Efficient Syntheses and Antimicrobial Activities of New Thiophene Containing Pyranone and Quinolinone Derivatives by Manganese(III) Acetate. The effect of Thiophene on Ring Closure- Opening Reactions

journal or publication title	New Journal of Chemistry
volume	43
page range	5737-5751
year	2019-05-20
URL	http://hdl.handle.net/2298/00031532

doi: 10.1039/C9NJ00054B

Page 7 of 181

Efficient Syntheses and Antimicrobial Activities of New Thiophene Containing Pyranone and Quinolinone Derivatives by Manganese(III) Acetate. The effect of Thiophene on Ring Closure-Opening Reactions

Mehtap Özgür^{a*}, Mehmet Yılmaz^b, Hiroshi Nishino^c, Eda Çinar Avar^d, Hakan Dal^e, A.Tarık Pekel^a and Tuncer Hökelek^f

^aDepartment of Chemistry, Ankara University, 06100 Ankara, TURKEY ^bDepartment of Chemistry, Kocaeli University, 41380 Kocaeli, TURKEY ^cDepartment of Chemistry, Kumamoto University, Kurokami, Kumamoto 860-8555, JAPAN ^dDepartment of Chemistry, Gazi University, 06500 Ankara, TURKEY ^eDepartment of Chemistry, Anadolu University, 26470 Yenibağlar, Eskişehir, TURKEY

^fDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, TURKEY

ABSTRACT

The syntheses of new series of pyranones, namely fused pyranones and quinoline-based dihydrofurans accompanied by 3-alkenyl-substituted structures were described. The products were regioselectively formed Mn(III)-mediated oxidation at elevated temperature in order to obtain excellent yields. The effects on product distributions of the thiophene group together with the temperatures and reactions time were investigated. The structures of the syntheses compounds were determined on the basis of spectroscopic (IR, ¹H NMR, ¹³C NMR, COSY, HSQC, HMBC and elemental analysis) and X-ray crystallographic data. In addition, the *in vitro* antimicrobial activities of the some syntheses dihydrofurans were tested against G (+) and G (-) bacteria using disc diffusion method. The results indicated that the compounds containing thiophene group showed a better antimicrobial effect than some commonly used antibiotics.

Keywords: manganese(III) acetate, dihydrofuran, 3-alkenyl–substituted coumarin, thiophene, antimicrobial activity

*Corresponding authors. Tel: +90 3122126720 Fax: +90 3122232395 E-mail address: myakut@ankara.edu.tr [M. Özgür]

1. Introduction

Pyranones are amongst the most abundant molecules of naturally occurring compounds and commonly used as versatile intermediates in natural product synthesis.¹ Among pyranone derivatives, coumarins and pyranocoumarines are an important class of organic compounds, and used as the building blocks of many biologically active molecules² exhibiting significant pharmacological activities such as anticoagulant,^{3a} antitumor,^{3b} anti-imflammatory,^{3c} antibacterial^{3d} and cytotoxic activities.^{3e} Morover, 4-hydroxy-3-substituted pyranones have been used as fluorescent chemosensors,^{4a} molecular switches,^{4b} luminescence dyes^{4c} and optical sensors^{4d} owing to their conjugated features and biological activities.⁵ Quinolinone and its derivatives are in another important class of heterocycles that are widely distributed in nature.⁶ Dihydrofuroquinolinones and pyranoquinolinones, in particular, have found a great deal of interest since they have many applications in medicine and their biological activities were also demonstrated in literature.⁷ Thiophenes, another important group of heterocyclic molecules, possess versatile applications in various fields of drug development.⁸

In this respect, here we aimed at incorporating pyranone, coumarin and quinolinone as scaffold of the target molecules in the presence of thiophene moiety. Since Mn(III)-based oxidative radical cyclization using 1,3-dicarbonyl compounds has become the most preferred way of preparing a variety of heterocycles,^{9, 10} we utilized the reaction¹¹ in order to obtain heteroaromatic compounds containing dihydrofurans, and we found to synthesize highly functionalized dihydrofuran-fused pyranone, coumarin and quinolinone derivatives. We herein report a novel and efficient one-step synthetic protocol of biological active pyranones, dihydrofuran-fused and 3-alkenyl-substituted quinoline derivatives (Scheme 1).

2. Results and discussion

2.1. Synthesis

2.1.1 Reactions of 1,1-disubstituted alkenes with **1a-e**.

We firstly examined the reaction of 4-hydroxycoumarin (**1a**) with thienyl substituted alkenes **2a-e** under different reaction conditions (**Table 1**). During the reaction at 110 °C for 5 minutes, two products were obtained. One was dihydrofuro derivatives **3-7**, and the other was 3-alkenyl-substituted compounds **8-12** (**Table 1**).

The IR spectra of compounds **3-7** showed a characteristic strong carbonyl absorption at 1720 cm⁻¹. The chemical shifts of the carbonyl groups were found at 160-161 ppm assigned to lactone carbonyl, which demonstrated that isolated compounds were angular. In addition, **H-9** proton of the angular dihydrofurocoumarin in the ¹H NMR spectrum resonated at 7.7 ppm (dd), while in the linear 2,3-dihydro-*4H*-furo[2,3-b]chromen-4-one, it is **H-5** proton appeared at 8.25 ppm (dd or d) .^{12a} Besides, it was determined that **H-9** and **H-3** protons correlated with **C9a** carbon, and **H-3** protons weakly interacted with **C4** ester carbonyl in the HMBC experiment.

In the reactions, 4-hydroxy-3-alkenylcoumarins 8-12 were unexpectedly obtained in the form of E/Z isomer mixture (**Table 1**). The existence of hydroxyl and alkenic protons in the ¹H NMR spectrum, supported the structure. Besides, in the ¹H NMR spectra of compounds 3-7, H-3 methylene protons showed a diastereotopic feature (^{2}J = 15.2-15.6 Hz as a d). These protons were not observed in the spectra of compounds 8-12. In the reaction performed using manganese(III) acetate, it was found that more alkenyl-substituted compounds such as 8-12 were produced by increasing the temperature and prolonging the duration of the reaction. Regarding the reactions performed in acetic acid for 24 h, dihydrofurocoumarins 3-7 were formed in lower yields (Entries 7, 14) or not isolated (Entries 11, 19) and alkene derivatives 8-12 were produced.

Table 1. Reaction of 4-hydroxycoumarin (1a) with 1,1-disubstituted alkenes 2a-e.ª

 R^{1} : Ph (2a), 4-Me-C₆H₄ (2b), 4-F-C₆H₄ (2c), Me (2d), 2-Thienyl (2e)

Entry	Alkene	Temp.	Time (min.)	3-7 (%) ^b	8-12 (%) ^b	(E/Z) ^c
1	22	80	1	3 (03)		
2	2a 2a	80	5	3 (80) 3 (80)		
2	2a 2a	80	10	3 (09) 3 (76)	9 (0)	1.1 70
3	Za	00	10	3 (70)	o (o)	1.1.70
4	2a	80	60	3 (62)	8 (23)	1:1.70
5	2a	70	5	3 (86)		
6	2a	70	60	3 (63)	8 (15)	1:1.70
7	2a	70	1440	3 (3)	8 (67)	1:1.70
8	2a	110	5	3 (63)	8 (27)	1:1.70
9	2b	80	1	4 (94)		
10	2b	80	5	4 (77)	9 (16)	1:4.25
11	2b	70	1440		9 (68)	1:4.25
12	2c	80	1	5 (97)		
13	2c	60-70	30	5 (68)	10 (16)	1:1.5
14	2c	70	1440	5 (9)	10 (71)	1:1.5
15	2d	80	1	6 (87)		
16	2d	110	5	6 (85)	11 (10)	
17	2d	70	1440	6 (32)	11 (14)	
18	2e	80	1	7 (57)	12 (28)	
19	2e	70	1440		12 (79)	

^a All the reactions were carried out in a 1 : 2 : 3 molar ratio of alkene **2**, 4-hydroxycoumarin (**1a**) and $Mn(OAc)_3$ in AcOH.

^b Isolated yield based on the alkene 2.

^c E:Z ratio determined by ¹H NMR spectrum.

This situation shows that alkenyl-substitue coumarin **8** should be formed by the ring-opening reaction of dihydrofurocoumarin **3** under acidic condition (vi and v ways). The proposed reaction mechanism for the formation of alkenyl substituted compounds **E** and **E**' is shown in **Scheme 2**. As it can be seen at the mechanism, the alkenyl-substituted compounds **E** and **E**' could be formed by two different ways. The first way would be the elimination of a proton from the **D** intermediate; secondly, after it would be formed dihydrofuran **F**, transforms into an alkene **E** and **E'** with the opening of the furan ring followed by deprotonation.

Scheme 2. The proposed mechanism for the formation of alkenyl-substituted compounds.

In literature, alkenyl-substituted products were not obtained in the reactions of 4-hydroxycoumarin (**1a**) with non-heteroaromatic alkenes.^{11j-k} At the reactions that we practiced, it is thought that thiophene group would be effective in the formation of alkenyl-substituted products. With the intention of comparison, the reaction was practiced using 1,1-diphenylethene (**2j**) even in the high temperature, only dihydrofurocoumarin (**3aj**) was produced^{11k} and alkenyl-substituted coumarin **4aj** was not obtained in the reaction. It was synthesized only when the obtained **3aj** was treated with the concentrated HCl (**Scheme 3**).

Scheme 3. Reaction of 4-hydroxycoumarin (1a) with 2j.

With addition of thiophene ring to the structure, the products **8**, **11** and **12** were produced in acetic acid and effective in the yields of alkenyl-substituted compounds. This situation has the following effects; **1**. Opening of the ring could occur by the electron pair over the sulfur atom at the thiophene ring and the electron pair over the oxygen at the furan ring pushing each other; **2**. The enol hydrogens **8-12** and the sulfur atom at the thiophene ring could interact and constitute a more stable structure; **3**. While a stronger acid was needed for the formation of **4aj**, the products **8-12**, they should be formed under the acetic acid conditions. This might result from the redundant density of electron over the oxygen at the furan ring of **3-7**.

The reaction of 4-hydroxy-6-methyl-2*H*-pyran-2-one (**1b**) with **2a-c** gave dihydrofuropyrans **13-15** and alkenyl substituted pyrans **16-18** (**Table 2**). The ester carbonyl groups were observed at 1730 cm⁻¹ in the IR spectra, and they were resonated at 160-165 ppm in ¹³C NMR spectra, so it was determined that the dihydrofuropyrans **13-15** were the angular products. The alkenyl substituted pyrans **16-18** were obtained as an E/Z isomeric mixture. Existence of hydroxyl and alkene protons in compounds **16-18** was found by the help of ¹H NMR, COSY, HSQC and HMBC spectra. It was determined that **C-4** to which oxygen atom was bounded resonates at 166 ppm, **C-2** at 163 ppm and **C-6** resonates at 161 ppm in the analysis of ¹³C NMR spectra.

Table 2. Reaction of 4-hydroxy-6-methyl-2H-pyran-2-one (1b) with 2a-c.^a

	OH O O Ib	+ 2a-c	$\frac{\text{Mn(OAc)}_3}{\text{AcOH, N}_2}$	$ \begin{array}{c} S \\ O \\ $	OH O R ¹ 16-18	
Entry	2a-c	Temp. °C	Time (min.)	13-15 (%) ^ь	16-18 (%) ^b	(E:Z) ^c
1	2a	80	1	13 (93)		
2	2a	70	1440	13 (28)	16 (42)	1:1.25
3	2a	110	5	13 (78)	16 (15)	1:1.25
4	2a	110	10	13 (48)	16 (41)	1:1.25
5	2b	80	1	14 (94)		
6	2b	80	5	14 (78)		
7	2b	70	1440	14 (6)	17 (62)	1:2
8	2c	80	1	15 (95)		
9	2c	80	5	15 (86)		
10	2c	70	1440	15 (17)	18 (67)	1:1.5

^a All the reactions were carried out in a 1:2:3 molar ratio of alkene **2**, **1b** and Mn(OAc)₃ in AcOH. ^bIsolated yield based on the alkenes **2**.

^c E/Z ratio determined by ¹H NMR spectrum.

As it is seen in **Table 2**, in the reactions that were practiced at 80 °C in 1 minute, the dihydrofuropyrans **13-15** were produced in high yields, while alkenyl-substituted pyrans **16-18** were obtained in high temperatures and long periods of reaction times. Even in the reactions that lasted for 24 hours, dihydrofuropyrans **13-15** were isolated.

The cyclization reactions of 4-hydroxy-2*H*,5*H*-pyrano[3,2-*c*]chromen-2,5-dione (**1c**) and 6-ethyl-4hydroxy-2*H*-pyrano[3,2-*c*]quinoline-2,5-dione (**1d**) with **2a-c** resulted in the synthesis of both dihydrofurans **19-24** and alkenes **25-30** (**Table 3**). The reactions were monitored by TLC and it was determined that the alkenes **25-30** started to form after 2 minutes. Besides, in the reactions carried out at 110 °C (Entry 2 and 9), the alkenes **25** and **28** were obtained with a higher yield than the dihydrofurans **19** and **22**. The alkenyl-substituted pyranocoumarins **25-27** and pyranoquinolinones **28-30** were also isolated in E/Z isomeric mixtures.

Table 3. Reaction of 1c, d with 2a-c.

Entry 1c			Temp.	Time	10 24 (9/)b	25 20 (0/)b	(E.7) 0
	1c-d	2a-c	(°C)	(min.)	19-24 (70)*	25-30 (%) ²	(Ľ.∠)°
1	1c	2a	80	1	19 (51)		
2	1c	2a	110	5	19 (14)	25 (42)	1:4
3	1c	2a	70	1440		25 (53)	1:4
4	1c	2b	80	1	20 (55)		
5	1c	2b	70	1440		26 (51)	1:3.4
6	1c	2c	80	1	21 (62)		
7	1c	2c	70	1440		27 (63)	1:2
8	1d	2a	80	1	22 (36)		
9	1d	2a	110	5	22 (22)	28 (36)	1:2.4
10	1d	2a	70	1440		28 (56)	1:2.4
11	1d	2b	80	1	23 (38)	29 (5)	1:8
12	1d	2b	70	1440		29 (46)	1:8
13	1d	2c	80	1	24 (39)	30 (13)	1:3.3
14	1d	2c	70	1440		30 (52)	1:3.3

^aAll the reactions were carried out in a 1 : 2 : 3 molar ratio of alkenes **2**, pyranocoumarin **1c** or pyranoquinolinone **1d** and Mn(OAc)₃ in AcOH.

^bIsolated yield based on the alkenes **2**.

^c E/Z ratio determined by ¹H NMR spectrum.

The last cyclization was examined using 1,1-disubstituted alkenes **2a-c** and 4-hydroxy-1-methyl-quinoline-2-one (**1e**). As a result, only angular dihydrofuroquinolinones **31-33** were produced (**Table 4**).

Table 4. Reaction of 1e with 2a-c.ª

- 1

	OH NO + 1e	$2\mathbf{a-c} \frac{\mathrm{Mn}(\mathbf{a})}{\mathrm{AcO}}$	$\frac{OAc)_3}{H, N_2} \qquad \qquad$	S O 3
Entry	Alkene	Temp., °C	Time, min.	31-33 (%) ^b
1	2a	60	5	31 (81)
2	2a	60	1440	31 (69)
3	2a	80	1	31 (75)
4	2a	80	5	31 (91)
5	2a	80	60	31 (89)
6	2a	80	360	31 (83)
7	2a	110	5	31 (73)
8	2b	80	1	32 (68)
9	2b	80	5	32 (94)
10	2c	80	1	33 (89)
11	2c	80	5	33 (96)

^aAll the reactions were carried out in a 1 : 2 : 3 molar ratio of alkenes **2**, quinolinone **1e** and Mn(OAc)₃ in AcOH.

^bIsolated yield based on the alkenes 2.

Both angular and linear dihydrofuroquinolinones were synthesized from the reactions with nonheteroaromatic alkenes.^{7b} Theoretical calculations have shown that the angular dihydrofuroquinolinones were thermodynamically stable, and linear dihydrofuroquinolinones were kinetically favored products. Although the present were examined at different temperatures and in different durations, no linear products were observed neither in short durations nor at low temperatures. This situation shows that the cyclization occurs regioselectively. Meanwhile, alkenyl substituted products were not observed. However, dihydrofuroquinolinone **31** could be converted into the corresponding vinyl-quinolinone **34** by treatment of concentrated HCI (**Scheme 4**).

Page 15 of 181

Scheme 4. Ring-opening reaction of dihydrofuroquinolinone 31.

