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Abstract

Machine learning is a branch of artificial intelligence that uses data to build infer-

ences, using designed models to generalize and make predictions. A novel approach

was presented on using machine learning techniques in predicting the mechanical

properties of welded 2507 DSS. Machine learning algorithms was used to predict the

mechanical property from sintered and Nd:YAG laser welding parameters datasets.

Welded sintered 2507 duplex stainless steel (DSS) alloy was developed for an auto-

mobile, specifically exhaust flanges. Before 1990’s welding PM stainless steel was not

practiced, until PM stainless steels was considered as a viable candidate for exhaust

flanges in hot exhaust gas outlay. Further engineering application of this alloy has

been encouraged through several studies performed to investigate the microstructure

and properties of Laser welded 2507 DSS alloy using traditional processes. However,

till date there is no thorough information on the microstructure and associated me-

chanical properties of Laser welded Spark plasma sintered (SPS) 2507 DSS. A study

was carried out to comprehensively characterize the microstructure and examine the

mechanical properties of Nd-YAG Laser welded 2507 DSS produced through SPS to

generate data for the machine learning prediction analysis. Therefore this research

compares the predictive power of two primary Machine learning algorithms, namely:

Artificial Neural Network(ANN), and Support Vector Machine (SVM) to effectively

predict the hardness at the weld metal zone, using different statistical metrics like

MAE, MSE, and R2 were used to determine the machine learning algorithm perfor-

mance.

17



Chapter 1

Introduction

Stainless steel alloys have seen increased use of the Powder metallurgy (PM) route for

its production. Popular for it’s outstanding corrosion-resistant properties. Stainless

steel application spans many industries, including automotive, aerospace, medical

and chemical processing. Meanwhile, corrosion properties are among properties in

demand for the increasing application of steel. Adequate processing and sintering

of PM stainless steel are known to be an important factors necessary to achieve

improved mechanical properties and chemical properties [1]. Duplex stainless steel

(DSS) is characterised by dual nature of nearly equal amounts of ferrite and austen-

ite. The austenitic and ferritic phases are responsible for the toughness and strength

properties of duplex stainless steel respectively [2]. DSS occupies a unique place in

the steel family, and they have found exceptional applications in chemical, oil and

gas and food industry industries among others [3]. Also, DSS effectively finds appli-

cation in chemical, aerospace, biomedical and power industries and other engineering

fields, owing to attributed attractive properties such as good weldability, appreciable

corrosion resistance, abrasion resistance, outstanding mechanical ductility, strength

and corrosion resistance [4]–[6].

In conventional manufacturing, different procedures have been used to process

duplex stainless steel, such as forging, extrusion, casting, and rolling. However,

these manufacturing processes have been rendered complex by thermal expansion

coefficients, precipitation of secondary phase and intermetallics precipitates on the

18
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grain boundaries and the variation in the deformation behaviours of constituent

phases [7]. PM creates a different outstanding different route for duplex stainless-

steel production. In PM technique simple processes are made use of to produce

a product that requires little machining, cost-effective, controlling the composition

of the material, microstructure, optimized physical and mechanical properties can

be produced by this process. Also, issues synonymous with traditional casting can

be avoided by powder metallurgy, with the capability to fabricate near net shape

components and semi-finished products [8]–[12]. Meanwhile, out of the different

powdered metallurgical manufacturing method, spark plasma sintering (SPS) has

been judged to produce a uniform dispersion of reinforcing particles with fine mi-

crostructure, producing alloy that does not agglomerate easily, improving compact

strength and hardness. The spark plasma sintering process has also attracted some

attention because of its attributes of short sintering time resulting from low energy

consumption [13]–[16]. Also, SPS being a flexible technique, can rapidly fabricate

various materials including ceramics, metals and composites [17]–[19]. In addition,

SPS ensures speedy heating of powder and direct stimulation sintering [20], [21].

Components manufactured through PM process finds applications in automotive,

aerospace, and defence industry. Production of heavy parts assembly through PM

requires joining PM parts [22]. Welding has been one of the most successful joining

techniques accepted for fastening several parts [23]. Also, Welding sintered alloys

with intrinsic porosity is always an arduous endeavour; the porous property is re-

sponsible for thermal conductivity reduction, reduced hardenability and presence of

impurities such as oxides [22]. Impurities locked in the pores affect the weldability

of the PM part. The locked impurities eventually result in solidification cracking

[24]. Welding powdered metal part is different from welding of rolled, cast, and

forged parts, owing to porosity in their microstructure. The porosity characteristics

is determined by several controlling factors viz; sintering, green density. Specifically,

the size fraction, the morphology, and size distribution of the pores have a signifi-

cant effect on the mechanical behavioural implication on components under welding

19
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conditions. Requirements such as environmental factors, the porosity volume, and

strength should be taken into cognizance when selecting the appropriate welding

process to join PM parts [25]. The joining processes relevant to PM parts can be

divided into a solid-state and liquid-state. Diffusion bonding and brazing, catego-

rized under solid state process, have enjoyed dominance in usage for lower density

porous parts. In contrast, higher densities or low porous part are often addressed as

fully dense wrought materials. The fusion-based joining processes majorly applied

in joining are: Arc welding, that is gas metal arc welding (GMAW), electron beam

welding (EBW) and laser welding (LW) [24], [26]. In the work of Seluk et al.[24] on

joining PM parts, were able to join low density parts using the solid-state joining

method, diffusion bonding [27] and friction stir welding [28]. Parts having higher

densities or low porosity can be joined by fusion joining processes namely, laser

welding [29].

Dimensional and metallurgical consequences of high heat input on sintered pow-

dered compact had necessitated joining by low heat input processes such as sinter

brazing or joining and diffusion bonding [30]. It is well-known fact that metal arc

welding, TIG (Tungsten inert gas welding) or MIG (Metal inert gas welding) are

always associated with high heat input and requires a shorter joining time. The

porosity increase and swelling arising from the evaporation, high oxide formation,

low thermal expansion coefficient of the powder resulting in post weld cracks, and

brittle phases formation usually have negative effect on the resulting joint. Wahba

et al. [31] and J Hamil [26] reported that sintered steels are successfully welded by

tungsten arc welding (GTAW/TIG), friction resistance welding (FRW), and laser

beam welding (LBW). Therefore, success in welding PM parts requires adequate

knowledge of the effect of porosity, impurity level, overall cleanliness, and chemical

composition upon weldments properties such as the heat- affected zone cracking and

weld metal, ductility, distortion, residual stress, and toughness.

It has been made known that the most exciting tool that was recently added to

the materials science toolbox are machine learning (ML) [32], a branch of artificial
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intelligence(AI) deals with model creation that can learn from the situation of the

past data [33]. In recent times, machine learning algorithms have seen applications

in image classification, clustering, regression [34]. ML has been applied within mate-

rials science research, including examples for materials properties predictions, using

past historical data [35]–[37].

1.1 Motivation for the research

It has become crucial and necessary to quickly and accurately predicts the prop-

erties of materials. Applying machine learning model to efficiently model material

properties is a new yet promising research area. Therefore this research finds its root

within this context. Also, since the material considered is a sintered material, under-

standing the industrial application of sintered parts and its joining mechanism will

be worthy of consideration. Laser welding is considered for this operation, known for

its low heat input, reducing the thermal effect on the welded metal. The governing

motivation for this research is to have an improved understanding on the application

of machine learning algorithms to predict some of the mechanical properties of the

welded alloy.

1.2 Problem statement

The use of ML algorithms in predicting mechanical properties of micro-alloyed steels

has always been a tedious task that needs a thorough understanding of the process-

ing parameters [38]. Rolled or cast part welding is different from PM metal parts

welding, owing to the porous nature of the PM metal. The volume of porosity

significantly affects the welding process characteristics [39], [40]. Thermal and met-

allurgical processes resulting from porosity continues to make PM joining an arduous

task [23]. Therefore, pores in the sintered components, act as thermal insulators,

slowing down thermal conductivity, heat transfer, and cooling rates,eventually re-

sulting in excessive shrinkage and grain growth.
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Due to the factors mentioned above, the following will be an exciting problem

to be considered for optimization.

The problem statement will thus be formulated as follows:

• Presentation of machine learning algorithms to optimally predicts materials

properties will be considered.

• Optimized parameters that will produce sintered samples with reduced poros-

ity will be worked towards.

1.3 Research Questions

• Machine Learning Prediction

1. Can ML algorithms be used to predict the vickers hardness properties of

the weld zone(WZ) using the process parameters like welding speed, heat

input, sintering temperature, and sintering time as input parameters?

• Experimental

1. Is laser fusion welding of SPS 2507DSS feasible?

2. Does heat input of Nd:YAG Laser-welding affects the mechanical prop-

erties of the weld?

3. How will the heat input affects grain growth within the melt pool, and

can grain growth be controlled?

4. How can porosity in a laser welded 2507 DSS be examined?

1.4 Research Objectives or Hypotheses

This research will be initiated to systematically and comprehensively study the

possibilities of using a machine learning algorithm to predict hardness at the WZ and

also the influence of Nd:YAG laser welding process on sintered 2507 DSS. Specifically,

it is of interest to:
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• Study the prospects of using laser welding to join spark plasma sintered DSS.

• Understand the influence of impurity level, porosity and chemical composition

upon the weld metal.

• Investigate the microstructural changes and how it affects the mechanical and

microstructural properties of the welded material.

• Study the prospects of using ANN and SVM machine learning model to predict

the hardness at the WZ of laser welding to join spark plasma sintered DSS.

1.4.1 Hypotheses

• The hardness at the WZ can be predicted as a function of the process param-

eters like welding speed, heat input, sintering temperature, and sintering time

as input parameters

• The hardness of the WZ can be estimated with an acceptable level of accuracy

using ML models

1.5 Research Approach

The various tasks essential to achieve the sets objectives are highlighted below:

• The as-received 2507 DSS powder is first characterized using X-ray diffraction

(XRD) and scanning electron microscopy (SEM).

• 2507 DSS powder is sintered with SPS equipment at different sintering param-

eters. This process is necessary to produce a solid compacts products for the

welding operation.

• A comprehensive microstructural characterization of the sintered metal is car-

ried out before proceeding with the welding operation.

• Nd:YAG laser Welding operation is carried out at different parameters.
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• Mechanical analysis is carried out on the different weld zones, including micro

hardness test and nanohardness test.

• A microstructural analysis is carried out on the weld by SEM, and electron

backscattered diffraction (EBSD)

• The porosity in the weld is analysed by X-ray computed tomography (XCT).

• Statistical data analysis implemented in Google Tensor was carried on the data

to calculate the statistical significance of sintering and laser welding parame-

ters on the Vickers hardness of the WZ.

• Implementation of algorithms, metrics, and optimization of the ML approaches

to predict the mechanical properties of WM of the laser welded DSS alloy. It is

worthy to note the ML is Iterative. Furthermore, during the iterative process,

methods and algorithms will be used and optimized to achieve possible results.

The results will be critically evaluated and compared with one another. The

limitations imposed by the data will be pointed out, and recommendations for

further developments on the studies.

1.6 Thesis organization

• Chapter 1 Introduction gives the background information on the research

work, research objectives, research approach.

• Chapter 2 Literature review consist of two sections. The first section gives a

detailed review DSS and the welding metallurgy of laser welding of DSS. The

second section handles the review on data analysis and Machine Learning and

its application to materials properties prediction.

• Chapter 3 A detailed description of the experimental methods, equipment

used for the research is provided. Details on SPS of 2507 DSS, Nd:YAG

laser welding, porosity analysis, post-weld heat treatment, data analysis, and

machine learning modelling.
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• Chapter 4 Presented in 4 parts. The first part presents the microstructural

analysis of the as-received 2507 DSS powder, sintered 2507 DSS, XRD charac-

terization of the phases present in the sintered alloy at different sintering pa-

rameters. The second parts discuss Nd:YAG welding operation for the sintered

alloy, with the microstructural characterization of the phases presents.The

porosity of the welded alloy was also carried out. In addition, the effect of

post-weld heat treatment on the microstructure of the 2507 DSS is discussed.

The third parts discussed the data and statistical analysis of various processing

parameters used in the research and their statistical significance to the me-

chanical properties. The effect of different ML algorithms in the predictions

of mechanical properties was discussed.

• Chapter 5 Conclusion and potential future work.
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Chapter 2

Literature Review

This PhD research focuses on Nd:YAG laser welding of 2507 DSS alloy, its char-

acterization and machine learning modelling of the mechanical properties. A brief

introduction to the relevant subjects is essential before presenting our research.

Therefore, this chapter starts with the introduction to stainless steels, metallurgy of

stainless steel, microstructure of duplex stainless steel, Powder metallurgy, welding

of PM stainless steel, applications of sintered steels, laser welding. Also, application

of data science to materials science, machine learning application in predictions of

material properties was considered.

2.1 Stainless steel: Metallurgy and alloy compo-

sition

Stainless steel can be described as an alloy that belongs to the ferrous metal family.

They usually have outstanding corrosion resistance. Alloying elements that are

highly essential in different stainless steel grades includes, molybdenum, carbon,

Nickel, carbon , silicon, manganese, titanium, sulfur and niobium. It is also a

known fact that PM stainless steels have been processed from some of the wrought

stainless steels grades. Therefore, PM stainless steel has similar characteristics as

their wrought counterparts [1]. For steels to be stainless, it has to have at least
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11wt% of chromium as an alloy. Stainless steel performs better than ordinary steel

when subjected to load at high temperature [41].

2.1.1 Metallurgy of stainless steel

Having a sound understanding of stainless steel is necessary to understand under-

stand the PM stainless steels classification better. Stainless steels can be categorized

into five types, microstructure, viz; austenite, ferrite, martensite, and duplex stain-

less steel. The last is precipitation hardened stainless steel, differentiated by its

strengthening mechanism. Structurally, the body-centred cubic (ferritic) structure

represents pure iron that exists at room temperature. At thesame time, it transforms

to face centered cubic (fcc) (austenite) know as gamma phase (γ) when heated above

910◦C, when further heated through 1400◦C, it transforms back to ferritic structure.

Alpha ferrite (α) stands for the lower temperature formed ferrite, while the phase

formed at higher temperature is known as delta ferrite (δ) [42]. Figure 2.1 further

explained the different microstructures observable at different temperatures.

Alloying of iron or an iron-chromium alloy with Nickel encourages ferrite trans-

formation to austenite, resulting in the expansion of both γ-phase region and α+

γ region. While, chromium is known to be the ferrite forming element. The over-

all effect of all the ferritizing and austenitizing elements gives us the idea of which

phases to be expected in the alloy at room temperature. This type of prediction can

be explained by Schaeffler diagram [43].

2.1.2 Duplex stainless steel

A Duplex stainless steel(DSS) can be seen as an alternative to austenitic stainless

steel for several industrial applications, such as oil and gas, chemical and automo-

bile. The combination of ferrite and austenite phase provides a good combination

of corrosion resistance and improved tensile strength. The austenite phase impacts

ductility and general corrosion resistance, while the ferritic phase provides improved

strength and local corrosion resistance, eventually combining the attributes of both
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Figure 2.1: Iron-chromium partial phase diagram showing the gamma loop for a
0.004% C- and 0.002% N containing alloy [42].

micro-constituents. [44]. Although, elements like Cr and Mo provide outstanding

localized corrosion resistance, they usually lose their corrosion resistance and ductil-

ity properties during welding process, requiring post-weld heat treatment to regain

the lost properties. Nitrogen as an alloy element is known to reduce the chromium

partition between ferrite and austenite phases. This alloy element increases crevice

and pitting corrosion resistance of the austenite phase for the second generation DSS

grade (SAF2205). The quest for ferrite and austenite balance for best performance

led to the discovery of the third generation duplex grades (SAF2507). 2507 DSS
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Figure 2.2: Schaeffler diagram for determining phases formed upon solidification,
based on chemistry [43].

grade corrosion resistance is boosted with respect to the PREN (Pitting Resistance

Equipment Number). The PREN represents an empirical formular for predicting

duplex and austenite stainless steel pitting corrosion [45].

PREN=%Cr+ 3.3(%Mo + 0.5%W) + 16%N (>40 for super duplex stainless

steels). SAF 2507 is designed designed for a highly corrosive chloride environment,

with excellent stress corrosion resistance, crevice and pitting corrosion resistance.

Also, it shows high good weldability and high mechanical strength [46]

2.2 Microstructure of Duplex stainless steel

DSS is characterized by a two-phase structure, consisting of 50% BCC ferrite grains

and FCC austenite grains [48]. Figure 2.4 shows a schematic section of the Fe-Cr-

Ni diagram at the 70%Fe level [49]. The compositions and the phase proportions

representation for different alloy is indicated in figure 2.1, which was annealed. The

duplex structure was stable at high temperature, mostly due to the nitrogen con-

tent’s stability effect, than by Mo, or Cr. Usually, in the annealed condition, wrought

DSS contain about 40-50% austenite within the ferrite phase, after solidification, δ
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Figure 2.3: Comparison of duplex stainless steels and austenitic stainless steels
[47]

ferrite is formed first. Depending on the composition of DSS, different amount of

austenite is formed as the last phase. Meanwhile, if the alloy is subjected to subse-

quent annealing, additional austenite will be formed by solid-phase transformation.

[50], [51].

Other phases that can be identified in DSS includes σ, χ, R, α
′
, carbides, and

nitrides. These phases are usually studied using heat treatments [52]

2.3 Powder metallurgy

Powder metallurgy (PM) can be defined as a production process to consolidate fine

particles to solid materials. The most crucial advantage of PM process over other

manufacturing processes lies with the efficient use of material, among other ad-

vantages that includes the production of diverse shapes and the reduction of steps

involved in the production process [54]. Corrosion-resistant alloys are in recent time

produced by PM process. Application of PM stainless steel alloy spans through vari-

ous of industries, including, automotive, medical, and chemical processing equipment

[1].
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Figure 2.4: Concentration profiles in the ternary Fe-Cr-Ni constitution diagram at
70% and 60%Fe. The schematic effect of nitrogen additions references [49], [53].

2.3.1 Sintering

Sintering is a process used to consolidate loose aggregate of powder with the desired

composition, usually under controlled time and temperature conditions [55]. The

process has been used for various materials, such as non-metals, metals, polymers,

ceramics, and their alloys. A broad group of technologies is employed to obtain

different products such as luminescent films and iron ore agglomerate. Many novel

sintering methods have been discovered over time, which includes, electric current

assisted sintering, laser sintering, microwave sintering, and spark plasma sintering.

The technology behind sintering intends to minimize energy used during sintering,

and produces materials with exact intended properties [56]. Figure 2.5, shows sin-

tered parts fabrication pattern. Several processing variables and various techniques

are involved in sintering steps that eventually leads to the variations in the sin-

tered properties and microstructure. Sintering process aims to design microstructure

through sintering variables control. In the process of the microstructure control, the

sintered density, grain size, pores distribution, size, and phases distribution plays a

vital role in the overall properties of the sintered alloy[57].
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Figure 2.5: Fabrication pattern for sintered parts. [57].

2.3.2 Basic Phenomena and driving force of Sintering

The major driving force of sintering is total interfacial energy reduction. The in-

terfacial energy of a powder compact is expressed as γA, A stands for the total

interface surface area of the compact and γ is the specific surface interface energy.

The total energy reduction can be expressed as;

∆(γA) = ∆γA+ γ∆A (2.1)

The interfacial energy changes (∆γ) is caused by change in interfacial area and

densification owing to grain coarsening, Figure 2.6 shows the total interfacial en-

ergy reduction that occurs through grain growth and densification, which is the

foundation of sintering [57].

2.3.3 Effect of Powder Particle Size on the Grain Size of the

Sintered Material

Over the years sintered materials produced by PM have been known to possess

unique properties different from their counterparts made by conventional manufac-

turing methods. There has been little attention on the grain structure of sintered

materials, and it is a known fact that the grain structure in a PM alloy is smaller

than cast alloy that was subjected to the same heat treatment. Meanwhile, sev-

eral factors responsible for the grain size in a sintered metal include sintering time,

sintering temperature, compacting pressure, size, shape, and the surface powder
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Figure 2.6: Phenomena occurring during sintering under the driving force for sin-
tering. [57].

particle condition [58]. The famous equation for grain growth in solid metal are

not applicable to powder compacts grain growth during sintering. Isothermal grain

growth occurs, and the the grain diameter D can be denoted by

D = Ktn (2.2)

where K and n is the constant at constant temperature and t=time of heating.

K can be defined by the Arrhenius relation.

K = Ae−H /RT (2.3)

Hausner and King [58] performed a test to study the effect of powder particle size

on grain size of sintered products. It was noticed that the finer particles usually

contained smaller grains that had larger particle size. They concluded from their

observations that the grain size of the compact might not necessarily be affected by

the density of the sintered compact, at the later stage of sintering. Spheroidization

of pores usually occur progressively, which eventually leads to grain growth. It was
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also discovered that compacts prepared from fine powders particles contains small

pores that spheroidize faster than the coarse particle.

