hour
month 1 1 1 3
ws_mean_lag_1 1 1 2
ws_mean_lag_2
ws_mean_lag_1_day 1
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Table 4.7 Committee table of ARD feature selections based on the top 5 features from each
inference method on the WM13 Jozini dataset.

Feature MH HMC S2HMC Total Votes
WS_62_mean
WS_62_min 1 1 1 3
WS_62_max 1
WS_62_stdv
WS_60_mean
WS_40_mean
WS_20_mean 1 1 1 3
WS_10_mean
WD_60_mean 1 1
WD_20_mean 1 1
Tair_mean
Tgrad_mean 1 1 2
Pbaro_mean 1 1
RH_mean
hour
month 1 1 2
ws_mean_lag_1
ws_mean_lag_2 1 1 1 3
ws_mean_lag_1_day 1 1 1 3

Table 4.8 Mean Testing RMSE resulting from BNNs re-trained using the relevant features
identified in tables 4.5 to 4.7 for each weather station.

Dataset MH HMC S2HMC
WM01 Alexander Bay 4.245 2.515 2.517
WM05 Napier 3.85 2.750 1.527
WM13 Jozini 2.842 2.164 1.420
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Figure 4.6 ROC curve for MH-ARD, HMC-ARD and S2HMC-ARD on the Taiwan credit
dataset after fitting on relevant features identified by sampler committee in Table 4.4.
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4.5 Conclusion

In this chapter, ARD through a hybrid of Gibbs sampling with MH, HMC and S2HMC is
presented. This setup, to the knowledge of the author - is the first implementation of S2HMC-
ARD in literature. On the regression wind speed datasets, it is observed that ARD improves
predictive performance. On the classification dataset, predictive performance sightly declines
signalling that the original feature set contains little noise.

An ARD committee framework is presented with the aim of adding robustness to the
feature selection procedure. This committee framework can easily be generalised to any odd
number of feature importance statistics from any learning machine (e.g. Random Forests,
Gradient Boosting, Lasso).

The features identified from the posterior variance estimates indicate that education,
credit limits and payments early and later in the term are of strong influence in predicting
credit outcomes. On the WASA datasets, calendar month, day lagged wind spends, and
relative humidity emerged as influential features. These findings suggest highly cyclical
patterns both within the day and the year.

An inefficient sampler such as MH was shown to benefit from the ARD committees’
dimensionality reduction. ARD provided a probabilistically principled structure for inference
on the relative influences of various features on BNN predictions. Coupled with predictive
uncertainty from BNNs, ARD facilitates troubleshooting and root-cause analysis of NN
predictions. The relative computational costs of the methods remain similar to those discussed
in Chapter 3.



Chapter 5

Healing Products of Gaussian Process
Experts

Gaussian processes (GPs) are nonparametric Bayesian models that have been applied to
regression and classification problems. One of the approaches to alleviate their cubic training
cost is the use of local GP experts trained on subsets of the data. In particular, product-of-
expert models combine the predictive distributions of local experts through a tractable product
operation. While these expert models allow for massively distributed computation, their
predictions typically suffer from erratic behaviour of the mean or uncalibrated uncertainty
quantification. In this chapter, new schemes for calibrating predictions via a tempered
softmax weighting and a Wasserstein barycenter are presented to provide a solution to these
problems for multiple product-of-expert models, including the generalised product of experts
and the robust Bayesian committee machine. The work presented in this chapter also appears
in Cohen et al. [30] (where I was a joint first author).

5.1 Introduction

Gaussian processes (GPs) [104] are nonparametric stochastic processes that have been
applied extensively to regression and classification problems. However, their cubic training
and quadratic prediction cost hinders their application in large-scale problems. Different
approaches alleviate this issue, including sparse approximations [114, 31, 101, 120], the
exploitation of structural assumptions [133] and local-expert models [123, 103, 26, 35, 107,
121].

Sparse approximations effectively reduce the rank of the covariance matrix through
inducing inputs, reducing the training cost from O(n3) to O(nm2), where m is the number
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of inducing points and n is the size of the training dataset. Optimisation consists of jointly
learning kernel hyperparameters and inducing locations. In particular, Titsias [120] treats
inducing locations as variational parameters and optimises them and the kernel hyperparame-
ters by maximising a lower bound on the marginal likelihood. Hensman et al. [59] scale this
approach by introducing mini-batching, reducing the complexity to O(m3), while Gal et al.
[46] reparametrise the problem to allow for distributed inference.

An alternative to sparse GP approximations is to use local experts. Here, the training
dataset is partitioned into J subsets of size m where m≪ n. Then, J local GP experts
are trained on each of these subsets, thereby reducing the training complexity to O(Jm3).
Importantly, this approach scales to large datasets because training and prediction with
each expert can be distributed across computing units [35]. For instance, Rasmussen and
Ghahramani [103], Tresp [123], Trapp et al. [121] consider mixture-of-expert models (MoEs).
In particular, Trapp et al. [121] propose a sum-product network with local-expert GP leaves
allowing for tractable and exact posterior inference. Other approaches leverage product-of-
experts models (PoEs) [122, 26], whereby a global prediction can be obtained by means of
averaging the predictions of local experts. Generalisations of these models can control the
relevance of different experts when making predictions [27, 35, 71].

In this work, we focus on PoEs because closed-form inference and training are tractable,
which is not the case with typical MoEs. However, previous PoE approaches to combining
predictions at test time suffer from unrealistic over- or under-estimation of the variance
and erratic mean behaviours. This holds especially when the number of points m assigned
to each expert is low, in which case a significant number of experts are weak [35]. These
approaches are thus not overly robust to variations in m, which is a significant shortcoming.
Unfortunately, scalability requires the number of points per expert to be reasonably small
due to the O(m3) scaling of individual experts. We propose a solution to these problems by
controlling the sparsity of expert weights through a tempered softmax at test time, leveraging
tools from the the extensive uncertainty calibration literature [99, 17, 51]. We also propose
a novel principled PoE approach arising from the optimal transport literature, which we
name the barycenter of GPs, and demonstrate that its performance is competitive to the best
PoE models on small and large-scale datasets. We demonstrate empirically that calibrating
expert weights lead to substantial performance gains in both mean prediction and uncertainty
quantification. We also discuss common failures of PoE models extensively and propose
guidelines to remediating these.

The contributions of this chapter include introducing a new method for averaging GP ex-
perts based on optimal transport theory that performs competitively with the best-performing



68 Healing Products of Gaussian Process Experts

PoE models and propose a solution to the shortcomings of previously proposed PoEs, based
on controlling the weight sparsity.

5.2 Gaussian Processes

Gaussian processes are powerful nonparametric Bayesian models, often used for regression.
A GP is defined as a collection of random variables, every finite subset of which is jointly
Gaussian distributed [104]. GPs are fully defined by a mean m(·) and a kernel k(·, ·).

Consider a regression problem with a training dataset {xi,yi}n
i=1 of n noisy observations

yi = f (xi)+ε , where ε ∼N (0,σ2
y ). With a GP prior on f , it follows that f (x)∼N (mx,Kx+

σ2
y I) where (mx)i = m(xi) and (Kx)i j = k(xi,x j). The mean and variance of the Gaussian

posterior predictive distribution of the function value f (x∗) at a test point x∗, are given by
[104]:

E[ f∗|x∗,X,y] = mx∗+K∗(Kx +σ
2
y I)−1(y−mx), (5.1)

var[ f∗|x∗,X,y] = K∗∗−kT
∗ (Kx +σ

2
y I)−1k∗, (5.2)

respectively, where K∗∗ = k(x∗,x∗) and K∗ = k(X,x∗). Here X,y contain the training inputs
and targets, respectively. Kernel hyperparameters and the noise parameter σy are learned by
maximising the log-marginal likelihood [104]:

log p(y|X,θ) = logN (y|mx,Kxx +σ
2
y I
)
. (5.3)

Computing equation 5.3 requires the inversion of the matrix Kxx +σ2
y I ∈ Rn×n, so that

GP training scales in O(n3), where n is the size of the training dataset. Optimizing the
log-marginal likelihood in equation 5.3 and the computation of the posterior predictive
distribution at a test input x∗ become computationally intractable for large training sets.

Several approaches have been explored to avoid the cubic training cost of GPs. These
are mostly based on either sparse approximations and structure-exploiting assumptions to
the covariance matrix [101, 120, 59, 133] or training distributed (weak) experts on subsets
of the full dataset [122, 26, 35, 121, 71]. An alternative is to use large-scale computing
infrastructure and incomplete Cholesky decompositions [130].