2.1.2 Reactions of 1,2-disubstituted **2f** and 1,1,2-trisubstituted alkenes **2g** with **1a-c** and formation of dihydrofuran as a cis-trans isomer.

When the reactions of 1,2-disubstituted **2f** and 1,1,2-trisubstituted alkenes **2g** with 4-hydroxycoumarin (**1a**) was carried out in the presence of manganese(III) acetate, two different dihydrofurocoumarins were isolated (**Table 5**). In order to characterize the structures, the IR, ¹H-NMR and ¹³C-NMR spectra, HSQC and HMBC spectra were taken and it was deduced that the compounds **35** and **36** were *cis* and *trans* isomer. In the ¹H-NMR spectrum, the coupling constants of **H-2** and **H-3** protons were ³*J*_{H-H} = 6.0 Hz in **35** and ³*J*_{H-H} = 9.2 Hz in **36**. By comparing with the data in the literature,^{12b,c} it was determined that **35** and **36** should be "trans" and "*cis*" isomers, respectively (**Table 5**).

Table 5. Reactions of 1a-c with 2f, g.ª

^a All the reactions were carried out in a 1 : 2 : 3 molar ratio of alkene **2**, **1a-c** and Mn(OAc)₃ in AcOH at 80 °C, 5 minutes.

^b Isolated yield based on the alkene 2.

When HMBC experiments of the dihydrofurocoumarins **35** and **36** were performed, it was found out that **C-2** carbon interacted with thienyl **H-3** proton and **C-3** carbon interacted with ortho protons over phenyl ring. Regarding this, it was found out that in both compounds, thienyl group should be bound to **C-2** carbon and phenyl group should be bound to **C-3** carbon.

From the reaction of **2g** with **1a-c**, two different dihydrofurans *cis* and *trans* isomer **37-42** were also produced (**Table 5**). The structure of **37** was confirmed by X-ray crystallography (**Fig. 1**). ¹³ According to this analysis, it was determined that phenyl and thienyl groups were in *trans* position as regards to each other.

Fig. 1. The molecular entities of compound 37, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

2.1.3 Reactions of cyclic alkenes 2h, i with 1a, b and 1e

Finally, only dihydrofurans **43-48** were obtained from the reactions of **1a**, **b** and **1e** with cyclic alkenes **2h**, **i**. With the purpose of monitoring the formation of alkenyl substituted compounds, various experiments were carried out at high temperatures and in long durations (**Table 6**).

Unlike the reactions that were practiced with alkenes **2a-c**, alkenyl substituted compounds did not produce. However, the products **43** and **44** could be converted into **49** and **50** by treatment of concentrated HCl in 65% and 66% yields, respectively, as a single isomer (**Scheme 5**).

Scheme 5. Ring opening reaction of compounds 49 and 50

Table 6. Reactions of 1a, b, e with 2h, i.a

^a All the reactions were carried out in a 1 : 2 : 3 molar ratio of alkenes 2h, i,

pyranones **1a**, **b**, **e** and Mn(OAc)₃ in AcOH at 80 °C, 5 minutes. ^b Isolated yield based on the alkene **2**.

2.2 Antimicrobial activity study

When the literature studies were examined, it could be clearly seen that guinolone and coumarin derivatives had antimicrobial activities. Moreover, quinolones are among the largest antimicrobial classes.¹⁴ Quinolones are synthetic substances obtained by chemical routes different from many antibiotics obtained from living microorganisms. In this study, antimicrobial effects of some guinolone and coumarin derivatives against some gram positive and gram negative bacterial strains were determined by disk diffusion and minimum inhibitory concentration (MIC) method.^{10g}

According to the results of the disk diffusion experiment in **Table 7**, the 4-methylphenylquinolinone **32** was more effective than the phenyl- 31 and 4-fluorophenyl-guinolinone 33. Besides, the compound 3aj showed activity against B. licheniformis bacteria only. In the compounds 31 and 32, the degree of inhibition caused by the presence of nitrogen and oxygen groups also varies. It is noticed that the utilized compounds are more effective than commonly used antibiotics such as penicillin, tetracycline, ampicillin, gentamicin compared to the data in Table 8.

The minimum inhibitory concentrations of the compounds were studied at concentration ranges from 125 to 2000 μ g/mL and the results are given in **Table 9**. It appears that the compound **32** was effective even at the concentration of 125 μ g/mL on B1-coded bacteria. As a consequence, it should be noted that the compound **32** could be evaluated as an active ingredient for antibiotics.

Bacteria	3	4	5	3aj	31	32	33
E. coli ATCC 25922		10			8	10	11
M. luteus M3						7	8
B.cereus B9		8	8		10	9	8
B.licheniformis M30	10		10	8	9	15, 5	11
S. Coccus	9		8			7	
B. subtilis B1			10			9	
P. aeruginosa P7							
E.Coli : Escherichia coli ATCC 25922; M3 : Micrococcs luteus M3; B9 : Bacillus cereus B9; M30 :							
Bacillus licheniformis M30; S. Coccus: Staphylococcus aureus ATCC 6538; B1: Bacillus subtilis B1;							
P7: Pseudomonas aeruginosa P7							

Table 7. Zone diameters (mm) of the compounds against bacteria.

Table 8. Zone diameters (mm) of antibiotics against bacteria^{11g}.

	Peniciline	Chloram phenicol	Tetracycline	Ampicillin	Gentamicin
E. coli	19				
M. luteus	31		9	28	
B.cereus B9	16	31	16		
B.licheniformis	16	17	23	18	20
S. Coccus				9	
B. subtilis				15	
P. aeruginosa					16

Page 19 of 181

1

New Journal of Chemistry

2
2
3
4
5
6
7
/
8
9
10
10
11
12
13
14
14
15
16
17
10
١ð
19
20
21
21
22
23
24
27
25
26
27
20
20
29
30
21
20
32
33
34
25
55
36
37
28
20
39
40
41
12
42
43
44
45
4C
46
47
48
40
+7
50
51
52
52
53
54
55
56
50
5/
ΕO

59 60

Table 9. MIC results	(µg/mL).
----------------------	----------

Bacteria	3	4	5	3aj	31	32	33
ATCC 25922		1000			2000	1000	2000
M3						2000	2000
В9		1000	500		2000	1000	2000
M30	2000		1000	1000	1000	500	1000
ATCC 6538	1000		1000			2000	
B1			500			125	
P7							

3. Conclusion

As a result, the Mn(III)-based oxidation of 4-hydroxycoumarin (1a), 4-hydroxy-6-methyl-2*H*-pyran-2-one (1b), 4-hydroxy-2*H*,5*H*-pyrano[3,2-*c*]quinoline-2,5-dione (1d) and 4-hydroxy-1-methyl-quinoline-2-one (1e) with thienyl-substituted alkenes **2a-i** were examined. While the radical cyclizations of 1,1-disubstituted alkenes with **1a-d** gave the dihydrofuran derivatives accompanied by 3-alkenyl-substituted structures, the reactions of **1e** gave the dihydrofuran derivatives as a sole products. The reactions of 1,2-disubstituted **2f** and 1,1,2-trisubstituted alkenes **2g** with **1a-c** was carried out, two different dihydrofuran derivatives *cis* and *trans* isomer were isolated. The structures of this compounds identified with spectroscopic method and X-ray crystallography. A similar reactions were conducted using cyclic thieny-substituted alkenes **2h-i** produced dihydrofuran derivatives. The mechanisms for the formations of the products were suggested. Apart from that, the antibacterial activities of the some synthesized compounds have been investigated and good results were obtained.

4. Experimental

4.1. Physical measurements

Melting points were determined on a Gallencamp capillary melting point instrument. IR spectra (KBr disc, CHCl₃) were obtained with a Matson 1000 FT-IR in the range of 400-4000 cm⁻¹ with 4 cm⁻¹ resolution. ¹H NMR (400 MHz), and ¹³C NMR (100 MHz) spectra were recorded on a Bruker Avance DPX-400 MHz and Varian Mercury-400 High performance Digital FT-NMR spectrophotometers. The mass spectra were measured on a Micromass UK LC/MS (APCI, 100-150 eV), and a Shimadzu GC-17A/GC-MS-QP5000 (EIMS, 70 eV) spectrophotometers. Elemental analyses were performed on a Leco 932 CHNS-O instrument. Crystallographic data were recorded on a Bruker Kappa APEXII CCD areadetector diffractometer using Mo K_a radiation (λ = 0.71073 Å) at *T*= 296(2) K. Absorption correction by multi-scan was applied¹⁸. Structure was solved by direct methods and refined by full-matrix least squares against F² using all data¹⁹. TLC was performed on Merck aluminium-packed silica gel plates. Purification of products was performed by column chromatography on silica gel (Merck silica gel 60, 40-60 µm) or preparative TLC on silica gel of Merck (PF_{254-366 nm}).

4.2. Materials used for syntheses

Manganese(II) acetate tetrahydrate, Mn(OAc)₂•4H₂O, was purchased from Wako Pure Chemical Ind., Ltd. Manganese(III) acetatedihydrate, Mn(OAc)₃•2H₂O, was prepared according to the modified method described in theliterature.¹⁵ All solvents, 4-hydroxycoumarin, 4-hydroxy-6-methyl-2*H*-pyran-2-one, 4hydroxy-1-methylquinoline-2-one and other reagents were purchased from Merck. 4-Hydroxy-2*H*,5*H*pyrano[3,2-*c*]chromen-2,5-dione (**1c**) and 6-ethyl-4-hydroxy-2*H*-pyrano[3, 2-*c*]quinoline-2,5-dione (**1d**) were prepared according to the methods reported in the literature.¹⁶ The alkenes **2a-c**, **2e** and **2h-i** were prepared by dehydration from the carbinole prepared by Grignard reaction of aryl magnesium bromide and suitable carbonyl compounds.¹⁷ The other alkenes **2d**,^{11a} and **2f** and **2g**^{11d} were prepared by Wittig reaction of suitable carbonyl compounds with phosphonium ylides.

4.3. Syntheses

4.3.1. General procedure for manganese(III) acetate-based oxidative cyclization

A solution of Mn(OAc)₃•2H₂O in glacial AcOH was heated under N₂ at 80° C until it dissolved. Then, a solution of **1** and alkene **2** in 5 mL glacial AcOH was added to the mixture. The reaction was monitored by TLC. When the reaction was completed, water (10 mL) was added to the mixture and extracted with CHCl₃ (3×20 mL). The combined organic layers were neutralized with saturated NaHCO₃ aqueous solution, washed with water, dried over anhydrous Na₂SO₄ and evaporated. The products were purified by column chromatography on silica gel or preparative TLC on silica gel, eluating with hexane:AcOEt mixtures.

4.3.1.1. 2-Phenyl-2-thenyl-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (3)

Colerless solid; mp: 154-155 °C; **IR** (ν_{max} , KBr): 3104, 3093, 3069, 2974, 1716 (C=O), 1647 (C=C), 1605, 1497, 1405, 1029 (C-O-C), 729 cm⁻¹; ¹H **NMR** (400 MHz, CDCl₃), δ (ppm): 7.82 (1H, dd, J = 8, 1.2 Hz, ArH), 7.59 (1H, td, J = 8, 1.6, ArH), 7.51 (2H, dd, J = 8, 1.6, ArH), 7.4-7.3 (6H, m, ArH), 7.00 (1H, dd, J = 3.6, 1.2 Hz, ArH), 6.97 (1H, dd, J = 4.8, 4 Hz, ArH), 4.05 (1H, d, J = 15.6 Hz, -CH₂), 3.81 (1H, d, J = 15.2 Hz, -CH₂); ¹³C **NMR** (100 MHz, CDCl₃), δ (ppm): 43.23 (C3), 95.19 (C2), 101.78 (C3a), 112.72, 117.29, 123.10, 124.32, 125.58 (CH²), 126.69, 127.07, 127.09, 128.72, 128.81 (CH²), 132.81, 143.60 (C ipso), 147.67 (C ipso), 155.36 (C5a), 160.43 (C4), 164.97 (C9b); **LC/MS** m/z (%): 346.99 (MH⁺, 100); **Anal. Calcd. for** C₂₁H₁₄O₃S: C 72.81, H 4.07, S 9.2. **Found**: C 72.02, H 4.27, S 8.70.

4.3.1.2. 2-(4-Methylphenyl)-2-(2-thenyl)-2,3-dihydro-4H-furo[3,2-c]chromen-4one (4)

Light pink solid; mp: 135-136°C; **IR** (ν_{max} , KBr): 3025, 1713 (C=O), 1647 (C=C), 1406, 1025 (C-O-C), 707 cm⁻¹; ¹H **NMR** (400 MHz, CDCl₃), δ (ppm): 7.81 (1H, dd, J = 7.6, 1.6 Hz, ArH), 7.58 (1H, td, J = 7.8, 1.6 Hz, ArH), 7.39 (2H, d, J = 8.4 Hz, ArH), 7.39-7.37 (1H, m, ArH), 7.33-7.30 (2H, m, ArH), 7.2 (2H, d, J = 8.8 Hz, ArH), 7.00 (1H, dd, J = 3.6, 1.2 Hz, ArH), 6.96 (1H, dd, J = 5.2, 3.6 Hz, ArH), 4.00 (1H, d, J = 15.6 Hz, -CH₂), 3.80 (1H, d, J = 15.2 Hz, -CH₂), 2.36 (3H, CH₃); ¹³C **NMR** (100 MHz, CDCl₃), δ (ppm): 21.35 (Me), 43.18 (C3), 95.29 (C2), 101.80 (C3a), 112.76, 117.27, 123.11, 124.28, 125.57 (CH^{*}2), 126.56, 126.98, 127.04, 129.45 (CH^{*}2), 132.76, 138.64 (C ipso), 140.66 (C ipso), 147.88 (C ipso),

155.35 (C5a), 160.48 (C4), 165.00 (C9b); **LC/MS** m/z (%): 361.42 (MH⁺, 100); **Anal. Calcd. for** $C_{22}H_{16}O_3S$: C 73.31, H 4.47, S 8.90. **Found**.: C 73.04, H 4.51, S 9.06.

4.3.1.3. 2-(4-Fluorphenyl)-2-(2-thenyl)-2,3-dihydro-4H-furo[3,2-c]chromen-4one (5)

Colorless solid; mp: 115-116 °C; **IR** (ν_{max} , KBr): 3119, 3072, 2953, 1712 (C=O), 1644 (C=C), 1028 (C-O-C), 722 cm⁻¹; ¹⁹**F NMR** (376 MHz, CDCl₃), δ (ppm): -113.65; ¹**H NMR** (400 MHz, CDCl₃), δ (ppm): 7.80 (1H, dd, J = 8.0, 1.6 Hz, ArH); 7.59 (1H, td, J = 7.8, 1.2 Hz, ArH), 7.49 (2H, m, ArH), 7.40 (1H, d, J = 8.4, ArH), 7.34 (1H, dd, J = 4.8, 1.2 Hz, ArH), 7.31 (1H, d, J = 7.2 Hz, ArH), 7.08 (2H, td, J = 8.4, 2.0 Hz, ArH), 7.00 (1H, dd, J = 3.6, 1.2 Hz, ArH), 6.98 (1H, dd, J = 5.2, 3.6 Hz, ArH), 4.03 (1H, d, J = 15.2 Hz, -CH₂); ¹³C **NMR** (100 MHz, CDCl₃), δ (ppm): 43.29 (C3), 94.79 (C2), 101.72, 112.64, 115.7 (CH*2, d, ²J = 23.1 Hz), 117.31, 123.03, 124.34, 126.67, 127.13, 127.21, 127.60(CH*2, d, ³J = 8.4 Hz), 132.87, 139.50 (C, d, ⁴J = 3.1 Hz), 147.44, 155.38 (C5a), 160.27 (C4), 162.8 (C, d, ¹J = 246.3 Hz), 164.81 (C9b); **LC/MS**, (ESI, m/z) : 365.37 (MH⁺, 100); **Anal. Calcd. For** C₂₁H₁₃FO₃S: C 69.22, H 3.60, S 8.80. **Found**: C 70.01, H 3.81, S 8.97.