2.4 Welding PM stainless steel

PM stainless steel welding was considered to a great extent because of its application

as a steel exhaust gas outlet (HEGO) bosses in the early 1990s. Meanwhile, there

is dearth of published work addressing the welding of PM stainless steel. Recently,

researchers started working on the welding of PM stainless steels. It was noticed

in their research, that the metallurgical underlying principles governing the welding

of wrought stainless steel is applies to PM stainless steel. In welding PM alloy,

additional consideration should be given to the porosity nature of the alloy. [1].

2.4.1 Welding PM stainless steel basics

Different groups of stainless steels usually have diverse weldability considerations.

Majorly determined by the modes of phase transformation that transpire during

the solidification process. The weld metal’s final composition should be such that

resistance to corrosion is not undermined. High ferrite content affects corrosion re-

sistance because pitting corrosion is preferentially located at δ-ferrite phase. Collins

and Williams [59] have been able to determine that the tendency for pitting mea-

sured by ASTM G 150) precipitously increase when ferrite content exceeds 3.5%,

corresponding to Creq / Creq ratio of 1.55 in their study. Welding of low carbon

steel and alloy steels requires a meticulous managements of heat input due to the

relatively poor thermal diffusivity and their significant coefficient of thermal expan-

sion. The term weldability means the ease at which a sound weld can be achieved

and also satisfactorily offering good performance in service. Therefore, it is impor-

tant that our resulting weld should exhibit good performance in terms of mechanical

strength, resistance to corrosion, impact strength, and ductility [1].
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2.5 Applications of Sintered Steels

Corrosion resistance had become the major impediment to the industrial applica-

tion of sintered duplex stainless steel from 1970s to approximately 1990. Corrosion

properties have been the major consideration for using sintered steels, just like the

case of cast and wrought stainless steel. The following areas have enjoyed the ap-

plication of PM stainless steel because of the corrosion improvement, like; exhaust

system flanges, antilock brake system sensor rings, and oxygen sensor bosses. The

major market distribution of sintered stainless steel has prevalently shifted to auto-

motive. As shown in figure 2.7, sintered stainless steel served many market segments,

including the automotive industry [60].

Automotive and
transportation

24%

Hardware
and tools

27%

Filters
18%

Appliances
13%

Miscellaneous
12%

O�ce machines
6%

Total market: 2600 tons

Figure 2.7: Market distribution of powder metallurgy stainless steel products in
1979 for United states [60].

2.6 Laser Welding

Laser welding has seen popularity within the automotive industry and other indus-

tries such as, medical, aerospace and construction industries. Laser welding has been

found worthy of production speed, quality assurance, final properties, and robustness

[61]. However, laser welding also comes with some drawbacks such as maintenance,
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poor bridging gap, especially for duplex stainless steel, high cost of equipment, and

high cooling rate due to the lower heat input, resulting in excessive ferrite formation

[45]. Laser is an abbreviation of Light Amplification by Stimulated Emission of Ra-

diation. The rise of laser welding started in 1971, when the first keyhole effect from

the multi-kilowatt CO2 laser sources has also seen more growth through understand-

ing of the know-how on laser technology [62]. CO2-Laser was the leading industrial

high power laser used from the beginning, before the emergence of Nd:YAG. Mean-

while, Nd:YAG is characterized with 10 times shorter wavelength beam guidance by

optical fibres with an advantage of high absorption in metals [63].

2.6.1 Laser Welding mechanisms

Laser welding can be described as a fusion welding, i.e the process that uses heat to

join two or more materials together by heating to melting point. Laser welding can

be carried out by two mechanisms, viz [64]; (1) conduction welding, where the laser

usually acts a the point source of energy. Usually, welds produced by this method

are roughly semi-circular in cross section. (2) Keyhole welding , the laser usually

acts as the concentrated heat source that penetrates completely or partially through

a workpiece, forming a keyhole. The welds produced in this case is usually deep and

narrow. The two mechanisms are pictorially shown in Figure 2.8.

a) b)  

6

Figure 2.8: (a) Schematic representation of conduction and (b) keyhole mode weld-
ing. [65].
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Conduction mode welding

Conduction mode welding usually occur whenever the heat input is very low, yield-

ing a semi-spherical shape of the weld, with lower penetration characteristics, poor

welding efficiency, and high heat losses [66]. The boiling point of the welding ma-

terials is usually higher than the peak temperature of conduction mode, when the

heat conduction is from the surface [67]. The stability laser welding brings to the

weld pools qualifies laser welding for welding thin materials. This welding method

has found application in the automotive, aerospace, and electronics industries [68].

Keyhole mode welding

In this type of welding mode, the weld geometry is dependent on the laser power

density and focal size of the laser beam. Keyhole mode welding is known for its high

density, high penetration, high accuracy, low heat input, high penetration, and high

welding speed [69]. The keyhole mode welding can be divided into two parts: near

the parallel-sided area, semi-circular shape at the top of the weld [70].

2.6.2 Laser Welding systems

Differen laser welding systems are applied in the industries. They include: CO2 and

Nd:YAG lasers.

CO2 Laser

It usually operates at a wavelength of 10.6µm with a power ranging from 1.5-6kW.

Generally characterized with low energy absorption of the laser beam by the metal,

having overall efficiency of up to 15%, even though the energy transfer efficiency

between the work-piece and the laser beam may be up to 0.8 [71]. This type of laser

is usually applied to weld sheet metal at high weld speeds [72], [73].
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Nd:YAG laser

Neodymium-doped yttrium aluminium garnet (Nd:YAG) laser has a wavelength of

10.64µm and has been chiefly employed to investigate the weldability of various alloys

[74]. Pulsed Nd:YAG laser welding has mostly attracted attention in academic’s

research and industry recently [75]–[79]. Nd:YAG laser is known to have various

advantages over CO2 Laser, such as high-energy absorption rate as a result of its

low reflectivity, low residual stress and high welding speed [80]

2.6.3 Laser welding process parameters

Laser parameters can go a long way in determining the weld quality, such as mi-

crostructure of the fusion and HAZs, weld geometry, defects formation e.t.c [66],

[81]. Selection of the appropriate processing parameters and understanding their

interaction is essential in obtaining outstanding results in laser welding [82]. Impor-

tant process parameters necessary for laser welding of metallic alloy will be discussed

in the following section.

Laser power

Conventional laser power employed in the automotive industry is usually around

4-10kW. Meanwhile, high power will result in an excessive melt and solidification

of metal at the root of the weld, i.e. welds dropout. The required laser power is

always dependent on the materials, welding speed, and the thickness of the material

[83]. As shown in Figure 2.9 below. The laser power delivery method can be divided

into two modes: pulse wave(PW) mode and continuous wave (CW) mode. Working

with the two modes usually results in different results. The laser power in CW

laser welding process should be increased whenever the welding speed is increased

in direct proportionality with a given thickness of the welding materials. For a laser

system with high density, a high welding speed can be achieved by using high laser

power [66].

In Figure 2.9(a), laser is kept constant over the whole welding duration. The
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Figure 2.9: Schematic of laser power delivery methods: (a) the continuous wave
mode; (b) the pulsed wave mode [84].

energy of continuous-wave laser welding is usually defined as equation 2.4

E = P × t (2.4)

In the equation E, P, and t represents the laser energy(J), laser power(W) and the

welding duration(s), respectively. While, in pulsed wave laser welding, the quality

of the weld is determined by the peak laser power Ppeak, laser frequency, laser beam

diameter, and welding speed. The pulse energy can be defined by equations 2.5 to

2.7, where pulse frequency (f), energy(E), average power (PAvg)

Pulse energy:

E = Ppeak × t1 (2.5)

Duty cycle:

f =
t1

t1 + t2
(2.6)

Where t1 and t2 are the duration of laser beam on and off respectively.

Average power:

PAvg = E × f (2.7)

Welding speed

Welding speed is the speed at which the welding process travels. The laser power[kW]

and welding speed [mm/s] determines the heat input [kJ/mm], as depicted by equa-
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tion 2.8. [85].

Heatinput(Q) =
LaserPower(P )

travelspeed(v)
(2.8)

As the weld speed varies the weld pool size and shape changes. The weld pool width

increases with lower speed and increases in the dropout, while with higher speed, it

causes the weld pool to have difficulty redistributing to form a smooth joint. High

welding speed can also lead to undercut in the weld [83]. Also, high welding speed

can cause higher angular distortion and lower local deformations [86].

Focusing position

The penetration depth and the local weld shape are determined by the focal position

relative to the sheet surface. Insights from various researches have shown the effect

of focal length and beam diameter resulting in approximately 1mm below the sheet

surface for thin sheet welding [85], [87]

2.6.4 Microstructure of laser beam welds

Welding is a metallurgical process, while the weld quality is usually affected by

the physical, thermal, chemical and mechanical properties of the welding materials

being welded [84]. Due to the low heat input of laser welding, the material melts for

a short time, solidifying very fast, differentiating the microstructure of laser-welded

material form other conventional welding methods. Two different regions are visible

from a keyhole weld: a fusion zone (FZ) and Heat affected zone(HAZ). In the FZ,

the metal, first crystallizes between the solid-liquid interface, which grows rapidly

into the inner part of the molten zone. The HAZ can be divided into sub-zones,

which represents different types of microstructure. These zones are determined by

the nature of the material being welded. Intermetallics brittle phases can result

from non-equilibrium phase transformation. Figure 2.10 below presents the case for

the structural steel [88].
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The fusion zone (FZ)

The peak temperature at the FZ is mostly higher than the melting point of the

welded materials for solidification to occur. As the temperature of the welded ma-

terials reaches liquid temperature, there will be a loss of alloying elements which

will eventually results in the variations of the microstructure and mechanical prop-

erties of the weld. Usually, the solidification rate controls the grain size and shape,

and also the defects and inclusions distributions, when the fusion zone undergoes a

transformation from the liquid phase to a solid phase. Therefore, the microstructure

obtained at the FZ resembles the growth rate, cooling rate, temperature gradient

and alloy composition of the weld material [89].

The heat-affected zone (HAZ)

In laser welding, the HAZ temperature is usually lower than the material melting

point. The heat at the HAZ is enough to cause phase transformation without no-

ticeable melting occurring. The degree of grain growth, microstructure, composition

gradients, residual stresses and phase transformation are influenced by the thermal

cycle and temperature gradient in the HAZ. Meanwhile, cooling rapidly can reduce

grain growth, thereby producing a finer microstructure [90].

2.6.5 Laser weld defects

The heating and cooling rates during the laser welding process can affect the varia-

tions in microstructure, composition and residual stresses at the FZ and HAZ [89].

These microstructural and composition changes can lead defects that can eventually

mar the weld integrity [92]. The weld’s mechanical and chemical properties can be

impaired due to phase transformations resulting in porosity, cracking and loss of

weld element and oxidation within the weld [93].
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Figure 2.10: A schematic presentation of different regions in the welded joint. [91].

Porosity and cavity

Instabilities within the keyhole usually lead to pores in the weld. The porosity in the

weld is usually enhanced by oxides contamination that vaporized, thereby creating

gas bubbles that are trapped within the melt solidification. Cavities occur when

large pores merge together and form at the interface between welded sheets, with

high amount of oxide contamination [94]. Porosity is one of the insidious defects

that occur in the weld metal, especially in light metallic alloys. Porosity can lower

the mechanical properties of the weld and result in fracture. The keyhole collapse

because of the presence of bubbles in the weld [95].

Solidification cracking

In steels, parent steel chemical composition usually have an effect on crack suscepti-

bility. Elements such as phosphorus and sulphur can produce solidification cracking

in the weld [96]. However, if manganese is locked up in sulphur, it prevents solid-

ification cracking. Mostly weld profile shape usually causes solidification cracking

in the thick section of laser-welded steel. Midsection bugling in the cross-section of
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weld can increase solidification cracking susceptibility. Therefore, the weld profile

must be carefully controlled when carrying out laser welding [97].

2.7 Machine learning

Machine learning (ML) is known as a branch of Artificial intelligence(AI). ML deals

with computer learning from existing data without being explicitly programmed and

makes predictions from new data by building a model from the input samples [98].

Machine learning can also be described as a statistical framework that can be used

to automates data analysis model fitting for data-driven predictions. Correlations

and insights between different types of data can be extracted from ML models [99].

The main idea behind ML is to use features associated with an algorithm and fit it

to a target. The features can be said to represents phenomenon of individuals mea-

surable properties being observed [100]. Creating a machine learning model usually

requires great mastery and computational efficiency. In this research, a data-driven

computational approach will be used by employing some popular machine learning

algorithms. Data driven models are usually known to operate in reverse. Meanwhile,

ML algorithms are essential to the process needed to execute a data-driven model-

ing. Before, most programmers use to pass instructions to computers step by step

using algorithms. However, with the inception of machine learning, algorithms can

learn on the data provided by extracting knowledge from the data provided. In the

1950s Alan Turing made a proposition of eponymous concept, the concept centres on

artificial intelligence, which claims a computer learn when humans interact with it.

He went further to state that there is no difference between human-computer and

human-human interactions [101]. ML systems can be classified into four distinct

categories: unsupervised, supervised, semi-supervised and reinforcement learning

algorithms [101], [102].
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Supervised algorithms

Supervised learning deals with machine learning algorithms learning from data col-

lected from known input values x and measure value y, gotten through observation

or experimentation. Using this data, a function f is defined for the prediction of

output values from arbitrary input. Continuous variable output is predicted by a

regression algorithm, while for output with discrete values, classification algorithms

can be used [33]. The examples listed below are types of supervised learning algo-

rithms [102]:

• k-Nearest Neighbors

• Linear Regression

• Neural networks

• Support Vector Machines (SVMs)

• k-Nearest Neighbors

Unsupervised Learning Algorithms

In unsupervised learning, the training data is not labeled. The system learns without

being thought. Unsupervised algorithms finds relationships between input variables

rather than finding relationship between input and output data [103]. Listed below

are examples of popular unsupervised learning algorithms [102]:

1. Clustering

• Density-based spatial clustering of applications with noise (DBSCAN)

• K-Means

• Hierarchical Cluster Analysis (HCA)

2. Anomaly detection and novelty detection

• Isolation Forest

• One-class SVM
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Semi-supervised learning

Semi-supervised learning refers to algorithms dealing with partially labeled training

data, and fewer labeled data [102]. Semi- supervised learning can address most

of the problems associated with labelled instance such as time- consuming, capital

intensive to obtain and unlabeled data, having an advantage of easy collection, but

there have been a few ways to use them. Semi-supervised addresses these problems

by using a large amount of labeled and unlabeled data to create a superior classifier

[104]

Reinforcement Learning

Reinforcement learning algorithms update the learned model everytime new data is

feed into the algorithm. To improve predictions, a feedback mechanism helps the

algorithm to update itself on all every new datum [105].

2.7.1 Machine learning application to materials science

The key to the successful application of machine learning algorithms in materials

problem is the appropriate selection of the right ML algorithm, as it dictates the

efficiency and generalization ability [100]. In classification, regression and high-

dimensional data, machine learning has shown good applicability. It has also helped

to gained insights from data by learning from previous computations to produce

repeatable, reliable decisions and results.The structure-property-performance rela-

tionship has always been an important concept in the materials science field [106].

Hence, the efficient control of processing conditions of materials like compositions

and structural properties is necessary to produce materials with the required prop-

erties and service performance, which is the first step towards material design. Data

mining usually helps to reveal hidden relationships between a large amount of ma-

terial’s process conditions, parameters, in relation with materials dependent prop-

erties. It is known that machine learning has disrupted the way materials can be

developed [107].
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2.7.2 Material properties prediction

Designing materials requires a proper understanding of how desired properties such

as toughness, ultimate strength, hardness, fracture strength, and fatigue life are

affected by intrinsic properties; chemical composition, microstructure, and external

processing conditions. Most of these conditions can be mathematically classified

as dependent and independent variables. ML algorithm can quantitatively relate

dependent and independent variables to make predictions with trained data [107].

Many researchers have applied different machine learning algorithms to predicts

materials properties. Tanusree et al. [108] have used Artificial Neural Network

(ANN) optimized by Genetic Algorithm (GA) in designing a dual-phase steels with

improved performance. They optimized and modelled six different mechanical prop-

erties to enhance the strength and ductility simultaneously. Also, Hasam et al.[109]

applied ANN with back propagation algorithm and feed-forward topology to predict

the chemical composition and tensile parameters on HAZ hardness in X70 pipeline

steels. They were able to get a good approximation performance with R value of

0.86 and a mean relative error of 0.74%, showing an outstanding agreement between

predicted hardness and the experimental data.

2.7.3 Materials for informatics workflow

The materials informatics methods can be outlined into four steps process as shown

in Figure 2.11. The first step is sufficient data collection from a particular mate-

rial. The next step will be to divide the datasets into test and training datasets for

the model, after which the desired inputs and outputs are defined for the model,

subjected to data cleaning to ensure there is no duplication of data, followed by

normalization. Lastly, an appropriate machine learning model will be selected, de-

pending on the targeted application. Most of the time, machine learning algorithm

are selected based on some attributes like, training speed, predictive accuracy, and

differentiability [110].

46



Machine learning prediction of materials mechanical properties

  

Figure 2.11: Schematic of the workflow for materials informatics. [110].

2.7.4 Features of machine learning

Usually, correlations are built between input and output variables using machine

learning algorithms.The learning algorithms are also able to predict results from

new unseen input data. Machine learning problems can be solved through two

widely used techniques: classification, and regression, classification refers to predic-

tive modeling problem where a class label is predicted for a given input data, while

regression predicts values of some variables. Training machine learning model refers

to providing algorithm with training data to learn from the training usually includes

input and output variables. A training example, having a pair of input and output

variables (xi, yi), xi is the input variable, while yi is the target variable that should

be predicted [111].

2.8 Applicable machine learning algorithms

2.8.1 Neural network

An artificial neural network(ANN) is an ML algorithm that can process input with

its interconnected neurons and learn by trial and error. ANN can be defined as

a regression analysis method, which fitted non-linear function with experimental

data[112]. ANN mimics a simplified brain-function model. The human brain cell is

known to consists of billions of interconnected neurons. The cells have specialized

members that transmit information from a particular neuron to another neuron

[113].
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The Perceptron

The Neural networks consist of a basic building blocks known as the perceptron.

Figure 2.12b shows the smallest neural network possible, with a single layer percep-

tron. The equation below shows inputs x is created as:

a(x,w,b) =
4∑
i=1

(wixi + bi) (2.9)

Where w is the weights matrix, x is the input data, b is a bias that defines the

activation function, a(x), which stands for the linear classifier of the input data.

However, for non-linear function, the activation function f(x) must be expressed in

a way that the output of the neuron h(x) will be:

h(x) = f(a(x,w,b)) (2.10)

Activation functions that are mostly used in an Artificial neural network are

usually rectified linear unit (ReLu), sigmoid function, hyperbolic tangent (tanh)

functions, and sigmoid as shown in Figure 2.12b. Single layer output can be repre-

sented as:

y(x,w,b) =

{
1, if h(x) > 0. (2.11)

0, otherwise. (2.12)

The process can be described as sending information through a forward propaga-

tion network. Supervised learning is used to optimized the biases b and weights w

using backpropagation, while the loss function is minimized using gradient descent

algorithm. The ”cost” associated with a difference between predicted output and

true labels can be represented by the loss function, which is usually the mean square

error function for a regression problem, while for classification problem it is cross

entropy error. The weights are updated using backpropagated gradients, a series of

iterations known as steps are used to train the network. An ”epoch” represents the

number passes of the entire training datasets the machine learning algorithm com-
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pleted after backpropagation gradients of network for weights optimization. Figure

2.12 shows perceptron stacked in layers that can be constructed in deep architec-

tures. The input layer/data is represented with four nodes. While, the middle layer

is the hidden layer having one unit. The output layer has one unit. Meanwhile, to

build a complex neural network, the number of layers can be varied [114].

Figure 2.12: a)Schematic of a single layer perceptron b) Different activation func-
tions in a perceptron [99].

2.8.2 Genetic Algorithm

A Genetic algorithm (GA) is a machine learning model, which are usually based on

the natural selection and natural genetics mechanisms, inspired by Charles Darwin’s

principle of natural selection [115], [116]. GA was first proposed by Holland in 1975

[117]. The major idea behind natural selection is the fittest survive. Organisms

adapt to optimize their probability of survival in a given environment by the process

of natural selection. Usually, random mutations, genetically associated with an

organism, can be passed on to its children. Therefore, individuals are evaluated and

undergo an evolutionary process, starting with natural selection. The best individual

is thus selected from the population. After which, a biological process will occur

in the form of crossover, mutation and some recombination, made to create a new

individuals generation that will hopefully produce a better offspring. The genetic

algorithm is stopped when a target is eventually reached [112], [118]. The procedure

for GA are viz:
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1. Creating a population of random individuals.

