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Abstract  1 

The formation process of onion st ructure in  a quaternary mixture 2 

made of  water ,  NaCl ,  octanol  and sodium dodecyl  sulphate,  have been 3 

invest igated by two dimensional  l ight scattering under various shear  4 

rates.   In  this  paper,  we investigated the size  evolution  of onion 5 

st ructure  est imated by l ight scatter ing data  with a nonl inear least -6 

squares  curve f i t t ing method.  The t ime evolut ion of  onion s ize  showed 7 

a good agreement  with a st retched exponential  function.   The formation 8 

process of onion st ructure is  briefly discussed from the viewpoint of 9 

the physical  meaning of fi t t ing parameters based on the integral  10 

t ransformation method.  11 
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 1 

1.  Introduction   2 

 3 

The shear-induced st ructural  t ransi t ion from lamellar st ructure to 4 

onion st ructure under shear  flow has been  studied by many researchers 5 

[1-12] .   After onion st ructure is  formed under shear f low,  this st ructure 6 

is  comparative stab le and decayed to s tationary s tate slowly,  that  is ,  7 

their size slowly decreas es with t ime course reaching to i ts  f inal  8 

stat ionary s tate  [2-4] .   These researches for  onion st ructure can apply 9 

to cosmetics and pharmacolo gy such as drug delivery sys tem in the 10 

near future [5] .  11 

In previous  works,  both nucleat ion process  [6]  and buckling 12 

mechanism [7]  proposed for the format ion of shear  induced onion 13 

st ructure.   More recently,  the theoretical  works [8,9]  and experimental  14 

works [3,4]  supported  buckling mechanism based on the coupling 15 

between thermal  undulat ions of  the membranes and the flow .  16 

It  i s  now well  known that  the stat ionary onion size R  of formed 17 

from a lamellar  phase is  given by R
．

−    ,  where 
．
 is  appl ied shear rate,  18 

namely,  the onion size resul ts from balance between the elast ic energy 19 

of the membrane and the appl ied shear st ress  [10,11] .   Furthermore ,   20 

Courbin  et.  al .  [12]  showed that  the size R  varies  as the inverse of 21 

shear rate 
．

- 1  in case of onion formed from a lamellar -sponge mixture.  22 

This  behaviour is  similar to  emulsion  system [13] .   However,  detai l  of  23 

the formation process  of  onion st ructure toward the stationary s tate is  24 

sti l l  under debate.  25 
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In this report ,  we investigate the format ion process  of  the onion 1 

st ructure toward the stationary s tate under shear  flow.  Once on ion 2 

st ructure is  formed in lamel lar  st ructure under shear  flow,  onion 3 

st ructures  are  of  micromet ric  size.   Therefore the two dimensional  l ight  4 

scattering measurement  can detect  their  t ime evolut ion of  the s ize.   It  5 

is  found that  the best  fi t t ing function,  that  is ,  phenomenological  6 

funct ion I( t ) ,  in  order to  describe a posit ion of  the Bragg peak qm a x  as  7 

funct ion of t ime.  8 

In complex physics ,  the curve fi t t ing method for  t ime evolution 9 

phenomena is  very important  and excel lent  technique,  for  example,  10 

polymer chain dynamics [14,15] ,  volume phase t ransit ion processes of 11 

gels  [16,17] and sedimentat ion behaviours  of  aggregates  [18] .   Many 12 

researchers  found the fact  that  relaxation processes can be describ ed by 13 

some power law functions,  for examples ,  Debye type,  Cole-Cole type 14 

[19],  Davidson-Cole type [20],  Wil l iams-Watts type [21] ,  in natural 15 

phenomenological  facts.   However,  i t  is  di fficult  to understand the 16 

physical  meaning of  power law,  namely,  their re laxat ion funct ions 17 

were empirical  formula even after the conc ept  of  fractal  dimension was 18 

proposed by B.  B.  Mandelbrot  [ 22],  P .  G de Genne [ 23]  and U.  Evesque 19 