4.3.1.4. 2-Methyl-2-(2-thenyl)-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (6)^{2e}

Light yellow solid; mp: 79-80 °C; **IR** (ν_{max} , KBr): 3105, 1714 (C= O), 1641 (C= C), 1604, 1280, 1026 (C-O-C), 750 cm⁻¹; ¹H **NMR** (400 MHz, CDCl₃), δ (ppm): 7.69 (1H, dd, J = 7.6; 1.6, ArH), 7.56 (1H, td, J = 8.0; 1.6 Hz, ArH), 7.38 (1H, d, J = 9.2, ArH), 7.30 (1H, dd, J = 5.2; 1.2, ArH), 7.27 (1H, dd, J = 7.6, 0.8 Hz, ArH), 7.12 (1H, dd, J = 3.6; 1.2, ArH), 7.00 (1H, dd, J = 5.2; 3.6 Hz, ArH), 3.57 (1H, d, J = 15.6 Hz, -CH₂), 3.34 (1H, d, J = 15.2 Hz, -CH₂), 2.01 (3H, CH₃); ¹³C **NMR** (100 MHz, CDCl₃), δ (ppm): 29.29 (CH₃), 42.11 (C3), 92.57 (C2), 101.49 (C3a), 112.84, 117.19, 123.11, 124.17, 124.27, 125.94, 127.23, 132.65, 147.84 (C-ipso), 155.28 (C5a), 160.69 (C4), 165.09 (C9b); **LC/MS** (ESI, m/z): 285.70 (MH⁺, 100); **Anal. Calcd. For** C₁₆H₁₂O₃S: C 67.59, H 4.25, S 11.28. **Found**: C 67.41, H 3.98, S 11.33.

4.3.1.5. 2, 2-Di(2-thenyl)-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (7)

Light purple solid; mp: 121-122 °C; **IR** (ν_{max} , KBr): 3086, 3003, 1720 (C=O), 1649 (C=C), 1406, 1029 (C=O-C), 748 cm⁻¹; ¹**H NMR** (CDCl₃), δ (ppm):7.77 (1H, dd, J = 7.6, 1.6 Hz, ArH), 7.58 (1H, td, J = 7.6, 1.6 Hz, ArH), 7.38 (1H, dd, J = 8.4, 0.8 Hz, ArH), 7.35 (2H, dd, J = 4.8, 1.2, ArH), 7.31 (1H, td, J = 7.6, 1.2 Hz, ArH), 7.12 (2H, dd, J = 3.6, 1.2 Hz, ArH), 7.01 (2H, dd, J = 5.2, 4.0 Hz, ArH), 3.96 (2H, s, H3);

¹³C NMR (100 MHz, CDCl₃), δ (ppm): 44.39 (C3), 93.25 (C2), 101.71 (C3a), 112.66, 117.26, 123.15, 124.33, 126.37 (CH^{*}2), 126.83 (CH^{*}2), 127.18 (CH^{*}2), 132.85, 146.86 (C^{*}2), 155.36 (C5a), 160.29 (C4), 164.66 (C9b); LC/MS (ESI, m/z): 353.70 (MH⁺, 100); Anal. Calcd. for C₁₉H₁₂O₃S₂: C 64.75, H 3.43, S 18.20. Found: C 64.15, H 3.56 S 17.41.

4.3.1.6 4-Hydroxy-3-[2-phenyl-2-(2-thenyl)vinyl]-2H-chromen-2-one (8)

E: *Z* ratio = 1:1.70. Pale yellow solid; mp : 193-194 °C; **IR** (v_{max} , KBr): 3078, 3005, 2978, 1658 (C=O), 1604 (C=C), 1541, 1083 (C-O-C), 700 cm⁻¹; ¹H **NMR** (400 MHz, DMSO-*d*₆), δ (ppm): 7.91 (1H, dd, *J* = 8.0, 1.2 Hz, ArH) [7.80 (1H, dd, *J* = 8.8, 1.6 Hz, ArH)], 7.63 (1H, td, *J* = 7.8, 1.2 Hz, ArH) [7.56 (1H, td, *J* = 7.8, 1.6 Hz, ArH)], 7.46 (2H, dd, *J* = 4.8, 1.2 Hz, ArH) [7.53 (2H, dd, *J* = 5.2, 1.2 Hz, ArH)], 7.37 (1H, dd, *J* = 7.6 Hz, ArH) [7.41 (1H, dd, *J* = 7.6, 1.2 Hz, ArH)], 7.30-7.22 (5H+5H, m, ArH), 7.06 (1H, dd, *J* = 5.2, 3.6 Hz, ArH) [6.96 (1H, dd, *J* = 5.2, 3.6 Hz, ArH)], 6.91 (1H, dd, *J* = 3.6, 1.2 Hz, ArH) [6.83 (1H, dd, *J* = 3.6, 1.2 Hz, ArH)], 6.68 (1H, s, alkene) [6.40 (1H, s, alkene)]; ¹³C **NMR** (100 MHz, DMSO-*d*₆), δ (ppm): 103.21 (103.50), 116.59 (116.73), 116.77 (116.85), 117.03, 119.54, 124.13 (124.27), 124.56 (124.65), 126.70 (126.85), 127.27 (127.66), 128.35 (128.50), 128.61 (128.80), 129.01 (129.13), 129.40, 132.72 (132.91), 140.12 (140.21), 140.91, 141.91 (143.01), 146.70, 152.81 (153.01), 161.14 (161.20), 161.25 (161.76); **LC/MS** m/z (%): 347.14 (MH⁺, 100); **Anal. Calcd. for** C₂₁H₁₄O₃S: C 72.81, H 4.07, S 9.2. **Found:** C 72.70, H 3.98, S 9.02.

4.3.1.7 4-Hydroxy-3-[2-(4-methylphenyl)-2-(2-thenyl)vinyl]-2H-chromen-2-one (9)

E:*Z* ratio = 1:4.25. Pale orange solid; mp: 145-146 °C; **IR** (ν_{max} , KBr): 3079, 2990, 1667 (C=O), 1609 (C=C), 1550, 1494, 1245, 1083 (C-O-C), 775, 700 cm⁻¹; ¹H **NMR** (400 MHz, CDCl₃), δ (ppm): 7.62 (1H, dd, *J* = 8.0, 1.6 Hz, ArH), 7.50 (1H, td, *J* = 7.8, 1.6 Hz, ArH), 7.38-7.15 (7H+7H, m, ArH), 7.04 (1H, td) [6.97 (1H, dd, *J* = 5.2, 3.6 Hz)], 6.89 (1H, dd, *J* = 3.6, 1.2 Hz) [6.09 (1H, dd)], 6.62 (1H, s, alkene) [6.81 (1H, s, alkene)], 6.25 (1H, s, OH)[6.25 (1H, s, OH)], 2.37 (3H, s) [2.35 (3H, s)]; ¹³C **NMR** (100 MHz, CDCl₃), δ (ppm): 21.40 (21.38), 103.19 (103.48), 115.08 (115.12), 116.42 (116.53), 116.72, 118.75, 123.74 (123.84), 123.90 (124.03), 126.18, 127.18, 127.46 (127.67), 128.39 (128.58), 129.08 (128.90), 130.18 (130.06), 132.08 (132.27), 134.70, 139.00 (138.82), 139.77 (139.71), 145.68, 152.62 (152.77), 157.20 (158.03), 162.95 (162.84); **LC/MS** m/z (%): 361.43 (MH⁺, 100); **Anal. Calcd. for** C₂₂H₁₆O₃S: C 73.31, H 4.47, S 8.90. **Found**: C 73.12, H 4.21, S 9.03.

4.3.1.8 4-Hydroxy-3-[2-(4-fluorphenyl)-2-(2-thenyl)vinyl]-2H-chromen-2-one (10)

E:Z ratio = 2:3. Pale orange solid; mp: 187-188 °C; **IR** (v_{max} , KBr): 3104, 3074, 2990, 1667 (C=O), 1602 (C=C), 1494, 1213, 1153, 1083 (C-O-C), 747, 701 cm⁻¹; ¹⁹**F NMR** (376 MHz, CDCl₃), δ (ppm): -85.00, -115.51; ¹**H NMR**(400 MHz, CD₃COCD₃), δ (ppm): 7.85 (1H, dd, *J* = 7.6, 1.6 Hz, ArH) [7.77 (1H, dd, *J* = 7.6, 1.6 Hz, ArH)], 7.64 (1H, td, *J* = 8.4, 1.2 Hz, ArH) [7.58 (1H, td, *J* = 8.4, 1.2 Hz, ArH)], 7.47 (1H, d, *J* = 5.2, ArH) [7.37 (1H, i, *J* = 5.2, ArH)], 7.50 (2H, td, *J* = 7.0, 2.4 Hz, ArH) [7.40 (2H, td, *J* = 7.0, 2.0 Hz, ArH)], 7.34 (1H, d, *J* = 8.0 Hz, ArH) [7.30 (1H, d, *J* = 8.0 Hz, ArH)], 7.26 (1H, d, *J* = 7.6 Hz, ArH), 7.17 (2H, td, *J* = 8.4, 2.0 Hz, ArH) [7.07 (2H, td, *J* = 8.8, 2.0 Hz, ArH)], 7.04 (1H, dd, *J* = 4.8, 4.0 Hz, ArH) [6.98 (1H, t, *J* = 4 Hz, ArH)], 6.94 (1H, d, *J* = 4 Hz, ArH) [6.89 (1H, d, *J* = 3.2 Hz)], 6.66 (1H, s) [6.41 (1H, s, alkene)]; ¹³**C NMR** (100 MHz, CD₃COCD₃), δ (ppm): 103.10, 115.12 (CH*2, d, ²*J* = 21.3Hz) [114.97 (CH*2, d, ²*J* = 21.4Hz)], 115.98, 116.32 (116.28), 116.42, 118.57, 123.59 (123.79), 124.01 (124.07), 126.19, 126.71 (126.86), 127.71 (127.33), 129.42, 131.44 (CH*2, d, ³*J* = 8.4 Hz) [130.68 (CH*2, d, ³*J* = 8.4 Hz)], 132.25 (132.42), 141.14 (135.67), 146.19, 153.09, 160.92 (159.66), 162.65 (C, d, ¹*J* = 246.3 Hz); **LC/MS**, (ESI, m/z): 365.14 (MH*, 100); **Anal. Calcd. for** C₂₁H₁₃FO₃S: C 69.22, H 3.60, S 8.80. **Found**: C 69.03, H 3.42, S 8.67.

4.3.1.9 (E)-4-Hydroxy-3-[2-(2-thenyl)-1-propenyl]-2H-chromen-2-one (11)

Yellow solid; mp: 121-122 °C; **IR** (ν_{max} , KBr): 3079, 2990, 1667 (C=O), 1609 (C=C), 1550, 1494, 1245, 1083 (C-O-C), 775, 700 cm⁻¹; ¹H **NMR** (400 MHz, DMSO-*d*₆), δ (ppm): 7.93 (1H, dd, *J* = 7.6, 1.6 Hz, ArH), 7.60 (1H, td, *J* = 7.6, 1.6 Hz, ArH), 7.45 (1H, dd, *J* = 5.2, 1.2 Hz, ArH), 7.36 (1H, d, *J* = 8.4 Hz, ArH), 7.34 (1H, td, *J* = 7.6, 1.2 Hz, ArH), 7.23 (1H, dd, *J* = 4.0, 1.2 Hz, ArH), 7.05 (1H, dd, *J* = 4.8, 3.6 Hz, ArH), 6.44 (1H, d, *J* = 1.2 Hz, alkene), 1.94 (3H, d, *J* = 1.2 Hz, CH₃); ¹³C **NMR** (100 MHz, DMSO-*d*₆), δ (ppm): 18.81, 102.81, 116.10, 116.84, 116.88, 124.28, 124.68, 124.82, 125.82, 128.43, 132.83, 135.08, 146.81, 152.92, 160.93, 161.89; **LC/MS** (ESI, m/z): 285.60 (MH⁺, 100); **Anal. Calcd. for** C₁₆H₁₂O₃S: C 67.59, H 4.25, S 11.28. **Found**: C 67.41, H 4.19, S 11.07.

4.3.1.10 3-[2,2-Di(2-thenylvinyl)]-4-hydroxy-2H-chromen-2-one (**12**)

Purple solid; mp: 194-195 °C; **IR** (ν_{max} , KBr): 1668 (C=O), 1602 (C=C), 1492, 1217 (C-O-C), 715 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃), δ (ppm): 7.70 (1H, dd, J = 7.6, 0.4 Hz, ArH), 7.53 (1H, td, J = 7.8, 1.2 Hz, ArH), 7.39 (1H, d, J = 4.8 Hz, ArH), 7.32-7.22 (4H, m, ArH), 7.09 (1H, dd, J = 4.4, 1.2 Hz, ArH), 7.07

(1H, dd, J = 4.4, 1.2 Hz, ArH), 7.00 (1H, td, J = 4.4, 0.8 Hz, ArH), 6.83 (1H, s, alkene), 6.50 (1H, s, OH) [disappeared after shaking with D₂O]; ¹³**C NMR** (100 MHz, CDCl₃), δ (ppm): 103.20, 115.30, 116.75, 118.56, 124.07, 124.29, 126.73, 127.56, 127.73, 127.91, 128.97, 130.20, 132.17, 132.59, 138.58, 145.30, 152.96, 158.53, 162.99: **LC/MS** (ESI, m/z): 353.70; **Anal. Calcd. for** C₁₉H₁₂O₃S₂: C 64.75, H 3.43, S 18.20. **Found**: C 64.51, H 3.56, S 18.01.

4.3.1.11 2,2-Diphenyl-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (**3aj**)¹¹¹

Colorless solid; mp: 175-176 °C; ¹H NMR (400 MHz, CDCl₃), δ (ppm): 7.71 (1H, d, J = 7.6 Hz, ArH), 7.64 (1H, t, J = 7.6 Hz, ArH), 7.51-7.35 (12H, m, ArH), 3.96 (2H, s, -CH₂); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 41.8 (C3), 98.1 (C2), 102.4, 113, 2, 117.8, 123.5, 124.8, 126.6 (CH^{*}2), 129.0 (CH^{*}4), 129.4 (CH^{*}4), 133.2, 144.5 (C^{*}2), 156.1 (C5a), 166.1 (C9b), 161.3 (C4).

4.3.1.12 3-(2,2-Diphenylvinyl)-4-hydroxy-2H-chromen-2-one (4aj)

Colorless solid; mp: 204-205 °C; **IR** (ν_{max} , KBr): 3007, 2970, 1662 (C=O), 1600 (C=C), 1541, 1490, 1240, 1076, 754 cm⁻¹; ¹H **NMR** (400 MHz, CDCl₃), δ (ppm): 7.61 (1H, dd, J = 8.0, 1.6 Hz, ArH), 7.51 (1H, td, J = 8.0, 1.6 Hz, ArH), 7.36-7.30 (11H, m, ArH), 7.20 (1H, d, J = 7.6, 0.8 Hz, ArH), 6.74 (1H, s, alkene), 6.44 (1H, s, OH); ¹³C **NMR** (100 MHz, CDCl₃), δ (ppm): 103.57, 115.03, 116.46, 118.69, 123.74, 123.97, 128.24 (CH^{*}2), 128.37 (CH^{*}2), 128.52, 129.31, 129.45 (CH^{*}4), 132.14, 138.61, 141.71, 146.60, 152.68, 157.08, 163.03; **LC/MS** (ESI, m/z): 341.70 (MH⁺, 100); **Anal. Calcd. for** C₂₃H₁₆O₃: C 81.16; H 4.74. **Found**: C 80.98, H 4.59.

4.3.1.13 6-Methyl-2-phenyl-2-(2-thenyl)-2,3-dihydro-4H-furo[3, 2-c]pyran-4-one (**13**)

Yellow oil; **IR** (v_{max} , KBr): 3090, 2924, 1732 (C=O), 1643 (C=C), 1585, 1272 (C-O-C), 700 cm⁻¹; **¹H NMR** (400 MHz, CDCl₃), δ (ppm): 7.40-7.42 (2H, m, ArH), 7.38-7.32 (3H, m, ArH), 7.28 (1H, dd, J = 4.0, 2.4 Hz, ArH), 6.93 (2H, dd, J = 4.0, 1.2 Hz, ArH), 6.06 (1H, s, alkene), 3.87 (1H, d, J = 15.2 Hz, -CH₂), 3.63 (1H, d, J = 15.2 Hz, -CH₂), 2.25 (3H, d, J = 0.8 Hz, CH₃); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 20, 40 (CH₃), 41.85 (C3), 94.35 (C2), 95.68, 98.75, 125.26 (CH⁺2), 126.16, 126.61, 126.73, 128.30, 128.47 (CH⁺2), 143.43, 147.58, 161.57 (C4), 165.73 (C6), 169.35 (C7a); **LC/MS** (ESI, m/z): 311.11 (MH⁺, 100); **Anal. Calcd. for** C₁₈H₁₄O₃S: C 69.66; H 4.55; S 10.33. **Found**: C 69.53, H 4.44, S 10.21.