2. Select individuals to be parents

3. Evaluate children

4. Produce children

5. Repeat the selection of individuals to be parents and evaluate children until

the predetermined number of generations is met

6. Evaluate each individual’s fitness [119]

The 1 and 0 sequence in the GA gene depicts a special solution. The binary number is

referred to as one chromosome of the gene. Crossover in GA refers to gene exchange

at a certain crossover point. A crossover example with 5 gene length is shown by

Figure 2.13, while Figure 2.14 shows the mutation flipping the binary position [120].

 

 

 
           Crossover 
 
 
 

1 0 0 0 0 1 0 1 1 1 
 

1 0 1 1 1 1 0 0 0 0 
 

Figure 2.13: One Point Crossover Example [120].

 

 
          Mutation          
 
 

1 0 1 1 1 1 0 0 1 1 

Figure 2.14: Example of a mutation [120].
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2.8.3 Support vector machine

Support vector machine (SVM) learning model is a classification model that finds an

optimal hyperplane which separates two different classes, as depicted in Figure 2.15.

The main essence of SVM is to optimize the margin, which represents the distance

from hyperplane to each plane closest point, to eventually have test data with a

better classification performance. The basic idea that governs SVM can be simply

described as: having classes of different data points, plotted in input features space,

the logarithm should construct a plane, that will distinguish points into different

classes as shown in Figure 2.16. [111], [121]. After finding the optimal hyperplane,

the solution giving by the SVM algorithm can be described by the point located

on its margin called ”support vectors”. The output of the algorithm for non-linear

functions is obtained from non-linear space using kernel functions. Meanwhile, non-

function are usually used for non linear mapping [122]–[124]. The classification of

the functions can be done in five different parts; sigmoid,radial basis, polynomial and

linear [125]. Non-linear decision boundary can be made without necessarily carrying

out optimal hyperplane parameters computations in the feature space; the solution

can therefore be expressed as weighted values of kernels functions combination [122].

Figure 2.15: Hyperplane classification. [126].

51



Machine learning prediction of materials mechanical properties

Figure 2.16: Separation of data points, referred to different classes, with a plane H.
[111].

2.9 Literature summary

From the literature in this chapter, it is obvious that the porosity level plays a

vital role in the weldability and mechanical properties of welded powder metallic

alloy. Therefore, the thesis will focus more on the effect of pores on weld integrity.

Also, different machine learning algorithms that can be used to predicts materials

properties was reviewed. These have provided the adequate background needed to

apply machine learning in predicting materials properties.
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Chapter 3

Material experimental techniques

and ML methods

3.1 Introduction

This chapter consists of three sections that explains the experimental techniques

used in thesis. The first section explains the experimental procedures used for the

sintering process, microstructural characterization. The second section explains the

procedures taken for the Nd:YAG welding of the sintered alloy, microstructural char-

acterization, mechanical analysis. Lastly, different machine learning are introduced

to predict the mechanical properties of the welded metallic alloy are introduced.

3.2 Materials

Materials used in this study is powdered 2507 DSS, with high purity of 80.6% and

an average particle size of 22µm, validated by Laser diffractometer analysis. The

as-received powder of theoretical density of is 4.76 g/cm3 was supplied by Sandvik

Osprey Limited united Kingdom. Particle size distribution is shown in Table 3.1,

which clearly shows the difference in shape size of the particles, while the chemical

composition is presented below in Table 3.2.
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Table 3.1: Particle size of the starting powder.

Powder Purity(wt.%) Particle size (µm)
D10D50D100

2507 (DSS) 80.6 4.6 13.1 27.2

3.2.1 Powder Analysis

The morphology of the powder, which appears to be spherical was detected by

field emission scanning electron microscope (FE-SEM) (model Carl Zeiss sigma,

Germany) equipped with a dispersive energy X-ray (EDX). Pictures of a cross-

sectioned powder revealed particles with a fine structure. It appeared that the

internal porosity is low and small fractions of internal porosities can be located

within the cross-section of the powder, as seen in Figure 3.1(a) and (b). Powder

size distribution was obtained from imageJ as shown in Figure 3.2. Shows that the

powder particles are within the ranges of approximately 5µm and 25µm. The phases

present in the powder was confirmed by X-ray diffractometer (model) using Cu-Kα

radiation, as shown in Figure 3.3. The powder consists of ferrite and austenite

phases.

Porosity Analysis of the powder from SEM image

The SEM image gotten from the powder was processed in MATLAB, using the code

developed by Rabbani [127]. They assume in the code that the input SEM image is

gray-scale and the darker parts of the image show a deeper surface which are taken

as the pores. This modelling is necessary to calculate the level of porosity in the

powder sample. The algorithm used to segment the porous space of the powder is

called watershed [2], capable of detecting overlapped porous geometry and effectively

estimate the average pore size.
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Table 3.2: Chemical composition 2507 DSS powder.

Material C P Si Ni N Mn S Cr Mo Fe
2507 0.02 0.014 0.4 7.1 0.31 0.8 0.001 24.4 3.76 Balance

 

a b 

20μm
 

2  

Figure 3.1: SEM image Showing morphology and particle size of 2507 duplex stain-
less steel powder. (a)20µm (b)2µm scale.

Figure 3.2: size distribution of 2507 duplex stainless steel gotten from image J.

3.3 Spark Plasma Sintering

All SPS experiment was carried out with SPS equipment (model HHPD-25, FCT

system GmbH, Rauenstein, Germany). However, prior to the sintering process, the

gas-atomized 2507 DSS powder was first pressed in 20mm graphite die and punches,

while a tungsten foil was used to separate the samples from the graphite tools prop-

erly. The samples were then sintered at the following temperatures 900◦C, 1000◦C,

and 1100◦C at a pressure of 50MPa under vacuum. The heating rate considered
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Figure 3.3: XRD patterns of 2507DSS.

for the sintering operation was 100◦C/min, and it lasted between 5min-10min. The

samples were then cool to room temperature inside the furnace in a vacuum at-

mosphere. Factoring in the strength, hardness, toughness, ductility, porosity, and

particularly sintering temperature is usually selected at 0.6-0.8 Tm of the melting

temperature of the alloy. Therefore for powders metallic alloy prone to oxide forma-

tions on the surface like stainless steel powders, it is advisable to carry out sintering

at high temperature in pure hydrogen [128].

ASTM B962-14, a standard test method is used to calculate the density of PM

sintered products using Archimedes’ principle by measuring the density after sand

blasting. The samples were first weighed in air, then immersed in a distilled water

[129]. The density of samples was calculated using equation 3.1.

ρd =
Ba

Ba −Bw

ρw (3.1)

Where Ba is the measured mass of the sintered sample in the air (average of three
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independent measurements), Bw is the measured mass of the sintered sample in

distilled water (average of three independent measurements), and ρw density of the

distilled water (which is usually 0.998 g/cm3). Equation 3.2 can be used to calculate

the absolute porosity.

P =
ρth − ρd
ρth

(3.2)

P is the absolute porosity in %, ρth and ρd are theoretical and sample density,

respectively. These parameters and calculated values are thus well presented in

Table 3.3. while SPS equipment is shown in Figure 3.4.

 

Figure 3.4: Schematic diagram of spark plasma sintering equipment.

Table 3.3: Sintering parameters.

No. of samples. Sintering Temp.(◦C) Heating rate (◦C/min) Pressure (MPa) Holding time(min) Exp. Den (g/cm3) Rel. Density(%) %Porosity

1 900 100 50 5 7.16 91.85 8.15
2 1000 100 50 5 7.71 98.85 1.15
3 1100 100 50 5 7.67 98.33 1.67
4 900 100 50 10 7.69 98.54 1.46
5 1000 100 50 10 7.66 98.23 1.77
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3.4 Nd:YAG Laser welding

Two specimens were each cut from a single piece of sintered 2507 DSS by wire

cutting to (size: 12× 12× 3 mm3) joined in a butt joint configuration. The welding

operation was performed with a JK 600 pulsed Nd: YAG laser welding machine at

the Council for Scientific and Industrial Research (CSIR), South Africa. The welding

of the sintered 2507 DSS was performed at average welding power of 1500W, welding

speed of (2-3m/min) in an argon (99.99% purity) environment and focal position

5mm. The laser was made to point vertically at the interface of the base alloy.

The welding process parameters were determined based on existing literatures and

experimental researches. Porosity level is a major determinant of the level of welded

metallic alloy integrity. Researchers have shown that metallic alloy with low porosity

produces a weldment with outstanding properties compared to high porous metallic

alloy, as porous media act a potential site that traps oxides and impurities, which

tends to mar the mechanical properties of the weld [130]. Therefore, from Table

3.3, samples 2, 4, and 3 are selected to be welded due to having low porosity. Thus,

samples 2, 4, 3 will be designated as samples A, B, and C, respectively as shown in

Table 3.4.

Table 3.4: Welding parameters

Samples Laser Power (W) Welding speed(mm/min)

A 1500 3
B 1700 3
C 2000 2

3.5 Characterisation Methods

Characterisation of the samples includes microstructure characterisation and sec-

ondary phase quantification. The samples are made to undergo standard grinding

and polishing procedures, employing grit size up to 3000 followed by electro-chemical

etching using 50% KOH solution (5V for 3 secs). The optical microscope (OM)
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Extracted  parts 
from sintered sample

Sintered sample

Figure 3.5: Sintered and cut specimen.

Figure 3.6: Laser welded specimen.

analysis was done using (Axio Carl Zeiss microscopy, GmbH, Germany). Field

emission scanning electron microscope (FE-SEM) (model Carl Zeiss sigma, Ger-

many) equipped with an energy dispersive X-ray (EDX) was used to analysed the

phases present. Electron backscatter diffraction (EBSD) pattern was acquired on

Zeiss cross-beam 540 Scanning electron microscope at an electron voltage of 25kV

and a probe current of 10nA. The EBSD data analysis was performed on Oxford

EBSD detector with Aztec analysis software and EBSD reference pattern database.
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3.6 X-ray computed tomography to analyze the

porosity in the weld

X-ray computed tomography (XCT) was used to characterize the spatial and size

distribution of the residual pores in the laser-welded sintered samples. The porosity

characterization was carried out using X-ray tomography analysis, performed at

the University of Stellenbosch CT facility [131]. General Electric (GE) Nanotom

S nanoCT scanner system with voltage and current set to 140kV and 130µA was

used for the X-ray setting, using 0.5mm copper beam filter, with a voxel size set

to 5.0µm. The image was acquired at a time of 500ms per image and recorded in

2000 rotation steps during sample full 360 degree rotation. The system supplied

Datos reconstruction software was used to reconstruct the image. Volume Graphics

VGStudio Max 3.3. was used to perform data visualization and imgage analysis.

3.7 Mechanical properties analysis

Vickers hardness was conducted to assess the mechanical integrity of the weld.

3.7.1 Vickers hardness test

Microhardness measurements based on the Vickers method were performed using

Future-Tech microhardness Tester (FM-700) with an applied load of 100g indenta-

tion for 25s. The test was conducted from the BM through HAZ to the WM at a

distance ranging from 0mm - 1.5mm.

60



Machine learning prediction of materials mechanical properties

3.8 Machine learning data analysis and prediction

of mechanical properties of the weld metal

(WZ)

3.8.1 Exploratory data analytics

In this information era, where there is enormous data like medical data and materials

data. Therefore, it is not a coincidence that data science has assisted us in making

decisions in all spheres of life. Data science has been accepted as a viable tool in

materials science and engineering field to analyze the properties of the materials.

The cost of material structure design has been reduced by data science [132]. In

this research data used for the input parameters and output parameters are sourced

from the experimental processing parameters; sintering temperature, sintering time,

welding power, and hardness, which has been published in Mendeley database and

our published work [133]. The input parameters are obtained from the welding

parameters and sintering parameters while the microhardness used for the prediction

was obtained from the WZ. There have been some researches that indicated the

importance of the chemical composition to the WM integrity [48]. The data used

for the statistical analysis and machine learning analysis were selected based on the

optimized parameters, leaving us with 3 samples having outstanding mechanical

properties. The Vickers microhardness data targeted at the WM was carried out at

different distance for 10 iterations, each for 3 optimized samples, giving us 30 data

points. Since hardness values varies along the WM. The datasets of 30 instances were

processed using Google Tensor flow, employing the Sklearn packages and python

code, to carry out the data analysis: data cleaning, normalization of the data, data

splitting to training and test sets, which is later subjected to regression analysis and

eventually visualized using different packages in Python. Pearson coefficient and

R2 are the metrics used to calculate the extent of correlation of the input and the

output parameters.
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Governing equation for data analysis

Normalization of the data was performed by equation 3.3.

Y =
(Ymax − Ymin)(X −Xmin)

Xmax −Xmin

+ Ymin (3.3)

Y stands for the normalized datasets, and X is the inputs datasets. The Linear

progression equation is represented by equation 3.4.

y = b0 + b1x (3.4)

x represents the independent variable while the dependent variable is y, b0 is the

intercept, and b1 is the slope.

R2 = (1− MSEofregressionline

MSEoftheaveragedata
) (3.5)

MSE is mean square error, and R2 is the measure or metrics used to determine

how close the data is to the fitted regression line. Pearson correlation is another

metric used to measure the correlation strength between measured hardness values

and predicted hardness values.

3.8.2 ANN prediction of hardness

Microhardness test

Vickers microhardness (HV) test was carried out using Vickers microhardness (Fu-

ture Tech FM-700) tester, applying a load of 100g with a dwell time of 25s at room

temperature. The Vickers microhardness test was targeted at the WM for this

research. The chemical composition of the WM is significant for the mechanical

integrity of welded metallic alloy. The microstructure of the WM also differs from

the base metal (BM) because of the variations in the chemical composition and the

thermal history of the WM [48]. The importance of WM to the overall mechanical

integrity of the welded metal made us consider the hardness of the WM in this re-
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search for predictive analysis. An average of three spots hardness values were used

and utilized in the Neural network because of the variation in hardness around the

WM zone. The hardness values are based on the measurements at the WM area.

HAZ
 WZ

BM BMHAZ

Figure 3.7: Schematic diagram showing the welding zones

ANN Algorithm

In the material processing industry, it is pertinent for material to undergo precise

and consistent output to meet the required quality standard set. A neural network

has recently been used as a technique developed on processing elements, named

neurons that have connections with each other [134]. Given adequate data and

algorithm, machine learning with the help of computers has the ability to determine

all know physical law [135]. The last decade has witnessed a massive application of

Artificial Neural Network (ANN) in many optimizations and prediction applications.

ANN is classified as highly nonlinear functions and can capture very complicated

patterns in data. They have become the leading technique in machine learning and

helped solved complex engineering problems, including the prediction of mechanical

properties of materials. They can be represented by the following function indicated
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in equation 3.6, where x is the input vector and ŷ is the prediction, f (k), f (1−4)

represents functions that maps input to output values [135]. Figure 3.8 shows the

steps followed for the implementation of the use case.

ŷ = f(x) = f (k)
(
...f (4)

(
f (3)

(
f (2)

(
f (1)
)))

...
)

(3.6)

The first layer is called the input layer, it transfers information from the outside

entity to the network, while the intermediate layers are called the hidden layers. It

acts as the connecting link between the input layer and output layer by performing

computation and transferring information between the input and the output layers.

The last layer is the output layer, mainly responsible for the computations and re-

laying information to outside the world. Therefore, these layers are made of neurons,

which can be thought of as a simple computational unit that takes a weighted sum

of input variables, sends the sum through an activation function and the output

is the predictions. For the gradient descent equation, a linear transformation was

applied to an input x by each neuron in the layers, described by equation 3.7, while

Figure 3.9 presents the flow chart.

t = Wx+ b (3.7)

Where t is a tensor, W is called the weights, and the vector b are is biases. The

nonlinear transformation applied by each neuron is called the activation function.

Activation function

There are many activation functions in literature, such as the sigmoid, the hyperbolic

tangent, and the rectified linear unit or ReLU. Sigmoid and the hyperbolic tangent

are subjected to the so-called gradient vanishing. ReLU activation has enjoyed wide

application within neural networks, especially deep neural networks. At the incep-

tion, researchers were stimulated to use ReLU because of its biological resemblance.

Meanwhile, the ReLU function later showed an improvement in the neural network
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Figure 3.8: Flow diagram for the implementation of the use-case

t=Wx+b

x

W

b

a=f(t) J(a,y)

Figure 3.9: Flow chart for the linear transformation

trainig speed, which eventually translates to good results. The top-notch accurate

predictive power can be attributed to its simplicity and function derivative. The

derivative can be computed easily and does not have a vanishing gradient problem

[136]. In this research, the ReLU function was used mainly because it is piecewise

and highly nonlinear. It gives better results than the sigmoid and the hyperbolic

tangent. Therefore, for this reason, it will be delightful to investigate how a ReLU
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function actually helps the networks to approximate functions. Figure 3.10 illustrate

ReLU activation function, while Table 3.5 shows the parameters used in the ANN.

ŷ = f (k)
(
..f (4)

(
b(4) +W (4)f (3)

(
b(3) +W (3)f (2)

(
b(2) +W (2)f (1)

(
b(1) +W (1)x

)))))
(3.8)

0

ReLU(t) 

t

f(t)

Figure 3.10: The ReLU activation function

Table 3.5: ANN parameters

Model Parameter (W) Value

Number of Input layers 4
Number of Hidden layers 2,3

ANN Number of Output layer 1
Maximum No. of Epochs 750

Activation function RMSprop
Learning rate 0.001

The cost function

Defining a loss or cost function is fundamental to any machine learning problem.

During the training process, the interest is in weight that minimizes the discrepancies
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between the estimated hardness values of the weld zone in contrast to their actual

training data values. The accuracy of the network in the prediction of the new

hardness value that is not from the training set tend to increases. There are many

cost functions, but for regression problems, the most widely used is the mean square

error. In introducing the mean square error cost function, an assumption was made

on the dataset:

{(xi, yi)}Ni=1 (3.9)

With given pairs: features xi and corresponding target value yi ∈ R. vector of

targets is denoted as y ∈ RN , such that yi is target for object xi. Similarly, ŷ ∈ R

denotes predictions for the objects: ŷi for object xi. The MSE loss function is defined

as follows:

MSE(y, ŷ) =
1

N

N∑
i=1

(ŷi − yi)2 (3.10)

The goal of the learning algorithm will be to minimize the MSE loss function. In

the context of the Deep Neural Network(DNN), this cost function will be written as

follows:

J(θ) =
1

N

∑
x∈X

(y − f(x;θ))2 (3.11)

This is called the loss function of the ANN. The parameter theta (θ) stands for the

weights and the biases that need to be optimized to minimize the loss function, and

this is done through backpropagation.

Backpropagation

Backpropagation can be described as a supervised learning algorithm for training

multi-layer ANN. In this research, work backpropagation was used to compute the

gradient of the loss function as indicated by the Equation 3.12

∇θy = ∇θJ(x; θ) (3.12)
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In addition, the choice of the network parameter does not affect the training data;

backpropagation consists of finding the gradient of the network. Once the gradient

is computed, gradient descent or any related algorithm could be used iteratively to

minimize the loss function

θk = θk−1 + ε∇θJ(x; θ) (3.13)

Where ε is called the learning rate, and its value must be set with care for con-

vergence reason. Therefore, the errors are propagated in reverse in the network to

adjust the parameter θ until the loss function reaches its minimum.

The optimizer

Recently, diverse methods have been initiated to effectively minimize the loss func-

tion by tracking not only the gradient but also the second moment of the gradient.

These methods include AdaGrad, AdaDelta, ADAM and Root-Mean-Square prop-

agation (RMS-prop). In RMS prop, in addition to keeping a running average of

the first moment of the gradient, the second moment can be tracked or monitored

through a moving average. Therefore, the update rule for RMS prop is given by:

gt = ∇θJ(θ)

st = βst−1 + (1− β)g2
t (3.14)

θt+1 = θt + ηt
gt√

st + ε
,

Where β dictates the averaging time of the second moment and is usually taken to

be about β = 0.9, ηt is a learning rate typically chosen to be 10−3, and ε ∼ 10−8 is

a small regularization constant to prevent divergences. It can be inferred from the

formula above that the learning rate is reduced in directions where the norm of the

gradient is persistently large. Convergence is speed up to enable a larger learning

rate for flat directions [137].
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Model implementation and learning

ANN model was implemented in an open source Python based deep learning li-

brary called Keras with Google machine learning application, TensorFlow frame-

work is used as the back-end engine. ANN with back-propagation algorithm was

implemented with four input parameters, namely, welding speed(w-speed), welding

temperature(w-temp), sintering time (s-time), and sintering power (s-power). All

the processing parameters have an influence on the Vickers hardness of the welded

sintered DSS alloy [138], [139], the data used for this analysis has already been

published in Mendeley data. The data obtained from the WZ of each sample was

split into training and testing data, which was later used in the final evaluation of

the model. The ANN models presented in this study utilizes 2 to 3 hidden layers,

which are appropriate for the number of unique data. With small data point, the

ANN model was tweaked for different activation functions and training algorithms.

Meanwhile, 80% of the data was selected as the training data, while the rest was

selected for testing. Before training and testing the network, the training datasets

were normalized to avoid convergence of the model, thereby making the training to

be more difficult and eventually making the resultant model to depend on the unit’s

choice used in the input. It is a known fact theoretically that ANN has no restriction

on its training data even when the magnitude of the measured data varies greatly.

