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Abstract. Based on an equivalence relation that was established recently
on exponential sums, in this paper we study the class of functions that
are equivalent to the Riemann zeta function in the half-plane {s ∈ C :
Re s > 1}. In connection with this class of functions, we first determine
the value of the maximum abscissa from which the images of any function
in it cannot take a prefixed argument. The main result shows that each
of these functions experiments a vortex-like behavior in the sense that
the main argument of its images varies indefinitely near the vertical line
Re s = 1. In particular, regarding the Riemann zeta function ζ(s), for
every σ0 > 1 we can assure the existence of a relatively dense set of real
numbers {tm}m≥1 such that the parametrized curve traced by the points
(Re(ζ(σ + itm)), Im(ζ(σ + itm))), with σ ∈ (1, σ0), makes a prefixed finite
number of turns around the origin.
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1. Introduction

Given a complex variable s = σ + it, the exponential sums of the type
∑

n≥1

ane−λns, an ∈ C,

where {λn} is a strictly increasing sequence of positive numbers tending to
infinity, are known by the name of general Dirichlet series. A classical example
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is connected with the Riemann zeta function ζ(s), which is defined as the
analytic continuation of the function defined for σ > 1 by the sum

∑∞
n=1

1
ns .

Any non-trivial zero of ζ(s) (i.e. different from −2,−4, . . .) lies in the open
strip {s ∈ C : 0 < Re s < 1}, which is called the critical strip. It is widely
known that the distribution of these zeros has captured the attention of many
different researchers in view of the fact that their study plays a pivotal role in
analytic number theory. In fact, it yields important results concerning prime
numbers and related objects in number theory.

As a result of his investigations and contributions to the understanding of
general Dirichlet series (and their regions of convergence, uniform convergence
and absolute convergence), the Danish mathematical H. Bohr introduced an
equivalence relation among them that led to important results in the last
century. In particular, the so-called Bohr’s equivalence theorem shows that
equivalent Dirichlet series take the same values in certain vertical lines or
strips in the complex plane (e.g. see [1,2,6,11]).

By using Bohr’s theory as a starting point, we established in [7] a more
general perspective through an equivalence relation ∼ on the classes SΛ con-
sisting of exponential sums of the form

∑

j≥1

aje
λjp, aj ∈ C, λj ∈ Λ, (1)

where Λ = {λ1, λ2, . . . , λj , . . .} is an arbitrary countable set of distinct real
numbers, and p is a parameter (in our case, it will be changed by s = σ +
it in the complex case, or by t in the real case). In the context of almost
periodic functions, to which this equivalence relation can also be extended,
one of the main results of [7] shows that the condition of almost periodicity
yields the fact that every sequence of (vertical) translates has a subsequence
that converges uniformly (on every reduced strip) to an equivalent function (see
also [8]). Furthermore, we extracted in [7, Section 5] some concrete applications
to the case of exponential sums which converge absolutely, and in particular
to the Riemann zeta function. For example, we show that any exponential
sum which is equivalent to the Riemann zeta function, ζ(s), can be uniformly
approximated in every reduced strip of {s ∈ C : Re s > 1} by certain vertical
translates of ζ(s) (see [7, Theorem 6]). Throughout this work, we will use a
generalization of Bohr’s equivalence relation, defined in Sect. 2, which was used
in [9] (see also [10]) to get a result like Bohr’s equivalence theorem extended
to certain classes of almost periodic functions in vertical strips {s ∈ C : α <
Re s < β}.

Regarding the Riemann zeta function ζ(s), the connection between it and
prime numbers was discovered by L. Euler, who proved the identity

ζ(s) =
∞∏

k=1

1
1 − p−s

k

for Re s > 1,
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where the product on the right hand extends over all prime numbers pk. In
view of the Euler product, it is easily seen that ζ(s) has no zeros in the half-
plane {s ∈ C : Re s > 1}. It is also known that the Dirichlet series and the
Euler product of ζ(s) converge absolutely in the same half-plane σ > 1 and
uniformly in σ ≥ 1 + δ for any δ > 0. A more advanced introduction to the
theory surrounding the Riemann hypothesis can be found for example in [3].