5.2.1 Sparse Gaussian Processes

Sparse GPs [101, 114] leverage inducing inputs to reduce the rank of the matrix to be
inverted. Sparse variational GPs extend this by introducing a variational approximation to the



5.2 Gaussian Processes 69

Expert model

Full gp

(a) PoE (b) gPoE (c) BCM (d) rBCM

Figure 5.1 Different expert models trained on synthetic data with three points per GP expert
on a dataset of 300 observations. (a) PoE; (b) gPoE; (c) BCM; (d) rBCM. All models
display some shortcomings in their vanilla forms. For instance (a): over-confidence, (b)
under-confidence within data region, and (c)-(d) erratic mean in the transitioning region [30]

posterior [120], treating inducing inputs as variational parameters, and mini-batching [59] to
scale. Wilson and Nickisch [133] exploit structural assumptions and combine inducing-point
approaches with Kronecker and Toeplitz methods to perform kernel approximations leading
to increased scalability. The approximation quality of sparse GPs relies on the number of
inducing points, and a large number of these can be required to represent the local structures
of fast varying functions.

5.2.2 Gaussian Process Experts

Another approach to scaling GPs to large datasets is to use expert models. Here, multiple
GPs are trained on subsets of the data, and predictions are recombined using either a product-
of-expert (log-opinion pool) approach [60, 122, 26, 35, 107, 14], or a mixture-of-expert
(linear-opinion pool) approach [123, 103, 121]. MoEs are useful in heteroskedastic and
nonstationary settings, but do not typically allow tractable posterior inference, by contrast
with PoEs.

In this work, we thus focus on product-of-expert models with M experts, which all share
hyperparameters. We first describe the training of such models. Assuming a full GP is the
model we seek to approximate, sharing kernel hyperparameters automatically regularises
the population of experts: individual experts can not overfit to the local subset of the data
they are fed with due to this shared set of hyperparameters. Assuming independence across
experts (given the training data), the log-marginal likelihood is [35]:

log p(y|X,θ) =
J

∑
j=1

log p j(y( j)|x( j),θ), (5.4)
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where {x( j),y( j)} is the data assigned to the jth expert. To train the model, we maximise the
log-marginal likelihood in equation 5.4 with respect to the (shared) kernel hyperparameters
[35]. Training can be distributed across diverse compute clusters, enabling scaling with total
time complexity O(Jm3) where J is the number of experts, and m≪ n is the size of the
training set of each expert. With J compute nodes, the complexity per node reduces to O(m3).
This is in stark contrast to the O(n3) scaling of full GPs.

In the following, we describe the process of predicting with product-of-GP-experts
models. In particular, we introduce several approaches to recombining predictions from
trained experts. We note that an important particularity of these models is that all predictive
distributions p( f∗|x∗) of function values are Gaussians, which is not the case with MoEs.
Also, throughout the chapter, aggregation is performed in function space, and the likelihood
is subsequently applied.

Product of experts (PoE) The product of GP experts aggregates predictions of M
experts at test point x∗ via [60]:

p( f∗|x∗) ∝

M

∏
j=1

p j( f∗|x∗,D( j)), (5.5)

where the predictive mean and precision of the Gaussian predictive distribution are given by

mpoe(x∗) = σ
2
poe(x∗)

M

∑
j=1

σ
−2
k (x∗)m j(x∗) (5.6)

σ
−2
poe(x∗) =

M

∑
j=1

σ
−2
j (x∗), (5.7)

respectively. Here, D( j) is the dataset associated with the jth expert. The PoE has the
advantage that predictions are easy to compute. However, as the number M of experts
increases, the resulting aggregated variances vanish, which leads to overconfident predictions
[35, 71], such that one of the main purposes of using a Gaussian process (reasonable
uncertainty quantification) is defeated. We indeed observe such over-confident behaviour in
Figure 5.1(a).

(Generalised) product of experts – (g)PoE The (g)PoE aggregates predictions of M
experts at test point x∗ via [26]:

p( f∗|x∗) ∝ ∏
J
j=1 pβ j(x∗)

j ( f∗|x∗,D( j)), (5.8)
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where the predictive mean and precision are

m(g)poe(x∗) = σ
2
(g)poe(x∗)∑

J
j=1 β j(x∗)σ−2

j (x∗)m j(x∗),

σ
−2
(g)poe(x∗) = ∑

J
j=1 β j(x∗)σ−2

j (x∗),

respectively. Here, D( j) = {x( j),y( j)} is the data assigned to expert j, β j(x∗) controls the
contribution of expert j at x∗ (typically a measure of its confidence at x∗), and the PoE model
is recovered when setting β j(x∗) = 1 for all j. As the number of experts J increases, the
PoE’s aggregated variance vanishes, which leads to overconfident predictions [35, 71]. An
illustration of such behaviour is shown in Figure 5.1(a).

The gPoE with uniform weights ∑ j β j(x∗) = 1 falls back to the prior far from training
points, which is a desirable property. However, a drawback is that it over-estimates the
variance close to training points [35] when setting the weights uniformly (β j(x∗) = 1

J ). We
also observe such behaviour in Figure 5.1(b).

Bayesian committee machine (BCM) The Bayesian committee machine (BCM) [122]
assumes conditional independence Di ⊥⊥D j| f∗, and by repeated application of Bayes’ theo-
rem, we obtain the predictive distribution at test point x∗ as [122]:

p( f∗|⃗x∗) =
∏

M
j=1 p j( f∗|x∗,D( j))

pM−1( f∗|x∗)
, (5.9)

such that the predictive mean and precision are:

mbcm(x∗) = σ
2
bcm(x∗)

M

∑
j=1

σ
−2
j (x∗)m j(x∗) (5.10)

σ
−2
bcm(x∗) =

M

∑
j=1

σ
−2
j (x∗)+(1−M)σ−2

∗ , (5.11)

where the normalisation pM−1( f∗|⃗x∗) is the prior prediction at x⃗∗ taken to the (M− 1)th

power and σ−2
∗ is the prior precision. This predictive distribution guarantees that the model

falls back to the prior far from training data. However, it is not effective when very few
data points are assigned to each expert. The BCM does exhibit uncharacteristic behaviour
in regions of the state space, where we transition from high-density data to low-density
data [35]. We observe such behaviour in Figure 5.1(c)

(Robust) Bayesian committee machine – (r)BCM The (robust) Bayesian committee
machine (r)BCM [122, 35] assumes conditional independence Di ⊥⊥ D j| f∗. By repeated
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application of Bayes’ theorem, we obtain the predictive distribution [35]:

p( f∗|x∗) =
∏

J
j=1 p j

β j(x∗)( f∗|x∗,D( j))

p−1+∑ j β j(x∗)( f∗|x∗)
(5.12)

at test point x∗. Then the predictive mean and precision are

m(r)bcm(x∗) = σ
2
(r)bcm(x∗)

J

∑
j=1

β j(x∗)σ−2
j (x∗)m j(x∗),

σ
−2
(r)bcm(x∗) =

J

∑
j=1

β j(x∗)(σ−2
j (x∗)−σ

−2
∗ )+σ

−2
∗ ,

respectively. BCM is recovered when β j(x∗) = 1 for all j. This predictive distribution
guarantees that the model falls back to the prior far from training data. However, the BCM
exhibits uncharacteristic behaviour in regions transitioning from high to low-density data [35];
see Figure 5.1(c). The rBCM mitigates some of the issues of the BCM and allows for flexible
weighting of GP experts, via β j(x∗), but it still exhibits problematic behaviour in regions
with density transitioning; see Figure 5.1(d).

Likelihoods As expert averaging is performed in function space throughout the chapter,
we will need to map the aggregated predictive GP distribution p( f∗) through a likelihood
function to predict labels y∗. In the conjugate regression case with a Gaussian likelihood, this
can be done in closed form [104]. For classification, we consider non-conjugate likelihoods,
such as the Bernoulli or Poisson likelihoods. Since the aggregated predictive distribution
p( f∗) in PoEs is Gaussian, we obtain the expected predicted label by averaging under the
posterior predictive latent distribution

E[y∗|x∗] =
∫

φ( f (x∗))N ( f∗|m(x∗),σ2(x∗))d f∗, (5.13)

where φ is a classification likelihood (e.g., Bernoulli, Probit). The integral in equation
5.13 is intractable, but we can resort to standard approximate inference techniques for GP
classification, such as MAP estimation, Laplace approximation, expectation propagation,
variational inference, or numerical integration [104, 58]. Similarly, the marginal likelihood,
which we use for training the experts, becomes intractable. Therefore, we use stochastic
variational inference to train models in this setting [58], and apply the same strategies for
training and prediction with other GP expert models.
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5.3 Barycenters of Predictive Distributions

Now, we propose a new way of combining experts’ predictions leveraging optimal transport
theory. We begin by introducing two important tools, namely the Wasserstein distance
and barycenter between 1D Gaussians, noting that both can be computed using simple
closed-form formulas.