To achieve a more excellent training accuracy, it is better to put the training data

source in the same order before going ahead. With this understanding, input and

output variables were normalized to the range [0,1], using equation 3.3. Four neu-

rons were fixed in the input layer corresponding to the input layer, with a hidden

layer with variation between 2 and 3 layers. One neuron corresponding to the one

output was fixed in the output layer, as shown in Figure 3.11 (a) and (b). RMS-

prop optimizer was used to minimize loss. To improve the generalization property

of proposed neural network model, early stopping technique was used. Also, early

stopping was adopted to stop the training after a step of epochs elapses without

showing improvement. In this research, the number of hidden layers that perfectly
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gives an optimized neural network was obtained through trial and error by varying

the training algorithm, activation function and hidden layers. The model was later

compiled for the minimized MSE, R2 and MAE loss function, which was used as the

metric to evaluate the prediction precision. MAE is represented by equation 3.15.

The model was later trained for 1000 epochs, visualization of the training models

was done using the statistics stored in the history.

MAE =
1

n

n∑
t=1

|et| (3.15)

 

(a)                                                                                                  (b 

 
Figure 3.11: (a) 2 hidden-layers and (b)3 hidden-Layers graphical representation of
Neural network.

3.8.3 SVM

The same datasets used for ANN was used for SVM. In this research, the predictions

were carried out using MATLAB software, implementing linear and non-linear SVM

kernels. Linear, quadratic, and cubic kernels were used. The accuracy of the SVM

models is compared using different metrics mentioned earlier. The SVM algorithms

is one of the most powerful machine learning tools. It uses a set of mathematical

functions called kernels that usually transform input data into high dimensional

space, after which the data points are classified in distinct clusters. The MATLAB

code used for the SVM analysis can be found in Appendix A.B.
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Linear Kernel

Linear SVM correlates with linear kernel where φ(x) = x and φ(x
′
) = x

′
. The linear

kernel optimization problem is much faster when compared to others [140]. Finding

perfect training data can be time-consuming. Therefore, to reduce the time, two

running parameters (gamma and regularization parameter) can be introduced in the

SVM classifiers.

Nonlinear SVM Kernels

As the linear models give limited classification power, non-linear models give more

enhanced predicted outputs [141]. Various kernels can be used to transform nonlin-

ear function features. The kernels are listed and explained below:

• Polynomial Kernel: Polynomial function is usually employed to input variables

and finding similarities in training vectors [141].

K (xi, xj) = (1 + xixj)
p (3.16)

• Quadratic Kernel: With quadratic kernel, it is possible to visualize the given

data points being lifted to fit into the shape of a quadratic function[141].

Suppose there are two features (x1, x2). Quadratic kernel expands the two

into five (x1, x2, x
2
1, x

2
2, x1x2). The decision boundary is given by:

wTφ(x) + b = 0 (3.17)

where wT is a vector, b is bias, and φ(x) = (x1, x2, x
2
1, x1, x2, x

2
2). Quadratic

kernel leads to decision boundary having a mixture of quadratic functions. The

decision boundary is defined by y
∣∣∑

i αik (xi, y) = b. For example, consider
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the decision boundary and the kernel function k (x, y) =
(
xTy + c

)2
:

∑
i

αi
(
xTi y + c

)2
=
∑
i

[
αi
(
xTi
)2

+ 2αix
T
i y + αic

2
]

=
∑
i

αiy
Txix

Ty +

(∑
i

2αixi

)T

y + c2
∑
i

αi

= yT

(∑
i

αixix
T
i y

)
y +

(∑
i

2αixi

)T

y + c2
∑
i

αi

(3.18)

• Cubic Kernel: It is usually defined as a third-order polynomial function. Cubic

kernel can be used to visualize the given data points being formed to fit into

the shape of a cubic function [141]. Assuming there are only two features

(x1, x2). The decision boundary in such case is usually given by:

β0 + β1x1 + β2x
2
1 + β3x2 + β4x

2
2 + β5x

3
2 = 0 (3.19)

The equation for the SVM model trained with the cubic kernel is:

K (x1, x2) =
(
xT1 x2 + 1

)2
(3.20)

K is the kernel function.

• Gaussian Radial Basis Function Kernel: most sought out for among the kernel

functions in SVM classification [141]. It is defined as :

K (xi, xj) = exp

[
−
∣∣xi − xj∣∣2

2σ2

]
(3.21)

The adjustable parameter σ is set according to the nature of the problem.

If set very low, it affects the regularization functions and eventually making

the training data to be sensitive to noise; however, when sets high, the kernel

behaves almost linearly, causing overestimation of the problem [141].
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3.9 Summary

For the machine learning predictions, ANN model with 2-3 hidden layers was em-

ployed. The prediction power was compared with all the different SVM with linear,

quadratic, cubic and Gaussian kernels described above. The Processing parameters

for both sintering and welding operations constitute the parameters used to gener-

ate the input data. These includes: Welding speed, welding temperature, sintering

temperature, and sintering power. The hardness data to be predicted was measured

data at the WM interface of the welded alloy.
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Chapter 4

Results and Discussion

4.1 Introduction

The results of the experimental work and discussion in this chapter are presented

in three parts. The first part discusses the microstructure of the sintered part. The

second parts will be dedicated to the microstructure and mechanical characterisation

of laser-welded sintered parts.

4.2 An XRD analysis

An XRD pattern of the 2507 duplex stainless steel is presented in Figure 3.3, which

confirmed the presence of austenite and ferrite phases in all the sintered samples at

(900◦C/5min, 1000◦C/5min, 1100◦C/5min, 900◦C/10min, 1000◦C/10min) and raw

powder.

4.3 SEM powder image processing analysis using

MATLAB

Using the watershed algorithm discussed in chapter 3 for image analysis. The pore

size distribution, porosity and the standard deviation of the pore size of the powdered

sample SEM image were calculated. Figure 4.1. shows the original and the final
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processed images. The porosity in the powdered sample is calculated by dividing the

total porous area by a number of pores observed. Also, the MATLAB programme

was able to calculate the pore size distribution by measuring the area of the detected

pore and calculates the radius of the equivalent circles within the same area, as

shown in Table 4.1. The observed phenomena can be explained thus, whenever

large particle size is packed close to one another, the empty spaces between the

particles (pores) will be larger. In contrast, while the pore size will be reduced when

the particle size is smaller. Table 4.1 shows the porosity, average and standard

deviation of the pore sizes of the powdered sample.

Figure 4.1: 2507 SEM powder image porosity and pore size analysis using MATLAB.

Table 4.1: Properties of powdered particles extracted from SEM image

Parameters Values

Average Porosity (Micro) 8.4658
Standard deviation of Pore size (Micro) 6.3938

Porosity (Ratio) 0.4351
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4.4 Microhardness and density studies

The effect of sintering temperature on the relative density and hardness of the de-

veloped 2507 DSS samples are shown in Figure 4.2. High relative densities of more

than 98% was observed for samples sintered at different sintering conditions. A re-

lationship between sintering temperature and relative density was established as the

relative density of metallic alloy are usually influenced by the sintering temperature.

It was noticed that the maximum relative density of 98.85% was achieved at sinter-

ing temperature corresponding to 1000◦C. There is slight variations in the density

values for the sintered samples. It can be inferred from the plot that the micro-

hardness of the sintered alloy decreases with increasing sintering temperature. The

increment in sintering temperature from 900-1100◦C resulted in a maximum micro-

hardness of 375HV at 900◦C. This result is similar to that of a metallic alloy that is

heat-treated. Hence, the higher the holding temperature, the faster the grain growth

Phenomenon. Therefore hardness evolution is related to grain growth [142]. Also,

the value of the microhardness can be attributed to the particle re-arrangement and

homogeneous redistribution of the secondary phases, which usually occur at elevated

temperatures [143].

4.5 Microstructural characterization

4.5.1 SEM analysis of the laser-welded samples

The BM, WM and HAZ microstructure for samples A, B, C are shown in Figure 4.4

SEM image. During the laser welding, ferrite formed directly from the liquid molten

pool, while after cooling, there is the transformation of austenite in the form of high

ferrite in form of grain boundary austenite (GBA) [144], Widmanstatten austenite

(WA) [145] and intragranular austenite (IGA) [146]. There is high austenite trans-

formation in WM, which in a way prevented chromium nitride precipitation. The

HAZ also experience austenite transformation from ferrite, similar to what is ob-

served in WM. The austenite content is lower in HAZ compared to BM, the lower

76



Machine learning prediction of materials mechanical properties

Figure 4.2: Effect of sintering temperature on Relative Density and Microhardness
properties of sintered 2507 DSS.

austenite in the HAZ can be associated with two factors since the laser welding

process comes with fast cooling. There is limited time available for the austenite to

transform from ferrite due to the fast cooling rate at the HAZ; 2)The thermal weld-

ing cycle produced ferrite grains that are coarse in the HAZ, as reported in the work

of Zhang et al. [147]; in consequence, there is a noticeable decrease in the ferrite

grain boundarie, and eventually, there is a decrease in the GBA nucleation sites, and

finally producing less austenite content. Chromium nitrides are usually precipitated

during the rapid cooling process of the laser-welded samples. The precipitation of

the chromium nitride within ferrite can be due to inadequate diffusion of N. Cr2N

rods was observed within the ferrite matrix in HAZ at high magnification, as shown

in Figure 4.5c for samples A, B, C. It is known that Cr2N precipitate is detrimental
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to the mechanical properties of the DSS.

Figure 4.3: Optical image showing the cross-section of BM,WM, and HAZ.

BM
HAZ

WM

WM

HAZ
BM

WM

HAZ
BM

A B

C

Figure 4.4: SEM image for samples A, B, C showing the BM,WM, and HAZ.
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(a)

(a) BM

Ferrite WA GBA
IGA

(b)

(b) WM

Cr2N

(c)

(c) HAZ

Figure 4.5: Microstructures of the 2507 DSS joints. (a) BM, (b) WM, (c) HAZ (the
inset shows a SEM image of the Cr2N precipitates within ferrite)

4.5.2 EBSD Analysis

The EBSD examination was used to identify the grain size in the HAZ. It was

observed in Figure 4.6 (b) that the grain size of the as-welded HAZ is generally

large compare to BM. The austenitic phase can be noticed at the HAZ. The unique

microstructure observed in the HAZ is associated with phase transition during the

weld thermal cycle. Through the heating period, the banded microstructure of

ferrite and austenite close to the fusion line transform into δ ferrite. Also, at the

interface of the WZ, there is a diffusion of alloying elements (Cr, Mo) and carbon

takes place, prompting it to form carbon precipitates at the boundaries in the form

Cr2N during cooling. Meanwhile, Ni alloy dissolved in the δ ferrite, due to high

cooling rate fine austenite inform of δ ferrite is noticed in the HAZ. In the work of

Bettahar et al. [148] It was made known that the ratio of ferrite and austenite in the

HAZ of 2205 stainless steel weld depends on the cooling and the alloy composition.
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Figure 4.6: Microstructures of the 2507 DSS joints for sample A, EBSD image
showing the orientation (a) WM (b) HAZ (c) BM

4.6 Hardness distribution of the weld

The microhardness profile across the welded joints for different Nd:YAG samples (A,

B, C) is shown in Figure 4.7. There is a significant variation of hardness value across

the weld. The WM shows highest microhardness value for the samples A,B,and C.

The average microhardness value for sample A WM is 386.4 HV, while the average

microhardness of the HAZ for sample B is 367.5 HV. Sample B WM shows high-

est average microhardness value of 365HV and 339HV average HAZ microhardness

value. The hardness value for samples A, B and C is the lowest at the BM. High

hardness value. High hardness at the WM can be ascribed to the presence of a high

amount of ferrite [149]–[151].
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BM                    HAZ       WM         HAZ                 BM  

Figure 4.7: Vickers hardness measured across the weld plot.

4.7 X-ray computed tomography analysis

Reconstructed side views transparent porosity distribution was shown in Figure 4.8.

Sample A shows the least or minimum pore volume compared to sample B, and C,

this contributes to its high hardness at the WM. Also, the pores are limited only to

the WM for samples A and C, with sample B having the pores scattered not only

in WM, also in HAZ/BM. Pore morphology is found to be more spherical in the

case of sample C and irregular in shape for samples A and B. According to Jiang et

al. [152]. The pore morphology was characterized using the sphericity formula as

shown in equation 4.1;

ψ =

(
36V 2

p

A3
p

)1/3

(4.1)

Where ψ stands for the sphericity of pores, ψ=1 shows that the sphere is perfect.

Ap and Vp represent surface area and volume of the pores, respectively.
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(a) Sample A

(b) Sample B

(c) Sample C

Figure 4.8: Reconstructed side view transparent porosity distribution of Nd:YAG
Laser welded joint.
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4.8 Data Exploration and visualization

4.8.1 Seaborn Plot

According to the paired seaborn plot(Figure 4.9), showing marginal distributions

for all pairwise relationships and each of the following variables; s-temp, s-time,

wel-power, and hardness in each column. It also shows the univariate distribution

plot of each variable on the diagonal axis.

Figure 4.9: Seaborn Plot.

4.8.2 Heatmap analysis

The heatmap plot shown in Figure 4.10 represents a 2-D visualization of the data.

Table 4.2 presents the correlation data of the input and output parameters, pro-

viding the relation between two features, presented by the shades of colours. To

determine collinearity in our data and to visualize the numeric predictors corre-

lation matrix, heat map analysis will be used. Visualization was carried out by

the heat map and target variables like (Hardness) proportional to colour with re-
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spect to variables, ‘wel-power’, ‘S-temp’, ‘S-time’, and ‘wel-speed’ in the vertical and

horizontal axis, respectively. This allows us to visualize the hardness is related to

‘wel-power’, ‘S-temp’, ‘S-time’, and ‘wel-speed’. It was then checked if the features

are highly correlated with each other. Highly correlated attributes are shaded darker

than the rest, which signifies a positive correlation, as shown in Figure 4.10. High

correlation was noticed between S-temp and hardness, S-time and hardness,it can

be concluded that S-temp, S-time and Wel-power are a good predictor for hardness.

The same information can be inferred from the correlation values from Table 4.2.

S-temp indicates a large positive relationship with hardness, S-time indicates mod-

erate positive relationship with hardness, Wel-power indicates a moderate positive

relationship with the hardness, Wel-speed indicates large negative relationship with

the hardness.

Figure 4.10: 2-D Heatmap Visualization map.

Table 4.2: Correlation Analysis

S-temp.(◦C) S-time (min) Wel-power(W) Wel-speed(mm/min) Hardness(HV)

S-temp 1.0000 -0.8660 0.5960 -0.8660 0.6600
S-time -0.8660 1.0000 -0.1147 0.5000 -0.4539

Wel-power 0.5960 -0.1147 1.0000 -0.9177 0.5823
Wel-speed -0.8660 0.5000 -0.9177 1.0000 -0.6892
Hardness 0.6600 -0.4539 0.5824 -0.6892 1.0000
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4.8.3 Regression plot

Linear regression plot represented by Figure 4.11 shows hardness against sintering

time(S-time). Figure 4.12 illustrates the regression plot for welding power (Wel-

power) against hardness. While Figure 4.13 describes the linear regression plot for

hardness against welding speed (Wel-speed). Fig. 4.14 illustrates the regression plot

for hardness against sintering temp (S-temp). Meanwhile, for all the regression plots,

some data points are scattered and far from the fitted line. The blue diagonal line

represents how perfect prediction should be to the closest blue points (observations)

to the diagonal line, the better the model.

(HV)

(0C)(°C)

Figure 4.11: Linear Regression plot of hardness against Sintering temperature.

4.9 Machine learning analysis

4.9.1 ANN Prediction

Parameters and the range used in the ANN model is presented in Table 4.3. The

model is proposed with 4 input layers, varying the hidden layers between 2-3 hid-

den layers, using ReLU activation function. In the neural networks, the weight and

biases are adjusted iteratively by using a training algorithm. Figure 4.15 shows the

numbers of hardness values to be predicted. Meanwhile, the most important metric
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(HV)

(W)

Figure 4.12: Linear regression plot of hardness against welding power.

(HV)

(m/min)

Figure 4.13: Linear Regression plot of hardness against welding speed.

performance used in this neural network is MSE [138] The regression plot of the

developed ANN model for hardness prediction at the WZ of 2507 is shown in Figure

4.16(a) and (b). Therefore, the basic training curve calculated from the training

datasets gives an idea of how well the model is learning. The basic validation curve

calculated from a holdout validation dataset that gives an idea of how well the

model is generalizing. Figure 4.17 and Figure 4.18 shows little improvement or even

degradation in the validation error after approximately 100 epochs. To improve the
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(HV)

(0C)(°C)

Figure 4.14: Linear Regression plot of hardness against sintering temperature.

network generation, the combination of MSE and the mean square of the weights

are minimized, weights are also considered as random variables with Gaussian dis-

tribution. However, for generalization property of the different ANN proposed to

be improved, an early stopping callback is used. If the set amount of epoch elapses

without showing improvements, the early stopping callback automatically stops the

training, as shown in Figure 4.19(a) and 4.19(b). The plots show that the training

process stopped, as soon as the error validation set started to increase, showing the

variation of MAE and MSE with epoch. In this research R2 and MAE are metrics

used in evaluating and predicting the precision of proposed models for both test

and training sets, shown in Table 4.4 [153]. Meanwhile, different activation func-

tions and optimizers available under Keras API was tested, ReLU and RMSProp

respectively give the best optimized predicted values, with 2 and 3 hidden layers. It

is important to note, as shown in Table 4.4, that the model performs better when

applied to the test set than when it is applied to the training set. The reason may

be due to the fact that training datasets have more data points than the test sets,

therefore there is a probability of it containing a greater number of abnormal values

is high, thereby significantly increasing the MSE value. The best R2 gotten for both

test and training for hidden layers 2 and 3 have the best value compared to others

tested number of hidden layers. Meanwhile, the value of R2 gotten shows low ability
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of generalization. Table 4.5 and 4.6 show the predicted values with their errors, for

both test and training sets, representing the best predicted ANN architecture with

two hidden layers. Figure 4.15 shows the plot of the actual values and the predicted

values. The maximum and the minimum possible errors values for the prediction of

the hardness value are 9.57% and 0.09%. Clearly, with such a small dataset, lack of

generalization is expected, warranted the use of another metric to appreciate how

well the model is at prediction. The percentage error was computed on each pre-

diction according to Equation 4.2. TV is the target value and PV is the predicted

value.

PE = 100× |TV − PV |
TV

(4.2)

The code is available on Github: https://github.com/AyorindeTayo/ANN-prediction-

of-Hardness-using-Tensor-Flow/blob/master/ANNhardness.ipynb

Table 4.3: parameters and their range used in the ANN

Parameter minimum Maximum mean Standard deviation

S-temp 900 1100 1000 83.41
S-time 5.0 10 1733 2.41

Wel-power 1500 2000 1733 210
Wel-speed 2.0 3.0 2.67 0.48

Figure 4.15: Actual versus ANN predicted results for hardness.
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(b) Testing

Figure 4.16: Plot of predicted hardness values against True hardness value (HV) for
(a) Training and (b) Testing sets.)
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Table 4.4: Calculated values for R2 and MAE for training and testing data.

Model(Hidden layers) Training Test
R2 MAE

2 0.43 9.60 0.54 15.42

3 0.41 10.50 0.57 15.42
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Figure 4.17: Plots of MSE against number of Epochs.
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Figure 4.18: Plots of MAE against number of epochs.
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  (a) (b)

Figure 4.19: Early stopping plot of (a) MAE and (b) MSE against Epochs.

Table 4.5: Training Predictions vs True value of Hardness.

Number True values Training Predictions % error
2 351.70 35.56 1.38
28 377.20 382.58 1.43
13 331.80 349.17 5.23
10 347.60 349.17 0.45
26 396.90 382.58 3.61
24 380.90 382.58 0.44
27 392.70 382.58 2.58
11 325.00 349.17 7.44
17 347.90 349.17 0.36
22 380.40 382.58 0.57
5 362.80 356.56 1.72
16 386.10 349.17 9.57
8 356.90 356.56 0.09
14 349.90 349.17 0.21
23 373.70 382.58 2.38
20 354.00 382.58 8.07
1 350.10 356.56 1.85
29 395.10 382.58 3.17
6 356.70 356.56 0.04
4 337.50 356.56 5.65
18 381.80 349.18 8.55
19 355.70 349.187 1.84
9 361.2 356.56 1.28
7 357.0 356.56 0.12

4.9.2 Comparison of SVM Kernels

Performance assessment of the SVM algorithms has been carried out using several

statistical methods that describe the model fitting. The Statistical Performance of
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Table 4.6: Testing Prediction Vs True Values of Hardness.