In general terms, let {a2, a3, a5, . . . , apj
, . . .} be an arbitrary sequence of

complex numbers such that |apj
| = 1 for each j = 1, 2, . . .. Take a1 = 1 and

define an = aα1
p1

aα2
p2

· · · aαkn
pkn

when n = pα1
1 pα2

2 · · · pαkn

kn
is not a prime number.

Throughout this paper, associated with such a sequence {a2, a3, a5, . . .}, we
will consider the generic exponential sum

∞∑

n=1

an

ns
(2)

which also converges absolutely in σ > 1 and uniformly in σ ≥ 1 + δ for
any δ > 0. For example, the choices apj

= 1 for each j = 1, 2, . . . and apj
=

−1 for each j = 1, 2, . . . provide respectively the Riemann zeta function and
the Dirichlet series of the Liouville function λ(n) = (−1)Ω(n), where Ω(n)
is the number of prime factors of n (counted with multiplicities). Precisely,
we show in Proposition 3 that the image of these two functions on the real
axis provides the above and below bounds for the absolute value of the image
of each exponential sum of type (2) throughout every vertical line or closed
half-plane in {s ∈ C : Re s > 1}.

With respect to the arguments of all exponential sums of type (2), the
special choices apj

= i for each j = 1, 2, . . . and apj
= −i for each j =

1, 2, . . . provide bounds for the change of these arguments (see Lemma 4) and,
in fact, they allows us to determine the maximum abscissa from which the
images of any exponential sum of type (2) cannot take a prefixed argument (see
Lemma 7). In particular, this yields that the images of any function equivalent
to the Riemann zeta function cannot take negative real values on a certain
half-plane of the form {s ∈ C : Re s > σπ}, with σπ > 1.

Likewise, from Euler-type product formula for these sums S(s) of type
(2) (see Lemma 2), the main result of our paper shows that each one of these
functions, and in particular the Riemann zeta function, experiments a vortex-
like behavior in the sense that, given σ0 > 1 and n ∈ N, there exists a relatively
dense set of real numbers {tn,m}m≥1 such that, for each m = 1, 2, . . ., the image
of the vector-valued function (ReS(σ + itn,m), ImS(σ + itn,m)), for σ in the
interval (1, σ0), traces a curve in the plane which makes at least n turns around
the origin (see Theorem 11 in this paper, and related results in Lemma 5 and
Propositions 9 and 10). To the best of our knowledge, this result has not been
reported in the literature.
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2. The Class of Functions Equivalent to the Riemann Zeta
Function

Based on the Bohr’s equivalence relation, which was considered in [1, p. 173]
for general Dirichlet series, we defined in [7–10] new equivalence relations in
the more general context of the classes SΛ of exponential sums of type (1).
In this paper, we will use the following definition which constitutes the same
equivalence relation as that of [9, Definition 2].

Definition 1. Given Λ = {λ1, λ2, . . . , λj , . . .} a set of distinct real numbers,
consider A1(p) and A2(p) two exponential sums in the class SΛ, say A1(p) =∑

j≥1 aje
λjp and A2(p) =

∑
j≥1 bje

λjp. We will say that A1(p) is equivalent to
A2(p) if there exists a Q-linear map ψ : spanQ(Λ) → R such that bj = aje

iψ(λj)

for each j = 1, 2, . . ..

Let GΛ = {g1, g2, . . . , gk, . . .} be a basis of the vector space over the
rational numbers generated by a set Λ = {λ1, λ2, . . . , λj , . . .}, which implies
that GΛ is linearly independent over the rational numbers and each λj is
expressible as a finite linear combination of terms of GΛ, say

λj =
qj∑

k=1

rj,kgk, for some rj,k ∈ Q.

By abuse of notation, we will say that GΛ is a basis for Λ. Moreover, we
will say that GΛ is an integral basis for Λ when rj,k ∈ Z for each j, k, i.e.
Λ ⊂ spanZ(GΛ) (it is worth noting that all the results of [7] which can be
formulated in terms of an integral basis are also valid under Definition 1).