Given two Gaussians µ =N (m1,K1) and ν =N (m2,K2), we define the 2-Wasserstein
distance between them as [128]

W2
2 (µ,ν) = ∥m1−m2∥2

2

+Tr
(

K1 +K2−2(K
1
2
1 K2K

1
2
1 )

1
2

)
. (5.14)

Equation 5.14 can be interpreted as the minimal expected cost of transporting mass from the
Gaussian µ to the Gaussian ν .

Given that distance, the barycenter between Gaussian-distributed µ1, ...,µJ with weights
β is:

µ̄ = argmin
µ

∑
J
j=1 β jW2

2 (µ j,µ), (5.15)

where ∑ j β j = 1, 0≤ β j ≤ 1. Álvarez Esteban et al. [141] show that if µ j =N (m j,K j) for
all j, the Wasserstein barycenter with weights β is itself a Gaussian measure µ̄ =N (m̄,K̄),
where:

m̄ =
J

∑
j=1

β jm j, K̄ =
J

∑
j=1

β j(K̄
1
2 K jK̄

1
2 )

1
2 . (5.16)

We also propose a fixed-point iteration algorithm to efficiently compute K̄ in equation 5.16.
In the following, we discuss our approach to aggregating GP experts’ predictions for

regression and classification. In all product-of-experts models we discussed, each expert
computes a predictive distribution of the form p j( f (x∗)|D( j)) =N (m j(x∗),σ2

j (x∗)), where
m j and σ2

j are the posterior predictive mean and variance of the jth GP expert at test point
x∗. Since these distributions (in latent space of f ) are all Gaussian (by definition of the GP),
we propose combining these into their weighted 2-Wasserstein barycenter using equation
5.16, which can be computed in closed form in the one-dimensional case [20]. We obtain the
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T=1
T=10

T=30

experts

barycenter

Figure 5.2 Illustration of the barycenter of GPs with tempered softmax weighting. At x∗, one
expert (left) is highly confident about its prediction, and two are highly unconfident (right).
As temperature increases, only confident experts get weight (sparsity increases), thus the
barycenter is pulled towards the confident expert [30].

closed-form Gaussian predictive distribution

p( f∗|x∗) =N (mbar(x∗),σ2
bar(x∗)) (5.17)

mbar(x∗) =
J

∑
j=1

β j(x∗)m j(x∗), (5.18)

σ
2
bar(x∗) =

J

∑
j=1

β j(x∗)σ2
j (x∗). (5.19)

The barycenter of GPs is a product-of-experts variant, and the mean and variance of the
predictive distribution consist of the weighted average of predictive means and variances of
the experts. Importantly, such weights can be a function of test points, analogously to the
gPoE and the rBCM.

We train the barycenter of GPs following the training procedure of other PoEs discussed
in Section 5.2.2, namely by optimising the marginal likelihood in equation 5.4, and we share
expert hyperparameters for regularising the expert pool.

The barycenter of GP’s predictive distribution is deeply connected to that of previously
proposed PoEs. In particular, the aggregated mean is a weighted mean of the experts’
predictive means, which is also the case for other expert models. The aggregated variance is
a weighted mean of experts’ variances, which has a similar interpretation to the predictive
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precision of other PoEs, itself a weighted mean of the experts’ precisions. The barycenter of
GPs falls back to the prior outside the data regime which is a highly desirable property, and
is also true for gPoE with uniform weights, and rBCM. Further connections are discussed in
Section 5.4.

WASP [117] leverages a related idea, which consists in averaging subset posteriors using
Wasserstein barycenters. However, they average discrete measures consisting of samples
from the different posteriors at a discretizsed set of points, and then have to solve a large linear
problem to compute the barycenter. By contrast, we average marginal posterior predictive
distributions, which is done in closed-form leveraging the known closed-form of barycenters
of Gaussians in 1D.

5.4 Calibrating Product-of-Experts

In the previous sections, we introduced several approaches to combining predictions of local
GP experts, including our proposal, the barycenter of GPs. We also discussed shortcomings
of previous PoE approaches in low-data regimes, including under- (Figure 5.1(a)) and over-
estimation of the variance (Figure 5.1(b)), but also erratic and uncharacteristic behaviours of
the mean and variance predictions (Figures 5.1(c)–5.1(d)). These behaviours are exacerbated
when the number of points assigned per expert is low, which leads to a significant number of
weak experts1.

Whilst exact Gaussian processes are well-known for well-calibrated uncertainty estimates,
approximate Bayesian methods fall prey to inferior calibration. These issues in the context
of sparse GP approximations are discussed in depth by Bauer et al. [12]. Our aim in this
section is to remediate such calibration issues for PoE models. There has been a significant
recent emphasis on uncertainty calibration in the deep learning community [51], and we
will extend tools from this literature to the problem of training product-of-experts-based GP
approximations.

The prevalence of weak experts is significantly affected by the data assignment strategy.
For example, when using stationary kernels, clustering-based partition approaches tend to
create localised experts which leads to greater weak expert prevalence. The latter approach is
intuitively sensible if we choose stationary kernels, as expert approaches can be interpreted
as divide-and-conquer strategies. However, this strategy can have disastrous consequences
if expert weights are not properly regulated. Indeed, the lower the number of points per
expert, the weaker the experts are overall if the training data associated with these experts

1We refer to weak experts as experts that provide calibrated predictions only on local subsets of the data
manifold.
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(a) diff entr, 100 pts/exp (b) diff entr, 20 pts/exp (c) diff entr, 4 pts/exp

rBCM

full gp

(d) diff entr, 2 pts/exp

(e) soft-var, 100pts/exp (f) soft-var, 20 pts/exp (g) soft-var, 4 pts/exp

gPoE

full gp

(h) soft-var, 2 pts/exp

Figure 5.3 Full GP baseline (orange) and expert models (blue) trained on synthetic data
with a decreasing number of points per experts (Left to Right), and for different weighting
methods: rBCM with differential entropy in Figures (a)–(d) and the gPoE with proposed
softmax-variance in Figures (e)–(h). Our method is significantly more robust to variations in
the number of points per experts [30].

is not dense in the vicinity of test inputs. This can be observed in Figure 5.3 (Top), where
pathologies arise as the number of points per expert decreases significantly. This is mainly
caused by the poorly regulated expert weighting.

In this scenario, weight sparsity has to increase to alleviate the weakness of most experts
by relying only on locally-calibrated predictions. In the following section, we propose a
solution to such shortcomings that can be applied to gPoE, rBCM and the barycenter of GPs.

The softmax function provides a natural mechanism for controlling the sparsity of
experts’ importance weights. In particular, an (inverse) temperature parameters T can
directly control the degree of smoothness and sparsity in the resulting weights. Using a
temperature-endowed softmax to combat miscalibrated predictions has seen widespread use,
ranging from hierarchical mixtures of experts [17] to support vector machines [99] and deep
learning [51].

We adapt these ideas to weighted ensembles of GP experts, such as the gPoE, the rBCM
and the barycenter. We therefore propose a general expression for expert weights as

β j(x∗) ∝ exp(−T ψ j(x∗)),
M

∑
j=1

β j(x∗) = 1, (5.20)

where T is an (inverse) temperature parameter that controls the sparsity between experts
by multiplicatively compounding the weights of stronger experts. The functional ψ j(x∗)
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describes the level of confidence of the jth expert at test point x∗. We provide an illustration of
such framework in Figure 5.2. In particular, we plot the barycenter of GP experts’ predictive
distribution at x∗ under several temperature values, highlighting that as temperature increases,
the barycenter gets pulled towards the most confident expert, i.e., uncertain experts are not
given weight in the prediction.

We now discuss the choice of confidence functional ψ . We set ψ j(x∗) to the posterior
predictive variance at x∗, i.e.,

ψ j(x∗) = σ
2
j (x∗). (5.21)

Intuitively, this will give high weight to experts with low posterior predictive variance (high
confidence) in their prediction. Such experts have training data close to test points (all
experts share the same hyperparameters), and should thus have a high contribution in the
final prediction. Our proposal can also be combined with the previously proposed differential
entropy weighting [26]

ψ j(x∗) = 1
2(logσ

2
∗ − logσ

2
j (x∗)) (5.22)

or with the Wasserstein distance in equation 5.14, leveraging its closed-form computation
in the 1D case [141], which has the same complexity as differential entropy. In the infinite
temperature limit, weight sparsity is maximised.