Number True values Testing Prediction % error
0 343.7 356.56 3.74
3 365.7 365.56 2.47
12 310.0 349.17 12.64
15 339.3 349.17 2.91
21 379.0 382.58 0.95
25 401.0 382.58 4.69

SVM with linear, quadratic, cubic, and Gaussian kernel for the datasets is shown in

Table 4.7, contains the summary of statistical metrics and their respective calculated

values employed for evaluating the ML models. This method shows how well the

predicted values fit with the actual data. Quadratic SVM and Gaussian SVM has

a better performance with R2 value of 44% for both SVM, higher than R2 value of

Linear and cubic SVM, which is both 43%. Also, RMSE is also calculated, RMSE is

an error metric. The lower the value, the better predictive performance is. Table 4.3

shows the least RMSE value for Gaussian SVM, closely followed by quadratic SVM,

both having a better predictive performance compared to Linear and cubic SVM,

with both having the same RMSE value of 16.73. Figure 4.20, Figure 4.21, Figure

4.22, Figure 4.23 show the predicted vs response plot for linear, quadratic, cubic

and Gaussian SVM, respectively. The black diagonal line represents how perfect

prediction should be. The closest the blue points (observations) to the diagonal line,

the better the model. For all our models, most of the points are located near the

diagonal line. It can be observed that SVM algorithms have achieved an acceptable

predictive accuracy compared to the percentage of data used. The accuracy of the

prediction is not that high as observed from the R2 value, which is below 50%. The

major problem with gathering data for machine learning analysis in material science

is high cost of gathering data, which can also be referred to as computational cost.

It is well known that the higher the volume of the data the better, the performance.

Therefore, larger datasets will be required for better accuracy, as stated in the work

of Jing et al. [154].
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Summary

It is worthy to state here that the ANN model and SVM models closely have the

same value R2 and MSE values. This shows models performed well, only hindered

by the volume of the data.

Figure 4.20: Predicted Vs. Actual Response (Linear SVM).

Table 4.7: Statistical parameters result

Kernel RMSE R2 MSE MAE

Linear SVM 16.73 0.43 279.93 12.497
Quadratic SVM 16.68 0.44 278.08 12.43

Cubic SVM 16.73 0.43 279.8 12.21
Gaussian SVM 16.67 0.44 277.9 12.198

93



Machine learning prediction of materials mechanical properties

Figure 4.21: Predicted Vs. Actual Response (Quadratic SVM).

Figure 4.22: Predicted Vs. Actual Response (Cubic SVM).
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Figure 4.23: Predicted Vs. Actual Response (Gaussian SVM).
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Chapter 5

Conclusion

5.1 Conclusion and potential future work

In this thesis, a new approach that aims to accelerate the data-driven discovery

of materials properties was introduced. Machine learning algorithms supervised by

fundamental materials science principles were developed to predict, and model vick-

ers hardness of laser-welded 2507 DSS alloy. In working towards this objective,

contributions were made to the field of machine learning application to materials

properties predictions. This thesis provides a foundation for machine learning re-

search on training materials science datasets and provides important lessons for both

future researchers and practitioners in this field. The contributions include both ex-

perimental and theoretical analysis of the mechanical properties of metallic alloy for

training in the machine learning algorithm.

5.1.1 Conclusion

Optimized sintering paramters

In the sintering experiment for 2507 alloy, different sintering parameters was used;

at the end, it was possible to select the best sintering parameters that gave the least

porosity, since the level of porosity in sintered material is an important factor in

Laser welding. Therefore three samples with optimized properties was selected for
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laser welding and machine learning analysis. The optimized sintering parameters

for Samples A, B and C are 900 ◦C, 1000 ◦C, 1100 ◦C, sintering time that ranges

between 5 min to 10 min, heating rate of 1000 ◦C/min and pressure of 50 MPa.

Hardness and Microstructural of the welded alloy

The hardness profile can be seen to be affected by the Laser power, and hardness

values increase with a decrease in the laser power. However, high hardness at the

WM zones for Samples A, B, and C can be due to the presence of a high amount of

ferrite at that region. Microstructure phase analysis showed the presence of phases

like δ ferrite, Cr2N , and fine austenite inform of δ ferrite is noticed in the HAZ.

Machine learning model

Our approach was successfully applied and tested to predict the hardness properties

of laser-welded 2507 DSS. The ANN predictive model was developed by using a

neural network with RMS-prop optimizer and ReLU activation, which seems to be

the best parameter selected. The hidden layer varied from 2 to 3 to predict hardness

value. Through the linear regression analysis, it can be inferred that the predictive

values and the real values deviated to some extent. Empirical examinations of

the predicted hardness value (by comparing MSE, MAE metrics) shows that the

proposed neural network has the advantage of improving the precision of predicting

the hardness of the welded metallic alloy. It can be noticed that the evolution of

MSE with the training and the test data of the ANN suggested no over-fitting of the

ANN. However, top-notch performance of the ANN model cannot be guaranteed,

as the R2 gotten in the test data is greater than that of the training data. This

may be due to the fact that there is not much numerical diversity in the input data

used. Hence the anomalous values might be more noticeable in the training sets

than the test sets, given their larger dimension when compared to the tests sets,

which increases the R2 value of the test sets. Forecasts of the hardness value were

considered to be acceptable under the technological viewpoint. As stated earlier
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in chapter four different activation functions and optimizers available under keras

API was tested, ReLU and RMSProp respectively give the best optimized predicted

values, with 2 and 3 hidden layers for ANN analysis. Meanwhile, for SVM, the

best algorithm choice was made based on the kernel function used. Therefore in

this research, the best kernel that gives the best values are Quadratic and Gaussian

kernels. However, it will be suggested for anyone that may want to apply the model

used in this research to use an increase number of data point for training, testing and

validation process to enhance the reliability of the model and also improve predictive

performance of the ANN model. The SVM model with different kernels closely give

the value of the same metrics with the ANN model. This clearly shows that our

models perform creditably well. It can be concluded that the SVM and ANN is

an outstanding tool with a great potential in materials design. This research work

proposes that full integration of analysis and prediction into one framework can be

possible.

5.1.2 Future recommendations

This work has provided the foundation for the study of machine learning techniques

in training materials properties data but is by no means exhausts the tendencies for

more research in this area. This section highlighted some extensions of this work that

could provide greater benefits for machine learning application to material science

and for anyone that want to further explore this research in the nearest future.

Datasets

Obtaining appropriate and large datasets have been a major challenge in the appli-

cation of machine learning to material science, has a large volume of training data

improves the efficiency of the machine learning model and its predictive capabili-

ties. Therefore, the cost of obtaining large datasets can be a stumbling block to

successful machine learning application in material science field, which leave a con-

siderable work to be done in future. Thus, an important area of consideration will
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be the collection of new larger datasets. Larger datasets is known to pose additional

complexities that machine learning algorithms such ANNs can utilize.

Machine learning models

Although this research covered some machine learning models out of several other

machine learning algorithms that are commonly applied in the materials science

field. It is therefore, suffice to say there are still more models left to be explored,

for example, K-nearest Neighbor, Extreme Gradient Boosting, decision tree, Naives

Bayes and DBSCAN.
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J. Luckner, and E. Pieczyska, “Powder metallurgy technology of niti shape

memory alloy,” The European Physical Journal Special Topics, vol. 158, no. 1,

pp. 59–65, 2008.

[11] M. Morakotjinda, N. Kuljittipipat, N. Poolthong, N. Tosangthum, P. Wila, R.

Krataitong, T. Yodkaew, O. Coovattanachai, B. Vetayanugul, and R. Tongsri,

“Sintered materials prepared from stainless steel series 300 and 400 powders,”

Journal of Metals, Materials and Minerals, vol. 18, no. 1, 2008.

[12] M. Rosso, M. A. Grande, and D. Ornato, “Sintering of duplex stainless steels

and their properties,” Powder Metallurgy Progress, vol. 2, no. 1, pp. 10–17,

2001.

[13] G. Cui and Z. Kou, “The effect of boron on mechanical behavior and mi-

crostructure for fe–cr matrix alloy prepared by p/m,” Journal of alloys and

compounds, vol. 586, pp. 699–702, 2014.

[14] A. Das and S. P. Harimkar, “Effect of graphene nanoplate and silicon carbide

nanoparticle reinforcement on mechanical and tribological properties of spark

plasma sintered magnesium matrix composites,” Journal of Materials Science

& Technology, vol. 30, no. 11, pp. 1059–1070, 2014.

[15] S. Diouf and A. Molinari, “Densification mechanisms in spark plasma sinter-

ing: Effect of particle size and pressure,” Powder technology, vol. 221, pp. 220–

227, 2012.

102



Machine learning prediction of materials mechanical properties

[16] J. Jain, A. M. Kar, and A. Upadhyaya, “Effect of yag addition on sintering

of p/m 316l and 434l stainless steels,” Materials Letters, vol. 58, no. 14,

pp. 2037–2040, 2004.

[17] L. Cheng, Z. Xie, G. Liu, W. Liu, and W. Xue, “Densification and mechanical

properties of tic by sps-effects of holding time, sintering temperature and

pressure condition,” Journal of the European Ceramic society, vol. 32, no. 12,

pp. 3399–3406, 2012.

[18] X. Li, C. Liu, K. Luo, M. Ma, and R. Liu, “Hot deformation behaviour

of sic/aa6061 composites prepared by spark plasma sintering,” Journal of

Materials Science & Technology, vol. 32, no. 4, pp. 291–297, 2016.

[19] R. Marder, R. Chaim, G. Chevallier, and C. Estournès, “Densification and

polymorphic transition of multiphase y2o3 nanoparticles during spark plasma

sintering,” Materials Science and Engineering: A, vol. 528, no. 24, pp. 7200–

7206, 2011.

[20] P. Drescher, K. Witte, B. Yang, R. Steuer, O. Kessler, E. Burkel, C. Schick,

and H. Seitz, “Composites of amorphous and nanocrystalline zr–cu–al–nb

bulk materials synthesized by spark plasma sintering,” Journal of Alloys and

Compounds, vol. 667, pp. 109–114, 2016.

[21] S.-J. Oh, D. Park, K. Kim, I.-J. Shon, and S.-J. Lee, “Austenite stability

and mechanical properties of nanocrystalline fe–mn alloy fabricated by spark

plasma sintering with variable mn content,” Materials Science and Engineer-

ing: A, vol. 725, pp. 382–388, 2018.

[22] R. Chandramouli, T. Kandavel, and P. Karthikeyan, “Experimental investi-

gations on welding behaviour of sintered and forged fe–0.3% c–3% mo low

alloy steel,” Materials & Design, vol. 53, pp. 645–650, 2014.

[23] ——, “Experimental investigations on welding characteristics of sinter-forged

pre-alloy atomet 4601 steel,” The International Journal of Advanced Manu-

facturing Technology, vol. 88, no. 1-4, pp. 1065–1074, 2017.

103



Machine learning prediction of materials mechanical properties

[24] C. Selcuk, “Joining processes for powder metallurgy parts,” in Advances in

Powder Metallurgy, Elsevier, 2013, pp. 380–398.

[25] E. O. Correa, “Weldability of iron based powder metal alloys using pulsed

gtaw process,” Arc Welding, pp. 109–126, 2011.

[26] J. Hamill, “Weld techniques give powder metal a different dimension,” Metal

Powder Report, vol. 62, no. 5, pp. 22–31, 2007.

[27] M. Fillabi, A. Simchi, and A. Kokabi, “Effect of iron particle size on the

diffusion bonding of fe–5% cu powder compact to wrought carbon steels,”

Materials & Design, vol. 29, no. 2, pp. 411–417, 2008.

[28] K. Jayabharath, M. Ashfaq, P. Venugopal, and D. Achar, “Investigations

on the continuous drive friction welding of sintered powder metallurgical

(p/m) steel and wrought copper parts,” Materials Science and Engineering:

A, vol. 454, pp. 114–123, 2007.

[29] M. Suresh, B. Vamsi Krishna, P. Venugopal, and K. Prasad Rao, “Effect

of pulse frequency in gas tungsten arc welding of powder metallurgical pre-

forms,” Science and Technology of welding and joining, vol. 9, no. 4, pp. 362–

368, 2004.

[30] Ş. Talaş, M. Doğan, M. Çakmakkaya, and A. Kurt, “The effect of voltage on

the arc stud welding of microwave sintered fe+ al powder mixture,” Materials

Research, vol. 17, no. 3, pp. 632–637, 2014.

[31] M. Wahba, Y. Kawahito, K. Kondoh, and S. Katayama, “A fundamental

study of laser welding of hot extruded powder metallurgy (p/m) az31b mag-

nesium alloy,” Materials Science and Engineering: A, vol. 529, pp. 143–150,

2011.

[32] J. Schmidt, M. R. Marques, S. Botti, and M. A. Marques, “Recent advances

and applications of machine learning in solid-state materials science,” npj

Computational Materials, vol. 5, no. 1, pp. 1–36, 2019.

104



Machine learning prediction of materials mechanical properties

[33] T. Mueller, A. G. Kusne, and R. Ramprasad, “Machine learning in materials

science: Recent progress and emerging applications,” Reviews in Computa-

tional Chemistry, vol. 29, pp. 186–273, 2016.

[34] S. Marsland, Machine learning: an algorithmic perspective. CRC press, 2015.

[35] C. Long, J. Hattrick-Simpers, M. Murakami, R. Srivastava, I. Takeuchi, V. L.

Karen, and X. Li, “Rapid structural mapping of ternary metallic alloy sys-

tems using the combinatorial approach and cluster analysis,” Review of Sci-

entific Instruments, vol. 78, no. 7, p. 072 217, 2007.

[36] G. Pilania, C. Wang, X. Jiang, S. Rajasekaran, and R. Ramprasad, “Ac-

celerating materials property predictions using machine learning,” Scientific

reports, vol. 3, no. 1, pp. 1–6, 2013.

[37] K. Hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp, M. Scheffler, O. A.

Von Lilienfeld, A. Tkatchenko, and K.-R. Muller, “Assessment and validation

of machine learning methods for predicting molecular atomization energies,”

Journal of Chemical Theory and Computation, vol. 9, no. 8, pp. 3404–3419,

2013.

[38] M. J. Faizabadi, G. Khalaj, H. Pouraliakbar, and M. R. Jandaghi, “Predic-

tions of toughness and hardness by using chemical composition and tensile

properties in microalloyed line pipe steels,” Neural Computing and Applica-

tions, vol. 25, no. 7-8, pp. 1993–1999, 2014.

[39] A. Kurt, H. Ates, A. Durgutlu, and K. Karacif, “Exploring the weldability

of powder metal parts,” Welding journal, vol. 83, no. 12, pp. 34–37, 2004.
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Appendix A

Python and Matlab Code with

Appended Publications

Appendix A.A :ANN code

1 # -*- coding: utf -8 -*-

2 """ ANNhardness.ipynb

3

4 Automatically generated by Colaboratory.

5

6 Original file is located at

7 https :// colab.research.google.com/github/AyorindeTayo/ANN -

prediction -of-Hardness -using -Tensor -Flow/blob/master/ANNhardness

.ipynb

8 """

9

10 import tensorflow as tf

11 import numpy as np

12 import pandas as pd

13 import seaborn as sns

14 import matplotlib.pyplot as plt

15 from tensorflow import keras

16

17 print(tf.__version__)
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18

19 !pip install git+https :// github.com/tensorflow/docs

20

21 """# A quick exploratory data analysis """

22

23 from google.colab import files

24 files.upload ()

25

26 df=pd.read_excel('data_1004.xlsx')

27 df.head()

28

29 plt.plot(df.index , df['Hardness '], color='r', lw=2, label='dataset '

)

30 plt.xlabel('Experiments ')

31 plt.ylabel('Hardness ')

32 plt.legend ()

33 plt.show()

34

35 """# Preparation of the data for training """

36

37 train_dataset = df.sample(frac =0.8, random_state =0)

38 test_dataset = df.drop(train_dataset.index)

39

40 train_stats = train_dataset.describe ()

41 train_stats.pop("Hardness")

42 train_stats = train_stats.transpose ()

43 train_stats

44

45 train_labels = train_dataset.pop('Hardness ')

46 test_labels = test_dataset.pop('Hardness ')

47

48 """# Defining the function to normalize the data """

49

50 def norm(x):

51 return (x - train_stats['mean']) / train_stats['std']
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52 normed_train_data = norm(train_dataset)

53 normed_test_data = norm(test_dataset)

54

55 """# Defining the shallow neural network model """

56

57 def build_model ():

58 model = keras.Sequential ([

59 keras.layers.Dense (64, activation='relu', input_shape =[len(

train_dataset.keys())]),

60 keras.layers.Dense (64, activation='relu'),

61 keras.layers.Dense (1)

62 ])

63

64 optimizer = tf.keras.optimizers.RMSprop (0.001)

65

66 model.compile(loss='mse',

67 optimizer=optimizer ,

68 metrics =['mae', 'mse'])

69 return model

70

71 model = build_model ()

72

73 """# Training and validation of the model """

74

75 import tensorflow_docs as tfdocs

76 import tensorflow_docs.plots

77 import tensorflow_docs.modeling

78

79 EPOCHS = 1000

80

81 history = model.fit(

82 normed_train_data , train_labels ,

83 epochs=EPOCHS , validation_split = 0.2, verbose=0,

84 callbacks =[ tfdocs.modeling.EpochDots ()])

85
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86 """# Learning and validation results """

87

88 hist = pd.DataFrame(history.history)

89 hist['epoch '] = history.epoch

90 hist.tail()

91

92 """# Plotting the results """

93

94 plotter = tfdocs.plots.HistoryPlotter(smoothing_std =3)

95

96 plotter.plot({'Basic ': history}, metric = 'mae')

97 plt.ylim([0, 500])

98 plt.ylabel('MAE [Hardness]') #mean_absolute_error

99

100 #plt.savefig ('1.pdf ')

101

102 #files.download ('1.pdf ')

103

104 plotter.plot({'Basic ': history}, metric = 'mse')

105 plt.ylim([0, 20000])

106 plt.ylabel('MSE [Hardness]') #mean_squared_error

107

108 #plt.savefig ('2.pdf ')

109

110 #files.download ('2.pdf ')

111

112 loss , mae , mse = model.evaluate(normed_train_data , train_labels ,

verbose =2)

113

114 print("Training Mean Abs Error: {:5.2f} Hardness".format(mae))

115

116 loss , mae , mse = model.evaluate(normed_test_data , test_labels ,

verbose =2)

117

118 print("Testing set Mean Abs Error: {:5.2f} Hardness".format(mae))
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119

120 train_predictions = model.predict(normed_train_data).flatten ()

121

122 a = plt.axes(aspect='equal ')

123 plt.scatter(train_labels , train_predictions)

124 plt.xlabel('True Values [Hardness]')

125 plt.ylabel('Predictions [Hardness]')

126 lims = [0, 1000]

127 plt.xlim(lims)

128 plt.ylim(lims)

129 _ = plt.plot(lims , lims)

130

131 #plt.savefig ('3.pdf ')

132

133 #files.download ('3.pdf ')

134

135 test_predictions = model.predict(normed_test_data).flatten ()

136

137 a = plt.axes(aspect='equal ')

138 plt.scatter(test_labels , test_predictions)

139 plt.xlabel('True Values [Hardness]')

140 plt.ylabel('Predictions [Hardness]')

141 lims = [0, 1000]

142 plt.xlim(lims)

143 plt.ylim(lims)

144 _ = plt.plot(lims , lims)

145

146 #plt.savefig ('4.pdf ')

147

148 #files.download ('4.pdf ')

149

150 t1=np.corrcoef(test_labels , test_predictions)[0,1]

151 k1=np.corrcoef(train_labels , train_predictions)[0,1]

152 print('the corralation on the training set is',t1 ,'and that on the

test set is',k1)
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153

154 train_pred = model.predict(normed_train_data).flatten ()

155 test_pred = model.predict(normed_test_data).flatten ()

156

157 err1 = 100*(np.abs(test_pred - test_labels))/test_labels

158 err2 =100*( np.abs(train_pred - train_labels))/train_labels

159

160 print(test_labels)

161 print('-'*50)

162 print(test_pred)

163 print('-'*50)

164 print(err1)

165

166 print(train_labels)

167 print('-'*50)

168 print(train_pred)

169 print('-'*50)

170 print(err2)

171

172 """# Model with early stopping """

173

174 model1 = build_model ()

175

176 # The patience parameter is the amount of epochs to check for

improvement

177 early_stop = keras.callbacks.EarlyStopping(monitor='val_loss ',

patience =10)

178

179 early_history = model1.fit(normed_train_data , train_labels ,

180 epochs=EPOCHS , validation_split = 0.2, verbose

=0,

181 callbacks =[early_stop , tfdocs.modeling.