In the particular case of the Riemann zeta function ζ(s) =
∑

n≥1
1

ns , with
Re s > 1, we can take {log 2, log 3, . . . , log pk, . . .}, where pk is the k-th prime
number, as an integral basis for the set Λ. Likewise, the set of exponential
sums which are equivalent to ζ(s) are given by the series, for every choice of
x = (x1, x2, . . . , xk, . . .) ∈ R

∞, of the form

ζx(s) :=
∑

n≥1

e<rn,x>in−s,with Re s > 1, (3)

where rn is the vector of integer components satisfying log n =< rn,g >
with g given by (log 2, log 3, . . . , log pk, . . .) (see, for instance, [1, Section 8.8],
[7, Proposition 1] or [9, Expression (2.2)]). In particular, the vector x =
(π, π, . . . , π, . . .) generates the Dirichlet series for the Liouville function,
denoted here as ζπ (s), which is related to the Riemann zeta function [4,12]
by

ζπ (s) =
∞∑

n=1

λ(n)
ns

=
ζ(2s)
ζ(s)

, for Re s > 1,

where λ(n) is the Liouville’s function. Hence ζπ (s) has no singular points in
the domain Re s > 1.
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Now, let {a2, a3, a5, . . . , apj
, . . .} be an arbitrary sequence of complex

numbers such that |apj
| = 1 for each j = 1, 2, . . .. Take a1 = 1 and define

an = aα1
p1

aα2
p2

· · · aαkn
pkn

when n = pα1
1 pα2

2 · · · pαkn

kn
is not a prime number. Note

that the exponential sum
∑

n≥1
an

ns is identified with that of (3) given by

ζx(s) =
∑

n≥1
e<rn,x>i

ns , where x = (x1, x2, . . . , xk, . . .) satisfies apj
= eixj for

each j = 1, 2, . . .. Indeed, we have that

an = aα1
p1

aα2
p2

· · · aαkn
pkn

= ei(α1x1+α2x2+...+αknxkn ) = e<rn,x>i,

where rn is defined above. Consequently, we will handle these series written in
the form of (3).

Although the following preliminary results are reasonably simple, we next
provide their proof for the sake of completeness. We first obtain an Euler-type
product for ζx(s) on Re s > 1 and we prove that the convergence of this Euler-
type product is uniform in every half-plane Re s ≥ 1 + δ, δ > 0.

Lemma 2. Given x=(x1, x2, . . . , xk, . . .) ∈ R
∞, the product

∏∞
k=1

1
1−eixkp−s

k
converges uniformly to ζx(s) in every half-plane {s ∈ C : Re s ≥ 1 + δ}, with
δ > 0.

Proof. Since
1
2s

ζx(s) =
∞∑

n=1

e<rn,x>i

(2n)s
for any s with Re s > 1, the function

ζx(s) satisfies

ζx(s)(1 − eix12−s) = 1 +
eix2

3s
+

eix3

5s
+

eix4

7s
+

e2ix2

9s
+

eix5

11s
+ . . .

Analogously,

ζx(s)(1 − eix12−s)(1 − eix23−s) = 1 +
eix3

5s
+

eix4

7s
+

eix5

11s
+ . . .

and, in general, for the first m primes we have

ζx(s)
m∏

k=1

(1 − eixkp−s
k ) = 1 +

e<rl1 ,x>i

ls1
+

e<rl2 ,x>i

ls2
+ . . . ,

where l1, l2, . . . are the natural numbers which are not divisible by any of the
m first prime numbers, and hence {l1, l2, . . .} ⊂ {pm+1, pm+1 + 1, . . .}. In this
way, given δ > 0, for any s = σ + it such that σ ≥ 1 + δ we get



   31 Page 6 of 14 J. M. Sepulcre and T. Vidal Results Math

∣∣∣∣∣ζx(s) −
m∏

k=1

1
1 − eixkp−s

k

∣∣∣∣∣ =

∣∣∣∣∣

m∏

k=1

1
1 − eixkp−s

k

∣∣∣∣∣

∣∣∣∣∣ζx(s)
m∏

k=1

(1 − eixkp−s
k ) − 1

∣∣∣∣∣

=
m∏

k=1

1∣∣1 − eixkp−s
k

∣∣

∣∣∣∣
e<rl1 ,x>i

ls1
+

e<rl2 ,x>i

ls2
+ . . .