Proposition 1. In the infinite-temperature limit T → ∞, and if ψ j = σ2
j (x∗), the gPoE, the

rBCM and the barycenter of GPs have equivalent predictive distributions.

Intuitively, in such a regime, only the most confident experts have (equal) weight, and as
a result the inverse of the weighted sum of precisions of the two former equals the weighted
sum of the variances, and thus predictive distributions are equal. Under weaker assumptions,
the rBCM and the gPoE are equivalent:

Proposition 2. If ∑ j β j(x∗) = 1 for all x∗, then mrbcm(x∗) = mgpoe(x∗) and σ2
rbcm(x∗) =

σ2
gpoe(x∗).

Proposition 2 highlights that under normalised weights, gPoE and rBCM are equivalent.
Therefore, under our weighting proposal, which consists of using normalised tempered soft-
max functionals, gPoE and rBCM’s predictive distributions are equal. Proofs of propositions
1 and 2 can be found in Cohen et al. [30].
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5.5 Experiments

Throughout this section, we evaluate the performance of our approaches to calibrating GP
experts when applied to regression and classification, while comparing with sparse variational
methods and previous approaches to local-expert weighting and averaging. We consider
performance metrics including the negative log-predictive density (NLPD), and the root
mean squared error (RMSE). 2

Baselines: We consider the PoE, BCM, gPoE, rBCM and barGP with random and K-
means partitioning to assess the effect of the data assignment strategy. For the rBCM, gPoE
and barGP, we evaluate the proposed softmax weighting strategy (BAR_var, rBCM_var,
gPoE_var) with different temperature choices as proposed in Section 5.4. We also evaluate
differential entropy (_entr) weighting [26] and uniform weighting (_unif).

5.5.1 Regression

We evaluate the performance of our approach to setting local experts’ weights and compare
it to previous weighting methods. In particular, we evaluate the robustness of the rBCM
using differential entropic weighting as motivated by Deisenroth and Ng [35], and the gPoE
and barycenter with softmax-variance weighting (proposed in this work), when reducing
the number of points per experts. As motivated in Section 5.4, the softmax weighting
should encourage expert sparsity, and as such be effective when the number of points per
experts decreases (causing the number of strong experts to decrease). In this case, we set the
temperature T to 15 (for T ≥ 15, sparsity is well-controlled; see Figure 5.4).

Figure 5.3 shows that the gPoE with softmax-variance weighting provides sensible and
calibrated predictions even with only two points per experts, while the rBCM with differential
entropic weights leads to erratic mean and variance behaviours in the transitioning region
even with 20 points per experts. Thus, encouraging sparsity in the expert weights through the
variance-softmax weighting enables expert models to be robust to the reduction in the number
of points per experts, thereby addressing a shortcoming of local-expert models. Also, the
erratic behaviour in the transitioning region appears remediated. With very weak experts, it is
unrealistic to expect uncertainties that are identical to the full GP’s uncertainty. Importantly,
the predictions are (moderately) on the conservative side for the softmax-variance weighting,
which is preferable to overconfidence. We report similar behaviours for the barycenter
combination (Section 5.3) in Appendix C (figure C.1).

We now perform an evaluation of the different expert models with different choices of
weighting, including our approach (softmax-variance) and previous approaches (uniform for

2Code available at https://github.com/samcohen16/Healing-POEs-ICML

https://github.com/samcohen16/Healing-POEs-ICML
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Dataset BAR_var gPoE_var rBCM_diff_entr rBCM_var BCM gPoE_unif PoE

WM01 Alexander Bay -0.053 (1.294) -0.0514(1.296) 0.009 (1.357) 0.718 (2.066) 1.336 (2.684) 1.331 (2.679) 19.497 (20.845)
WM05 Napier -0.324 (1.084) -0.323 (1.083) -0.298 (1.109) 0.103 (1.510) 0.246 (1.653) 1.278 (2.685) 24.940 (26.347)
WM13 Jozini 0.321 (1.336) 0.322 (1.337) 0.366 (1.381) 1.161 (2.176) 1.696 (2.711) 1.335 (2.350) 9.864 (10.879)

Table 5.1 Mean NLPD (RMSE) on the three weather stations for the regression datasets using
clustering partitioning.

gPoE and differential entropy for rBCM) on the 3 WASA datasets already considered in this
work. For softmax weightings, we use a temperature of 100, which performs well across all
the datasets (i.e., it induces enough weight sparsity). Clustering partitioning is used for the
regression dataset, additional results with random partitioning are provided in Appendix C
Table C.1.

Table 5.1 shows that the gPoE and the barGP with softmax-variance weighting outperform
all other models on all datasets. They significantly outperform the rBCM with differential
entropy weighting across datasets. Moreover, the gPoE with softmax-variance weighting
outperforms the gPoE with uniform weighting by a large margin. It is also notable, that in
terms of RMSE that across the regression datasets product of experts models outperforms
the BNNs reported in Chapters 2, 3 and 4.

These demonstrate that controlling the sparsity of expert weights heals issues of the
product-of-expert models and leads to more calibrated uncertainty quantification and mean
estimation, while having the same running cost. Finally, Liu et al. [71] and Zhang and
Williamson [139] found that the rBCM and the gPoE under-perform when averaging in
y-space, which is the reason we average in f-space.

5.5.2 Sensitivity and Robustness Analysis

We now consider the sensitivity of the gPoE, rBCM and barGP with softmax-variance
weighting to the temperature hyperparameter T . For the gPoE and barGP, we use the
normalised version of the softmax (in which case the gPoE is equivalent to the rBCM
with such weights). We also evaluate the rBCM’s robustness, when using unnormalised
softmax-variance weights. To that end, we consider the Kin40k benchmark dataset and
plot the NLPD as a function of the temperature (Figure 5.4). We observe that the NLPD
decreases monotonically until stabilising for both the gPoE and the barGP, demonstrating the
robustness of these models with respect to the choice of the temperature parameter. Hence,
the NLPD is stable across temperatures (for T > 15) when using normalised weights. We
also produce such an analysis for unnormalised softmax-variance weights (in which case the
rBCM is not equivalent to the gPoE). In this case, the model is more sensitive to the change
in temperature, and it is difficult to find a single softmax scaling that performs well across
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Figure 5.4 NLPD against temperature for different expert models with softmax-variance
weighting on a benchmark dataset (Kin40K) [30].

BAR_var BCM gPoE_unif gPoE_var PoE rBCM_diff_entr rBCM_var SVGP500

Top-1-accur. 0.911 0.895 0.894 0.910 0.895 0.895 0.395 0.862
Top-2-accur. 0.964 0.955 0.954 0.964 0.955 0.956 0.411 0.939
Top-3-accur. 0.981 0.976 0.975 0.982 0.976 0.976 0.418 0.967
NLPD 0.311 0.852 0.383 0.312 0.850 0.878 2.475 0.497

Table 5.2 Top-n accuracy and NLPDs on the MNIST dataset (PCA features).

small- and large-scale benchmarks. Hence, using normalised softmax weights is important to
obtaining models that are robust to the choice of temperature.

5.5.3 Classification Benchmarks

We now assess the classification performance of expert models in a non-conjugate classi-
fication setting on the MNIST dataset and the Taiwan credit dataset. We opt for the much
larger MNIST in lieu of the smaller Australian and German credit datasets to demonstrate the
capabilities of PoE on large scale datasets. The MNIST dataset comprises of 10 classes with
a training/test split of 60,000/10,000 images. We reduce the dimensionality of images with

BAR_var BCM gPoE_unif gPoE_var PoE rBCM_diff_entr rBCM_var SVGP500

Top-1-accur. 0.820 0.822 0.822 0.820 0.822 0.822 0.820 0.818
NLPD 0.803 1.182 0.841 0.767 1.177 1.173 0.952 0.709

Table 5.3 Top-1 accuracy and NLPDs on the Taiwan credit dataset.
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PCA (20 principal components). Note that the overall accuracy resulting from PCA features
will not outperform the state of the art. However, PCA features provide a deterministically
reproducible basis for relative comparison of various methods. We assign 500 training points
to each SVGP expert, and provide them with 100 trainable inducing inputs each. We use a
multiclass likelihood with a robust-max link function. Note that in the setting of Liu et al.
[71], classification is not directly applicable because averaging is happening in y-space,
which is more challenging in non-conjugate settings.