EpochDots ()])

182

183 """# Results of the model with early stopping """
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184

185 plotter.plot({'Early Stopping ': early_history}, metric = "mae")

186 plt.ylim([0, 500])

187 plt.ylabel('MAE [Hardness]') #mean_absolute_error

188

189 plt.savefig('5.pdf')

190

191 files.download('5.pdf')

192

193 plotter.plot({'Early Stopping ': early_history}, metric = "mse")

194 plt.ylim([0, 200000])

195 plt.ylabel('MSE [Hardness]') #mean_squared_error

196

197 plt.savefig('6.pdf')

198

199 files.download('6.pdf')

200

201 """# Training loss """

202

203 loss , mae , mse = model1.evaluate(normed_train_data , train_labels ,

verbose =2)

204

205 print("Training set Mean Abs Error: {:5.2f} Hardness".format(mae))

206

207 """# Test loss """

208

209 loss , mae , mse = model1.evaluate(normed_test_data , test_labels ,

verbose =2)

210

211 print("Testing set Mean Abs Error: {:5.2f} Hardness".format(mae))

212

213 """# Training plot """

214

215 train_predictions = model1.predict(normed_train_data).flatten ()

216
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217 a = plt.axes(aspect='equal ')

218 plt.scatter(train_labels , train_predictions)

219 plt.xlabel('True Values [Hardness]')

220 plt.ylabel('Predictions [Hardness]')

221 lims = [0, 1000]

222 plt.xlim(lims)

223 plt.ylim(lims)

224 _ = plt.plot(lims , lims)

225

226 plt.savefig('7.pdf')

227

228 files.download('7.pdf')

229

230 """# Test plot """

231

232 test_predictions = model1.predict(normed_test_data).flatten ()

233

234 a = plt.axes(aspect='equal ')

235 plt.scatter(test_labels , test_predictions)

236 plt.xlabel('True Values [Hardness]')

237 plt.ylabel('Predictions [Hardness]')

238 lims = [0, 1000]

239 plt.xlim(lims)

240 plt.ylim(lims)

241 _ = plt.plot(lims , lims)

242

243 plt.savefig('8.pdf')

244

245 files.download('8.pdf')

246

247 test_predictions

248

249 """# Corralation coefficient """

250

251 t=np.corrcoef(test_labels , test_predictions)[0,1]
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252 k=np.corrcoef(train_labels , train_predictions)[0,1]

253 print('the corralation on the training set is',t,'and that on the

test set is',k)

254

255 """# Percentage Errors on the predictions

256

257 The percentage error is defined as follows:

258

259 $$PE= 100\ times \Big| \dfrac{TV -PV}{TV}\Big |$$

260

261 Where $TV$ , $PV$ are the true values and the predicted value

respectively.

262 """

263

264 error1 = 100*(np.abs(test_predictions - test_labels))/test_labels

265 error2 =100*( np.abs(train_predictions - train_labels))/train_labels

266

267 print(test_labels)

268 print('-'*50)

269 print(test_predictions)

270 print('-'*50)

271 print(error1)

272

273 print(train_labels)

274 print('-'*50)

275 print(train_predictions)

276 print('-'*50)

277 print(error2)

278

279 test_predictions

280

281 """# Trying something """

282

283 k=pd.Series(train_labels).reset_index(drop=True)

284 m=pd.Series(train_predictions).reset_index(drop=True)
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285

286 plt.plot(k.index , k, color='green ',marker='o', label='True values ',

lw=1)

287 plt.plot(m.index ,m, 'bo', label='Predictions ')

288 plt.legend ()

289 plt.xlabel('Experiments ')

290 plt.ylabel('Hardness ')

291 plt.show()

292

293 l=pd.Series(test_labels).reset_index(drop=True)

294 n=pd.Series(test_predictions).reset_index(drop=True)

295

296 plt.plot(l.index , l, color='green ',marker='o', label='True values ',

lw=1)

297 plt.plot(n.index ,n, 'bo', label='Predictions ')

298 plt.legend ()

299 plt.xlabel('Experiments ')

300 plt.ylabel('Hardness ')

301 plt.show()

302

303 d_f=pd.concat ([pd.Series(train_predictions),pd.Series(

test_predictions)])

304

305 plt.plot(df.index , df['Hardness '], color='r', label='dataset ', lw

=2)

306 plt.plot(df.index , d_f , 'bo', label='overall predictions ')

307 plt.xlabel('Experiments ')

308 plt.ylabel('Hardness ')

309 plt.legend ()

310 plt.show()

311

312 dff=pd.concat ([pd.Series(train_labels),pd.Series(test_labels)])

313 plt.scatter(d_f , dff , color='r', label='dataset ')

314

315
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316 #plt.savefig('test.pdf ')

317

318 #files.download('test.pdf ')

319

320 def build_modell ():

321 model = keras.Sequential ([

322 keras.layers.Dense (64, activation='relu', input_shape =[len(

train_dataset.keys())]),

323 keras.layers.Dense (64, activation='relu',kernel_regularizer=tf.

keras.regularizers.l2 (0.01) ,

324 activity_regularizer=tf.keras.regularizers.l2 (0.01)),

325 keras.layers.Dense (1)

326 ])

327

328 optimizer = tf.keras.optimizers.RMSprop (0.001)

329

330 model.compile(loss='mse',

331 optimizer=optimizer ,

332 metrics =['mae', 'mse'])

333 return model

334

335

336

337

338 model2 = build_modell ()

339

340 # The patience parameter is the amount of epochs to check for

improvement

341 early_stop = keras.callbacks.EarlyStopping(monitor='val_loss ',

patience =10)

342

343 early_history = model1.fit(normed_train_data , train_labels ,

344 epochs=EPOCHS , validation_split = 0.2, verbose

=0,

345 callbacks =[ tfdocs.modeling.EpochDots ()])
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346

347 loss , mae , mse = model2.evaluate(normed_train_data , train_labels ,

verbose =2)

348

349 print("Training set Mean Abs Error: {:5.2f} Hardness".format(mae))

350

351 print(history.history.keys())

352 # "Loss"

353 plt.plot(history.history['loss'])

354 plt.plot(history.history['val_loss '])

355 plt.title('model loss')

356 plt.ylabel('loss')

357 plt.xlabel('epoch')

358 plt.legend (['train ', 'validation '], loc='upper left')

359 plt.show()

360

361 from sklearn.metrics import r2_score

362

363 r2_score(test_labels , test_predictions)

364

365 r2_score(train_labels , train_predictions)

366

367 Validation_data =( test_labels ,test_predictions )

368

369 print(Validation_data)

370

371 Validation predictions = model1.predict(normed_test_data).flatten ()

372

373 a = plt.axes(aspect='equal ')

374 plt.scatter(test_labels , test_pred)

375 plt.xlabel('True Values [Hardness]')

376 plt.ylabel('Predictions [Hardness]')

377 lims = [0, 1000]

378 plt.xlim(lims)

379 plt.ylim(lims)
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380 _ = plt.plot(lims , lims)

381

382

383 plt.savefig('8.pdf')

384

385 files.download('8.pdf')

386

387 import numpy

388

389

390 import matplotlib.pyplot

391 from sklearn.preprocessing import StandardScaler

392 from sklearn.model_selection import train_test_split

393 numpy.random.seed (78)

394

395 import pandas as pd

396

397 weldingdata=pd.read_excel('data_1004.xlsx')

398 df=weldingdata

399

400 from sklearn.model_selection import train_test_split

401 from sklearn.linear_model import LinearRegression

402

403 from sklearn import metrics

404

405

406 X=df[['S-temp','S-time', 'Wel -power ', 'Wel -speed']]

407 y=df['Hardness ']

Appendix A.B :SVM code

1 function [trainedModel , validationRMSE] = trainRegressionModel(

trainingData)

2 % [trainedModel , validationRMSE] = trainRegressionModel(

trainingData)
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3 % returns a trained regression model and its RMSE. This code

recreates the

4 % model trained in Regression Learner app. Use the generated code

to

5 % automate training the same model with new data , or to learn how

to

6 % programmatically train models.

7 %

8 % Input:

9 % trainingData: a table containing the same predictor and

response

10 % columns as imported into the app.

11 %

12 % Output:

13 % trainedModel: a struct containing the trained regression

model. The

14 % struct contains various fields with information about the

trained

15 % model.

16 %

17 % trainedModel.predictFcn: a function to make predictions on

new data.

18 %

19 % validationRMSE: a double containing the RMSE. In the app ,

the

20 % History list displays the RMSE for each model.

21 %

22 % Use the code to train the model with new data. To retrain your

model ,

23 % call the function from the command line with your original data

or new

24 % data as the input argument trainingData.

25 %

26 % For example , to retrain a regression model trained with the

original data
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27 % set T, enter:

28 % [trainedModel , validationRMSE] = trainRegressionModel(T)

29 %

30 % To make predictions with the returned 'trainedModel ' on new data

T2 , use

31 % yfit = trainedModel.predictFcn(T2)

32 %

33 % T2 must be a table containing at least the same predictor columns

as used

34 % during training. For details , enter:

35 % trainedModel.HowToPredict

36

37 % Auto -generated by MATLAB on 06-Dec -2020 20:03:26

38

39

40 % Extract predictors and response

41 % This code processes the data into the right shape for training

the

42 % model.

43 inputTable = trainingData;

44 predictorNames = {'Stemp', 'Stime', 'Welpower ', 'Welspeed '};

45 predictors = inputTable (:, predictorNames);

46 response = inputTable.Hardness;

47 isCategoricalPredictor = [false , false , false , false ];

48

49 % Train a regression model

50 % This code specifies all the model options and trains the model.

51 responseScale = iqr(response);

52 if ~isfinite(responseScale) || responseScale == 0.0

53 responseScale = 1.0;

54 end

55 boxConstraint = responseScale /1.349;

56 epsilon = responseScale /13.49;

57 regressionSVM = fitrsvm (...

58 predictors , ...

131



Machine learning prediction of materials mechanical properties

59 response , ...

60 'KernelFunction ', 'gaussian ', ...

61 'PolynomialOrder ', [], ...

62 'KernelScale ', 0.5, ...

63 'BoxConstraint ', boxConstraint , ...

64 'Epsilon ', epsilon , ...

65 'Standardize ', true);

66

67 % Create the result struct with predict function

68 predictorExtractionFcn = @(t) t(:, predictorNames);

69 svmPredictFcn = @(x) predict(regressionSVM , x);

70 trainedModel.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn

(x));

71

72 % Add additional fields to the result struct

73 trainedModel.RequiredVariables = {'Stemp ', 'Stime ', 'Welpower ', '

Welspeed '};

74 trainedModel.RegressionSVM = regressionSVM;

75 trainedModel.About = 'This struct is a trained model exported from

Regression Learner R2018a.';

76 trainedModel.HowToPredict = sprintf('To make predictions on a new

table , T, use: \n yfit = c.predictFcn(T) \nreplacing ''c'' with

the name of the variable that is this struct , e.g. ''

trainedModel ''. \n \nThe table , T, must contain the variables

returned by: \n c.RequiredVariables \nVariable formats (e.g.

matrix/vector , datatype) must match the original training data.

\nAdditional variables are ignored. \n \nFor more information ,

see <a href=" matlab:helpview(fullfile(docroot , ''stats'', ''

stats.map''), ''appregression_exportmodeltoworkspace '')">How to

predict using an exported model </a>.');

77

78 % Extract predictors and response

79 % This code processes the data into the right shape for training

the

80 % model.
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81 inputTable = trainingData;

82 predictorNames = {'Stemp', 'Stime', 'Welpower ', 'Welspeed '};

83 predictors = inputTable (:, predictorNames);

84 response = inputTable.Hardness;

85 isCategoricalPredictor = [false , false , false , false ];

86

87 % Perform cross -validation

88 KFolds = 5;

89 cvp = cvpartition(size(response , 1), 'KFold ', KFolds);

90 % Initialize the predictions to the proper sizes

91 validationPredictions = response;

92 for fold = 1: KFolds

93 trainingPredictors = predictors(cvp.training(fold), :);

94 trainingResponse = response(cvp.training(fold), :);

95 foldIsCategoricalPredictor = isCategoricalPredictor;

96

97 % Train a regression model

98 % This code specifies all the model options and trains the

model.

99 responseScale = iqr(trainingResponse);

100 if ~isfinite(responseScale) || responseScale == 0.0

101 responseScale = 1.0;

102 end

103 boxConstraint = responseScale /1.349;

104 epsilon = responseScale /13.49;

105 regressionSVM = fitrsvm (...

106 trainingPredictors , ...

107 trainingResponse , ...

108 'KernelFunction ', 'gaussian ', ...

109 'PolynomialOrder ', [], ...

110 'KernelScale ', 0.5, ...

111 'BoxConstraint ', boxConstraint , ...

112 'Epsilon ', epsilon , ...

113 'Standardize ', true);

114
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115 % Create the result struct with predict function

116 svmPredictFcn = @(x) predict(regressionSVM , x);

117 validationPredictFcn = @(x) svmPredictFcn(x);

118

119 % Add additional fields to the result struct

120

121 % Compute validation predictions

122 validationPredictors = predictors(cvp.test(fold), :);

123 foldPredictions = validationPredictFcn(validationPredictors);

124

125 % Store predictions in the original order

126 validationPredictions(cvp.test(fold), :) = foldPredictions;

127 end

128

129 % Compute validation RMSE

130 isNotMissing = ~isnan(validationPredictions) & ~isnan(response);

131 validationRMSE = sqrt(nansum (( validationPredictions - response )

.^2) / numel(response(isNotMissing) ));

Appendix A.C :The Synergy between powder met-

allurgy processes and welding of

metallic alloy
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REVIEW

The synergy between powder metallurgy processes and welding of metallic
alloy: a review
Ayorinde Tayo Olanipekun a, Nthabiseng Beauty Maledi b and Peter Madindwa Mashinini a

aDepartment of Mechanical and Industrial Engineering, University of Johannesburg, Johannesburg, South Africa; bSchool of Chemical and
Metallurgical Engineering, University of the Witwatersrand, Johannesburg, South Africa

ABSTRACT
Powder metallurgy (PM) technology is an ideal manufacturing process to produce near net
shape parts i.e. part that requires little or no machining, examples of PM processes are spark
plasma sintering, isostatic pressing and additive manufacturing. PM allows maximisation of
materials and produces part with optimised mechanical and physical properties. Also, PM
process provides the possibility to further increase the industrial use of PM parts by
fabricating it into complex geometrical shapes via joining. Joining is the most important
mechanical process necessary for PM parts to perform in actual service conditions expected
in automobile parts and structural parts. Despite apparent advantages of PM processes,
joining PM parts has been a tedious process, due to challenges associated with inherent
characteristics, like porosity, chemical composition and impurities like oil or grease, which
tend to impair the weldments property. In this document, a review of PM process is
presented, focusing on different welding methods that can be used to effectively join PM
components.
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1. Introduction

Powder Metallurgy (PM) process can be described as a
rapid, economical and high-volume production
method for making high precision components from
powder material [1].

PM provides the possibility of fabricating metallic
alloy to near net shape, also more importantly avoiding
issues associated with traditional manufacturing. Tra-
ditional manufacturing processes can be distinguished
viz: casting, forging, rolling, machining and extrusion.
Parts produced by traditional manufacturing processes
are usually characterised by the precipitation of sec-
ondary and intermetallic phases along the grain
boundary. The variation in the thermal decomposition
of various phases present in the metallic alloy usually
have a detrimental effect on the metallic alloy [2,3].

PM has enjoyed diverse applications in many indus-
trial sectors, automobile applications, in the medical
field as implants and dental restoration due to their
good balance between corrosion resistance, impact
strength and tensile strength [4,5].

PM process produces near net shape parts, i.e. parts
requiring little or no machining. However, the econ-
omic aspect in terms of producing multi parts endears
PM parts to find usage in a diverse range of engineering
applications, necessitating joining of different PM parts
together using welding technology. Also, joining is one
of the mechanical processes necessary for PM parts to

perform in actual service conditions most importantly
in the automobile industry and for structural parts.
Keeping in mind that these parts are often joined to
similar and dissimilar materials as non-detached com-
ponents. Therefore, the weldability of the PM com-
ponents must be insured [6,7].

Nevertheless, the weldability of PMmetallic alloy var-
ies with density and porosity. The pores act as a thermal
insulator, reducing the thermal conductivity, and causes
low hardenability, also the pores traps impurity such
as oil or grease, eventually resulting in solidification
cracking in the weld, which negatively affects the mech-
anical property of the welded metallic material.
Additionally, the microstructure of the weld is princi-
pally determined by the production process employed,
the grain size and the chemical composition of the met-
allic alloy [8–12]. The following factors are important in
determining microstructural and mechanical properties
of PM parts, namely: microstructure, composition (alloy
and micro-alloy elements percentage), size and shape of
the pore, sintering conditions, heat input and cooling
rates. The aforementioned factors must be considered
to achieve a better-welded joint. The microstructural
complexities and peculiarity of PM produced metallic
alloy should not change the precautions to be observed
in the fusion welding process, the precautions observed
for fusion welding of cast, extruded and wrought
materials should also be applicable to PM parts [13].
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Two major joining processes have been identified in
joining PM parts, which are solid state and liquid state
joining techniques. Diffusion bonding, friction stir
welding and brazing categorised under solid state pro-
cess were known to have been used to effectively join
parts with low density or high porosity material
together while liquid state or fusion-based process
such as metal arc welding (MAW), laser welding
(LW) and electro-beam welding (EBW) have been
used majorly to weld parts with minimal porosity
and high density [14].

The current review critically analyses the research
outcome of other researchers based on their investi-
gations on the weldability of PMmetallic alloys. Differ-
ent welding processes for PM alloys are reviewed,
special attention is paid to the effect of welding pro-
cesses on the microstructure, and mechanical proper-
ties of welded PM alloy. This review has laid a good
foundation for the first author’s PhD research on
laser welding of spark plasma sintered produced
(2507) duplex stainless steel, and its effects on the
microstructure, mechanical and corrosion properties.

Various applications of powdered metallic alloys
were explained with Figure 1.

The figure clearly explains the sequential process
from PM to sintering process and lastly welding
process.

2. Powder metallurgy process (PM)

PM process has witnessed an extensive research to its
operation over the years, owing majorly to its versatility
in application of metal forming processes. Equally, PM
has seen a wide use in forming advanced materials
which may not be possible with other traditional pro-
cesses such as casting and forging. The PM process
allows effective use of material without wastage giving
a product with suitable mechanical properties and high
density [15–17] Figure 2.

The principal steps in PM are powder preparation,
powder shaping and consolidation of the powder,
which are presented schematically in Figure 3. The
powder can be shaped or compacted under uniaxial
pressure. Furthermore, the shaped compacts usually
contain pores between the particles. Meanwhile, heat
treatment and sintering below the melting temperature
of the metallic alloy can be used to remove the pores
that may be present. This phenomenon is driven by
the reduction in solid–vapor interface area reduction
[18].

The parameters that influence sintering include
optimum conditions for sintering in a furnace, which
is fundamental in obtaining sintered parts with a
good metallurgical bond between the sintered particles,
consequently, giving products with better mechanical
properties [19–23].

3. Mitigating porosity effect through plastic
deformation

Porosity is one of the features encountered in sintered
PM materials. These porosity sites serve as potential
sites for crack initiation. The porosity affects many
mechanical properties including tensile properties,
ductility and fatigue behaviour [24].

Major approach that can be used to alleviate or
reduce porosity is plastic deformation at elevated temp-
erature, in particular, hot forging thermal mechanical
processing (TMP) Joining processes for PM parts
[25]. Hot forging is usually carried out on fully
dense, wrought or cast billets, formed into shape
through multiple force of forging dies [26]. The forging
exerts a uniaxial stroke with plastic strain added with
frictional forces to collapse the pore [27], disrupt the
oxide networks [28] and grain refinement [29].

Subsequently in this review, the weldability of sin-
tered forged PM alloy will be discuss.

4. Joining processes for PM parts

Joining is a compendious term used to represent all
processes adopted to attach one part to another [30].
The methods used in joining PM alloy are categorised
as liquid and solid-state welding. Liquid welding pro-
cesses such as gas metal arc welding (GMAW), gas
tungsten arc welding (GTAW), electro-beam welding
(EBW) and laser welding (LW) are usually used to
weld high dense PM alloy, while solid-state welding
processes such as brazing and diffusion welding are
used for low dense PM parts (i.e. parts with high por-
osity) [4].

Notable welding techniques that have been applied
in welding of PM materials are discussed.

Figure 1. Joining PM to create complex geometries for indus-
try [14].
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4.1. Laser welding

Laser welding processes have gained prominence over
the years in welding different metallic alloys. These
processes are characterised by high welding speeds,
precision and high efficiencies. Moreover, laser welding
is associated with low heat input which result in low
thermal distortion, residual stresses and deformation
compared to other welding techniques [4,31–36].
Laser beam welding (LBW) uses laser beam to melt
and join metals. The laser beam is either solid-state
laser or gas [37] as shown in Figure 4. Notably, types
of main laser used for welding are CO2 laser, YAG

laser, lamp-pumped, Laser diode (LD), LD-pumped
solid state laser, disc laser, and fiber laser [38].

However, laser welding of sintered parts is charac-
terised by various defects such as blow holes, resulting
from gas entrapment, that fails to leave the melt during
rapid solidification. Researchers have also noticed a
phenomenon called hydrogen cracking, cold and hot
cracking in medium carbon steel [40].