[24].  20 

In our previous paper [ 15-18] ,  i t  was shown that  the concept  of 21 

integral  t ransformation met hod in order  to  clari fy the mechanisms of  22 

complex fluid.   The definit ion of the method is  shown as:  23 

( ) ( ) ( )


=
0

,  dDtFtI    (1)  24 

where I( t ),  F( t ,) ,  D() ,  were phenomenological ,  elementary and 25 

dist ribution  functions,  respectively.   This  formula exhibits  that  the 26 
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obtained phenomenological  func tions  I( t)  are represented by the 1 

convolution integrals  with the dis tr ibution functions  D()  of  2 

parameters ,  that  is ,  the phenomenological  funct ion I( t ) describes  the 3 

gathered elementary function F( t ,)  having various   values  such as  4 

dist ribution function D() .  5 

For example,  f luorescence intensity decay curves,  I( t ) show a 6 

good agreement with s t retched exponential  function (0  <  < 1) [14].   7 

In this  case,  elementary function F( t ,)  is  monoexponential  function  8 

with a f luorescence l i fe t ime,     Therefore,  Eq. (1) means Laplace 9 

transform, that  is ,  i t  is  possible to calculate dist ribution funct ion D()  10 

directly from the phenomenological  funct ion I( t ) based on well  known 11 

CONTIN program [15,25].   Furthermore,  in cases of  volume phase 12 

transit ion processes  of  gels  [ 15,16]  and sedimentation behaviours  of  13 

aggregates [18],  phenomenological  funct ion I( t ) show a good 14 

agreement with st retched exponential  funct ion (   > 1) and elementary 15 

funct ion F( t ,)  is  heaviside funct ion.   In  these cases,  dis t ribution 16 

funct ion D()  was given by the just  derivative of  I( t ).   Therefore,  17 

integral  t ransformation method is  very effective to  est imate parameters  18 

of power law and dist ribution function.  19 

We are making suggest ion by integral  transformation method to 20 

be available for  research fields o f complex fluid .   The aim of this  study 21 

is  to find a best  phenomenological  funct ion I( t ) by using curve fi t t ing 22 

method for  the format ion dynamics of  onion st ructure under shear  flow .  23 

Furthermore  we wil l  briefly discuss  about  physical  meaning of  fi t t ing 24 

parameters .  25 

 26 
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2.  Experimental  1 

 2 

2.1.  Materials  3 

The system is  studied a quaternary lyotropic lamellar  phase , 4 

which is composed of  sodium dodecyl  sulfate (SDS) , octanol ,  NaCl and 5 

water  [26] .   SDS was purchase form Wako Co,  (98% purity)  and used 6 

without further purif ication.  The lamellar phase was prepared by 7 

dissolving 9% SDS and 11% octanol in  brine (20g/L NaCl in dist i l led 8 

water).   Experiments were performed after  approximately two week,  9 

until  the samples  had reached homogeneous.  10 

 11 

2.2.  Measurements  12 

We measured the t ime evolut ion of  onion size under various 13 

shear rate 
．
.   The onion s tructures  are micrometrical  size ,  therefore,  14 

l ight  scattering measurement  were performed under shear  f low with 1 15 

mm gap homemade plate -plate type cel l ,  one of  which is turned at  an 16 

angular rotat ion speed  .   The incident l ight  (10mW He -Ne laser) was  17 

scattered in  sample cel l ,  and the scatter ing l ight  could  be visual ized by 18 

use of project ion on a screen  (Fig.  1) .   All  the experiments were 19 

performed at  controlled room temperature (20 ℃ ).   When onion  20 

st ructures  were formed,  the l ight  scat tered from the sample gave a 21 

characteris t ic  ring in the forward direct ion whose radius was related to 22 

the onion size.   The l ight scattering pat terns  were  f i led by CCD video 23 

camera.  Softwares  for graphical  analys is  and curve fi t t ing were coded 24 

by Delphi (Borland  Software Co.).   The fi t t ing function could  be 25 

always estimated for  al l  data curves  using the nonl inear -least  squares 26 
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method based on the quasi -Marquardt algorithm as a software part  of  1 