4.3.1.14 6-Methyl-2-(4-methylphenyl)-2-(2-thenyl)-2,3-dihydro-4H-furo[3,2-c]pyran-4-one (**14**)

Yellow oil; **IR** (ν_{max} , KBr): 3090, 3030, 2960, 1732 (C=O), 1716, 1643 (C=C), 1585, 1272, 1172, 975, 700 cm⁻¹; **¹H NMR** (400 MHz, CDCl₃), δ (ppm): 7.31 (2H, d, J = 8.0 Hz, ArH), 7.27 (1H, td, J = 3.6 Hz, ArH), 7.17 (2H, d, J = 8 Hz, ArH), 6.92 (2H, d, J = 3.2 Hz, ArH), 6.04 (1H, s, alkene), 3.85 (1H, d, J = 15.2 Hz, -CH₂), 3.63 (1H, d, J = 15.2 Hz, -CH₂), 2.34 (3H, CH₃), 2.24 (3H, CH₃); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 20.70 (CH₃), 21.34 (CH₃), 42.08 (C3), 94.69 (C2), 96.00 (C7), 99.04 (C3a), 125.52 (CH^{*}2), 126.36, 126.82, 126.99, 129.39 (CH^{*}2), 138.43, 140.74, 148.01, 161.91 (C4), 165.95 (C6), 169.65 (C7a); LC/MS (ESI, m/z): 325.31 (MH⁺, 100); Anal. Calcd. for C₁₉H₁₆O₃S: C 70.35, H 4.97, S 9.88. Found: C 70.20, H 4.82, S 9.73.

4.3.1.15 6-Methyl-2-(4-fluorphenyl)-2-(2-thenyl)-2,3-dihydro-4H-furo[3,2-c]pyran-4-one (15)

Yellow oil; **IR** (v_{max} , KBr): 3111, 3095, 2985, 1665 (C=O), 1631 (C=C), 1573, 1407, 1005 (C-O-C), 709 cm⁻¹; ¹⁹F NMR (376 MHz, CDCl₃), δ (ppm): -116.41; ¹H NMR (400 MHz, CDCl₃), δ (ppm): 7.40 (2H, m, ArH), 7.31 (1H, dd, J = 5.2; 1.2 Hz, ArH), 7.05 (2H, td, J = 8.6; 2 Hz, ArH), 6.96-6.92 (2H, m, ArH), 6.07 (1H, s, alkene), 3.86 (1H, d, J = 15.2 Hz, -CH₂), 3.59 (1H, d, J = 14.8 Hz, -CH₂), 2.27 (3H, CH₃); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 20.68 (CH₃), 42.15 (C3), 94.15 (C2), 95.88 (C7), 98.91 (C3a), 115.62 (CH*2, d, ²J = 23.1 Hz), 126.48, 127.06 (CH*2), 127.51 (CH*2, d, ³J = 8.4 Hz), 139.50 (C, d, ⁴J = 3.1 Hz), 147.53 (C ipso), 162.65 (C, d, ¹J = 246.1 Hz), 161.75 (C4) , 166.16 (C6), 169.49 (C7a); LC/MS (ESI, m/z): 329.28 (MH*, 100); Anal. Calcd. for C₁₈H₁₃FO₃S: C 65.84, H 3.99, S 9.77. Found: C 65.63, H 3.69, S 9.59.

4.3.1.16 4-Hydroxy-6-methyl-3-[2-phenyl-2-(2-thenyl)vinyl]-2H-pyran-2-one (**16**)

E:Z ratio = 1:1.25. Brown solid; mp: 190-191 °C; **IR** (ν_{max} , KBr): 3109 (O-H), 3079, 3030, 2960, 1668 (C=O), 1643 (C=C), 1575, 1407, 1254, 709 cm⁻¹; ¹H **NMR** (400 MHz, DMSO-*d*₆), δ (ppm): 11.33 (1H, s, OH), 7.45 (1H, dd, *J* = 5.2, 1.2 Hz, ArH), 7.30-7.26 (3H, m, ArH), 7.16 (2H, dd, *J* = 8.0, 1.6 Hz, ArH), 7.01 (1H, dd, *J* = 5.2, 3.6 Hz, ArH), 6.82 (1H, dd, *J* = 3.2, 1.2 Hz, ArH), 6.50 (1H, s, alkene), 5.86 (1H, d, *J* = 0.8 Hz, alkene), 2.11 (3H, CH₃); ¹³C **NMR** (100 MHz, DMSO-*d*₆), δ (ppm): 19.96, 99.69, 100.47, 117.90, 126.01, 126.19, 128.09, 128.28, 128.49 (CH^{*}2), 129.36 (CH^{*}2), 138.36, 141.04, 147.42, 161.89, 163.39, 166.02; **LC/MS** (ESI, m/z): 311.32 (MH, 100), 333.12 (M⁺+ Na); **Anal. Calcd. for** C₁₈H₁₄O₃S: C 69.66; H 4.55; S 10.33. **Found**: C 69.49, H 4.28, S 10.57.

New Journal of Chemistry

4.3.1.17 4-Hydroxy-6-methyl-3-[2-(4-methylphenyl)-2-(2-thenyl)vinyl]2H-pyran-2-one (**17**)

E:*Z* ratio = 1:2. Brown solid; mp: 163-164 °C; **IR** (ν_{max} , KBr): 3116, 2996, 2917, 1666 (C=O), 1634 (C=C), 1574, 1407, 1254, 1050 (C-O-C), 975, 707 cm⁻¹; ¹H **NMR** (400 MHz, CDCl₃), δ (ppm): 7.28 (2H, d, *J* = 7.6 Hz, ArH) [7.25 (2H, d, *J* = 8.0 Hz, ArH)], 7.24 (1H, dd, *J* = 3.6, 0.8 Hz, ArH), 7.2 (1H, d, *J* = 8.0 Hz, ArH) [7.13 (1H, d, *J* = 8.8 Hz, ArH)], 7.06-7.04 (1H, m, ArH), 6.96 (1H, dd, *J* = 5.2, 4.0 Hz, ArH) [7.39 (1H, dd, *J* = 3.6, 2.0 Hz, ArH)], 6.86 (1H, dd, *J* = 3.2, 1.2 Hz, ArH), 6.69 (1H, s, alkene) [6.51(1H, s, alkene)], 5.70 (1H, s, OH) [6.35(1H, s, OH)], 5.64 (1H, s, alkene) [5.76 (1H, s, alkene)], 2.38 (3H, CH₃) [2.37], 2.19 (3H, CH₃) [2.24]; ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 19.84 (19.91), 21.42 (21.22), 100.09 (100.13), 100.81 (101.10), 116.62 (118.71), 125.84, 126.79, 127.40 (127.54), 128.29 (128.18), 129.09 (128.83), 130.03 (129.73), 135.00, 138.57 (138.05), 138.75 (139.14), 139.53 (140.09), 145.87, 161.53 (161.92), 162.08 (162.95), 164.79 (164.70); LC/MS (ESI, m/z): 325.41 (MH⁺, 100); **Anal. Calcd. for** C₁₉H₁₆O₃S: C 70.35, H 4.97, S 9.88. **Found**: C 70.21, H 4.78, S 9.63.

4.3.1.18 4-Hydroxy-6-methyl-3-[2-(4-fluorphenyl)-2-(2-thenyl)vinyl]-2H-pyran-2-one (18)

E:*Z* ratio = 1:1.5. Brown solid; mp: 188-189 °C; **IR** (ν_{max} , KBr): 3111, 3095, 3052, 2915, 1665 (C=O), 1631 (C=C), 1573, 1407, 1219, 1005, 843, 709 cm⁻¹; ¹⁹**F NMR** (376 MHz, CDCl₃), δ (ppm): -116.41; ¹**H**-**NMR** (400 MHz, CDCl₃), δ (ppm): 7.42-7.28 (5H, m, ArH), [7.09-7.02 (5H, m)], 6.97 (1H, td, *J* = 4.6, 1.2 Hz, ArH), 6.83 (1H, d, *J* = 3.6 Hz), 6.66 (1H, s) [6.49 (1H, s, alken)], 5.83 (1H, s, OH) [6.01 (1H, s, OH)], 5.67 (1H, s, alkene) [5.76 (1H, s, alkene)], 2.20 (3H, CH₃) [2.25 (3H, CH₃)]; ¹**H NMR** (400 MHz, CD₃COCD₃); δ (ppm): 9.7 (1H, s, OH), 7.39 (1H, dd, *J* = 4.8, 1.2 Hz, ArH), 7.29 (2H, m), 7.06 (2H, m), 7.00 (1H, dd, *J* = 5.2, 3.6 Hz, ArH), 6.83 (1H, dd, *J* = 3.6, 1.2 Hz), 6.59 (1H, s, alkene), 5.86 (1H, d, *J* = 0.8 Hz, alkene), 2.12 (3H, CH₃); ¹³**C NMR** (100 MHz, CD₃COCD₃), δ (ppm): 19.02 (CH₃), 99.80 (100.11), 114.81 (CH*2, d, ²*J* = 21.4 Hz), 117.24, 125.48, 125.94, 127.61, 131.34 (CH*2, d, ³*J* = 8.4 Hz), 136.83 (C, d, ⁴*J* = 3.1 Hz), 138.64, 146.92, 161.88, 162.42 (C, d, ¹*J* = 243.1 Hz), 162.82, 164.64; **LC/MS** (ESI, m/z): 329.36 (MH*, 100); **Anal. Calcd. for** C₁₈H₁₃FO₃S: C 65.84, H 3.99, S 9.77. **Found**: C 65.61, H 3.80, S 9.67.

4.3.1.19 2-Phenyl-2-(2-thenyl)-1,2-dihydro-4H,11H-furo[2,3:4, 5]pyrano[3,2-c]chromen-4,11dione (**19**)

Yellow solid; mp: 201-201 °C; **IR** (ν_{max} , KBr): 1726 (C=O), 1631 (C=C), 1558, 1273, 761, 700 cm⁻¹; **1H NMR** (400 MHz, CDCl₃), δ (ppm): 8.13 (1H, J = 7.6 Hz, ArH), 7.7 (1H, t, J = 8.0 Hz, ArH), 7.59 (2H, d, J= 7.6 Hz, ArH), 7.42-7.33 (6H, m, ArH), 6.98-6.90 (2H, m, ArH), 4.00 (1H, d, J = 15.6 Hz, -CH₂), 3.79 (1H, d, J = 15.6 Hz, -CH₂); ¹³C **NMR** (100 MHz, CDCl₃), δ (ppm): 41.63 (C3), 95.94 (C2), 97.60, 101.75, 113.56, 117.78, 124.46, 125.87 (CH²2), 125.96, 127.57, 127.78, 128.62, 129.16, 129.27 (CH²2), 135.72, 143.87, 147.23, 153.75, 155.77 (C11), 157.58 (C4), 164.46 (C5a), 165.73 (C11b); **LC/MS** (ESI, m/z): 415.18 (MH⁺, 100); **Anal. Calcd. for** C₂₄H₁₄O₅S: C 69.55, H 3.40, S 7.74. **Found:**C 68.98, H 3.71, S 6.98.

4.3.1.20 2-(4-Methylphenyl)-2-(2-thenyl)-1,2, -dihydro-4H,11H-furo[2,3:4,5]pyrano[3,2c]chromen-4,11-dione (**20**)

Yellow solid; mp: 186-187 °C; **IR** (ν_{max} , KBr): 3089, 2952, 1725 (C=O), 1632 (C=C), 1559, 1274, 1104 (C-O-C), 761, 710 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃), δ (ppm): 8.11 (1H, dd, J = 8.8, 2.0 Hz, ArH), 7.68 (1H, td, J = 8.8; 2.0 Hz, ArH), 7.45 (2H, d, J = 8.4 Hz, ArH), 7.42-7.38 (2H, m, ArH), 7.32 (1H, dd, J = 5.2; 1.2 Hz, ArH), 7.2 (2H, d, J = 8.4 Hz, ArH), 6.97 (1H, dd, J = 3.6, 1.2 Hz, ArH), 6.94 (1H, dd, J = 5.2; 3.6 Hz, ArH), 3.95 (1H, d, J = 15.6 Hz, -CH₂), 3.76 (1H, d, J = 15.6 Hz, -CH₂), 2.36 (3H, CH₃); ¹³C NMR (100 MHz CDCl₃), δ (ppm): 21.13 (Me), 41.76 (C3), 96.26 (C2), 97.08, 101.62, 112.96, 117.32, 124.27, 125.13, 125.42 (CH⁺2), 126.86, 126.94, 127.01, 129.25 (CH⁺2), 134.91, 138.49, 139.81, 146.91, 153.60, 155.31 (C4), 157.50 (C4), 164.13 (C5a), 165.81 (C11b); LC/MS, (ESI, m/z): 429.34 (MH⁺, 100); Anal. Calcd. for (C₂₅H₁₆O₅S): C 70.08, H 3.76, S 7.48. Found: C 70.92, H 3.41, S 8.24.

4.3.1.21 2-(4-Fluorphenyl)-2-(2-thenyl)-1,2 -dihydro-4H,11H-furo[2,3:4,5]pyrano[3,2-c]chromen-4,11-dione (**21**)

Yellow solid; mp: 209-210 °C; **IR** (ν_{max} , KBr): 3099, 2983, 1728 (C=O), 1635 (C=C), 1560, 1160 (C-O-C), 755 cm⁻¹; ¹⁹**F- NMR** (376 MHz, CDCl₃), δ (ppm): -113.508; ¹**H NMR** (400 MHz, CDCl₃), δ (ppm): 8.13 (1H, dd, J = 8.4; 1.6 Hz, ArH), 7.71 (1H, td, J = 8.0; 1.6, ArH), 7.55-7.57 (2H, m, ArH), 7.40-7.43 (2H, m, ArH), 7.3 (1H, dd, J = 4.8; 1.6 Hz, ArH), 7.08-7.12 (2H, m, ArH), 6.95-6.98 (2H, m, ArH), 3.99 (1H, d, J = 15.6 Hz, -CH₂), 3.75 (1H, d, J = 15.6 Hz, -CH₂); ¹³**C NMR** (100 MHz, CDCl₃), δ (ppm); 41.88 (C3),

New Journal of Chemistry

95.71 (C2), 96.99, 101.48, 112.92, 115.58 (CH*2, d, ²*J* = 22.1 Hz), 117.36, 124.30, 125.19, 127.01 (CH*2, d, ³*J* = 8.4 Hz), 127.27, 127.47, 127.52, 135.03, 138.62, 146.46, 153.62, 155.30 (C11), 157.37 (C4), 161.33 (C, d, ¹*J* = 246.2 Hz), 163.87 (C5a), 165.67 (C11b); **LC/MS** (ESI, m/z): 433.80 (MH⁺¹, 100); **Anal. Calcd. for** (C₂₄H₁₃FO₅S): C 66.66, H 3.03, S 7.42. **Found**: C 66.49, H 3.21, S 7.64.

4.3.1.22 5-Ethyl-7-hydroxy-9-phenyl-9-(2-thenyl)-5,8 9,10a-tetrahydro-6H-furo[3',2':5, 6]pyrano[3,2-c]quinolin-6-one (**22**)

Yellow solid; mp: 175-176 °C; **IR** (ν_{max} , KBr): 3014, 1728 (C= O), 1654 (C=O), 1600 (C=C), 1556, 752, 740, 700 cm⁻¹; ¹H **NMR** (400 MHz, CDCl₃), δ (ppm): 8.29 (1H, dd, J = 8.4; 1.2 Hz, ArH), 7.69 (1H, td, J = 8.4; 1.2 Hz, ArH), 7.63 (2H, dd, J = 7.6; 1.6 Hz, ArH), 7.41-7.32 (5H, m, ArH), 7.29 (1H, dd, J = 5.2, 1.2 Hz, ArH), 7.00 (1H, dd, J = 3.6; 1.2 Hz, ArH), 6.93 (1H, dd, J = 5.2; 3.6 Hz, ArH), 4.39 (2H, q, J = 7.2 Hz, -CH₂), 3.99 (1H, d, J = 15.6 Hz, -CH₂), 3.77 (1H, d, J = 15.6 Hz, -CH₂), 1.40 (3H, t, J = 7.2 Hz, CH₃); ¹³C **NMR** (100 MHz, CDCl₃), δ (ppm): 12.96, 37.71, 41.83, 95.69, 101.63, 101.74, 113.77, 114.66, 122.88, 125.22, 125.74 (CH*2), 126.96, 127.00, 127.04, 128.54, 128.77 (CH*2), 133.93, 139.50, 143.60, 147.55, 157.09, 158.76, 161.12, 167.13; **LC/MS** (ESI, m/z): 442.70 (MH⁺, 100); **Anal. Calcd. for** C₂₈H₁₉NO₄S: C 70.73, H 4.34, N 3.17 S 7.26. **Found**: C 70.30, H 4.11, N 3.52, S 7.06.