Table 5.2 shows the classification results for MNIST. We report top-n accuracy and
NLPD. Consistently, we observe that the BAR_var and gPoE_var outperform all products of
experts and SVGP baseline models. The difference in performance between the rBCM_entr
and gPoE_var shows that introducing weight sparsity via a tempered softmax improves the
performance as it only allows confident experts to contribute to the aggregated predictions.
We observe similar performance gaps between gPoE_unif and our proposals which suggests
that using tempered softmax-variance weighting results in more informed posterior predictive
means and variances.

The improvement of the SVGP100 expert models over a single (full) SVGP500 is not
surprising since every single SVGP expert has the modelling capacity of the global SVGP, so
that the distributed models effectively work with M times as many inducing inputs as the
SVGP. This suggests that the combination of sparse GPs and expert models can be useful
in settings, where a large number of inducing inputs for a full SVGP is required for good
modelling.

Table 5.3 shows the results on the Taiwan credit dataset. It can also be seen that the
BAR_var and gPoE_var also emerge as strong performers in terms of NLPD and accuracy.
This performance can be similarly attributed to increase sparsity amongst predictors as well
as normalisation of the softmax weights (when comparing to the rBCM). The competitive
performance of the SVGP500 on this dataset can suggest that 500 inducing points can possibly
be sufficiently representative of this smaller dataset when compared to the larger MNIST.

5.6 Conclusion

We identified significant shortcomings of previous approaches, notably the PoE, BCM, gPoE
and rBCM, to scaling GP regression and classification via local-expert averaging. These
models struggle in settings, where the number of strong experts is small, but the experts’
weights are not sparse enough. Weight sparsity should thus be set to account for the overall
strength of experts. To address these shortcomings, we control weight sparsity via the use
of (normalised) softmax weights, along with a temperature to enforce this trade-off. Note
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that our approach can be combined with SVGPs [58] (as was done in Section 5.5.3) but
also with other methods, such as KISS-GP [133]. We provide strong empirical evidence
that shortcomings of previous expert models can be addressed through this approach, which
leads to substantial performance gains across datasets. We further propose a novel scalable
and distributable approach to averaging GP experts’ predictions by means of Wasserstein
barycenters, which can be used for regression and classification problems. When combined
with our weighting proposal, it obtains state-of-the art performance across most datasets.
On the WASA regression datasets the new proposals outperform the MCMC based BNNs
discussed in previous chapters. The computational complexity of our method is O(Jm3)

compared to O(n3) and O(nm2) for full GP and sparse variational GPs, respectively, where
the number of data points per expert m is less than the total number of data points n.



Chapter 6

Bayesian Parameter Inference in
Infectious Disease Modelling

The Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has high-
lighted the need for performing accurate inference with limited data. Fundamental to the
design of rapid state responses is the ability to perform epidemiological model parameter
inference for localised trajectory predictions. In this work, we perform Bayesian parameter
inference using Markov Chain Monte Carlo (MCMC) methods on the Susceptible-Infected-
Recovered (SIR) and Susceptible-Exposed-Infected-Recovered (SEIR) epidemiological mod-
els with time-varying spreading rates for South Africa. Some of the work presented in this
chapter also appears in Mbuvha and Marwala [87].

6.1 Introduction

The first reported case of the novel coronavirus (SARS-CoV-2) in South Africa was an-
nounced on 5 March 2020, following the initial manifestation of the virus in Wuhan China
in December 2019 [88, 132, 36]. Due to its further spread and the severity of its associated
clinical outcomes, the disease was subsequently declared a pandemic by the World Health
Organisation (WHO) on 11 March 2020 [132, 88]. In South Africa, by 26 April 2020, 4546
people had been confirmed to have been infected by the coronavirus with 87 fatalities [78].

Numerous states have attempted to minimise the growth in number of COVID-19 infec-
tions [43, 34, 88]. These attempts are largely based on non-pharmaceutical interventions
(NPIs) aimed at separating “the infectious population from the susceptible population” [88].

These initiatives aim to strategically reduce the increase in infections to a level where
their healthcare systems stand a chance of minimising the number of fatalities [88]. Some
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of the critical indicators for policymaker response planning include projections of the in-
fected population, estimates of health care service demand and whether current containment
measures are effective [88].

As the pandemic develops in a rapid and varied manner in most countries, calibration
of epidemiological models based on available data can prove to be difficult [116]. This
difficulty is further escalated by the high number of asymptomatic cases and the limited
testing capacity [132, 88].

A fundamental issue when calibrating localised models is inferring parameters of compart-
mental models such as susceptible-infectious-recovered (SIR) and the susceptible-exposed-
infectious-recovered (SEIR) that are widely used in infectious disease projections. In the
view of public health policymakers, a critical aspect of projecting infections is the inference
of parameters that align with the underlying trajectories in their jurisdictions. The spreading
rate is a parameter of particular interest which is subject to changes due to voluntary social
distancing measures and government-imposed contact bans.

The uncertainty in utilising these models is compounded by the limited data in the initial
phases and the rapidly changing dynamics due to rapid public policy changes.

To address these complexities, we utilise the Bayesian Framework for the inference of
epidemiological model parameters in South Africa. The Bayesian framework allows for
both incorporation of prior knowledge and principled embedding of uncertainty in parameter
estimation.

This chapter combines Bayesian inference with the compartmental SEIR and SIR models
to infer time-varying spreading rates that allow for quantification of the impact of government
SARS-CoV-2 related interventions in South Africa.

6.2 Methods

6.2.1 Epidemiological Modelling

Compartmental models are a class of models that is widely used in epidemiology to model
transitions between various stages of disease [22, 18, 88]. We now introduce the Susceptible-
Exposed-Infectious-Recovered (SEIR) and the related Susceptible-Infectious-Recovered
(SIR) compartmental models that have been dominant in COVID-19 modelling literature
[43, 34, 72, 88].
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The Susceptible-Exposed-Infectious-Recovered Model

The SEIR is an established epidemiological model for the projection of infectious diseases.
The SEIR models the transition of individuals between four stages of a condition, namely:

• being susceptible to the condition,

• being infected and in incubation

• having the condition and being infectious to others and

• having recovered and built immunity for the disease.

The SEIR can be interpreted as a four-state Markov chain which is illustrated diagrammat-
ically in Figure 6.1. The SEIR relies on solving the system of ordinary differential equations
below representing the analytic trajectory of the infectious disease [88].

Susceptible Exposed Infectious Recovered
λ σ μ

Figure 6.1 An Illustration of the underlying states of the Susceptible-Exposed-Infectious-
Recovered Model(SEIR)

dS
dt

=−λSI
N

(6.1)

dE
dt

=
λSI
N
−σE (6.2)

dI
dt

= σE−µI (6.3)

dR
dt

= µI (6.4)

Where S is the susceptible population, I is the infected population, R is the recovered
population and N is the total population where N = S+E + I +R. λ is the transmission rate,
σ is the rate at which individuals in incubation become infectious, and µ is the recovery rate.
1/σ and 1/µ therefore, become the incubation period and contagious period respectively.

We also consider the Susceptible-Infectious-Recovered (SIR) model which is a subclass
of the SEIR model that assumes direct transition from the susceptible compartment to the
infected (and infectious) compartment. The SIR is represented by three coupled ordinary
differential equations rather than the four in the SEIR. Figure 6.2 depicts the three states of
the SIR model.
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Susceptible Infectious Recovered
λ μ

Figure 6.2 An Illustration of the underlying states of the Susceptible-Infectious-Recovered
Model(SIR).

The Basic Reproductive Number R0

The basic reproductive number (R0) represents the mean number of additional infections
created by one infectious individual in a susceptible population. According to the latest
available literature, without accounting for any social distancing policies the R0 for COVID-
19 is between 2 and 3.5 [57, 132, 72, 34]. R0 can be expressed in terms of λ and µ as:

R0 =
λ

µ
(6.5)

Extensions to the SEIR and SIR models

We use an extended version of the SEIR and SIR models of Dehning et al. [34] that incorpo-
rates some of the observed phenomena relating to COVID-19. First we include a delay D in
becoming infected (Inew) and being reported in the confirmed case statistics, such that the
confirmed reported cases CRt at some time t are in the form [34] :

CRt = Inew
t−D (6.6)

We further assume that the spreading rate λ is time-varying rather than constant with
change points that are affected by government interventions and voluntary social distancing
measures.

6.2.2 Bayesian Parameter Inference

We follow the framework of Dehning et al. [34] to perform Bayesian inference for model
parameters on the South African COVID-19 data. As previously discussed in this thesis,
Bayesian framework allows for the posterior inference of parameters which updates prior
beliefs based on a data-driven likelihood.