∣∣∣∣

≤
m∏

k=1

1
1 − p−σ

k

(
1
lσ1

+
1
lσ2

+ . . .

)
≤ ζ(1 + δ)

∞∑

k=pm+1

1
k1+δ

,

which tends to 0 as m → ∞. Hence the result holds. �

The following result, which is a clear consequence of the Euler product
representation, shows that the functions ζx(s) are bounded throughout every
vertical line {s ∈ C : Re s = σ0} or closed half-plane {s ∈ C : Re s ≥ σ0}
included in {s ∈ C : Re s > 1}.

Proposition 3. Let x = (x1, x2, . . . , xk, . . .) ∈ R
∞ and K be a closed half-plane

in {s ∈ C : Re s > 1}. Then
ζπ (σ0) ≤ |ζx(s)| ≤ ζ(σ0) for any s ∈ K,

where σ0 = min{Re s : s ∈ K}.
Proof. Let K be a closed half-plane in {s ∈ C : Re s > 1}, and take the value
σ0 = min{Re s : s ∈ K} (which is greater than 1). Take s = σ + it ∈ K. By
the Euler-type product formula, we have

|ζx(σ + it)| =

∣∣∣∣∣∣

∏

k≥1

1
1 − eixkp−σ−it

k

∣∣∣∣∣∣
≥

∏

k≥1

1
1 + p−σ

k

≥
∏

k≥1

1
1 + p−σ0

k

= ζπ (σ0).

Moreover, it is clear that

|ζx(s)| =

∣∣∣∣∣∣

∑

n≥1

e<rn,x>i

nσ+it

∣∣∣∣∣∣
≤

∑

n≥1

1
nσ

≤
∑

n≥1

1
nσ0

= ζ(σ0).

Thus the result holds. �

3. On the Values of the Arguments of the Functions that are
Equivalent to the Riemann Zeta Function

Let ζx(s) =
∑

n≥1
e<rj ,x>ie−s log n, with Re s > 1 and x ∈ R

∞, be an expo-

nential sum which is equivalent to the Riemann zeta function. By Lemma 2
we know that ζx(s) can be expressed in terms of the Euler-type product
∏∞

k=1

1
1 − eixkp−s

k

and this product converges uniformly to ζx(s) in every
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reduced strip of U = {s ∈ C : Re s > 1}. This yields that the principal value
of the argument of ζx(s) can be written in terms of

Arg(ζx(s)) = −
∑

k≥1

Arg(1 − eixkp−s
k ) (mod(−π, π]).

From now on, we will denote as Args the principal value of the argument of
a non-null complex value s. In our case, given x ∈ R

∞, we will handle the
mapping Aζx(s) : U 	→ R+ ∪ {∞} defined as

Aζx(s) :=
∑

k≥1

∣∣Arg(1 − eixkp−s
k )

∣∣ . (4)

Notice that limσ→∞ ζ(σ + it) = 1 for any t ∈ R (and hence limσ→∞ Arg(ζ(σ +
it)) = 0 for any t ∈ R). So, thanks to [9, Theorem 18], we state that every
function ζx(s) satisfies that limσ→∞ ζx(σ + it) = 1 for any t ∈ R (and hence
limσ→∞ Arg(ζx(σ + it)) = 0 for any t ∈ R). In particular, we have that
limσ→∞ Aζx(σ + it) = 0 for any t ∈ R.

The following lemma shows the importance of ζ π
2
(s) =

∏∞
k=1

1
1−ip−s

k

and

ζ− π
2
(s) =

∏∞
k=1

1
1+ip−s

k

in terms of the mapping Aζx(s), which is connected

with the argument of the functions ζx(s) equivalent to the Riemann zeta func-
tion.