PLASMA [14-17].  2 

 3 

3.  Results and discussion  4 

 5 

Once onion st ructure is  forme d in lamellar solut ion under shear 6 

flow,  a characterist ic  scattering ring suddenly appears  on the screen .   7 

Then,  their  scat tering vectors  slowly and cont inuously increases  with 8 

t ime unti l  the stat ionary s tate is  reached.   This  format ion behavior  is  9 

good agreement  with previous works of  Net tesheim et  al .  [2]  and 10 

Courbin  et al .  [3 ,4] .   The evolut ion of  the scattering vector  that  is  11 

calculated from the scattering r ing  is  shown in Fig.  2 .   We assumed 12 

that  the fol lowing st retched exponential  funct ion could f i t  t he t ime 13 

evolut ion of  the Bragg peak qm a x( t )  from phenomenological  viewpoint  14 

based on integral  t ransformation method [15 -18] .  15 

( )
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
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−−+=




0

21max exp1
tt

qqtq   (2)  16 

q1  is  init ial  scattering vector when the on ion s t ructure are formed in 17 

lamellar  solution and t0  is  their t ime delay,  q2  is  prefactor ,    is  the 18 

relaxation t ime  and β  is  the power component .   Very good fi ts  were 19 

obtained between experimental  data and st retched  exponential  function 20 

(Fig.  2) .   The monoexponent ial  function was also appl ied to  the curve 21 

fi t t ing of t ime evolution of the Bragg p eak qm a x( t ).   Obtained all  f i t t ing 22 

parameters  and the value of  2  for  the st retched exponential  funct ion  23 

and the monoexponential  function  are l is ted in  Table 1  and Table 2 ,  24 

respect ively.   In  general ,  the goodness of f i t t ing to  a measure data with 25 
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a t rial  function is  evaluated quant i tat ively by a value of  2  in  the least  1 

square calculat ion.   The monoexponential  function is not in  agreement  2 

measured data,  because and th e value of 2  is  larger  than s tretched 3 

exponent ial  function and also the f i t t ing parameter  t0  in  the 4 

monoexponent ial  function is not  posit ive value .   Thus the st retched  5 

exponent ial  function is appropriate  to express  the t ime evolution of  the 6 

Bragg peak qm a x( t ) .   Let  us  explain a physical  meaning of  each 7 

parameters  on the s t retched  exponent ial  funct ion (Eq.(2))  as  8 

follows.When t  approaches  t0 ,  then qm a x( t ) approaches  q1 .   Therefore,  9 

q1  indicate that  ini t ial  scat ter ing vector  q1  when onion st ructure are 10 

formed in lamellar  solut ion and t0  i s  i t s  t ime delay.   Fig.  3 shows the 11 

double log plots  of the  q1  (open symbol:  lef t  axis)  and t0  (closed 12 

symbol:  r ight  axis)  as a function of appl ied shear rate  
．
  and their  13 

slopes are obtained  1/3,  -1,  respect ively     These results  of  slopes are 14 

in good agreement with the prediction theory by Zi lman et  al .  [7]  and 15 

experimental  resul t  by Courbin et al .  [3,4] .   Therefore,  our results  16 

from fi t t ing parameters suppor t  that  the shear-induced formation of  17 

onions occur through a  buckling instabil i ty [3,4,7]  not  through a 18 

nucleation  [6] .  19 

In case of  t  approaches  infini ty,  qm a x( t )  approaches q1 +q2 .   20 

Therefore q1+q2  represents the scattering vector at  stat ionary s tate of 21 

onion st ructure.   Fig.  4 shows the double log plots  of the  q1 +q2  as  a  22 

funct ion of appl ied shear rate  
．
   The st raight l ine indicates  power low 23 