4.3.1.23 5-Ethyl-2-(4-methylphenyl)-2-(2-thenyl)-1,5-dihydro-4H-furo[2',3':4,5]pyrano[3, 2c]quinolin-4,11(2H)-dione (**23**)

Yellow solid; mp: 190-191 °C; **IR** (ν_{max} , KBr): 3089, 2952, 1721 (C=O), 1652 (C=O), 1610 (C=C), 1104 (C-O-C), 761 cm⁻¹; ¹H NMR (400 MHz, CDCl₃), δ (ppm): 8.28 (1H, dd, J = 8.4, 1.6 Hz, ArH), 7.68 (1H, td, J = 7.8, 1.6 Hz, ArH), 7.49 (2H, dd, J = 8.8, 2.0 Hz, ArH), 7.40 (2H, d, J = 8.4 Hz, ArH), 7.28 (1H, dd, J = 5.2, 1.2 Hz, ArH), 7.20 (2H, d, J = 7.6), 6.99 (1H, dd, J = 3.6; 1.2 Hz, ArH), 6.93 (1H, dd, J = 5.2; 3.6 Hz, ArH), 4.39 (2H, q, J = 7.2 Hz, CH₂), 3.97 (1H, d, J = 15.2 Hz, -CH₂), 3.76 (1H, d, J = 15.2 Hz, -CH₂), 2.36 (3H, s, CH3), 1.39 (3H, t, J = 7.2 Hz, CH₃); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 12.73, 21.12, 37.48, 41.55, 95.56, 101.55, 102.42, 113.53, 114.43, 122.64, 124.94, 125.46 (CH*2), 126.63, 126.70, 126.78, 128.62, 129.18 (CH*2), 133.69, 138.17, 140.42, 147.54, 156.87, 158.59, 160.84, 166.92; LC/MS (ESI, m/z): 456.80 (MH⁺, 100); **Anal. Calcd. for** C₂₇H₂₁NO₄S: C 71.19, H 4.65, N 3.07, S 7.04. Found: C 71.43, H 4.81, N 3.32, S 7.51.

4.3.1.24 5-Ethyl-2-(4-fluorphenyl)-2-(2-thenyl)-1,5-dihydro-4H-furo[2',3':4 5]pyrano[3,2-

c]quinolin-4,11(2H)-dione (**24**)

Yellow solid; mp: 191-192 °C; **IR** (ν_{max} , KBr): 3078, 2972, 1722 (C=O), 1681 (C=O), 1651 (C=C), 1555, 1230, 941, 835 cm⁻¹; ¹⁹**F NMR** (376 MHz, CDCl₃), δ (ppm): -113.99; ¹**H NMR** (400 MHz, CDCl₃), δ (ppm): 8.30 (1H, dd, J = 8.0, 1.6 Hz, ArH), 7.7 (1H, td, J = 8.0, 1.6 Hz, ArH), 7.58 (2H, td, J = 8.8, 2.0 Hz, ArH), 7.42 (1H, d, J = 8.8 Hz, ArH), 7.35 (1H, d, J = 8.0 Hz, ArH), 7.31 (1H, dd, J = 4.8; 1.2 Hz, ArH), 7.09 (2H, td, J = 8.8, 2.0 Hz, ArH), 7.00 (1H, dd, J = 5.2, 1.2 Hz, ArH), 6.94 (1H, dd, J = 4.8, 4.0 Hz, ArH), 4.40 (2H, q, J = 7.2 Hz, CH₂), 3.99 (1H, d, J = 15.2 Hz, -CH₂), 3.73 (1H, d, J = 15.2 Hz, -CH₂), 1.40 (3H, t, J = 7.2 Hz, CH3); ¹³**C NMR** (100 MHz, CDCl₃), δ (ppm): 12.95, 37.73, 41.92, 95.24, 101.65 (C*2), 113.75, 114.70, 115.70 (CH*2, d, ²J = 21.4 Hz), 122.94, 125.24, 127.02, 127.11 (CH*2, d, ³J = 8.4 Hz), 127.70, 127.79, 134.03, 139.44 (CH, d, ⁴J = 3.0 Hz), 139.51, 147.27, 157.10, 158.71, 161.19, 162.74 (C, d, ¹J = 246.2 Hz), 167.01; **LC/MS** (ESI, m/z): 460.70 (MH*, 100); **Anal. Calcd. for** C₂₆H₁₈FNO₄S: C 67.96, H 3.95, N 3.05, S 6.98. **Found**: C 67.80, H 4.17, N 3.27, S 6.86.

4.3.1.25 4-Hydroxy-3-[2-phenyl-2-(2-thenyl)vinyl]2H,5H-pyrano[3,2-c]chromen-2, 5-dione (25)

E:*Z* ratio = 1:4. Orange solid; mp: 229-231 °C; **IR** (ν_{max} , KBr): 3438, 3144, 3082, 2925, 1727 (C=O), 1681 (C=C), 1414, 1106 (C-O-C), 771, 694 cm⁻¹; ¹H **NMR** (400 MHz, CDCl₃), δ (ppm): 10.89 (1H, s) [11.07 (1H, s)], 8.08 (1H, dd, *J* = 8.4, 1.6 Hz, ArH), 7.72 (1H, td, *J* = 8.8, 1.6 Hz, ArH), 7.44-7.49 (2H, m, ArH), 7.36-7.27 (6H, m, ArH), 6.96 (1H, dd, *J* = 5.2, 3.6 Hz, ArH), 6.87 (1H, d, *J* = 3.6 Hz, ArH), 6.70 (1H, s, alkene) [6.45 (1H, s, alkene)]; ¹³C **NMR** (100 MHz, CDCl₃), δ (ppm); 96.71, 103.16, 114.04 (113.09), 116.57, 117.39 (117.45), 124.29 (124.38), 125.73 (125.45), 126.09 (126.15), 126.90 (126.37), 127.36 (126.70), 127.99 (CH⁺2) (128.32), 128.04 (128.60), 129.12 (CH⁺2) (128.70), 134.99 (135.0), 140.23, 141.80, 146.43, 152.28, 158.87, 160.83, 161.20, 163.00; **LC/MS** (ESI, m/z): 415.42 (MH⁺, 100); **Anal. Calcd. for** C₂₄H₁₄O₅S: C 69.55, H 3.40, S 7.74. Found: C 69.65, H 3.51, S 7.80.

4.3.1.26 4-Hydroxy-3-[2-(4-methylphenyl)-2-(2-thenyl)vinyl]2H, 5H-pyrano[3,2-c]chromen-2 5dione (**26**)

E:*Z* ratio = 1:3.4. Orange solid; mp: 232-233 °C; **IR** (ν_{max} , KBr): 3099. 3025, 1737 (C=O), 1683 (C=C), 1589, 1415, 1106 (C-O-C), 762, 702 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃), δ (ppm): 10.89 (1H, s, OH) [11.03

(1H, s, OH)], 8.10 (1H, dd, J = 8.4, 1.6 Hz, ArH), 7.73 (1H, td, J = 7.6, 1.6 Hz, ArH), 7.44-7.49 (2H, m, ArH), 7.25 (1H, J = 0.8 Hz, ArH), 7.21 (2H, d, J = 8.4, ArH) [7.34 (2H, d, J = 8.4 Hz, ArH)], 7.09 (2H, d, J = 8.4, ArH) [7.16 (2H, d, J = 8.4 Hz, ArH)], 6.97 (1H, dd, J = 5.2; 3.6 Hz, ArH), 6.89 (1H, dd, J = 5.2, 1.2 Hz, ArH), 6.67 (1H, s, alkene) [6.44 (1H, s, alkene)], 2.33 (3H, CH₃) [2.39 (3H, CH₃)]; ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 21.36 (Me), 96.81, 103.40, 113.66, 117.38, 124.28, 125.64, 126.07 (126.27), 126.79, 127.31, 128.73 (CH⁺2) (128.58), 128.98 (CH⁺2), 134.93, 137.29, 137.75, 141.48, 143.90, 146.66, 152.26, 158.86, 160.75, 161.10, 163.03; LC/MS (ESI, m/z): 429.85 (MH⁺), 451.86 (M+ Na, 100); Anal. Calcd. for (C₂₅H₁₆O₅S): C 70.08, H 3.76, S 7.48. Found: C 70.22, H 3.51, S 7.81.

4.3.1.27 4-Hydroxy-3-[2-(4-fluorphenyl)-2-(2-thenyl)vinyl]-2H, 5H-pyrano[3,2-c]chromen-2,5dione (**27**)

E:Z ratio = 1:2. Orange solid; mp: 214-215 °C; **IR** (ν_{max} , KBr): 2965, 1758, 1724, 1702, 1673, 1099, 768 cm⁻¹; ¹⁹**F NMR** (376 MHz, CDCl₃), δ (ppm): -113.90, -114.10; ¹**H NMR** (400 MHz, CDCl₃), δ (ppm):10.98 (1H, s, OH) [11.05 (1H, s, OH)], 8.10 (1H, dd, J = 8.0; 2.0 Hz, ArH) [8.15 (1H, dd, J = 8.0; 2.0 Hz, ArH)], 7.75 (1H, td, J = 8.0, 2.0 Hz; ArH), 7.40-7.50 (3H, m, ArH), 7.27-7.32 (2H, m, ArH), 6.96-7.05 (3H, m, ArH), 6.85 (1H, dd, J = 3.6, 0.8 Hz, ArH) [6.93 (1H, dd, J = 3.6, 1.2 Hz, ArH)], 6.70 (1H, s, alkene) [6.41 (1H, s, alkene)]; ¹³**C NMR** (100 MHz, CDCl₃), δ (ppm): 76.94, 96.89, 103.15 (103.61), 113.28 (113.36), 114.53, 115.30 (CH, d, ²J = 21.3 Hz) [115.14 (CH, d, ²J = 21.3 Hz)], 116.66, 117.67 (117.70), 124.53 (124.61), 126.15, 126.38 (126.80), 127.06 (127.01), 127.67 (128.85), 131.11 (CH, d, ³J = 7.7 Hz) [130.60 (CH, d, ³J = 8.4 Hz)], 135.36 (135.38), 136.43 (C, d, ⁴J = 3.8 Hz) (136.89), 140.94 (140.15), 146.51 (142.25), 152.55 (152.64), 159.01 (159.09), 161.18 (161.31), 161.60 (162.23), 162.69 (C, d, ¹J = 245.4) [163.19 (C, d, ¹J = 246.1)], 163.26 (163.32); **LC/MS** (ESI, m/z): 433.62 (MH⁺, 100); **Anal. Calcd. for** (C₂₄H₁₃FO₅S): C 66.66, H 3.03, S 7.42. **Found**: C 66.48, H 3.18, S 7.29.

4.3.1.28 6-Ethyl-4-hydroxy-3-[2-phenyl-2-(2-thenyl)vinyl]-2H, 5H-pyrano[3,2-c]quinolin-2,5dione (**28**)

E:*Z* ratio = 1:2.4. Orange solid; mp: 198-199 °C; **IR** (ν_{max} , KBr): 3465 (O-H), 3065 (Ar-H), 2983 (R-H), 1742 (C= O), 1668 (C=O), 1615 (C=C), 1548, 1106 (C-O-C), 758 cm⁻¹; ¹H NMR (400 MHz, CDCl₃), δ (ppm): 13.28 (1H, s, OH) [13.44 (1H, s, OH)], 8.26 (1H, d, *J* = 7.6, ArH), 7.71-7.78 (1H, m, ArH), 7.48 (1H, d, *J* = 8.4 Hz, ArH) [7.51 (1H, d, *J* = 8.4 Hz, ArH)], 7.38-7.45 (1H, m, ArH), 7.32-7.36 (3H, m, ArH),

7.25-7.29 (2H, m, ArH), 7.23 (1H, d, J = 5.2 Hz, ArH), 6.92-6.96 (1H, m, ArH), 6.86 (1H, d, J = 3.6, ArH), 6.75 (1H, s, alkene) [6.50 (1H, s, alkene)], 4.37 (2H, q, J = 7.2 Hz) [4.41 (2H, q, J = 7.2 Hz)], 1.38 (3H, t, J = 7.2 Hz, N-CH₃) [(3H, t, J = 7.2 Hz, N-CH₃)]; ¹³**C** NMR (100 MHz, CDCl₃), δ (ppm): 12.75 (12.79), 37.65, 99.92, 102.18, 113.99 (114.06), 114.77 (114.54), 115.03 (114.83), 123.95 (124.01), 124.88 (124.98), 125.28, 126.45 (126.51), 127.23, 127.73, 127.85 (CH^{*}2), 129.22 (CH^{*}2), 133.70 (133.78), 137.56 (137.68), 140.56, 140.90, 146.88, 157.50, 159.97, 162.74 (162.83), 164.07 (164.77); **LC/MS** (ESI, m/z): 442.34 (MH⁺, 100); **Anal. Calcd. for** C₂₆H₁₉NO₄S: C 70.73, H 4.34, N 3.17 S 7.26. **Found**: C 71.49, H 4.81, N 3.61, S 7.46.

4.3.1.29 6-Ethyl-4-hydroxy-3-[2-(4-methylphenyl)-2-(2-thenyl)vinyl]-2H-pyrano[3,2-c] quinolin-2,5(6H)-dione (**29**)

E:Z ratio = 1:8. Orange solid; mp: 236-237 °C; **IR** (ν_{max} , KBr): 3071, 2920 (R-H), 1735 (C=O), 1661 (C=O), 1421 (C=C), 759 cm⁻¹; ¹H **NMR** (400 MHz, CDCl₃), δ (ppm): 13.28 (1H, s, OH) [13.44 (1H, s, OH)], 8.26 (1H, dd, J = 7.6, 1.2 Hz, ArH), 7.74 (1H, td, J = 7.6, 1.6 Hz, ArH), 7.48 (1H, d, J = 8.4 Hz, ArH), 7.40 (1H, d, J = 8.0, 0.8 Hz, ArH), 7.29 (2H, d, J = 8.0 Hz, ArH), 7.21 (1H, d, J = 1.2 Hz, ArH), 7.07 (2H, d, J = 7.6 Hz, ArH), 6.95 (1H, dd, J = 5.2, 3.6 Hz, ArH), 6.89 (1H, dd, J = 3.6, 1.2 Hz, ArH), 6.72 (1H, s, alkene), 4.38 (2H, q, J = 7.2 Hz), 2.32 (3H, s) [2.38 (3H, s)], 1.46 (3H, t, J = 7.2 Hz, N-CH₃); ¹³C **NMR** (100 MHz, CDCl₃), δ (ppm): 13.01, 21.62, 37.89, 100.19, 102.65, 114.26, 114.87, 115.00, 124.18, 125.12, 125.45, 126.60, 127.43, 128.86 (CH⁻2), 129.30 (CH⁺2), 133.90, 137.60, 137.78, 137.83, 141.03, 147.35, 157.68, 160.10, 162.99, 164.31; **LC/MS** (ESI, m/z): 456.70 (MH⁺, 100; **Anal. Calcd. for** C₂₇H₂₁NO₄S: C 71.19, H 4.65, N 3.07, S 7.04. **Found**: C 71.31, H 4.71, N 3.29, S 7.31.

4.3.1.30 6-Ethyl-3-[2-(4-fluorphenyl)-2-(2-thenyl)vinyl]-4-hydroxy-2H-pyrano[3,2-c]quinolin-2,5(6H)-dione (**30**)

E:Z ratio = 1:3.3. Orange solid; mp: 249-250 °C; **IR** (ν_{max} , KBr): 3671, 2987 (R-H), 1736 (C= O), 1668 (C= O), 1504, 1219, 757 cm⁻¹; ¹⁹**F** NMR (376 MHz, CDCl₃), δ (ppm): -114.53, -114.66; ¹H NMR (400 MHz, CDCl₃), δ (ppm): 13.37 (1H, s, OH) [13.48 (1H, s, OH)], 8.25 (1H, dd, *J* = 8.0 Hz, ArH) [8.31 (1H, dd, *J* = 7.6 Hz, ArH)], 7.74 (1H, t, *J* = 8.8 Hz, ArH), 7.50-7.38 (2H, m, ArH), 7.33-7.30 (2H, m, ArH), 7.24 (1H, d, *J* = 4.4 Hz, ArH), 7.00-6.93 (3H, m, ArH), 6.84 (1H, d, *J* = 4.0 Hz, ArH), 6.73 (1H, s, alkene) [6.44 (1H, s, alkene)], 4.38 (2H, q, *J* = 7.6 Hz, CH₂), 1.38 (3H, t, *J* = 8.0 Hz, -CH₃); ¹³C NMR (100 MHz, CDCl₃),

 δ (ppm): 12.77, 37.71, 99.86, 101.94, 102.43, 113.97, 114.67, 114.79, 114.83, 115.00, 115.32, 117.47, 124.03, 124.90, 124.99, 125.47, 126.22, 126.38, 126.59, 127.31, 128.39, 130.31, 130.40, 130.90, 130.98, 133.82, 136.55, 136.52, 137.62, 137.71, 138.93, 139.75, 142.57, 146.73, 157.59, 157.72, 159.96, 160.01, 161.08, 162.74, 162.84, 163.53, 164.03, 164.19, 164.83; **LC/MS** (ESI, m/z): 460.13 (MH⁺, 100); **Anal. Calcd. for** C₂₆H₁₈FNO₄S: C 67.96, H 3.95, N 3.05, S 6.98; **Found**: C 70.13, H 4.09, N 3.25, S 7.06.