Lemma 4. Let Aζx(s) =
∑

k≥1

∣∣Arg(1 − eixkp−s
k )

∣∣ be the mapping defined
above. It is satisfied:

(i) Aζx(σ + it) ≤ Aζ π
2
(σ) = Aζ− π

2
(σ) for any x ∈ R

∞ and σ + it ∈ U .

(ii) Aζ π
2
(σ) =

∑
k≥1

arctan(p−σ
k ) for any σ > 1;

(iii) Aζ π
2
(σ) < ∞ for any σ > 1, and limσ→1+ Aζ π

2
(σ) = ∞;

(iv) The function Aζ π
2

: (1,∞) 	→ R+, defined as

Aζ π
2
(σ) =

∑

k≥1

∣∣Arg(1 − ip−σ
k )

∣∣ ,

is continuous and decreasing.

Proof. (i) Given σ > 1 and k ∈ N, it is clear that
∣∣Arg(1 − eixkp−σ

k )
∣∣ attains

the maximum value when xk = ±π
2 . In the same way, fixed σ + it ∈ C

with σ > 1, we have
∣∣Arg(1 − eixkp−σ−it

k )
∣∣ =

∣∣Arg(1 − ei(xk−t log pk)p−σ
k )

∣∣ ≤∣∣Arg(1 + ip−σ
k )

∣∣ =
∣∣Arg(1 − ip−σ

k )
∣∣ for each k = 1, 2, . . ., which proves (i).

(ii) Given σ > 1, note that

Arg(1 − ip−σ
k ) = arctan(−p−σ

k ) = − arctan(p−σ
k )

and

Arg(1 + ip−σ
k ) = arctan(p−σ

k ).
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Hence

Aζ± π
2
(σ) =

∑

k≥1

| arctan(p−σ
k )| =

∑

k≥1

arctan(p−σ
k ).

(iii) For σ > 0, it is easy to prove that
3σ

3 + σ2
< arctan σ < σ (see for

example [5, p. 665] for the first inequality). Hence

∑

k≥1

3p−σ
k

3 + p−2σ
k

≤
∑

k≥1

arctan(p−σ
k ) ≤

∑

k≥1

p−σ
k .

Moreover, we have that
∑

k≥1

1
pσ

k

and
∑

k≥1

3/pσ
k

3 + 1/p2σ
k

have the same char-

acter of convergence. Consequently,
∑

k≥1

arctan(p−σ
k ) = Aζ π

2
(σ) < ∞ for any σ > 1

and

lim
σ→1+

∑

k≥1

arctan(p−σ
k ) = lim

σ→1+
Aζ π

2
(σ) = ∞.

(iv) It is clear that limσ→∞ Aζ π
2
(σ) = 0. Furthermore, if 1 < σ1 < σ2

then
∣∣Arg(1 − ip−σ1

k )
∣∣ >

∣∣Arg(1 − ip−σ2
k )

∣∣ for each k = 1, 2, . . .

Consequently,

Aζ π
2
(σ1) =

∑

k≥1

∣∣Arg(1 − ip−σ1
k )

∣∣ ≥
∑

k≥1

∣∣Arg(1 − ip−σ2
k )

∣∣ = Aζ π
2
(σ2),

which proves that Aζ π
2
(σ) is decreasing on (1,∞). Moreover, by Weierstrass’s

criterion, the sum
∑

k≥1

∣∣Arg(1 − ip−σ
k )

∣∣ =
∑

k≥1

arctan(p−σ
k ) ≤

∑

k≥1

p−σ
k

converges uniformly on every reduced strip of U , which proves the continuity
of Aζ π

2
(σ). �

As a consequence of the lemma above, given x ∈ R
∞, the mapping

Aζx(s) : U 	→ R+ considered in (4) leads to a function well defined. Further-
more, it is clear that the case ζ π

2
(s) is particularly significant in our context.

We next prove the following lemma regarding this function.