The Likelihood

The Likelihood indicates the probability of observing the reported case data given the
assumed model. In our study, we adopt the Student-T distribution as the Likelihood as
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suggested by Dehning et al. [34]. Similar to a Gaussian likelihood, the Student-T likelihood
allows for parameter updates that minimise discrepancies between the predicted and observed
reported cases.

Priors

Parameter prior distributions encode some prior subject matter knowledge into parameter
estimation. In the case of epidemiological model parameters, priors incorporate literature
based expected values of parameters such as recovery rate (µ), spreading rate (λ ), change
points based on policy interventions etc.

The prior settings for the model parameters are listed in Table 6.1. We follow Dehning
et al. [34] by selecting LogNormal distributions for λ and σ such that the initial mean basic
reproductive number is 3.2 which is consistent with literature [132, 72, 34, 43, 140]. We
set a LogNormal prior for the σ such that the mean incubation period is five days. We use
the history of government interventions to set priors on change points in the spreading rate.
The priors on change-points include 19/03/2020 when a travel ban and school closures were
announced, and 28/03/2020 when a national lockdown was enforced. We keep the priors for
the Lognormal distributions of the spreading rates after the change points weakly-informative
by setting the same mean as λ0 and higher variances across all change points. This has the
effect of placing greater weight on the data driven likelihood. Similar to Dehning et al. [34]
we adopt “weakly-informative” Half-Cauchy priors for the initial conditions for the infected
and exposed populations.

Table 6.1 Prior distribution settings for SEIR and SIR model parameters.

Parameter Prior Distribution
Spreading rate λ0 LogNormal(log(0.4),0.5)
Spreading rate λ1 LogNormal(log(0.4),0.7)
Spreading rate λ2 LogNormal(log(0.4),0.7)
Incubation to infectious rate σ LogNormal(log(1/5),0.5)
Recovery rate µ LogNormal(log(1/8),0.2)
Reporting Delay D LogNormal(log(8),0.2)
Initial Infectious I0 Half-Cauchy(20)
Initial Exposed E0 Half-Cauchy(20)
Change Point t1 Normal(2020/03/18,1)
Change Point t2 Normal(2020/03/28,1)

We use the samplers described in Chapter 2 to calibrate the SEIR and SIR models on
daily new cases and cumulative cases data for South Africa up to and including 20 April
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2020 provided by Johns Hopkins University’s Center for Systems Science and Engineering
(CSSE) [36].

6.3 Results

SIR and SEIR model parameter inference was performed using confirmed cases data up
to and including 20 April 2020 and MCMC samplers described in Chapter 2. Each of the
samplers are run such that 5000 samples are drawn with 1000 burn-in and tuning steps.
We use leave-one-out (LOO) cross-validation error of Vehtari et al. [127] to evaluate the
goodness of fit of each model.

Table 6.2 shows the LOO validation errors of the various models. It can be seen that
the SIR model with two change points as the best model fit with the lowest mean LOO of
447.91. The SEIR model with two change points showed a mean LOO of 453.82. We note
that Dehning et al. [34] similarly find that the SIR model displayed superior goodness of fit
to the SEIR on German data.

We now further present detailed results of the SIR and SEIR models with inference using
HMC, the trace plots from these models indicating stationarity in the sampling chains are
provided in appendix D figures D.2 and D.4. The trace plots for the SIR and SEIR models
using MH are provided in figures D.3 and D.5. The trace plots largely indicate that the HMC
sampler displays greater agreement between parallel chains.

Table 6.2 Leave-one out (LOO) Statistics comparing SEIR and SIR models with different
number of change points.

Model Change Points LOO Effective Parameters
SIR 2 447.91 10.36
SEIR 1 452.76 11.60
SEIR 0 453.47 15.90
SEIR 2 453.82 11.26
SIR 1 463.05 7.92
SIR 0 517.26 4.26

6.3.1 Posterior Parameter Distributions

Figure 6.3 shows the posterior distributions of the SIR model parameters. The parame-
ter estimates are λ0 ≈ 0.494 (CI[0.406,0.594]), λ1 ≈ 0.098 (CI[0.063,0.145]), λ2 ≈ 0.192
(CI[0.129,0.256]), µ ≈ 0.149 (CI[0.096,0.202]) and reporting delay (D)≈ 6.829 (CI[4.973,8.596]).
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This corresponds to R0 values of 3.315 (CI[2.940,4.229]), 0.656 (CI[0.654,0.673]) and 1.288
(CI[1.267,1.343]) at the respective change points. Figure D.1 further shows the joint posterior
distributions of λt and µ at each of the change points.

Time-varying spread rates allow for inference of the impact of various state and societal
interventions on the spreading rate. Figure 6.4 shows the fit and projections based on SIR
models with zero, one and two change points. As can be seen from the plot the two change
point model best captures the trajectory in the development of new cases relative to the zero
and one change point models. The superior goodness of fit of the two change point model is
also illustrated in Table 6.2. The fit and projections showing similar behaviour on the SEIR
model with various change points are shown in Figure 6.5.
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Figure 6.3 Posterior Parameter distributions for the SIR model with two change points.

6.3.2 Reporting Delays, Incubation and Infectious period

The mean reporting delay time in days was found to be 6.829 (CI[4.973,8.596]), literature
suggests this delay includes both the incubation period and the test reporting lags. The
posterior distribution incubation period from the SEIR model in Figure 6.6 yields a median
incubation period of 4.322 days (CI[2.395,6.301]), Thus suggesting a mean laboratory
reporting delay of approximately 2.507 days. A mean recovery rate µ ≈ 0.151 implies mean
infectious period of 6.622 days which is in line with related literature [132, 72, 34].
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Figure 6.4 Predictions and actual data (until 20 April 2020) based on SIR models with various
change points. The top plot indicates the actual and projected new cases while the bottom
plot shows the actual and projected cumulative cases.

6.3.3 Timing and impact of interventions

Figure 6.7 depicts the posterior distributions of the spreading rates and times corresponding
to each change point. We observe that the first change point is on a mean date of 18 March
2020 (CI:[16/03/2020, 20/03/2020]). This date is consistent with the travel ban, school
closures and social distancing recommendations. This change point resulted in a substantial
decrease in the spreading rate (80%) primarily due to the reduction in imported infections.

The second change point is observed on 28 March 2020 (CI:[26/03/2020, 30/03/2020]).
This time point coincides with the announcement of mass screening and testing by the
government on 30 March 2020. The resulting mean R0 of 1.288 implies a 60% decrease
from the initial value.

The inference of parameters is dependent on the underlying testing processes that generate
the confirmed case data. The effect of the mass screening and testing campaign was to change
the underlying confirmed case data generating process by widening the criteria of those
eligible for testing. While initial testing focused on individuals that either had exposure
to known cases or travelled to known COVID-19 affected countries, mass screening and
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Figure 6.5 Predictions and actual data (until 20 April 2020) based on SEIR models with
various change points. The top plot indicates the actual and projected new cases while the
bottom plot shows the actual and projected cumulative cases.
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Figure 6.6 Posterior Parameter distributions under SEIR model with two change points.

testing further introduced detection of community level transmissions which may contain
undocumented contact and exposure to COVID-19 positive individuals.

6.4 Discussion

We have performed Bayesian parameter inference of the SIR and SEIR models using MCMC
and publicly available data as at 20 April 2020. The resulting parameter estimates fall in-line
with the existing literature in-terms of mean baseline R0 (before government action), mean
incubation time and mean infectious period [34, 132, 43, 72].

We find that initial government action that mainly included a travel ban, school closures
and stay-home orders resulted in a mean decline of 80% in the spreading rate. Further
government action through mass screening and testing campaigns resulted in a second
trajectory change point. This latter change point is mainly driven by the widening of the
population eligible for testing, from travellers (and their known contacts) to include the
generalised community who would have probably not afforded private lab testing which
dominated the initial data. This resulted in an increase of R0 to 1.288. The effect of mass
screening and testing can also be seen in Figure 6.8 indicating a mean increase in daily tests
preformed from 1639 to 4374.

The second change point illustrates the possible existence of “multiple pandemics”, as
suggested by Karim [67]. Thus testing after 28 March is more indicative of community-level
transmissions that were possibly not as well documented in-terms of contact tracing and
isolation relative to the initial imported infection driven pandemic. This is also supported
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Figure 6.7 Posterior distributions of the spreading rates (λt) and the corresponding distribu-
tions of the time points.

by the documented increase in public laboratory testing (relative to private) past this change
point, suggesting health care access might also play a role in the detection of community-level
infections1.