4.3.1.31 5-Methyl-2-phenyl-2-thenyl-3, 5-dihydrofuro[3,2-c]quinolin-4H-one (31)

Colorless solid; mp: 181-182 °C; **IR** (ν_{max} , KBr): 3107, 3001, 2918, 1656 (C=O), 1639 (C=C), 1598, 1240, 1107, 742 cm⁻¹; ¹**H-NMR** (400 MHz, CDCl₃), δ (ppm): 7.95 (1H, dd, J = 8.0; 1.6 Hz, ArH), 7.59 (1H, td, J = 7.8; 1.6 Hz, ArH), 7.52 (1H, dd, J = 8.4; 1.6 Hz, ArH), 7.38 (1H, dd, J = 8.4, 0.8 Hz, ArH), 7.25-7.36 (6H, m, ArH), 7.09 (1H, dd, J = 3.6, 1.2 Hz, ArH), 6.94 (1H, d, J = 5.2, 4.0 Hz, ArH), 4.1 (1H, d, J = 15.6 Hz, H3), 3.87 (1H, d, J = 15.6 Hz, H3), 3.70 (3H, s, N-CH₃); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 29.38 (CH₃), 44.50 (C3), 93.60 (C2), 107.70, 112.76, 114.82, 122.00, 123.47, 125.68 (CH*2), 126.12, 126.50, 126.90, 128.33, 128.65 (CH*2), 131.38, 141.01, 144.47 (C ipso), 148.83 (C ipso), 160.95 (C4), 161.22 (C9b); LC/MS (ESI, m/z): 360.01 (MH⁺, 100); **Anal. Calcd. for** C₂₂H₁₇NO₂S: C 73.51, H 4.77, N 3.90, S 8.92. **Found**: C 72.68, H 4.86, N 3.75, S 8.26.

4.3.1.32 5-Methyl-2-(4-methylphenyl)-2-thenyl-3,5-dihydrofuro[3,2-c]quinolin-4H-one (32)

Colorless solid; mp: 144-145 °C; **IR** (ν_{max} , KBr): 3084 (Ar-H), 2979 (R-H), 1657 (C=O), 1635 (C=C), 1597, 1450, 1240, 1106, 754, 698 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃), δ (ppm): 7.94 (1H, dd, J = 8.0, 1.6 Hz, ArH), 7.59 (1H, td, J = 8.0, 1.6 Hz, ArH), 7.42 (2H, d, J = 8.0 Hz, ArH), 7.38 (1H, d, J = 8.4 Hz, ArH), 7.28-7.24 (2H, m, ArH), 7.17 (2H, d, J = 8.0 Hz, ArH), 7.0 (1H, dd, J = 3.6, 1.2 Hz, ArH), 6.94 (1H, dd, J = 5.2, 3.2 Hz, ArH), 4.07 (1H, d, J = 15.6 Hz, H3), 3.87 (1H, d, J = 15, 6 Hz, H3), 3.7 (3H, s, N-CH₃), 2.34 (3H, CH₃); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 21.09 (CH₃), 29.11 (CH₃), 44.19 (C3), 93.37 (C2), 107.54, 112.53, 114.54, 121.70, 123.24, 125.41 (CH*2), 125.75, 126.15, 126.62, 129.05 (CH*2), 131.08, 137.91, 140.73, 141.26, 148.78, 160.68 (C4), 160.98 (C9b); LC/MS (ESI, m/z):374.41 (M⁺, 100); Anal. Calcd. for C₂₃H₁₉NO₂S: C 73.97, H 5.13, N 3.75, S 8.79. Found: C 74.13, H 5.42, N 3.16, S 7.99.

4.3.1.33 5-Methyl-2-(4-fluorphenyl)-2-thenyl-3,5-dihydrofuro[3,2-c]quinolin-4H-one (33)

Colorless solid; mp: 143-144 °C; **IR** (ν_{max} , KBr): 3084 (Ar-H), 2979 (R-H), 1657 (C=O), 1635 (C=C), 1597, 1240 (C-O-C), 1106, 754 cm⁻¹; ¹⁹**F NMR** (376 MHz, CDCl₃), δ (ppm): -114.42; ¹**H NMR** (400 MHz, CDCl₃), δ (ppm): 7.92 (1H, dd, J = 8.0, 1.6 Hz, ArH), 7.61 (1H, td, J = 7.8; 1.6 Hz, ArH), 7.52-7.49 (2H, m, ArH), 7.39 (1H, d, J = 8.8 Hz, ArH), 7.30-7.25 (2H, m, ArH), 7.07-7.03 (2H, m, ArH), 7.00 (1H, dd, J = 3.6, 1.2 Hz, ArH), 6.95 (1H, dd, J = 5.2, 3.6 Hz, ArH), 4.09 (1H, d, J = 15.6 Hz, H3), 3.82 (1H, d, J = 15.6 Hz, H3), 3.71 (3H, s, N-CH₃); ¹³C **NMR** (100 MHz, CDCl₃), δ (ppm): 29.38 (CH₃), 44.55 (C3), 93.14 (C2), 107.65, 112.63, 114.85, 115.55 (CH, d, ²J = 21.4 Hz), 122.04, 123.40, 126.18, 126.88, 126.97, 127.60 (CH, d, ³J = 8.3 Hz), 129.81 (CH, d, ³J = 8.4 Hz), 131.46, 132.86, 140.31 (C, d, ⁴J = 3.0 Hz), 141.01, 148.53, 160.77 (C4), 161.13 (C9b), 162.64 (C, d, ¹J = 246.1); **LC/MS** (ESI, m/z): 378.42 (MH⁺, 100); **Anal. Calcd. for** C₂₂H₁₆FNO₂S: C 70.01, H 4.27, N 3.71, S 8.50. **Found**: C 70.11, H 4.29, N 3.80, S 8.55.

4.3.1.34 4-Hydroxy-1-methyl-3-[2-phenyl-2-(2-thenyl)vinyl]quinolin-2(1H)-one (34)

E:Z ratio = 1:2.17. Yellow solid; mp: 204-205 °C; **IR** (ν_{max} , KBr): 3109, 3075, 1617 (C=O), 1575 (C=C), 1161 (C-O-C), 754 cm⁻¹; ¹H **NMR** (400 MHz, CDCl₃), δ (ppm):7.74 (1H, dd, J = 7.6; 1.6 Hz, ArH) [7.89 (1H, td, J = 8.0, 1.6 Hz, ArH)], 7.52 (1H, td, J = 7.8; 1.6 Hz, ArH) [7.57(1H, td, J = 7.2; 1.6 Hz, ArH)], 7.43-7.40 (6H, m, ArH) [7.36-7.29 (6H, m, ArH)], 7.26 (1H, dd, J = 3.2; 1.6 Hz, ArH), 7.14 (1H, t, J = 8.0 Hz, ArH) [7.20 (1H, t, J = 8.0 Hz, ArH)], 7.05 (1H, s, alkene) [6.80 (1H, s, alkene)], 6.97 (1H, td, J = 5.2, 1.2 Hz, ArH), 6.89 (1H, dd, J = 3.6, 1.2 Hz, ArH), 5.85 (1H, s, OH) [6.12 (1H, s, OH)], 3.72 (3H, s, N-CH₃) [3.74 (3H, s, N-CH₃)]; ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 29.74 (CH₃), 108.58, 113.96 (114.08), 115.53, 119.72 (122.11), 121.84 (121.95), 124.38 (124.56), 125.96, 127.01, 127.57 (127.65), 128.29 (128.36), 128.80 (128.63), 129.38 (129.44), 129.52 (130.06), 131.18 (131.39), 138.45 (138.02), 138.88, 139.33 (139.51), 140.32 (142.59), 146.29, 154.11 (154.94), 163.39; LC/MS (ESI, m/z): 360.70 (MH⁺, 100); **Anal. Calcd. for** (C₂₂H₁₇NO₂S): C 73.51, H 4.77, N 3.90, S 8.92; **Found**: C 73.61, H 4.83, N 3.97, S 9.01.

New Journal of Chemistry

4.3.1.35 3-Phenyl-2-thenyl-2,3-dihydro-4H-furo[3,2-c]chromen-4-one (**35**)

Colorless solid; mp: 153-154°C; **IR** (ν_{max} , KBr): 3025 (Ar-H), 1718 (C=O), 1641 (C=C), 1496, 1406, 1035 (C-O-C), 700 cm⁻¹; **¹H NMR** (400 MHz, CDCl₃), δ (ppm): 7.77 (1H, dd, J = 8.0, 1.6 Hz, ArH), 7.61 (1H, td, J = 8.2, 1.6 Hz, ArH), 7.43-7.27 (8H, m, ArH), 7.18 (1H, d, J = 2.8 Hz, ArH), 7.05 (1H, dd, J = 4.8, 3.6 Hz, ArH), 6.05 (1H, d, J = 6.4 Hz, H2), 4.83 (1H, d, J = 6.0 Hz, H3); ¹³C NMR (100 MHz, CDCl₃), δ (ppm):54.94 (C3), 91.93 (C3), 104.96, 112.69, 117.32, 123.37, 124.29, 126.85, 127.21, 127.42, 127.57, 128.11, 128.59, 129.00, 129.36, 133.05, 139.91, 141.67, 155.72 (C5a), 159.82 (C4), 166.12 (C9b); LC/MS (ESI, m/z): 346.97 (MH⁺, 100); **Anal. Calcd. for** (C₂₁H₁₄O₃S): C 72.81, H 4.07, O 13.86, S 9.26. **Found**: C 72.41, H 4.27, S 8.20.

4.3.1.36 3-Phenyl-2-thenyl-2,3-dihydro-4H-furo[3, 2-c]chromen-4-one (**36**)

Light yellow solid; mp: 131-132°C; **IR** (ν_{max} , KBr): 3028 (Ar-H), 1710 (C= O), 1635 (C= C), 1409, 1026 (C-O-C), 788 cm⁻¹; ¹H NMR (400 MHz, CDCl₃), δ (ppm): 7.8 (1H, dd, J = 8.0, 1.6 Hz, ArH), 7.63 (1H, td, J = 7.8, 1.6 Hz, ArH), 7.45 (1H, dd, J = 8.4, 0.8 Hz, ArH), 7.35 (1H, td, J = 7.6, 1.2 Hz, ArH), 7.16-7.13 (4H, m, ArH), 6.96-6.94 (2H, m, ArH), 6.85-6.83 (1H, m, ArH), 6.82 (1H, dd, J = 5.2, 4.0 Hz, ArH), 6.52 (1H, d, J = 9.2, H2), 4.86 (1H, d, J = 9.2 Hz, H3); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 51.00 (C3), 89.00 (C2), 106.00, 112.50, 117.00, 123.42, 124.37, 126.35, 127.17, 127.57, 127.98, 128.59 (CH²2), 128.98 (CH²2), 133.13, 135.79, 137.27, 155.55 (C5a), 159.88 (C4), 167.01 (C9b); LC/MS, (ESI, m/z) : 347.70 (MH⁺, 100); Anal. Calcd. for (C₂₁H₁₄O₃S): C 72.81, H 4.07, O 13.86, S 9.26. Found: C 73.12, H 4.31, S 8.46.

4.3.1.37 (2S, 3S)-2-Methyl-3-phenyl-2-(2-thenyl)-4H-furo[3,2-c]chromen-4-one (37)

Colorless solid; mp: 137-138 °C; **IR** (ν_{max} , KBr): 3028 (Ar-H), 2989 (R-H), 1722 (C=O), 1647 (C=C), 1406, 1029, 727 cm⁻¹; ¹H **NMR** (400 MHz, CDCl₃), δ (ppm): 7.80 (1H, dd, J = 8.0, 1.6 Hz, ArH), 7.60 (1H, td, J = 7.8, 1.6 Hz, ArH), 7.42 (1H, d, J = 8.4 Hz, ArH), 7.35-7.30 (4H, m, ArH), 7.27 (1H, dd, J = 5.2, 1.2 Hz, ArH), 7.17 (2H, dd, J = 8.4, 1.6 Hz, ArH), 7.13 (1H, dd, J = 3.6, 1.2 Hz, ArH), 7.00 (1H, dd, J = 5.2, 4.0 Hz, ArH), 4.93 (1H, s, H3), 1.48 (3H, s, CH₃); ¹³C **NMR** (100 MHz, CDCl₃), δ (ppm): 26.07 (CH₃), 58.15 (C3), 95.84 (C2), 104.51, 112.71, 117.33, 123.36, 123.69, 124.34, 125.48, 127.29, 128.28, 128.87 (CH^{*}2), 129.01 (CH^{*}2), 133.06, 136.40, 149.70, 155.61 (C5a), 159.99 (C4), 166.02 (C9b); **LC/MS**, (ESI,

m/z) : 361.41 (MH⁺, 100); **Anal. Calcd. for** (C₂₂H₁₆O₃S): C 73.31, H 4.47, S 8.90. **Found**: C 73.02, H 4.51, S 9.06.

4.3.1.38 2-Methyl-3-phenyl-2-(2-thenyl)-4H-furo[3,2-c]chromen-4-one (**38**)

Light yellow solid; mp: 161-162 °C; **IR** (v_{max} , KBr): 3099 (Ar-H), 2918 (R-H), 1718 (C=O), 1633 (C=C), 1573, 1408, 825, 759 cm⁻¹; ¹H **NMR** (400 MHz, CDCl₃), δ (ppm): 7.86 (1H, dd, J = 7.6, 1.6 Hz, ArH), 7.64 (1H, td, J = 7.8, 1.6 Hz, ArH), 7.44 (1H, d, J = 8.0 Hz), 7.38 (1H, t, J = 7.6 Hz), 7.08-7.06 (3H, m, ArH), 7.02 (1H, dd, J = 5.2, 0.8 Hz), 6.89 (2H, m, ArH), 6.70 (1H, dd, J = 5.2, 3.6 Hz), 6.56 (1H, dd, J = 3.6, 0.8 Hz), 4.63 (1H, s), 2.11 (3H, s); ¹³C **NMR** (100 MHz, CDCl₃), δ (ppm): 30.43 (CH₃), 58.64 (C3), 97.31 (C2), 104.94, 112.72, 117.36, 123.36, 124.31, 125.03, 125.12, 126.74, 127.61, 128.22 (CH⁺2), 128.61 (CH⁺2), 133.04, 136.73, 143.60, 155.59 (C5a), 160.08 (C4), 165.76 (C9b); **LC/MS**, (ESI, m/z): 361.61 (MH⁺, 100); **Anal. Calcd. for** (C₂₂H₁₆O₃S): C 73.31, H 4.47, S 8.90. **Found**: C 72.90, H 4.60, S 8.32.

4.3.1.39 2, 6-Dimethyl-3-phenyl-2-(2-thenyl)-2,3-dihydro-4H-furo[3,2-c]piran-4-one (**39**)

Light yellow oil; **IR** (ν_{max} , KBr): 3089 (Ar-H), 2989 (R-H), 1716 (C=O), 1637 (C=C), 1571, 1446, 1259, 977, 723 cm⁻¹; ¹H **NMR** (400 MHz, CDCl₃), δ (ppm): 7.35-7.25 (4H, m, ArH), 7.13 (2H, d, J = 6.8, ArH), 7.06 (1H, d, J = 3.2, Hz, ArH), 6.99 (1H, dd, J = 5.2; 3.6, ArH), 6.06 (1H, s, alkene), 4.77 (1H, s, H3), 2.29 (3H, CH₃), 1.35 (3H, s, CH₃); ¹³C **NMR** (100 MHz, CDCl₃), δ (ppm): 20.82 (CH₃), 25.80 (CH₃), 57.13 (C3), 95.11 (C2), 95.93, 101.62, 123.67, 125.40, 127.23, 128.12, 128.83 (CH^{*}2), 128.89(CH^{*}2), 136.51, 149.67, 161.51 (C4), 166.61 (C6), 170.57 (C7a); **LC/MS**, (ESI, m/z): 325.37 (MH⁺, 100); **Anal. Calcd. for** (C₁₉H₁₆O₃S): C 70.35, H 4.97, S 9.88. **Found**: C 70.17, H 4.80, S 9.71.