Lemma 5. Fixed ε > 0, the parametrized curve traced by the points (Re (ζ π
2
(σ)),

Im(ζ π
2
(σ)), where σ varies in the interval (1, 1+ε), makes infinitely many turns

around the origin.
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Proof. From Lemma 4 (see the point iv)), we deduce that Aζ π
2
(σ) : (1,∞) 	→

(0,∞), defined as Aζ π
2
(σ) =

∑
k≥1

∣∣Arg(1 − ip−σ
k )

∣∣ , is a decreasing func-

tion and it is also bijective. Likewise, by Lemma 4, point iii), we have that
limσ→1+ Aζ π

2
(σ) = ∞. In this way, in virtue of

Arg(ζ π
2
(σ)) = −

∑

k≥1

Arg(1 − ip−σ
k ) =

∑

k≥1

arctan(p−σ
k ) (mod(−π, π]),

it is clear that, fixed θ ∈ (−π, π], the equality Arg(ζ π
2
(σ)) = θ is attained for

infinitely many values in (1, 1 + ε), with ε > 0, and the curve originated from
the points

(
Re(ζ π

2
(σ)), Im(ζ π

2
(σ))

)
, with σ ∈ (1, 1 + ε), makes infinitely many

turns around the origin. �

Remark 6. In view of Lemma 2, it can be easily seen that the result above
is also valid for other cases such as ζx(σ) where x ∈ R

∞ is a vector whose
components are all ±π

2 except at most a finite amount of them.

Now, given θ ∈ [0, π] and x ∈ R
∞, define

σx
θ := sup{σ > 1 : |Arg(ζx(σ + it))| = θ for some σ + it ∈ U}.

In virtue of Lemma 5 and [9, Theorem 18] it is now clear that σx
θ is well

defined, as the set {σ > 1 : |Arg(ζx(σ + it))| = θ for some σ + it ∈ C} is not
empty for any θ ∈ [0, π]. Moreover, it coincides with

σx
θ = sup{σ > 1 : Aζx(σ + it)) = θ for some σ + it ∈ U}. (5)

In this respect, we next deduce from Lemma 4 that σx
θ is bounded above by

σ
π
2

θ := sup{σ > 1 : |Arg(ζ π
2
(σ + it))| = θ for some σ + it ∈ U}

or

σ
− π

2

θ := sup{σ > 1 : |Arg(ζ− π
2
(σ + it))| = θ for some σ + it ∈ U}

(in view of the Euler products, there is no doubt about the symmetry between
Arg(ζ π

2
(s)) and Arg(ζ− π

2
(s)), which yields that σ

π
2

θ = σ
− π

2

θ ).

Lemma 7. Let θ ∈ [0, π] and x ∈ R
∞. Then σx

θ ≤ σ
π
2

θ = σ
− π

2

θ .

Proof. Given σ > 1 and x ∈ R
∞, Lemma 4 assures that

Aζx(σ + it) ≤ Aζ π
2
(σ) = Aζ− π

2
(σ).

Moreover, in view of (5), it is satisfied

σ
π
2

θ = sup{σ > 1 : Aζ π
2
(σ + it) = θ for some σ + it ∈ U}.

Now, given x0 ∈ R
∞, suppose by reductio ad absurdum that σx0

θ > σ
π
2

θ . This
yields the existence of s0 = σ0 + it0 ∈ U , with σ0 > σ

π
2

θ , satisfying the equality
Aζx0

(σ0 + it0) = θ. Hence
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θ = Aζx0
(σ0 + it0) ≤ Aζ π

2
(σ0) < θ,

which is a contradiction. �
In particular, this result yields the existence of a real number σπ > 1

such that the images of any function equivalent to the Riemann zeta function
on the half-plane {s ∈ C : Res > σπ} cannot take negative real values.

For the following result, fixed θ ∈ [0, π], take the notation

σθ := sup{σ > 1 : |Arg(ζ(σ + it))| = θ for some σ + it ∈ U}.

Proposition 8. Let θ ∈ [0, π] and x ∈ R
∞. Then

(i) |Arg(ζx(s))| < θ for any s = σ + it ∈ U with σ > σθ;
(ii) σθ ≤ sup{σ > 1 :

∑
k≥1

arctan(p−σ
k ) = θ}.