1 Ministry of Health, Republic South Africa - Update on COVID-19 20th April 2020, https://
sacoronavirus.co.za/2020/04/20/update-on-covid-19-20th-april-2020/

https://sacoronavirus.co.za/2020/04/20/update-on-covid-19-20th-april-2020/
https://sacoronavirus.co.za/2020/04/20/update-on-covid-19-20th-april-2020/
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Figure 6.8 Daily COVID-19 tests performed in South Africa. The orange line indicates the
segmented mean number of tests per day before and after the 28 March 2020 change point.

6.5 Conclusion

We have utilised a Bayesian inference framework to infer time-varying spreading rates of
COVID-19 in South Africa. The time-varying spreading rates allow us to estimate the effects
of government actions on the dynamics of the pandemic.

The results indicate a decrease in the mean spreading rate of 60%, which mainly coincides
with the containment of imported infections, school closures and stay at home orders. The
results also indicate the emergence of community-level infections which are increasingly
being highlighted by the mass screening and testing campaign. The development of the
community level transmissions (R0 ≈ 1.288(CI[1.267,1.343])) of the pandemic at the time
of publication appears to be slower than that of the initial traveller based pandemic (R0 ≈
3.315(CI[2.940 ,4.229])).



Chapter 7

Conclusions and Future Research

7.1 Conclusion

In this thesis, we investigated probabilistic parameter inference in BNNs, GPs and compart-
mental pandemic forecasting models. The thesis showcases MCMC and GP based inference
methods in the domains of credit prediction and wind speed forecasting, where the societal
risk around incorrect predictions is high.

A modified equation-based S2HMC sampler is introduced for parameter inference in
BNNs. S2HMC is found to yield higher effective sample sizes than the traditional HMC
sampler. The predictive performance obtained via the two samplers is, however, found to be
similar.

The S2HMC samples are augmented into a hierarchical ARD framework to include Gibbs
sampling for hyperparameters in BNNs. A generalisable ARD committee approach is then
introduced to add robustness to feature selections based on posterior variance estimates. This
process of feature selection via a majority vote in the ARD committee is shown to select
features with high information value. It is also shown that such an ARD committee based
dimensional reduction improves the performance of uninformed samplers such as MH.

This thesis also makes contributions in scaling GPs through a PoE approach. Prediction
calibration challenges due to the influence of weak experts are highlighted. Solutions based
on Wasserstein barycenters and tempered softmax sparsity control are proposed. Empirical,
experimental results show that such proposals outperform other PoE approaches in large-scale
classification and regression tasks. In regression tasks these PoE proposals are shown to also
outperform BNNs.

Finally, we propose a first in literature principled MCMC approach to change point
determination in the spreading rates of COVID-19 in South Africa. This approach provides
significant insights into the relative efficacy of various state-led public health policy interven-
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tions during a period of high uncertainty. Similar studies in other jurisdictions reinforce the
findings of this approach.

7.2 Future Work

As avenues for future research, other non-separable approaches to shadow HMC that are
unexplored in BNN literature such as Mix & Match HMC of Radivojević and Akhmatskaya
[102], Targeted Shadow HMC and Generalised Shadow HMC of Akhmatskaya and Reich
[3, 4] can be presented alongside S2HMC given adequate computational resources. Variance
reduction of these Shadow HMC methods using coupling also remains a possible area for
future contributions [98, 90].

Investigations into improvements in computational efficiency of S2HMC to allow for
speed up over HMC in BNNs can increase the attractiveness of the method. Such computa-
tional efficiencies could lead to greater adoption of MCMC methods in sampling larger scale
deep NNs.

Importance samplers such as S2HMC facilitate the calculation of evidence via the
importance weights [137]. The extension of S2HMC to evidence calculation can open up a
multitude of applications in model selection problems.

Future work could include extensions to the proposed ARD committee feature selection
approach to include other feature relevance metrics. A weighted committee voting scheme
based on metrics such as predictive accuracy measures can also be explored. The inclusion
of ARD committees into false discovery controlled feature selection paradigms such as the
model-x knockoffs filter of Candes et al. [25] is already under investigation.

Extensions of the expert weighting methods presented in Chapter 5 to other experts based
on other learning machines including BNNs can provide avenues to make the tempered
softmax sparsity control framework adaptable to other probabilistic inference methods.

A broadening in the application scope of probabilistic methods is also of interest to
include inter alia solar energy resource planning which suffers from similar intermittency
issues to wind power [92]. Medicine, law enforcement and autonomous transportation are
also application domains where such probabilistic techniques can yield significant benefit.

Future improvements to the COVID-19 inference work in Chapter 6 could include
extensions to regional and provincial studies as current data suggests varied spreading rates
both regionally and provincially. As more government interventions come to play priors on
more change points might also be necessary.
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Appendix A

Adaptive Neuro-Fuzzy inference systems

A.1 Adaptive Neuro-Fuzzy inference systems

Adaptive Neuro-Fuzzy inference system (ANFIS) is a class of the fuzzy Inference Systems
(FIS) that adaptively adjust membership functions and consequent parameters based on
training data. Figure A.1 shows an ANFIS architecture as proposed by Jang [65]. This
method is established by five consecutive layers that sequentially process the information
from inputs towards outputs. These five layers operate as follows:

Figure A.1 Simple ANFIS architecture with two inputs and two rules.

Layer 1 is a fuzzification layer, where crisp inputs are converted into fuzzy set member-
ship values. This is done using membership functions (MFs) which are bounded in range the
[0,1]. The output of the jth node in this layer will be of the form:

O1
j = µA j(x) j=1,2 (A.1)

where µA j(x) is the MF. In this work, a Gaussian MF, as described in equation A.2, are
selected for the modelling process.
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µA j(x) = exp−
(
(x− p j)

α j

)
(A.2)

Layer 2 combines the incoming signals from the the fuzzy sets in the previous layer
using a T-norm operator. The result of this operation is the combined firing strength of each
rule. If the chosen T-norm operator is multiplication then the output of the jth node in this
layer is:

O2
j = w j = µA j(x)×µA j(x) j=1,2 (A.3)

Layer 3 is a normalisation node where the relative firing strength of each rule is calculated
as ratio of its firing strength w j to the sum of the firing strengths of all rules. The normalised
firing strength of the jth in this layer will be:

O3
j = w̄ j =

w j

w1 +w2
j=1,2 (A.4)

Layer 4 calculates the consequent part of a Tagaki-Sugeno type FIS. The result is a linear
combination of the inputs for each rule weighted by its respective normalised firing strength
w̄ j. This weighted linear combination is of the form:

O4
j = w̄ j f j = w̄ j(a jx1 +b jx2 + c j) (A.5)

where a j, b j, c j are unknown consequent parameters
Layer 5 performs an aggregation of the consequent values evaluated in the previous layer

as a weighted average. The final output is therefore:

O5
j = w̄ j = ∑

i
w̄ j fi (A.6)
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A.2 Parameter Settings for ANFIS Training

A population size of 40 is used of the GA, GAPSO and GAPSO-I. Table A.1 shows a list of
the additional parameters settings.

Table A.1 List of additional parameters

Parameter Value

GAPSO/GAPSO-I

Inertia Weight 1
Personal Learning Coefficient 1.6
Global Learning Coefficient 2

GAPSO random number Threshold (T) 0.75
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A.3 Norwegian wind farm dataset

The Norwegian wind farm dataset consists of 7384 records covering the period from January
2014 to December 2016 [82]. The dataset features include the windfarm online capacity,
one and two hour lagged historical power production values as well as NWP estimates of
humidity, temperature and wind speed.

Table A.2 Input variables used for model training.