behavior  and s lope are obtained as 1/2.   Roux et al .  showed that  the 24 

final  posit ion of scat tering vector  scales  l ike  
．

1 / 2  at  s tat ionary state,  25 

because of the s tationary s ize of  the onion s tructure  resul ts  from the 26 
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balance between the elast ic  energy of  the membrane and the applied 1 

shear st ress  [10].   Our results showed that  the s t retched exponent ial  2 

funct ion (Eq.(2)) can estimate the scattering vector at  transi t ion of  3 

onion st ructure in lamellar solution and their  eq ui l ibrium state.  4 

Fig. 5(a)  shows the graph for relaxation t ime   as a function of 5 

shear rate 
．
.   The relaxat ion t ime decreases with increasing of shear 6 

rate.   As ment ioned  above,  once the onions are formed under shear  7 

flow,  their size s lowly decreas es with t ime course reaching to i ts  final  8 

stat ionary state,  that  is ,  their elastic  energy of  the membrane of  onion 9 

st ructure is  balanced by the applied shear st ress  at  equil ibrium state 10 

(Fig.  2)  [10] .   This resul t  suggest  that  balance between the elastic 11 

energy and the appl ied shear s t ress  to reach at  equi l ibrium state  are 12 

reflected in  relaxation t ime.    13 

We have plot ted in Fig.  5(b) the power component   versus the 14 

shear rate 
．
.     is  close to 0.5 al l  over  the shear rate  range.   To 15 

interpret  the meaning of   ,  le t  us  assume the fol lowing two points .   16 

First ,   the mechanism of the s ize decreasing  of  an onion  is  described 17 

by the collect ive diffusion equatio n,  that  is ,  the temporal  evolut ion of 18 

a s ingle onion  radius R  is  expressed by a monoexponent ial  funct ion  [17, 19 

27,28].   20 









−

R

t
R


exp~       (3)  21 

The characterist ic relaxation t ime of  the size decreasing    is  22 

given by  DRR

2

0~ ,  where R0  and D  are the init ial  single onion radius 23 

and the diffusion coeff icient ,  respectively [17,27,28].   Second, the 24 
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number of the init ial  onion radius R0   is  represented as nR 0  by the 1 

following Boltzmann dist ribution  2 








 
−

Tk

F
n

B

R exp~       (4)  3 

where F ,  kB  and T  are the free energy change  by the onion formation, 4 

the Bol tzmann constant and temperature,  respectively.   The free energy 5 

change F  is  given by 2

04~ RF  ,  where   is  the surface free energy.   6 

Based on the integral  t ransformation method [15-18] ,  the temporal 7 

evolut ion of  the average onion s ize,  R( t )  is  expressed by Eq.(3)  and 8 

Eq.(4)  as  follows :  9 

( ) 










−







 
−=

0
0expexp dR

t

Tk

F
tR

B 
    (5)  10 

Solving Eq.(5) by using saddle point  theory [29],  the temporal 11 

evolut ion of  onion size R( t ) is  given by a st retched exponent ial  12 

funct ion as:  ( ) ( )21exp~ cttR − ,  where c  is  a  constant .   The power 13 

component is  1/2 and  a good agreement  with  the obtained fi t t ing 14 

parameter value of β  (Fig.  5(b)).   Thus we can give a suggestion that  15 

the mechanism of the size decreasing  of  onion st ructure is  described by 16 

the col lective diffusion  and the init ial  size dist r ibut ion of onions is  17 

Boltzmann dist r ibution  of  the surface free energy. .   18 

 19 

4.  Conclusion  20 

 21 

 In  this report ,  we observed the formation  process  of  onion 22 

st ructures under shear f low.  We have shown for  the f irst  t ime that  the 23 

t ime evolution of  onion size  showed a st retched exponent ial  function  24 
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(Eq.(2))  with good agreement.   The values  of  fi t t ing parameters of  eq. 1 