Proof. (i) By definition of σθ, it is plain that

|Arg(ζ(s))| < θ ∀s = σ + it ∈ U : σ > σθ.

Now, the result follows from [9, Theorem 18], as
⋃

σ>σθ

Img (ζ(σ + it)) =
⋃

σ>σθ

Img (ζx(σ + it)) .

(ii) We already know that

σθ = sup{σ > 1 : |Arg(ζ(σ + it))| = θ} = sup{σ > 1 : Aζ(σ + it) = θ}.

By Lemma 4, it is accomplished that

Aζ π
2
(s) = Aζ− π

2
(s) =

∑

k≥1

| arctan(p−σ
k )| =

∑

k≥1

arctan(p−σ
k ).

Finally, the result follows from Lemma 7. �
We next focus our attention on the vortex-like behaviour of the Riemann

zeta function, and of every function that is equivalent to it. For this reason,
we first show the following two preliminary results.

Proposition 9. Let x ∈ R
∞, σ0 > 1, θ ∈ (−π, π] and n ∈ N. Then there exists

a real number ρn with 1 < ρn < σ0 such that Arg(ζx(s)) = θ is satisfied for at
least n distinct values in the vertical strip {s ∈ C : ρn < Re s < σ0}.
Proof. Given ε > 0, we already know from Lemma 5 that the parametrized
curve originated from the points

(
Re(ζ π

2
(σ)), Im(ζ π

2
(σ))

)
, with σ ∈ (1, 1 + ε),

makes infinitely many turns around the origin. In particular, given σ0 > 1,
θ ∈ (−π, π] and n ∈ N, there exists a real number ρn with 1 < ρn < σ0 such
that Arg(ζ π

2
(σ)) = θ is satisfied for at least n distinct values in (ρn, σ0). Now,

given x ∈ R
∞, we deduce from [9, Theorem 18] that

⋃

σ∈(ρn,σ0)

Img (ζx(σ + it)) =
⋃

σ∈(ρn,σ0)

Img
(
ζ π

2
(σ + it)

)
.
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Then Arg(ζx(s)) = θ is satisfied for at least n distinct values in the vertical
strip {s ∈ C : ρn < Re s < σ0} and the result follows. �

Proposition 10. Let x ∈ R
∞, σ0 > 1 and θ ∈ (−π, π]. Then Arg(ζx(s)) = θ is

satisfied for infinitely many values of s ∈ C with 1 < Re s < σ0.

Proof. Fixed ε > 0, we will again use the fact that the curve originated from
the images ζ π

2
(σ), with σ ∈ (1, 1 + ε), makes infinitely many turns around the

origin (Lemma 5). In this way, given θ ∈ (−π, π], there exists a set C ⊂ (1, 1+ε)
consisting of infinitely many isolated values σ satisfying Arg(ζ π

2
(σ)) = θ. Now,

given σ0 ∈ C, by continuity choose δσ0 > 0 such that the parametrized curve
traced by the points

(
Re (ζ π

2
(σ)), Im(ζ π

2
(σ))

)
, with σ ∈ (σ0 − δσ0 , σ0 + δσ0),

makes one turn around the origin. Thus we deduce from [9, Theorem 18] that
⋃

σ∈(σ0−δσ0 ,σ0+δσ0 )

Img (ζx(σ + it)) =
⋃

σ∈(σ0−δσ0 ,σ0+δσ0 )

Img
(
ζ π

2
(σ + it)

)
.

Hence Arg(ζx(s)) = θ is satisfied at least once in the vertical strip Eσ0 := {s ∈
C : σ0 − δσ0 < Res < σ0 + δσ0}. Finally, by varying σ0 in the set C, the result
follows. �

Finally, by using [7, Theorem 2], we next improve the results above in
the following sense.

Theorem 11. Let x ∈ R
∞, σ0 > 1 and n ∈ N. Then there exists a relatively

dense set of real numbers {tn,m}m≥1 such that, for each m = 1, 2, . . ., the
parametrized curve traced by the points (Re(ζx(σ + itn,m)), Im(ζx(σ + itn,m))),
where σ ∈ (1, σ0), makes at least n turns around the origin.