4.2. Electron beam

Electron beam welding (EBW) method melts and joins
metals by heating with electron beam. EBW is normally
carried out in a high vacuum (10−6 mbar). It has has
the capability of giving a high cooling rate and high
hardness in carbon steel. Also, EBW gives low distor-
tion, keeping the dimensional stability of near net
shape PM welded alloy [4,41]. Meanwhile, the metallic
materials welded with an EBW method usually have a
greater tendency for pore formation due to the vacuum
acting as a potential site that trap gas during welding.
However, choosing a suitable welding beam parameter
has been known to control porosity in the sintered fer-
rous compacts [42].

4.3. Arc welding

In an arc welding process, an electric arc is usually
struck between an electrode and a workpiece. Arc
welding usually gives some level of porosity in the
welded metal, which have a detrimental effect on

Figure 3. The powder metallurgy process.

Figure 4. Schematic representation of a laser beam welding
process [39].

Figure 2. Synergy between sintering process and welding process.
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weld properties. Researchers also noticed porous weld
can result from GMAW of low-density powder com-
pacts, which negatively affects the mechanical proper-
ties through low ductility achieved in welded parts.
As it is well known that the PM density and its compo-
sition eventually determines the mechanical properties
of the welded parts [4].

5. Effect of porosity on the weldability PM
alloy

It is important to note that welding PM metallic parts
are usually different from welding cast or rolled met-
allic parts, due to the presence of pores in the micro-
structure of powder metallic alloy. Therefore,
porosity forms part of the microstructural properties
of PM component. Porosity is determined by several
variables, such as particle size and shape, compaction
pressure, sintering time and temperature, alloy
additions, and processing route. These variables play
a vital role in the mechanical properties of
the resulting weld [43,44].

Porosity also plays a vital role in the welding of PM
metallic alloys. The pores can have significant control
on the ability of the material to resist thermal stresses
and prevent the transfer of heat and electricity to the
weld zone. However, impurities from lubricant resi-
dues and quench oils can be trapped in the pores, even-
tually impairing the mechanical properties of the weld
metal [45–49].

Graver and Urffer [50] researched how gases
entrapped in the pores can influence the mechanical
properties of welded PM alloy. They successfully join
ferritic 409L stainless steel with an average density of
6.80 g/cm3 to wrought 409 tubing. The PM stainless
steel with a density of 7.20 g/cm3 density that was joined
using GMAW comes up with a mechanical property
that can be compared to that of wrought stainless
steel. However, to reach the state of completely closed
porosity the density must be > 7.4 g/cm3, reducing
gases entrapment in the pores, which eventually result
in a product with improved mechanical property.

Kurt et al. [51] reported the use of friction stir weld-
ing technique in processing sintered aluminium (Al)
powders of average size 80 mm pressed at different ran-
ging from 350, 400 to 450 MPa, sintered at 450°C for
30 minutes in an argon atmosphere. Different densities
were obtained at different compacted pressure, due to
the work hardening, and continuous growth in the
densified area fraction, the density increases progress-
ively, with equal increases in pressure. In other
words, increasing the pressure leads to an increase in
density. Meanwhile, PM material usually comes with
some level of porosity, that can be regulated by
pressure and reduced by sintering. In their research
they noticed the porosity level decreased with pressure.
Defects and porosity were also found to have

deleterious effects on joining the sintered Al. Low com-
pacted sintered Al has more porosities and greater
defects, which have a consequential effect on the mech-
anical properties of sintered Al. Likewise, density
increases the hardness level of sintered Al material,
leading to porosity decrease.

Bahador et al. [12] showed that furnace sintered
shape memory alloy (SMA) Ti–Ni welds exhibited
the lowest weld quality owing to high porosity. While
the microwave sintered (SMA) Ti–Nb and Ti–Ta
displayed better weldability despite the presence of
porosity. The authors concluded that porosity formed
in the fusion zone is dependent on the pre-existing
gases in the base material during processing, this eluci-
dated why the microwave sintered Ti–30%Ta SMA
showed lower weld porosity when compared with vac-
uum sintered Ti–51%Ni. Also, they studied the welding
metallurgy of SMAs by comparing the weldability of
sintered SMAs, with that of Ti–30%Ta cast alloy.
Figure 5(a) shows the weld seam of Ti–30%Ta cast
alloy revealing a T shape geometry with minimal por-
osity compared to Figure 5(b) weld of PM produced
SMAs. They concluded that porosity and weld geome-
try are dependent on material processing.

6. Welding behaviour effect on the
microstructure and mechanical properties of
PM alloy

The changes in mechanical properties, microstructure
and corrosion resistance of PM alloy largely depends
on heat input and cooling rate [52].

6.1. Microstructural analysis of welded PM alloy

The phase and grains structure present in a metallic
component are referred to as microstructure. Further-
more, the final properties achieved in a material is gov-
erned by microstructure, largely determined by the
manufacturing process.

In welding research conducted by Elrefaey et al. [53]
on the extruded PMAluminium alloy using friction stir
welding, they made it known that alloy produced
through atomisation route, powder metallurgy and
extrusion route are free from grain coarsening, and
micro-segregation, predominantly because of the high
cooling rate attained in those processes. Thus, material
produced through these processes will have a fine grain
structure, segregation free and also have homogenous
microstructure. The atomised powder was cold com-
pacted before hot extrusion and friction stir welded.
The welding was performed at a speed of 500 rev/
min, at a travelling speed of 3.3 mm/s and a force of
35 kN. They were able to achieve a sound weld, with
no void and discontinuities. Meanwhile, the micro-
structure of the stir zone was observed to be finer
and homogenous than that of the base metal resulting
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into substantial average yield strength and tensile
strength in stir zone compared to the base metal. Figure
6 presents a microstructure to better understand the
above discussion. The figure shows a stir zone (SZ)
structure to be finer and more homogeneous to the
base metal structure, while the thermomechanical
affected zone (TMAZ) has a slightly deformed struc-
ture, which is observed on both sides of the joint.
Whereas, the heat affected zone (HAZ) has a micro-
structure similar to that of the base metal, formed adja-
cent to the TMAZ. A pattern called ‘Onion’ ring
pattern was observed around the top area of the
weld, emanating from the interaction between the
material flow caused by the rotating pin and the
shoulder-driven flow.

Also, Metzger [54] worked on the fusion welding
process, using gas tungsten arc welding (GTAW) pro-
cess to join PM of aluminium alloy Al–10Fe–5Ce (wt-
%), consolidated from powder by extrusion to form a
bar of rectangular cross-section. The study evaluated
the effects of preweld vacuum heat treatment of the
base metal, filler metal and the welding current type
on the mechanical properties of the weld. Conse-
quently, the author was able to remove the porosity
in the weld using pre-weld vacuum heat treatment
and a direct current electrode negative (DCEN) weld-
ing arc with helium shielding gas. The heat treatment
was carried out at an estimated temperature of 400°C,
resulting in the base metal strength reduction from
448 to 414 MPa. It was noticed that intermetallic
compounds present close to the weld interface caused
low ductility and strength.

Bahador [12] and his research team, worked on laser
beam welding of PM Ti-based shape memory alloy
(SMAs). The effect of laser welding defocused distance
was examined on three shape memory alloys (Ti–51at.-
%Ni, Ti–28%atNb and Ti–30at.-%Ta). tThe alloys were
sintered by furnace and microwave sintering process.
From the investigation it was reported that Ti–Nb
and Ti–Ta SMAs sintered by microwave showed

good weldability, with high porosity, compared to fur-
nace sintered Ti–Ni weld. An impairment in the weld
quality of Ti–Nb and Ti–Ta SMAs furnace sintered
was observed. The microstructural composition of
PM alloy and cast Ti-based alloy SMAs weld seams
was also investigated by field emission scan electron
microscope (FESEM) and X-ray diffraction (XRD).
Figure 7 shows an acicular α′′ and β phases as the con-
stituent phases of Ti–28at.-%Nb and Ti–30at.-%Ta
welds, TiNi appeared to be the major phase observable
in Ti–51at.-%Ni, as shown in Figure 7.

Yu et al. [55], worked on the stabilisation of Y–Ti–
O precipitates on friction stir welded nano structured
ferritic alloys comprising a dispersion of stable oxide
particles, nanoclusters and ultrafine ferrite grains.
They characterised the welded sample with JOEL
6500FEG Scanning electron microscope equipped
with and electron back scatter diffraction (EBSD)
detector. The maps orientation was analysed with
0.1M software. Consequently, an analysis was carried
out on the stir zone (SZ), thermomechanically
affected zone (TMAZ) and the base metal (BM).
Figure 8 shows EBSD orientation maps of the three
regions. Each colour represents a specific orientation.
The red line represents low angle boundaries having
misorientation angle between 20 and 150 while the
black lines represent high angle grain boundaries,
particularly having mis-orientation angle larger than
150. The grains size in the SZ is slightly elongated
than that of the BM. The orientation maps of both
SZ and BM indicates a fine-grained structure. While
the average grain size for BM, SZ and TMAZ are
0.24 + 0.11nm, 1.04 + 0.96 nm and 0.97 + 0.85
nm, respectively. Consequently, the grain refinement
mechanism in the SZ of the friction stir welded
metal is caused by dynamic recrystallization (DRX).
There are three types of recrystallization mechanisms,
that vividly explains the refinement of grains during
friction stir welding (FSW), Discontinuous (DDRX),
Geometric (GDRX) and continuous (CDRX). Ferritic

Figure 5. Cross-section of welds (a) Ti–30at.-%Ta P/M (b) Ti–30at.-%Ta casting SMAs.
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steels usually have body centre cubic crystal structure,
also known for high stacking fault energy, and CDRX
recrystallization mechanisms [56].

However, elongated grains in friction stir welded
material creates high strain rate deformation in the
material, resulting in elongated subgrains that devel-
oped from the elongated dislocated cells formed by
dynamic recovery. Likewise, the rotating tool stirring
action results in grain boundaries with a high angle
along a preferred direction, eventually giving birth to
an elongated grain as shown in Figure 8(b) [57]. The
,111. shear texture with an intensity of 9.8 was
observed at the SZ, which was also reported in the

work of Chen et al. [58] on microstructural evolution
offriction stir welded nanostructured ODS alloys.

6.2. Mechanical properties

In the available research on PM welding, tensile
strength, hardness and fracture properties are the
most evaluated mechanical properties, which can be
used to evaluate the performance of load-bearing capa-
bilities of the welded PM alloy in engineering appli-
cation. The discussion below addresses how porosity
level can play a role in the mechanical properties of
welded PM alloy.

Figure 6. Joint microstructure: showing (A) cross-section macrostructure (B) microstructure of the stir zone (C) microstructure at the
stir zone/HAZ interface D microstructure of the HAZ (E) microstructure of the onion ring zone (F) Microstructure of base metal [53].
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6.2.1. Hardness
Correa et al. [59] conducted hardness test on pulsed gas
tungsten arc welded powder metal Fe–Ni alloy using
mild steel filler metal and Fe–Ni filler metal. Figure 9,
shows no major variation in hardness profile in the
heat-affected zone (HAZ) when compared with the
base metal for both filler metals, indicating a fine con-
tinuity of mechanical properties.

Chandramouli et al. [60] studied the hardness vari-
ation on welded sinter-forged steel based on the pre-
alloyed Atomet 4601 steel, explained in Figure 10. Little
variation in hardness values at the weld zone (WZ)
and the heat-affected zone (HAZ) is in
agreement with obseravation made by Correa [59]
The high hardness at the WZ was due to the pore-
free formation in the welding zone, caused by the

Figure 7. FESEM microstructure, positive defocusing distance (a) Ti–51at.-%Ni, (b) Ti–28at.-%Nb and (c) Ti–30at.-%Ta P/M, negative
defocusing distance (d) Ti–51at.-%Ni, (e) Ti–28at.-%Nb (f) Ti–30at.-%Ta P/M and (g) Ti–30at.-%Ta casting SMAs [12].
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melting and solidification of the material. Thermal
welding cycle also plays an important role in the hard-
ness around friction zone (FZ). It was explained that
parent metal density is more responsible for the
increased hardness of the parent alloy steel than the
welded joint. However, the parent metal hardness can
be linked to the level of porosity. Also, the parent
metal has high density due to it being subjected to a
compressive load upset. Meanwhile, the density of
the upset material was enhanced through pores closure
and strain hardening.

In another work by Chandramouli et al. [61] on the
experimental investigations off welding behaviour of
sintered forged Fe–0.3%C–3%Mo low alloy steel. The

hardness profile for the welded steel shown in Figure
11(a), reveals minimal variations of hardness values
along the weld zone owing to the microstructural hom-
ogeneity in the welded zone, which agrees with our ear-
lier discussion. They discovered the highest hardness
weld zone of 245 HV, accounted for by the hom-
ogenous acicular/lathe ferrite structure in-conjunction
with and blow holes absence, as also explained in the
reference [62–64].

A study conducted by Kurt et al. [51] on porosity
effect on the weldability of powder metal parts joined
by friction stir welding at a speed of 1800 rev /min,
and welding speed of 3.33 mm/s, reveals that the hard-
ness increase was associated with an increase in

Figure 8. (a) Orientation maps of a BM, (b) SZ and (c) TMAZ. BM shows fine equiaxed ferrite grains and SZ shows elongated ferrite
grains; grains in SZ and TMAZ are coarser than grains in BM [55].

Figure 9. (a) Hardness profile of a Fe–Ni powder metal alloy using filler metal of mild steel (b) Hardness profile of a Fe–Ni powder
metal alloy using filler metal of Fe–Ni [59].
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compacting pressure owing to the amount of porosity
and change of density. However, base material com-
pacted at a load of 450 MPa is 56 HV, and 49 HV for
the base metal compacted at 350 MPa in the heat-
affected zone as shown in Figure 11(b)

PM preform steel sheets were joined to wrought
copper using gas tungsten arc welding, using current
pulse frequency to refine the fusion zone microstruc-
ture. The pulse current allows iron dendrites to become
more equiaxed and distributed uniformly because of
the dendrite fragmentation. In the investigation, the
weld strength increased due to density increase of the
steel preforms, which was attributed to fast
cooling rate of the weld pool. From Figure 12, the fre-
quency of 6 Hz gives minimum hardness when juxta-
pose with other frequencies. This agrees with the
equiaxed dendrites and uniform dendrites in the weld
metal at the highest frequency. Also, the concentration
of iron variation in the weld metal can also be respon-
sible for the situation. They explained the science
behind the grain refinement through optimum

frequency, as due to thermal reduction and enhanced
flow [65].

6.2.2. Tensile strength
The uniaxial standard tensile test is mostly conducted
on cylindrical bars or dog-bone shaped specimen,
machined from welded sample and tested according
to ASTM E8. From the further review of Chandramouli
et al. [61] work on experimental investigations behav-
iour of welded sintered and forged Fe–0.3%C–3%Mo
low alloy steel. They discussed the variation of tensile
properties for both the welded alloy and base metal
with respect to density. The percentage reduction in
area and elongation decreases linearly with porosity,
in agreement with the findings by Correa et al. [66].
They eventually came up with a welded alloy that has
higher tensile strength when compared to the base
material as shown in Figure 13. This phenomenon
was accounted for by three factors, namely: residual
stress in the base metal after welding, acicular ferrite
formation at the weldment, segregation of the metal
alloy. In addition, porosity absence in the weld metal
could have also increased the welded joint strength.

Joseph et al. [7] work on pulsed current gas tungsten
arc welding (PCGTAW) of sintered forged AISI 4135
steel. They examined the transverse tensile properties
such as the tensile strength and percentage elongation
on the based specimen and the weldedmetal, the results
are shown in Figure 14. Their result shows an average
tensile strength of 685 MPa for the base metal while
the tensile strength value of the PCGTAW joints was
703 MPa. They associated the good quality of the weld-
ments to low heat input. Meanwhile, a percentage
elongation of the PCGTAW joints was 8.60% and
8.50% for the base metal as shown in Figure 14,
suggesting little difference in the ductility of both the
base metal and the welded metal. Consequently,
strain-hardening effect occurring during hot upsetting

Figure 10. Plots of hardness values at various zones of weld-
ment of welded alloy steel [60].

Figure 11. (a) Hardness profile of the welded alloy steels [61]. (b) The effect of compact pressure and welding zone on the hardness
of compacted Aluminium [51].
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process was said to be responsible for the reduction in
the base metal ductility.

6.2.3. Fracture analysis
Chandramouli et al. [61], discussed the fracture pattern
for both the Tungsten inert gas (TIG) welded and base
metal alloy steel, as shown in Figure 15(a) shows the
fracture morphology in the base metal alloy. They
notice a de-cohesion caused by the presence of large
voids and a few microvoids. Also, the deep valleys
and depressions presence in the fractography explains
the brittle nature of the fracture. A few micro dimples
were spotted in Figure 15(b), a mixed mode of fracture
was discovered in the welded steel, shown by the occur-
rence of large number of dimples. Vertical facets with
few large-sized voids were also seen, which are pointers
to crack initiation and stress concentration Figure 15.

Elrefaey et al. [53] carried out a fracture test on fric-
tion sir welded extruded powder metallurgy Al alloy,
welded at applied rotation speed of 500 rev/min, at a
travelling speed of 3.33 mm/s and a compressive
force of 35 kN. Figure 16(a) shows a tensile fracture
surface with few cracks, many ridges and tears. The
macroscopic fracture process accounted for the rough
landscape, taking place at a plane closer to the angle
of applied stress. However, a dimple-like structure is
observed in the morphology when the rectangular
area is carefully observed in Figure 16(a) and (b).

Meanwhile, voids and Si particles originating from
unattached silicon was observed in Figure 16(c).

Jobel et al. [7] conducted a fracture test on welded
pulsed gas tungsten arc welded (PCGTAW) sintered
AISI steel. Fractography of different spherical dimples
for both base metal and the welded metal tensile test
specimen was shown in Figure 17(a,b), representing
the basemetal. It was shown that themetal fails in a duc-
tilemanner under tensile force.However, fromFigure 17
(b) and (d) representing the welded joints, a parabolic-
shaped dimple was observed, characterising ductile frac-
ture. Also, flat cleavage like facets is seen with large size
pores, indicating the initiation of rupture on the surface,
partly brittle and partly ductile behaviour, also known as
mixed mode of failure, explains the enhanced strength
and hardness. Lastly, the increase in the strength of the
welded area can be explained by the grain refinement
that occurred during the welding operation.

Table 1 compares the Tungsten welding process at
different welding conditions, for different PM alloy,
based on the existing literature.

7. Summary and outlook

Based on the overview of the metallurgy of welded PM
alloys, their related microstructures, and mechanical
properties of PM welded alloys were comparatively
studied. The review shows an understanding of micro-
structural analysis and mechanical properties of welded
PM alloy and how the current understanding can
inspire new approaches for the fabrication of powdered
metallic alloy through the welding process. Also, the
review has provided a background for our current
research on Laser welding of spark plasma sintered
steel.

The following major conclusions can be drawn:

(1) The porosity in the PM alloy goes a long way to
determine the mechanical and microstructural
properties of the weld. The pores trap impurity
and cause hot or cold cracking, and reduces the

Figure 12. Hardness at centre of weld bead [65].

Figure 13. Plots of tensile strength plots of parent and welded
low alloy steels at various densities [61].

Figure 14. Tensile properties of AISI 4135 base metal and
welded joint [7].
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thermal conductivity of the weld, resulting in low
hardenability, It is true the pores reduce the ther-
mal conductivity (and thermal diffusivity as well)
but the pores also reduce the amount of heat to
be dissipated. However, the lower the porosity of
PM alloy the more outstanding the mechanical
properties of the weld.

(2) Difficulties associated with powder materials such
as porosity, contaminations, inclusion, affect the
ductility of the welded material, reducing its capa-
bility to resist strain in the heat-affected zone.

(3) The solid-state welding processes e.g. friction stir
welding may be appropriate to reduce the effect
of the pores on the final weld properties since it

promotes pore closure which eventually leads to
pore-free weld. Welding is carried out below the
melting temperature of the PM alloy, and it also
refines the grains of the welded metallic alloy.

(4) PM alloy comes with some level of porosity, there-
fore, the use of low input welding method is there-
fore recommended. Laser fusion welding process
with high welding speed and low heat input,
limit the thermal distortion, considerable produce
small heat-affected zone that reduces the residual
stress, strain and effectively minimised the thermal
distortion.

(5) The tensile strength of welded PM alloy steel is
majorly influenced by its porosity.

Figure 15. SEM images of fracture surfaces of (a) Base metal, (b) welded alloy steel [61].