(2) ,  q1 ,  t0  and q1+q2 ,  are in good agreement with previous works 2 

[3,7,10] .   The relaxat ion t ime of  onion s tructure st rongly depends on 3 

the shear  rate 
．
.   The power component ,  β  was  close to  0.5 al l  over  the 4 

shear  rate range.   Assuming that  the size decreasing  of  onion st ructure 5 

undergoes  by the collective diffusion  and that  the ini t ial  s ize of onions 6 

obeys the Boltzmann dist ribution  of  the surface free energy, the value 7 

0.5 of  β was deduced based on the integral  t ransformation method .   We 8 

can conclude that  a st retched exponent ial  function is  useful  for 9 

analyzing format ion process  of onion st ructure.  10 

 11 
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 1 

Figure Caption  2 

 3 

 4  

Fig.1.   Apparatus  of  two d imensional  l ight  sca t ter ing system for  5 

observat ion of  t ime evolut ion  of  s ize  of  onion s t ructure .  6  

 7  

Fig.2.   Graph for  the  t ime vs  Bragg peak q m a x( t ) ,  observed two 8 

dimensional  l ight  scat ter ing af ter  a  shear  ra te  of  
．
 =  141  s - 1  i s  appl ied .   The  9 

sol id  l ine  is  the  best  f i t  s t retched exponent ial  curve  (Eq.(2)) .   The upper  10 

graph indica tes  residuals  of  the f i t t ing resul t .  11 

 12 

Fig.3.    Log-log plot  of  shear  rate  vs  f i t t ing parameter  q 1  (Eq.  (2))  (○)  13 

(r ight -hand s ide  axis) .   The s ol ids  l ines  cor respond to  the best  power  law f i t .   14 

And Log-log plot  of  shear  rate  vs  f i t t ing parameter  t 0  (Eq.(2))  (▲ )  ( r ight -15 

hand s ide ax is) .  The sol ids  l ines  correspond to the  best  power  law f i t .  16 

 17 

Fig.4.   Log-log plot  of  shear  rate  vs  f i t t ing parameter  q 1 +q 2  (Eq.(2)) .   18 

The sol id l ine  correspond to  the  best  power  law f i t .  19 

 20 

Fig.5(a) .  Graph for  the  shear  ra te  vs  the  re laxa t ion  t ime   (Eq. (2)) .  21 

 22 

Fig.5(b) .  Graph for  the shear  rate  vs  the power component    (Eq.(2)) .    23 

The sol id l ine  is  a  guide for  the eye  ( corresponding to    = 0.5) .  24 

 25 

Table.  1  Fi t t ing parameters  and  2  values of  the s t reched exponent ial  26 

funct ion  (Eq.(2))  funct ion at  var ious  shear  rate .  27 

 28 

Table.  2  Fi t t ing parameters  and  2  values of  the monoexponent ial  29 

funct ion  at  var ious  shear  ra te .  30 

31 
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Table  1  1 

       

Shear rate (s-1) q1 q2 t0   2 

       

       

47  1.03  1.75  1.05×102 3.39×103 4.55×10-1 2.561×10-3 

66  1.18  2.45  7.12×101 3.09×103 5.23×10-1 4.517×10-3 

94  1.34  2.70  5.08×101 2.70×103 5.32×10-1 6.664×10-3 

113  1.40  2.80  4.19×101 2.61×103 4.44×10-1 9.368×10-3 

141  1.47  3.49  3.23×101 1.48×103 4.02×10-1 1.442×10-2 

       

 1 

 2  

3 
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Table  2  1 

            

Shear rate (s-1) q1 q2 t0  2 

      

            

47 9.60×10-1 1.48 -1.23×102 3.00×103 3.615×10-3 

66 1.20 1.99 -4.13×103 2.56×103 4.618×10-3 

94 1.32 2.17 -6.75×102 2.16×103 8.289×10-3 

113 1.37 2.23 -8.08×102 2.06×103 1.237×10-2 

141 1.67 2.73 -7.06×102 1.72×103 1.770×10-2 

            

 1 

 2 