Proof. It is worth noting that [7, Corollary 5] assures the existence of an
increasing unbounded sequence {τj}j≥1 of positive numbers such that the
sequence of functions {ζx(s + iτj)}j≥1 converges uniformly to ζ π

2
(s) on every

reduced strip of U = {s ∈ C : Re s > 1}. In fact, given σ0 > 1, ε > 0 and a
reduced strip Uε = {s ∈ C : 1 + ε < Res < σ0} ⊂ U , also by [7, Corollary 5]
there exists a relatively dense set of real numbers {tj}j≥1 such that

∣∣ζx(s + itj) − ζ π
2
(s)

∣∣ < ε for any s ∈ Uε.

In particular, we have
∣∣ζx(σ + itj) − ζ π

2
(σ)

∣∣ < ε for any σ ∈ (1 + ε, σ0).

Equivalently,

ζx(σ + itj) = ζ π
2
(σ) + δj , with |δj | < ε, σ ∈ (1 + ε, σ0). (6)

Likewise, given θ ∈ (−π, π], we deduce from Lemma 5 that Arg(ζ π
2
(σ)) = θ

is attained for a set C of infinitely many values σ in (1, σ0). In fact, given
n ∈ N, there exists ε sufficiently small such that Arg(ζ π

2
(σ)) = θ is satisfied

for at least n+1 distinct values in (1+ε, σ0), and the curve originated from the
points

(
Re (ζ π

2
(σ)), Im(ζ π

2
(σ))

)
, with σ ∈ (1+ε, σ0), makes at least n+1 turns
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around the origin. In terms of the decreasing function Aζ π
2
(σ0) (see Lemma 4,

point iv)), this means that

Aζ π
2
(1 + ε) − Aζ π

2
(σ0) > 2πn. (7)

Thus, by taking ε sufficiently small and taking into account that ζx(s) �= 0 for
any s ∈ U , we deduce from (6) and (7) the existence of a sequence {tn,m}m≥1

of real numbers satisfying the following property: For each m = 1, 2, . . ., the
equality Arg(ζx(σ + itn,m)) = θ is satisfied for at least n values σ in (1 +
ε, σ0) (near the points C ∩ (1 + ε, σ0)) and the curve traced by the points
(Re (ζx(σ + itn,m)), Im(ζx(σ + itn,m))), with σ ∈ (1 + ε, σ0), makes at least n
turns around the origin. Indeed, if σ1 ∈ C ∩ (1 + ε, σ0) and θ ∈ (−π, π) then
Arg(ζ π

2
(σ1)) = θ, Arg(ζ π

2
(σ1 − ρ)) > θ and Arg(ζ π

2
(σ1 + ρ)) < θ for values of

ρ > 0 sufficiently small in an interval (0, aσ1). Now, fixed ε > 0, thanks to (7)
we assure the existence of ρε ∈ (0, aσ1) satisfying Arg(ζx(σ − ρε + itn,m)) > θ
and Arg(ζx(σ + ρε + itn,m)) < θ, which yields by continuity that Arg(ζx(σ +
itn,m)) = θ for some σ ∈ (σ1 − ρε, σ1 + ρε). �

In particular, the result above can be particularized for the significant
case of the Riemann zeta function.

Corollary 12. Let σ0 > 1 and n ∈ N. Then there exists a relatively dense set
of real numbers {tn,m}m≥1 such that, for each m = 1, 2, . . ., the parametrized
curve traced by the points (Re (ζ(σ + itn,m)), Im(ζ(σ + itn,m))), with σ ∈
(1, σ0), makes at least n turns around the origin.

Moreover, Theorem 11 (and other results as Lemma 7 and Proposition 8)
can also be immediately extended to its reciprocal sum (and all exponential
sums included in its equivalence class) which is expressed as a Dirichlet series
over the Möbius function μ(n) in the following terms (see [12, p.3]):

1
ζ(s)

=
∑

n≥1

μ(n)
ns

=
∞∏

k=1

(
1 − p−s

k

)
, Re s > 1.
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