4.3.1.40 2, 6-Dimethyl-3-phenyl-2-(2-thenyl)-2, 3-dihydro-4H-furo[3, 2-c]piran-4-one (40)

Light yellow oil; **IR** (ν_{max} , KBr): 3089 (Ar-H), 2989 (R-H), 1716 (C=O), 1637 (C=C), 1571, 1446, 1259, 977, 696 cm⁻¹; ¹H **NMR** (400 MHz, CDCl₃), δ (ppm): 7.07-7.05 (3H, m, ArH), 6.99 (1H, dd, J = 4.8, 1.2 Hz, ArH), 6.86-6.83 (2H, m, ArH), 6.68 (1H, dd, J = 5.2; 3.6, ArH), 6.49 (1H, dd, J = 3.2, 1.2 Hz, ArH), 6.13 (1H, s, alkene), 4.46 (1H, s, H3), 2.33 (3H, CH₃), 2.00 (3H, s, CH₃); ¹³C **NMR** (100 MHz, CDCl₃), δ (ppm): 20.85 (CH₃), 30.23 (CH₃), 57.62 (C3), 95.92 (C2), 96.64, 102.21, 124.86, 124.94, 126.69, 127.47, 128.13 (CH^{*}2), 128.57 (CH^{*}2), 136.93, 143.71, 161.63 (C4), 166.54 (C6), 170.38 (C7a); **LC/MS**, (ESI,

m/z) : 325.37 (MH⁺, 100); **Anal. Calcd. for** (C₁₉H₁₆O₃S): C 70.35, H 4.97, S 9.88. **Found**: C 70.11, H 4.78, S 9.73.

4.3.1.41 2-Methyl-1-phenyl-2-(2-thenyl)-1,2-dihydro-4H,11H-furo[2,3:4,5]pyrano[3,2-c]chromen-4, 11-dione (**41**)

White solid; mp: 231-232 °C; **IR** (ν_{max} , KBr): 3096, 3010, 1724 (C= O), 1624 (C= C), 1558, 1224, 761, 725 cm⁻¹; **¹H NMR** (400 MHz, CDCl₃), δ (ppm): 8.15 (1H, d, J = 8.4 Hz, ArH), 7.72 (2H, t, J = 8.4 Hz, ArH), 7.43 (1H, d, J = 8.4 Hz, ArH), 7.40-7.37 (3H, m, ArH), 7.31 (1H, dd, J = 5.2 Hz, ArH), 7.20-7.17 (3H, m, ArH), 7.01 (1H, t, J = 4.4 Hz, ArH), 4.87 (1H, s, H3), 1.53 (3H, s, CH₃); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 26.07 (CH₃), 56.99 (C3), 97.11 (C2), 97.24, 104.82, 113.23, 117.59, 124.15, 124.68, 125.44, 125.66, 127.25, 128.52, 128.78 (CH^{*}2), 129.13 (CH^{*}2), 135.35, 135.81, 148.95, 153.91, 155.77 (C11), 157.25 (C4), 164.91 (C5a), 166.95 (C11b); **LC/MS**, (ESI, m/z): 429.40 (MH⁺, 100); **Anal. Calcd. for** (C₂₅H₁₆O₅S): C 70.08, H 3.76, S 7.48. **Found**.: C 70.40, H 4.01, S 6.98.

4.3.1.42 2-Methyl-1-phenyl-2-(2-thenyl)-1,2-dihydro-4H,11H-furo[2,3:4,5]pyrano[3,2-c]chromen-4,11-dione (**42**)

Colorless solid; mp: 207-208 °C; **IR** (ν_{max} , KBr): 3096, 3010, 1726 (C=O), 1625 (C=C), 1554, 1224, 759, 692 cm⁻¹; ¹H **NMR** (400 MHz, CDCl₃), δ (ppm): 8.16 (1H, dd, J = 8.4, 1.6 Hz, ArH), 7.72 (1H, td, J = 8.0, 1.6 Hz, ArH), 7.45-7.40 (2H, m, ArH), 7.11-7.10 (3H, m, ArH), 7.01 (1H, dd, J = 4.4, 3.0, ArH), 6.91-6.89 (2H, m, ArH), 6.68 (1H, dd, J = 4.8, 3.6 Hz, ArH), 6.56 (1H, dd, J = 3.2, 1.2 Hz, ArH), 4.60 (1H, s, H3), 2.14 (3H, s, CH₃); ¹³C **NMR** (100 MHz, CDCl₃), δ (ppm): 30.49 (CH₃), 55.56 (C3), 97.07 (C2), 98.58, 104.80, 113.25, 117.61, 124.70, 125.26, 125.36, 125.42, 126.71, 127.87, 128.34 (CH^{*}2), 128.56 (CH^{*}2), 135.33, 135.99, 142.71, 153.97, 155.69 (C11), 157.28 (C4), 164.90 (C5a), 166.85 (C11b); **LC/MS**, (ESI, m/z) : 429.80 (MH⁺, 100); **Anal. Calcd. for** (C₂₅H₁₆O₅S): C 70.08, H 3.76, S 7.48. **Found**: C 70.31, H 3.51, S 6.99.

4.3.1.43 9a-(2-Thenyl)-7,8,9,9a-tetrahydro-6H,6H-cyclopenta[4, 5]furo[3,2-c]chromen-6-one (43)

Light yellow solid; mp: 125-126 °C; **IR** (ν_{max} , KBr): 3107, 2966, 1708 (C=O), 1643 (C=C), 1604, 1404, 1325, 893, 750 cm⁻¹; ¹H NMR (400 MHz, CDCl₃), δ (ppm): 7.70 (1H, dd, J = 7.6, 1.2 Hz), 7.57 (1H, td,

J = 7.8, 1.6 Hz, ArH), 7.38 (1H, d, J = 8.8 Hz), 7.30 (2H, m), 7.10 (1H, dd, J = 3.6, 1.2 Hz), 7.00 (1H, dd, J = 5.2, 4.0 Hz), 4.01 (1H, d, J = 7.6 Hz), 2.67 (1H, dd, J = 14.0, 6.0 Hz), 2.28 (1H, td, J = 13.6, 6.4 Hz), 2.19-2.08 (2H, m), 1.97-1.94 (1H, m), 1.76-1.70 (1H, m); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 25.07, 32.70, 42.55, 53.05, 103.19, 105.02, 112.64, 117.20, 123.32, 124.08, 124.16, 125.89, 127.31, 132.63, 146.14, 155.27, 160.76 (C6), 165.66 (C10a); LC/MS, (ESI, m/z): 311.34 (MH⁺, 100); Anal. Calcd. for C₁₈H₁₄O₃S: C 69.66, H 4.55, S 10.33. Found: C 69.02, H 4.67, S 9.06.

4.3.1.44 10a-(2-Thenyl)-6b,7 8 9 10,10a-hexahydro-6H-benzofuro[3, 2-c]chromen-6-one (44)

Light yellow oil; **IR** (ν_{max} , KBr): 2937, 2860, 1720 (C=O), 1639 (C=C), 1604, 1404, 1028 (C-O-C), 754 cm⁻¹; ¹H **NMR** (400 MHz, CDCl₃), δ (ppm): 7.70 (1H, dd, J = 7.6, 1.6 Hz), 7.54 (1H, td, J = 8.0, 1.6 Hz, ArH), 7.36 (1H, d, J = 7.6 Hz, ArH), 7.29-7.25 (2H, m, ArH), 7.16 (1H, dd, J = 3.6, 1.2 Hz), 7.00 (1H, dd, J = 5.2, 3.6 Hz), 3.85 (1H, t, J = 6.4 Hz), 2.30-2.27 (2H, m), 2.25-2.28 (1H, m), 1.99-1.93 (1H, m), 1.68-1.63 (1H, m), 1.60-1.49 (3H, m); ¹³C **NMR** (100 MHz, CDCl₃), δ (ppm): 19.09, 19.26, 23.73, 34.23, 46.65, 94.22, 105.66, 113.06, 117.13, 123.05, 124.14, 124.50, 125.72, 127.19, 132.60, 147.64, 155.28, 160.61 (C6), 165.59 (C11a); **LC/MS** (ESI, m/z): 325.37 (MH⁺, 100); **Anal. Calcd. for** C₁₉H₁₆O₃S: C70.35, H 4.97, S 9.88. **Found**: C 70.09, H 4.71, S 9.73.

4.3.1.45 3-Methyl-5a-(2-thenyl)-5a, 7, 8, 8a-tetrahydro-1H,6H-cyclopenta[4,5]furo[3 2-c]pyran-1-one (**45**)

Light yellow oil; **IR** (ν_{max} , KBr): 3089, 2968, 1710 (C=O), 1637 (C=C), 1577, 1446, 1278, 977, 920, 700 cm⁻¹; ¹H **NMR**(400 MHz, CDCl₃), δ (ppm): 7.25 (1H, dd, J = 5.2, 1.2 Hz), 7.00 (1H, dd, J = 4.0, 1.2 Hz), 6.95 (1H, dd, J = 5.2, 3.6 Hz), 5.90 (1H, s), 3.83 (1H, d, J = 8.0 Hz), 2.50 (1H, dd, J = 14.4, 6.0 Hz), 2.22 (3H, s), 2.15 (1H, td, J = 12.8, 6.4 Hz), 2.06-1.95 (2H, m), 1.89-1.85 (1H, m), 1.67-1.60 (1H, m); ¹³C **NMR** (100 MHz, CDCl₃), δ (ppm): 20.63, 24.92, 32.59, 42.37, 51.93, 95.71, 102.42, 102.48, 123.89, 125.70, 127.23, 146.23, 162.15, 165.61, 170.28; **LC/MS** (ESI, m/z) : 275.60 (MH⁺, 100); **Anal. Calcd. for** C₁₅H₁₄O₃S: C 65.67, H 5.14, S 11.69. **Found**: C 65.41, H 4.97, S 11.57.

(46)

Light yellow oil; **IR** (ν_{max} , KBr): 3091, 2937, 1708 (C=O), 1633 (C=C), 1575, 1446, 979, 748, 700 cm⁻¹; ¹H **NMR**(400 MHz, CDCl₃), δ (ppm): 7.28 (1H, dd, J = 4.8, 1.2 Hz, ArH), 7.11 (1H, dd, J = 3.6, 1.2 Hz, ArH), 6.99 (1H, dd, J = 4.8, 3.6 Hz, ArH), 5.95 (1H, s), 3.70 (1H, t, J = 5.2 Hz), 2.25 (3H, s), 2.21-2.11 (3H, m), 1.90-1.84 (1H, m), 1.58-1.65 (1H, m), 1.46-1.56 (3H, m); ¹³C **NMR** (100 MHz, CDCl₃), δ (ppm): 19.01, 19.24, 20.68, 23.53, 34.11, 45.56, 93.46, 96.28, 102.77, 124.37, 125.58, 127.10, 147.61, 162.07, 165.78, 170.19; **LC/MS**, (ESI, m/z) : 289.61 (M*+H, 100); **Anal. Calcd. for** C₁₆H₁₆O₃S: C 66.64, H 5.59, S 11.12. **Found**: C 66.46, H 5.37, S 11.01.

4.3.1.47 5-Methyl-9a-(2-thenyl)-5,6b, 7, 8,9,9a-hexahydro-6H-cyclopenta[4, 5]furo[3, 2c]quinolin-6-one (**47**)

Light yellow oil; **IR** (v_{max} , KBr): 2972, 2939, 1658 (C=O), 1637 (C=C), 1597, 1068 (C-O-C), 702 cm⁻¹; **¹H NMR** (400 MHz, CDCl₃), δ (ppm): 7.80 (1H, dd, J = 7.6, 1.6 Hz, ArH), 7.56 (1H, td, J = 8.0, 1.6 Hz, ArH), 7.36 (1H, d, J = 8.4 Hz, ArH), 7.25-7.20 (2H, m), 7.07 (1H, dd, J = 4.0, 1.2 Hz), 6.96 (1H, dd, J = 5.2, 3.6 Hz, ArH), 4.06 (1H, dd, J = 8.0, 2.0 Hz), 3.69 (3H, s), 2.63 (1H, dd, J = 13.6, 6.0 Hz), 2.25 (1H, td, J= 13.6, 6.0 Hz), 2.17-2.09 (2H, m), 1.92-1.89 (1H, m), 1.73-1.69 (1H, m); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 25.20, 29.21, 32.88, 42.86, 54.33, 101.34, 110.88, 112.57, 114.70, 121.79, 123.42, 123.68, 125.25, 127.13, 131.18, 140.92, 147.55, 161.40 (C6), 161.68 (C10a); LC/MS, (ESI, m/z): 324.70 (M⁺+H, 100); **Anal. Calcd. for** C₁₉H₁₇NO₂S: C70.56, H 5.30, N 4.33, S 9.91. **Found**: C 70.29, H 5.12, N 4.03, S 9.86.

4.3.1.48 5-Methyl-10a-(2-thenyl)-6b,7, 8,9,10,10a-hexahydrobenzofuro[3,2-c]quinolin-6(5H)one (**48**)

Light yellow oil; **IR** (ν_{max} , KBr): 3093, 3062, 2939, 1649 (C=O), 1631 (C=C), 1593, 1305, 1157, 1101 (C-O-C), 742, 711 cm⁻¹; ¹**H NMR**(400 MHz, CDCl₃), δ (ppm): 7.84 (1H, dd, J = 8.0, 1.2 Hz, ArH), 7.56 (1H, td, J = 7.8, 1.6 Hz, ArH), 7.35 (1H, d, J = 8.4 Hz, ArH), 7.24-7.20 (2H, m), 7.12 (1H, dd, J = 4.0, 1.2 Hz, ArH), 6.95 (1H, dd, J = 5.2, 3.6 Hz, ArH), 3.87 (1H, t, J = 5.6 Hz), 3.68 (3H, s), 2.32 (1H, dt, J = 14.4, 6.4 Hz, ArH), 2.26-2.04 (3H, m), 1.67-1.59 (2H, m), 1.56-1.50 (2H, m); ¹³**C NMR** (100 MHz, CDCl₃), δ

(ppm): 19.34, 19.48, 24.53, 29.12, 34.56, 47.75, 92.44, 111.98, 113.11, 114.68, 121.77, 123.43, 123.74, 124.90, 126.94, 131.14, 140.92, 149.62, 161.47, 161.48; LC/MS, (ESI, m/z) : 338.72 (MH⁺, 100); Anal. Calcd. for C₂₀H₁₉NO₂S: C71.19, H 5.68, N 4.15, S 9.50. Found: C 71.01, H 5.43, N 3.98, S 9.36.

4.3.1.49 4-Hydroxy-3-[2-(2-thenyl)cyclopent-1-en-1-yl]-2H-chromen-2-one (49)

Colorless solid; mp: 198-200 °C; **IR** (ν_{max} , KBr): 3101, 3077, 2948, 1665 (C= O), 1601 (C= C), 1557, 1495, 1107, 754; ¹H **NMR** (400 MHz, CDCl₃), δ (ppm): 7.90 (1H, dd, J = 8.0, 1.6 Hz), 7.67 (1H, td, J = 7.8, 1.6 Hz, ArH), 7.39-7.35 (2H, m, ArH), 7.26 (1H, dd, J = 5.2, 1.2 Hz), 7.02 (1H, dd, J = 3.6, 1.2 Hz), 6.95 (1H, dd, J = 5.2, 3.6 Hz, ArH), 3.00-2.88 (4H, m), 2.65-2.61 (2H, m); ¹³C **NMR** (100 MHz, CDCl₃), δ (ppm): 22.31, 37.19, 37.34, 103.20, 114.68, 116.70, 123.75, 124.02, 126.53, 126.59, 126.76, 126.95, 132.48, 137.51, 137.59, 153.25, 159.31, 160.96; **LC/MS** (ESI, m/z): 311.60 (MH⁺, 100); **Anal. Calcd.** for C₁₈H₁₄O₃S: C 69.66, H 4.55, S 10.33. Found: C 69.02, H 4.67, S 9.06.