Figure 16. SEM of fracture tension sample: (a) General view of the surface; (b) magnified view of the propagated crack; (c) Dimple-
like fracture surface [53].
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Specifications Table 

Subject Mechanical Engineering and Materials science 

Specific subject area Data analysis, Welding Engineering and Nanotechnology 

Type of data Table 

Chart 

Graph 

Figure 

How data were acquired The data was acquired using Future-Tech Microhardness tester (FM-700) 

Software: Google Tensor flow, Python and Jupyter 

Data format Raw 

analyzed 

Filtered 

Normalized 

Parameters for data collection 

• Sintering process: 2507 DSS powder samples was sintered at the following 

temperatures (S-temp) 900 °C, 1000 °C, 1100 °C at a pressure of 50 MPa 

under vaccum. A heating rate of 100 °C/m was considered for the sintering 

process that lasted for between (S-time) 5min-10 min. 

• Nd:YAG laser welding: The laser power and welding speed adopted in this 

research for Sample A, B and C were Laser power (Wel-power) of 1500 W, 

170 0 W, 20 0 0 W, while the welding speed employed are 3 m/min, 3 m/min 

and 2 m/min respectively 

• Vickers Hardness test: Vickers microhardness (HV) test was carried out 

using Vickers microhardness (Future Tech FM-700) tester, applying a load 

of 300 gf with dwell time of 10 s at room temperature. 

Description of data collection The data used for the stastical analysis was gotten from three experimnetal 

processes, Sintering parameters and hardness test data. The welding 

parameters were selected based on the optimized parameters from literature. 

The Vickers microhardness test data was targeted at the welded zone (WZ) for 

this research. 

Data source location University of Witwatersrand, Johannesburg, South Africa 

Data accessibility With the article 

Mendeley Data 

https://data.mendeley.com/datasets/c49p4g34cc/ 

2#folder- 795deb94- da97 –479a- b3ec- 71154d68a4bd 

Value of the Data 

• The data is beneficial to researchers that may likely want to work in the area of data and 

machine learning analysis of engineering materials. 

• Data utilized as a reference to investigate the statistical coefficient of sintered and welded 

data on the overall mechanical properties of 2507 DSS and regression analysis. 

• Further research on microhardness analysis of welded specimen can be built on the Vickers 

analysis carried out in this research. 

1. Data Description 

In this information dispensation there is enormous data like feedbacks, medical data, materi- 

als data and share data e.t.c., data science has in no doubt assisted us to make quality decisions 

in all sphere of life. Recently, material science and engineering field has accepted data science as 

a tool to analyse materials properties data. Data science has help to greatly reduce the cost save 

time in material structure design, overall reduce time in material design and its behaviour [1] . 

The data and analyses included here corroborate the statistical analysis drawn from the study 

of ND:YAG laser welded 2507DSS. Chemical composition data analysis of the powdered 2507 

(DSS) Table 1 . Data sets in Table 2 . Summarizes the experimental data gotten from the sintering 

process and laser welding of 2507 DSS which includes the sintering temperature, sintering time, 
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Table 1 

Chemical composition of the As-received powdered 2507 DSS (wt%). 

Material C P Si Ni N Mn S Cr Mo Fe 

2507 0.02 0.014 0.4 7.1 0.31 0.8 0.001 24.4 3.76 Balance 

Table 2 

Sintering and welding parameters [3] . 

S-temp ( °C) S-time (min) Wel-power (W) Wel-speed(m/min) Hardness (HV) 

10 0 0 5 1500 3 343.7 

10 0 0 5 1500 3 350.1 

10 0 0 5 1500 3 351.7 

10 0 0 5 1500 3 365.6 

10 0 0 5 1500 3 337.5 

10 0 0 5 1500 3 362.8 

10 0 0 5 1500 3 356.7 

10 0 0 5 1500 3 357 

10 0 0 5 1500 3 356.9 

10 0 0 5 1500 3 361.2 

900 10 1700 3 347.6 

900 10 1700 3 325 

900 10 1700 3 310 

900 10 1700 3 331.8 

900 10 1700 3 349.9 

900 10 1700 3 339.3 

900 10 1700 3 386.1 

900 10 1700 3 347.9 

900 10 1700 3 381.8 

900 10 1700 3 355.7 

1100 5 20 0 0 2 354 

1100 5 20 0 0 2 379 

1100 5 20 0 0 2 380.4 

1100 5 20 0 0 2 373.7 

1100 5 20 0 0 2 380.9 

1100 5 20 0 0 2 401.4 

1100 5 20 0 0 2 396.9 

1100 5 20 0 0 2 392.7 

1100 5 20 0 0 2 377.2 

1100 5 20 0 0 2 395.1 

Table 3 

Pearson correlation between Hardness and S-time. 

Hardness (HV) S-time (min) 

Hardness(HV) 1.0 0 0 0 −0.4539 

S-time (min) −0.4539 1.0 0 0 0 

welding power, welding speed and hardness. Fig. 1 shows the graphics detail seaborn plot for 

all the data. Fig 2 . Shows the heat mapping representation for the data. Fig. 3 depicts the linear 

regression plot for predicted value and true value of the hardness. Fig. 4 represents the linear 

regression plot for sintering time(S-time) against hardness. Fig. 5 represents the linear regres- 

sion plot for welding power (Wel-power) against hardness. Fig. 6 describes the linear regression 

plot for welding speed (Wel-speed) against hardness. Fig. 7 illustrates the linear regression plot 

for sintering temp (S-temp) against hardness. 

Table 3 –Table 6 explain the extent of pearson correlation of hardness to the predictor values. 
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Fig. 1. Seaborn plot. 

Fig. 2. Heat map visualization. 
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Fig. 3. Linear regression plot of hardness prediction values against the true value. 

Fig. 4. Regression plot of hardness against Sintering time. 

Table 4 

Pearson correlation between Hardness and Wel-power. 

Hardness (HV) Wel-power (W) 

Hardness(HV) 1.0 0 0 0 0.5824 

Wel-power(W) 0.5824 1.0 0 0 0 

Table 5 

Pearson correlation between Hardness and Wel-speed. 

Hardness (HV) Wel-speed (m/min) 

Hardness(HV) 1.0 0 0 0 −0.6892 

Wel-speed(m/min) −0.6892 1.0 0 0 0 
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Fig. 5. Regression plot of hardness against welding power. 

Fig. 6. Pearson correlation of hardness and welding speed. 

Fig. 7. Regression plot of hardness against sintering temperature. 
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Table 6 

Pearson correlation between Hardness and S-temp. 

Hardness(HV) S-temp ( °C) 

Hardness 1.0 0 0 0 −0.6892 

S-temp ( °C) 0.6600 1.0 0 0 0 

2. Experimental design, materials, and methods 

2.1. Fabrication of the materials using sintering and welding processes 

2507 DSS powdered material whose compositions is shown in Table 1 , was sintered with 

spark plasma sintering equipment SPS equipment (model HHPD-25, FCT system GmbH, Rauen- 

stein, Germany, situated at Tshwane university of Technology Pretoria, South Africa). Meanwhile, 

the welding process proceded with the cutting of the sintered 2507 two parts of size (size: 12 

× 12 × 3 mm 

3 ), which was later prepared in butt configuration for the welding process. Laser 

welding equipment used is JK 600 pulsed Nd:YAG laser welding machine, at the council for sci- 

entific and industrial research (CSIR) South Africa. Also, parameters used in the data analysis was 

gotten from the sintering and welding processes as show in Table 2 . Which form our predictor 

variables. 

2.2. Microhardness 

Hardenss of welded samples was carried using Vickers microhardness (Future Tech FM-700) 

tester, applying a load of 300 gf with dwell time of 10 s at room temperature. In this research, 

we consider Vickers microhardness at the weld zone (WZ). It has been indicated in literature 

that the chemical composition of the WZ goes along way to detrermine mechanical integrity of 

the welded metallic alloy, and it is also worthy to note that the microstructure of the WZ differs 

from the base metal (BM) because of the thermal history variation and differnce in chemical 

composition [2] . Also, for the data analsis, the Microhadness data form our targeted variable. 

2.3. Data analysis 

A raw dataset comprising of 30 instances was subjected to preprocesing using sklearn pack- 

ges in tensor flow, for data cleaning, normalization, followed by splitting the data into 25% test- 

ing and 75%training set and eventually subjected it to regression analysis and visualized using 

different packages in tensor flow. The determination coefficient R 2 , Pearson correlation coeffi- 

cient, were determination coefficient on which we based benchmarking and prediction, respec- 

tively. Prediction data-set was used to test the model, also, process taking for the data analysis 

is shown in the taxonomical figure below. 

Meanwhile, linear model was imported from scikit-learn, and from sklearn.linear_model, lin- 

ear regression is imported, we then define the predictor variable and target variable. Normaliza- 

tion was performed using the Eq. (1) below. 

Y = 

( Y max − Y min ) ∗ ( X − Xmin ) 

Xmax − Xmin 
+ Y min (1) 

Where Y are the normalized datasets and X are input datasets. Eq. (2) was used to calculate 

the output datasets. 

Eq. (2) represents the simple linear progression, 

y = b 0 + b 1 x (2) 
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x represent the predictor (independent) variable while target (dependent) variable y , while b 0 is 

intercept and b 1 is slope. 

Coefficient of determination or R 2 = 

(
1 − MSE of r egr ession line 

MSE of the a v erage data 

)
(3) 

MSE is mean square error, and R 2 is a measure or meteric we have useed to determine how 

close the dats is to fitted regression line in Fig. 3 to Fig. 7 . 

Pearson correlation is another metric we used to measure the strength of correlation between 

the hardness values and other predictor values. 

2.3.1. Data visualization 

Seaborn plot showed in Fig. 1 shows stastitical info-graphics four the data, providing high- 

level interface for stastical analysis and variation of hardness to dependent variables ‘wel-power’, 

‘S-temp’, ‘S-time’, and ‘wel-speed’. 

Heat map plots in Fig. 2 was used to visualize data and it shows target variable (Hardness) 

proportional to colour with respect to variables, ‘wel-power’, ‘S-temp’, ‘S-time’, and ‘wel-speed’ 

in the vertical and horizontal axis respectively. This allows us to visualize the Hardness is related 

to ‘wel-power’, ‘S-temp’, ‘S-time’, and ‘wel-speed’. 

2.4. Code implemented 

"""Copy of Copy of Copy of Copy of model.ipynb 

Automatically generated by Colaboratory. 

Original file is located at 

https://colab.research.google.com/github/AyorindeTayo/Artificial-Neural-Network-for- 

Mechanical- Hardness- property- of- Welded- DSS- /blob/master/Copy _ of _ Copy _ of _ Copy _ of _ Copy _ 

of _ model.ipynb 〈 ?PMU? 〉 
In this notebook, I am going to implement a simple linear regression model with tensorflow. 

We are going to predict the Hardness of a welded material in term of the welding power, speed, 

time. 

""" 

# importing the tensorflow package and other auxilary packages 

import tensorflow as tf 

import numpy as np 

import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

from tensorflow import keras 

from sklearn.pipeline import Pipeline 

from sklearn.preprocessing import StandardScaler,PolynomialFeatures 

from sklearn.datasets import make_classification 

from matplotlib import pyplot as plt 

from sklearn.linear_model import LogisticRegression 

sns.set() 

"""##1. Loading the data with pandas""" 

# Loading the data with the pandas read_csv attribute 

from google.colab import files 
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files.upload() 

df = pd.read_excel(’data_1004.xlsx’) 

data = pd.DataFrame(df) 

def boxplot(df,x,y): 

ax = sns.boxplot(x = "x", y = "x", data = df) 

# Renaming the feature and looking at the data 

data 

# The shape of our data. 

data.shape 

# looking at the type of the data 

data.dtypes 

"""##1. Box plotting""" 

ax = sns.boxplot(x = "S-temp", y = "Hardness", data = df) 

ax = sns.boxplot(x = "S-time", y = "Hardness", data = df) 

ax = sns.boxplot(x = "Wel-power", y = "Hardness", data = df) 

ax = sns.boxplot(x = "Wel-speed", y = "Hardness", data = df) 

df.plot(kind = ’box’,figsize = (15,15), subplots = True, layout = (3,3), sharex = False, sharey = False) 

plt.show() 

"""One could do more plotting but we are ok now to build up our model. But first of all let 

us write a function that will help normalize our data. 

##3. Definig the function to normalize the data 

Normalization is very important in machine learning as building a model on a raw data set 

may result in poor performance of the model. It is always advisable to do so before feeding the 

data into your machine learning algorithm. 

""" 

#This function will return the normalized data 

def Normalize(x): 

return (x-np.mean(x))/np.std(x) 

"""##4- Splitting the data in test and train set""" 

#I steal this from tensorflow tutorial. One could also used the split function in sklearn. 

train_set = data.sample(frac = 0.75,random_state = 0) 

test_set = data.drop(train_set.index) 

"""## 5. Data visualisation and statistics""" 

sns.set() sns.pairplot(train_set, height = 3); 

train_set.describe() 

"""## 6. Defining the labels""" 

train_labels = train_set.pop(’Hardness’) 

test_labels = test_set.pop(’Hardness’) 

"""##3. Defining and compiling the model 

Next we will create the simplest possible neural network. It has 1 layer, and that layer has 1 

neuron, and the input shape to it is just 1 value. 
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""" 

def build_model(): 

model = keras.Sequential([ 

keras.layers.Dense(64, activation = tf.nn.relu, input_shape = [len(train_set.keys())]), 

keras.layers.Dense(64, activation = tf.nn.relu), 

keras.layers.Dense(1) 

]) 

optimizer = tf.keras.optimizers.RMSprop(0.001) 

model.compile(loss = ’mse’, 

optimizer = optimizer, 

metrics = [’mae’,’mse’]) 

return model 

model = build_model() 

model.summary() 

"""## 

Training the model 

Here we are going to train our model by feeding into the model the training sets of data 

(features and labels). 

""" 

history = model.fit( 

train_set, train_labels, 

epochs = 150, validation_split = 0.2, verbose = 0) 

hist = pd.DataFrame(history.history) 

hist[’epoch’] = history.epoch 

hist.tail() 

"""## Plotting the results""" 

def plot_history(history): 

hist = pd.DataFrame(history.history) 

hist[’epoch’] = history.epoch 

plt.figure() 

plt.xlabel(’Epoch’) 

plt.ylabel(’MAE for concrete strength’) 

plt.plot(hist[’epoch’], hist[’mean_absolute_error’], 

label = ’Train 

Error’) plt.plot(hist[’epoch’], hist[’val_mean_absolute_error’], 

label = ’Val Error’) 

#plt.ylim([0,5]) 

plt.legend() 

plt.figure() 

plt.xlabel(’Epoch’) 

plt.ylabel(’MSE [concrete strength]’) 

plt.plot(hist[’epoch’], hist[’mean_squared_error’], 

label = ’Train Error’) 

plt.plot(hist[’epoch’], hist[’val_mean_squared_error’], 

label = ’Val Error’) 

#plt.ylim([0,20]) 

plt.legend() 
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plt.show() 

plot_history(history) 

model = build_model() 

early_stop = keras.callbacks.EarlyStopping(monitor = ’val_loss’, patience = 10) 

history = model.fit(train_set, train_labels, epochs = 150, 

validation_split = 0.2, verbose = 0, callbacks = [early_stop]) 

plot_history(history) 

hist = pd.DataFrame(history.history) 

hist[’epoch’] = history.epoch 

hist.tail() 

loss, mae, mse = model.evaluate(test_set, test_labels, verbose = 0) 

print("Testing set Mean Abs Error: {:5.2f} Hardness".format(mae)) 

test_predictions = model.predict(test_set).flatten() 

plt.scatter(test_labels, test_predictions) 

plt.xlabel(’True Values [Hardness]’) 

plt.ylabel(’Predictions [Hardness]’) 

plt.axis(’equal’) 

plt.axis(’square’) 

plt.xlim([0,plt.xlim()[1]]) 

plt.ylim([0,plt.ylim()[1]]) 

_ = plt.plot([ −10 0 0, 10 0 0], [ −10 0 0, 10 0 0]) 

test_predictions 

test_labels 

Normalize(train_set) 

Normalize(train_labels) 

sns.pairplot(data, hue = "Hardness", palette = "husl") 

"""Plotting ∗italicized text ∗""" 

df.plot(kind = ’density’,figsize = (15,15), subplots = True, layout = (3,3), sharex = False) 

plt.show() 

import seaborn as sns; sns.set(style = "ticks", color_codes = True) 

sns.pairplot(data) 

sns.pairplot(data, hue = "Hardness") 

sns.pairplot(data, hue = "Wel-speed", markers = ["o", "s"]) 

sns.pairplot(data, kind = "reg") 

corr_matrix = df.corr() 

corr_matrix 

names = [’S-temp’,’S-time’,’Wel-power’,’Wel-speed’,’Hardness’] 

fig = plt.figure() 

ax = fig.add_subplot(111) 

cax = ax.matshow(corr_matrix, vmin = −1, vmax = 1) 

fig.colorbar(cax) 
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ticks = np.arange(0,5,1) 

ax.set_xticks(ticks) 

ax.set_yticks(ticks) 

ax.set_xticklabels(names) 

ax.set_yticklabels(names) 

plt.show() 

""" ∗∗ANOVA ANALYSIS ∗∗""" 

df.corr() 

"""We can use the Pandas method corr() to find the feature other than price that is most 

correlated wit 

price""" 

df.corr()[’Hardness’].sort_values() 

sns.regplot(x = "Hardness", y = "Wel-speed", data = df) 

plt.ylim(0,) 

df[["Hardness", "Wel-speed"]].corr() 

sns.regplot(x = "Hardness", y = "Wel-power", data = df) 

plt.ylim(0,) 

df[["Hardness", "Wel-power"]].corr() 

sns.regplot(x = "S-temp", y = "Hardness", data = df) 

plt.ylim(0,) 

df[["Hardness", "S-temp"]].corr() 

sns.regplot(x = "Hardness", y = "S-time", data = df) 

plt.ylim(0,) 

df[["Hardness", "S-time"]].corr() 

from scipy import stats 

pearson_coef, p_value = stats.pearsonr(df[’Hardness’], df[’Wel-power’]) 

print("The pearson Correlation Coefficient is", pearson_coef, "with a p -value of p = ", p_value) 

pearson_coef, p_value = stats.pearsonr(df[’Hardness’], df[’S-temp’]) 

print("The pearson Correlation Coefficient is", pearson_coef, "with a p -value of p = ", p_value) 

pearson_coef, p_value = stats.pearsonr(df[’Hardness’], df[’S-time’]) 

print("The pearson Correlation Coefficient is", pearson_coef, "with a p -value of p = ", p_value) 

pearson_coef, p_value = stats.pearsonr(df[’Hardness’], df[’Wel-speed’]) 

print("The pearson Correlation Coefficient is", pearson_coef, "with a p -value of p = ", p_value) 

"""To see if different types ’Wel-power’ impact ’Hardness" 

∗∗MODEL DEVELOPMENT ∗∗

""" 

import matplotlib.pyplot as plt 

from sklearn.linear_model import LinearRegression 

X = df[[’Wel-power’]] 

Y = df[’Hardness’] 

lm = LinearRegression() 

lm.fit(X,Y) 
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lm.score(X, Y) 

features = ["S-temp", "S-time","Wel-power","Wel-speed"] 

"""We can Fit a linear regression model using the longitude feature ’long’ and caculate the 

R ̂ 2.""" 

X = df[[’S-temp’,’S-time’,’Wel-power’,’Wel-speed’]] 

Y = df[’Hardness’] 

lm.fit(X,Y) 

lm.score(X,Y) 

"""Create a list of tuples, the first element in the tuple contains the name of the estima- 

tor:’scale’ 

’polynomial’ ’model’""" 

Input = [(’scale’,StandardScaler()),(’polynomial’, 

PolynomialFeatures(include_bias = False)),(’model’,LinearRegression())] 

"""We use the list to create a pipeline object, predict the ’price’, fit the object using the 

features in the list features, then fit the model and calculate the R ̂ 2 ′′ "" 

Input = [(’scale’, StandardScaler()), (’polynomial’, 

PolynomialFeatures(include_bias = False)),(’model’,LinearRegression())] 

pipe = Pipeline(Input) 

pipe 

X = df[[’S-temp’,’S-time’,’Wel-power’,’Wel-speed’]] 

Y = df[’Hardness’] 

pipe.fit(X,Y) 

pipe.score(X,Y) 

""" ∗∗MODEL EVALUATION AND REFINEMENT ∗∗""" 

from sklearn.model_selection import cross_val_score 

from sklearn.model_selection import train_test_split 

print("done") 

we will split the data into training and testing set""" features = ["S-temp", "S-time","Wel- 

power","Wel-speed"] 

X = df[features] 

Y = df[’Hardness’] 

x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size = 0.15, random_state = 1) 

print("number of test samples:", x_test.shape[0]) 

print("number of training samples:",x_train.shape[0]) 

Create and fit a Ridge regression object using the training data, setting the regularization 

parameter to 0.1 and calculate the R ̂ 2 using the test data. ∗∗""" 

from sklearn.linear_model import Ridge 

RigeModel = Ridge(alpha = 0.1) 

RigeModel.fit(x_train, y_train) 

yhat = RigeModel.predict(x_test) 

Rsqu_test = RigeModel.score (x_test,y_test) 

print(Rsqu_test) 
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