Feature name Source Time Delay
Online Capacity (%) SCADA 1
Online Capacity (%) SCADA 2

Power Production SCADA 1
Power Production SCADA 2
Relative Humidity NWP 1

Temperature NWP -1
Temperature NWP 0
Wind speed NWP -1
Wind speed NWP 1



Appendix B

Gaussian Approximation and HMC
Approaches to ARD

B.1 Gaussian Approximation to the Posterior

MacKay [75] proposed a Gaussian Approximation to the posterior based on a second order
Taylor Expansion of the posterior around MAP estimate wMP as follows [82, 75]:

P(w|α,β ,H,D)≈ 1
Z′M(α,β )

exp
(
−
(
EW (wMP)+ED(wMP)

)
− 1

2
(w−wMP)

T A(w−wMP)

)
(B.1)

The matrix A is defined by the weighted sum of the second derivatives of EW and ED

with respect to the model weights as follows [82, 75]:

−▽▽logP(w|α,β ,H,D) =▽▽M(w) (B.2)

= αI+βH (B.3)

H contains the second derivatives of the network error with respect to the weights and is
known as the Hessian. The normalizing constant Z′ is now a Gaussian Integral which can be
evaluated using the functional form of the Multivariate Gaussian as [82]:

Z′ =
∫

exp
(
−
(
αEW (wMP)+βED(wMP)

)
− 1

2
(w−wMP)

T A(w−wMP)

)
dw (B.4)

= exp
(
−
(
αEW (wMP)+βED(wMP)

))
(2π)

−k
2 det(A)

−1
2 (B.5)

where k is the number of weights in the network.
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B.2 Hyperparameter Estimation

The equations above assume that the hyperparameters α and β are fixed. These hyperparam-
eters can be estimated using the evidence framework [82, 75]. The evidence P(D|α,β ,H)

as defined in equation 2.1 is the marginal distribution of the data given the model can be
obtained by marginalising over the weights. Re-arranging the terms in equation 2.1 it can
be seen that the evidence can be expressed in terms ratios of the normalizing constants of
posterior, prior and the likelihood. The log evidence given the Gaussian approximation in
equation B.1 and corresponding normalizing constant Z′ in equation B.5 can therefore be
written down as:

logP(D|α,β ,H) = log
Z′

ZW (α)ZD(β )
(B.6)

=−αEW (wMP)−βED(wMP)−
1
2

det
(

A
(2π)k

)
− logZW (α)− logZD(β )

(B.7)

=−αEW (wMP)−βED(wMP)−
1
2

det(A)+
k
2

log(2π)− logZW (α)− logZD(β )

(B.8)

where βED(wMP) represents the likelihood’s contribution to the evidence [82], while the
terms −αEW (wMP)− 1

2det(A)− logZW (α) are referred to as the log ’Occam factor’ which
gives low evidence to small values of α [82].

The optimal α and β values can be obtained by maximising the log evidence. When
differentiating with respect to α we need to evaluate ∂ log det(A)

∂α
using Jacobi’s formula and

equation B.1 as [82]:

∂ log det(A)

∂α
= Trace

(
A−1 ∂A

∂α

)
= Trace

(
A−1I

)
= Trace

(
A−1)

Setting the derivative to zero results in the following expression in terms of α [82, 75]:

2αEW (wMP) = k−α Trace(A−1) = γ (B.9)
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This quantity is referred to as the true number of effective parameters γ which ranges from 0
to k. Using the definition of EW in equation 2.5, the update equation for α becomes [82, 75]:

αMP =
γ

wT
MPwMP

(B.10)

Similarly by differentiating the log evidence in terms of β and setting the derivative to
zero, we obtain the following expression in terms of β :

2βEMP
D = N− γ (B.11)

Using the definition of ED in equation 2.3 the update equation for β becomes:

βMP =
N− γ

∑
N
i=1

(
t(i)− y(X (i);w)

)2 (B.12)

In the training procedure of such BNNs we therefore have to alternate between optimiz-
ing the hyperparameters (equations B.10, B.12) and optimizing the posterior distribution
(equation 1.9). The alogrithm below shows this training procedure.

Data: Training dataset {X(i), t(i)}
Result: Trained Network Weights wMP and tuned hyperparameters α,β
begin

1. Randomly initialize hyperparameters α and β

2. Optimize the loss function αEW (w) + βED(w) for wMP given α and β using an
optimizer of choice e.g. gradient descent in equation 1.6

3. Use the evidence framework to estimate hyperparameters using equations B.10 and
B.12

4. 2 and 3 until convergence or stopping criterion

end

B.2.1 Predictive Distribution

If the posterior is approximated by the Gaussian as in equation B.1 and the network output
y(xN+1,wMP) can be linearized by a first order Taylor expansion around wMP as [75, 82]:

y(xN+1,w)≃ y(xN+1,wMP)+g(w−wMP) (B.13)
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where g is derivative of the network output with respect to the weights evaluated at the new
input and optimal weights

g =
∂y
∂w

∣∣∣∣
xN+1,wMP

meaning therefore from our assumed noise model in equation 2.3:

P(t(N+1)|w,β ,H)≃N (y(xN+1,wMP)+g(w−wMP),β
−1) (B.14)

B.2.2 Automatic Relevance Determination

The formulation above assumes that all network weights have the same prior. However in
principle weights can come from distinct groups with a unique regularization parameter for
each class αc. The evidence framework for hyperparameter estimation applies as before with
[82]:

α
MP
c =

γc

wT
MPwMP

where wMP ∈ c (B.15)

and

γc = kc−αcTracec(A−1) (B.16)
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B.3 HMC with Gibbs Sampling Algorithm

HMC with alternating Gibbs sampling depicted by the algorithm below.

Data: Dataset {X,y}
Result: N samples of model parameters w and N

nGibbs
samples of parameters αc.

initialise the network weights w for n← 1 to N do
if mod(n,nGibbs) = 0 then

Sample hyper-parameters αc from Gamma(τ +Nc,θ +EWc)
end
sample the auxiliary momentum variables p
p∼N (0,M)
Use leapfrog steps to generate proposals for w
for t← 1 to L do

p(t + ε/2)← p(t)+(ε/2)∂H
∂w

(
w(t)

)
w(t + ε)← w(t)+ ε

p(t+ε/2)
M

p(t + ε)← p(t + ε/2)+(ε/2)∂H
∂w

(
w(t + ε)

)
end
Metropolis Update step:
(p,w)n← (p(L),w(L)) with probability:
min

(
1, P(w(L)|D,H)

P(w(n−1)|D,H)

)
end
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Appendix

(a) soft-var, 100 pts/exp (b) soft-var, 20 pts/exp (c) soft-var, 4 pts/exp

Bary

full gp

(d) soft-var, 2 pts/exp

Figure C.1 Full GP baseline (orange) and barycenter of GPs model (blue) trained on synthetic
data with a decreasing number of points per experts (Left to Right), using softmax-variance
weighting [30].

Dataset BAR_var BCM gPoE_unif gPoE_var PoE rBCM_diff_entr rBCM_var

WM01 Alexander Bay 0.540 (1.605) 0.556 (1.620) 0.546 (1.618) 0.538 (1.602) 0.555 (1.618 0.554 (1.617) 0.551 (1.648)
WM05 Napier 0.414 (1.502) 0.424 (1.508) 0.418 (1.510) 0.413 (1.500) 0.426 (1.510) 0.424 (1.508) 0.424 (1.554)
WM13 Jozini 0.752 (1.426) 0.767 (1.435) 0.756 (1.437) 0.751 (1.425) 0.769 (1.437) 0.767 (1.434) 0.760 (1.572)

Table C.1 Average NLPD (RMSE) on the three weather stations for the regression datasets
using random partitioning
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BAR_var BCM gPoE_unif gPoE_var PoE rBCM_diff_entr rBCM_var SVGP500

Top-1-accur. 0.911 0.894 0.894 0.910 0.894 0.895 0.396 0.862
Top-2-accur. 0.964 0.955 0.954 0.964 0.955 0.956 0.411 0.939
Top-3-accur. 0.981 0.976 0.975 0.982 0.976 0.976 0.418 0.967
NLPD 0.312 0.853 0.384 0.313 0.851 0.879 2.474 0.497

Table C.2 Top-n accuracy and NLPDs on the MNIST dataset (PCA features) using clustering
partitioning.

BAR_var BCM gPoE_unif gPoE_var PoE rBCM_diff_entr rBCM_var SVGP500

Top-1-accur. 0.821 0.822 0.822 0.820 0.822 0.822 0.820 0.818
NLPD 0.812 1.181 0.843 0.775 1.176 1.172 0.981 0.709

Table C.3 Top-1 accuracy and NLPDs on the Taiwan credit dataset using clustering partition-
ing.
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Figure D.1 Two dimensional heat maps of the posterior distributions of the spreading rate (λ )
and the recovery rate (µ) at various change points of the SIR model. The high joint density
areas (in yellow) indicate likely values of R0. The baseline mean R0 estimate in D.1(a) is
3.315, the first change point estimate in figure D.1(b) is 0.657 while the second change point
in figure D.1(c) has resulted in a mean R0 estimate of 1.288.
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Figure D.2 Diagnostic trace plots for the SIR model inferred using HMC.
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Figure D.3 Diagnostic trace plots for the SIR model inferred using MH.
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Figure D.4 Diagnostic trace plots for the SEIR model inferred using HMC.
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Figure D.5 Diagnostic trace plots for the SEIR model inferred using MH.
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