4.3.1.50 4-Hydroxy-3-[2-(2-thenyl)cyclohexen-1-yl]-2H-chromen-2-one (50)

Colorless solid; mp: 162-163 °C; **IR** (ν_{max} , KBr): 3210, 2940, 2920, 1678 (C=O), 1603, 1633, 1177 (C-O-C), 757, 699 cm⁻¹; ¹H NMR (400 MHz, CDCl₃), δ (ppm): 7.75 (1H, dd, J = 8.0, 1.6 Hz), 7.54 (1H, td, J = 8.4, 1.6 Hz, ArH), 7.35 (1H, d, J = 8.4 Hz), 7.26 (1H, td, J = 8.0, 0.8 Hz, ArH), 7.09 (1H, dd, J = 5.2, 1.6 Hz), 7.03 (1H, dd, J = 3.6, 1.6 Hz), 6.86 (1H, dd, J = 4.8, 4.0 Hz), 6.43 (1H, s, OH), 2.78-2.20 (2H, m), 2.58-2.52 (1H, m), 2.05-1.97 (2H, m), 1.86-1.76 (3H, m); ¹³C NMR (100 MHz, CDCl₃), δ (ppm): 22.22, 22.91, 29.63, 31.12, 107.62, 114.77, 116.62, 123.70, 123.87, 124.84, 125.61, 125.75, 126.57, 132.23, 134.33, 142.03, 153.15, 158.39, 161.52; LC/MS (ESI, m/z): 325.80 (MH⁺, 100); Anal. Calcd. for C₁₉H₁₆O₃S: C70.35, H 4.97, S 9.88. Found: C 70.03, H 4.71, S 9.69.

4.4. Evaluation of in vitro antimicrobial activity

Escherichia coli ATCC 25922, Micrococcus luteus M3, Bacillus cereus B9, Bacillus licheniformis M30, Staphylococcus aureus ATCC 6538, Bacillus subtilis B1, Pseudomonas aeruginosa P7 were the test microorganisms used in the study. Muller-Hinton agar was sterilized at 121 °C, 1.5 atm for 15 min, and poured into each sterile petri dish (20 mL). These petri dishes were seeded with 500 µL of bacteria, that had been previously awakened in a Nutrient-Broth medium at 37 °C for 48 hours, and spread.Bacteria were allowed to grown on solid medium and the prepared sterile discs were placed on the medium. 5

mg/mL of the compounds to be investigated for antimicrobial activity were filtered with a pore size of 0.45 mm and dissolved in DMSO. 50 mL of componds were dropped onto discs and petri dishes were incubated at 37 °C for 24 hours. Finally, the measurements obtained.

Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgments

This work was supported by a research grant from the Scientific and Technical Research Council of Turkey (TBAG-2380, 103T124) and Ankara University BAP (10B4240006).

Appendix A. Supplementary data

NMR spectra of synthesized compounds; ORTEP view, crystallographic data and explanations for compounds **37** (PDF).

References

1. (a) B. R McDonald, K.A. Scheidt, *Acc. Chem. Res.,* 2015, **48**, 1172-1183; (b) T. Narender, S. Sarkar, V. Kand, J.K. Kumar, *Tetrahedron Lett.,* 2010, **51**, 6576-6579.

2. (a) M. A. Musa, J.S. Cooperwood and M.O.F. Khan, *Curr. Med. Chem.*, 2008, **15**, 2664-2679; (b) J. Moreau, C. Hubert, J. Batany, L. Toupet, T. Roisnel, J.P. Hurvois and J.L. Renaud, *J. Org. Chem.*, 2009, **74**, 8963-8973; (c) P. Borah, P.S. Naidu and P.J. Bhuyan, *Tetrahedron Lett.*, 2012, **53**, 5034-5037; (d) P. Borah, P.S. Naidu, S.nMajumder and P.J. Bhuyan, *RSC Adv.*, 2013, **3**, 20450-20455; (e) R. Grigg, M. Nurnabi, and A. Sarkar, *Tetrahedron*, 2004, **60**, 3359-3373; (f) D. Yu, M. Suzuki, L. Xie , S.L. Morris-Natschke and K.H. Lee, *Medicinal Res. Rev.*, 2003, **23**, 322-345; (g) R. Gali, J. Banothu, M. Porika, R. Velpula, R. Bavantula and S. Abbagani *RSC Adv.*, 2014, **4**, 53812-53819.

3. (a) K. Pam, Z. Zhang, S. Shen, L. Ma, L. Hu, *Tetrahedron*, 2013, **69**, 10933-10939; (b) J.C Jung.,
J.H. Lee, S. Oh, J.G. Lee, O.S. Park, *Bioorg. Med. Chem. Lett.*, 2004, **14**, 5527-5531; (c) J. Groverand,
S.M. Jachak, *RSC Adv.*, 2015, **5**, 38892-38905; (d) L.C. Rao, N.S. Kumar, V. Dileepkumar, U.S.N.
Murthyand, H.M. Meshram, *RSC Adv.*, 2015, **5**, 28958-28964; (e) R. Gondru, J. Banothu, R.K.
Thatipamula, R. Bavantula, *RSC Adv.*, 2015, **5**, 33562-33569; (f) S. Stanchev, G. Momekov, F.
Jensenand, I. Manolov, *Eur. J. Med. Chem.*, 2008, **43**, 694-706.

4. (a) S. Qiu, X. Li, W. Xiong, L. Xie, L. Guo, Z. Lin, B. Qiuand, G. Chen, *Biosens Bioelectron*, 2013, **41**, 403-408; (b) S.H. Su and D.Y. Yang, *ARKIVOC*, 2012, 253-263; (c) S.B Phadtare, K.J. Jaragand and G.S. Shankarling, *Dyes and Pigments*, 2013, **97**, 105-112; (d) M. Saleemand, K.H. Lee, *RSC Adv.*, 2015, **5**, 72150-72287.
(a) K.A Nolan., J.R. Doncaster, M.S. Dunstan, K.A. Scott, A.D. Frenkel, D. Siegel, D. Ross, J. Barnes,
 C. Levy, R.C. Whitehead, I.J. Stratfordand, R.A.Bryce, *J. Med. Chem.*, 2009, **52**, 7142-7156; (b) S.
 Stanchev, V. Hadjimitova, T. Traykov, T. Boyanovand, I. Manolov, *Eur. J. Med.Chem.*, 2009, **44**, 3077-3082; (c) I. Manolov, C.M. Moessmerand, N. Danchev, *Eur J. Med. Chem.*, 2006, **41**, 882-890.

6. (a) S.M. Prajapati, K.D. Patel, R. H. Vekariya, S. N. Panchaland, H. D. Patel, *RSC Adv.*, 2014, 4, 24463-24476; (b) A Marella., O.P. Tanwar, R. Saha, M.R. Ali, S. Srivastava, M. Akhter, M. Shaquiquzzamanand, M. M. Alam, *Saudi Pharma J.*, 2013, 21, 1-12; (c) R. Musiol, T. Magdziarzand, A. Kurczyk, *Formatex*, 2011, b1, 72-83; (d) J. Michael, *Nat. Prod. Rep.*, 2004, 21, 650-668.

7. (a) D.K. Barange, V. Kavala, C.W. Kuo, P.M. Leiand, C.F. Yao, *Tetrahedron*, 2011, **67**, 2870-2877;
(b) G. Bar, A.F. Parsons, C.B. Thomas, *Tetrahedron*, 2001, **57**, 4719-4728;
(c) I. Butenschön, K. Möllerand, W. Hansel, *J. Med. Chem.*, 2001, **44**, 1249-1256;
(d) J.P.Michael, *Nat. Prod. Rep.*, 2002, **19**, 742-760;
(e) P. Fossa, L. Mosti, G. Menozzi, C. Marzano, F. Baccichettiand, F. Bordin, *Bioorg. Med. Chem.*, 2002, **10**, 743-751;
(f) J. P. Michael, *Nat. Prod. Rep.*, 2003, **20**, 476-493.

8. (a) C. Medower, L. Wen, W.W. Johnson, *Chem. Res. Toxicol.*, 2008, **21**, 1570-1577; (b) G., Wu S.C.
Vashishthaand, J.C.L. Erve, *Chem. Res. Toxicol.*, 2010, **23**, 1393-1404; (c) D. Gramec, L.P. Masicand,
M. S. Dolenc, *Chem. Res. Toxicol.*, 2014, **27**, 1344-1358.

9. (a) M. Mondal, U. Bora, RSC Adv., 2013, 3, 18716-18754; (b) A.S. Demir and M. Emrullaoglu, Curr. Org. Chem., 2007, 4, 223-237; (c) D. Ergüntürk, M. B. Gürdere, Y.Budak, M. Ceylan, Synth Commun., 2017, 47, 1501–1506; (d) R. Caliskan, A. T. Pekel, W. H. Watson, M. Balci, Tetrahedron Lett., 2005, 46, 6227-6230. (e) Deliomeroglu M. K.; Dengiz C.; Calıskan R.; Balci M. Tetrahedron, 2012, 68, 5838-5844; (f) R.Çalışkan, N. Nohut, Ö. Yılmaz, E. Sahin, M. Balci, Tetrahedron, 2017, 73, 291-297; (g) W. Yuan, Y. Wei, M. Shi, Tetrahedron, 2011, 67, 7139-7142; (h) M. Furuta, K. Hanaya, T. Sugai, M. Shoji, Tetrahedron, 2017, 73, 2316-2322; (i) E. I. Heiba, R. M. Dessau, J. Org. Chem., 1974, 39, 3456-3457. 10. (a) T. Huynh, V. Nguyen, and H. Nishino, *Tetrahedron*, 2017, 58, 3619-3622; (b) C. Matsumoto, K. Yasutake, H. Nishino, Tetrahedron, 2016, 72, 6963-6972; (c) C. Akazaki, S. Kawabata, H. Nishino, Molbank, 2016, 4, M913, doi:10.3390/M913; (d) Ito Y, Yoshinaga T, and Nishino H. Tetrahedron, 2010, 66, 2683-2694. (e) M. A. Haque, H. Nishino, J. Heterocycl. Chem., 2014, 51, 579-585; (f) Y. Maemura, Y. Tanoue, H. Nishino, Heterocycles, 2012, 85, 2491-2503; (g) M. A. Haque, H. Nishino, Heterocycles, 2011, 83, 1783-1805; (h) Y. Ito, S. Jogo, N. Fukuda, R. Okumura, H. Nishino, Synthesis, 2011, 9, 1365-1374; (i) Y. Ito, Y. Tomiyasu, T. Kawanabe, K. Uemura, Y. Ushimizu, H. Nishino, Org. Biomol. Chem., 2011, 9, 1491-1507; (j) H. Nishino, Bull. Chem. Soc. Jpn., 1986, 59, 1733-1739; (k) J. Sasaki, M. Kobayashi, Y. Ibe, H. Nishino, Heterocycles, 2019, 99, in press, DOI: 10.3987/COM-18-S(F)62.

11. (a) R. Matsumoto, H. Nishino, *Synth. Commun.*, 2015, 45, 1807-1816; (b) E. Biçer, M. Yılmaz, M.,
E.V. Burgaz and A.T. Pekel, *Helv. Chim. Acta.*, 2013, 96, 135-141; (c) N. Kikue, T. Takahashi, H.
Nishino, *Heterocycles*, 2015, 90, 540-562; (d) M. Yılmaz, E.V. Burgaz, M. Yakut and E. Biçer, *J. Chin. Chem.*, Soc., 2014, 61, 1101-1107; (e) E. Loğoğlu, M. Yılmaz, H. Katircioğlu, M. Yakut and S. Mercan, *Med. Chem. Res.*, 2010, 19, 490-497; (f) A. Ustalar, M. Yılmaz, A. Osmani and S.A. Keçeli, *Turk. J. Chem.*, 2017, 41, 80-88; (g) A. Ustalar, M. Yılmaz, *Tetrahedron Lett.*, 2017, 58, 516-519; (h) O. Alagöz,
M. Yılmaz, A.T. Pekel, C. Graiffand, R. Maggi, *RSC Adv.*, 2014, 4, 14644-14654; (i) H. Aslan, D. A.
Akpınar, A. Öktemer, M. Yakut and A. Alagöz, *Helv. Chim. Acta.*, 2014, 97, 652-663; (j) H. Nishino, R.

2	
3	
1	
4	
5	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
15	
10	
16	
17	
18	
19	
20	
21	
21	
22	
23	
24	
25	
26	
27	
27	
28	
29	
30	
31	
32	
22	
22	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
ΔΔ	
-1-1 / r	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
58	

59 60 Kumabe, R. Hamada, M. Yakut, *Tetrahedron*, 2014, **70**, 1437-1450; (k) M. Yılmaz, M. Yakut, and A. T.
Pekel, *Synth. Commun.*, 2008, **38**, 914-927; (I) M. Özgür, M. Yılmaz, A.T. Pekel, *Commun.Fac.Sci.Univ.Ank.Series B*, 2017, **59**, 1-11; (m) H. Aslan, F. Eroğlu, M. Özgür, *Commun.Fac.Sci.Univ.Ank.Series B*, 2018, **60**, 17-24.

12. (a) K. Kobayashi, K. Sakashita, H. Akamatsu, K. Tanaka, M. Uchida, T. Uneda, T. Kitamura, O. Morikawa, H. Konishi, *Heterocycles*, 1999, **51**, 2881-2892; (b) C.B. Miao, R. Liu, Y.F. Sun, Q.X. Sun and H.T. Yang, *Tetrahedron Lett.*, 2017, **58**, 541-545; (c) M. Yilmaz, A. Ustalar, B. Uçan, and A.T. Pekel, *ARKIVOC*, 2016, **vi**, 79-91.

13. CCDC-1579314 contain the supplementary crystallographic data for the structure of compound 37.
 These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk).

14. M. Özyanık, S. Demirci, H. Bektaş, N. Demirbaş, A. Demirbaş, Ş. Karaoğlu, *Turk. J. Chem.*, 2012, **36**, 233-246.

15. A. Güvenç, A.T. Pekel, M. Koçkar, Chem. Eng. J., 2004, 99, 257-263.

16.(a) E. Ziegler. *Monath. Chem.*, 1961, **92**, 927-933; (b) K. Thomas, A. Rudolf, H. Peter, S. Wolfgang, *Journal für Practische Chemie*, 1994, **336**, 596-601.

17. (a) M.Yilmaz, *Tetrahedron*, 2011, **67**, 8255-8263; (b) V. Teresa, A. Belen, B. Rafael, A.Gregorio, *Chem. Ber.*, 1991, **124**, 1203 – 1206.18. Bruker (2012). *SADABS*. Bruker AXS Inc. Madison, Wisconsin, USA.

19. G. M. Sheldrick, Acta Cryst, 2008, A64, 112-122.

Scheme Captions

Scheme 1. Dihydrofuran-fused and 3-alkenyl-substituted pyranone, coumarin and quinolinone derivatives.

- Scheme 2. The proposed mechanism for the formation of alkenyl-substituted compounds.
- Scheme 3. Reaction of 4-hydroxycoumarin (1a) with 2j.
- Scheme 4. Ring-opening reaction of dihydrofuroquinolinone 31.
- Scheme 5. Ring opening reaction of compounds 49 and 50

Table Captions

- Table 1. Reaction of 4-hydroxycoumarin (1a) with 1,1-disubstituted alkenes 2a-e.ª
- Table 2. Reaction of 4-hydroxy-6-methyl-2H-pyran-2-one (1b) with 2a-c.ª
- Table 3. Reaction of 1c, d with 2a-c.
- Table 4. Reaction of 1e with 2a-c.ª
- Table 5. Reactions of 1a-c with 2f, g.ª
- Table 6. Reactions of 1a, b, e with 2h, i.a
- Table 7. Zone diameters (mm) of the compounds against bacteria.
- Table 8. Zone diameters (mm) of antibiotics against bacteria^{11g}.
- Table 9. MIC results (µg/mL).

Figure Caption

Fig. 1. The molecular entities of compound **37**, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Table of Contents

The syntheses, spectroscopic properties, and antimicrobial activities of new pyranones and quinolinebased dihydrofurans accompanied by 3-alkenyl-substituted structures were investigated.

Efficient Syntheses and Antimicrobial Activities of New Thiophene Containing Pyranone and Quinolinone Derivatives by Manganese(III) Acetate. The effect of Thiophene on Ring Closure-Opening Reactions

Mehtap Özgür^{a*}, Mehmet Yılmaz^b, Hiroshi Nishino^c, Eda Çinar Avar^d, Hakan Dal^e, A.Tarık Pekel^a, Tuncer Hökelek^f

^aDepartment of Chemistry, Ankara University, 06100 Ankara, TURKEY

^bDepartment of Chemistry, Kocaeli University, 41380 Kocaeli, TURKEY

^cDepartment of Chemistry, Kumamoto University, Kurokami, Kumamoto 860-8555, JAPAN

^dDepartment of Chemistry, Gazi University, 06500 Ankara, TURKEY

^eDepartment of Chemistry, Anadolu University, 26470 Yenibağlar, Eskişehir, TURKEY

^fDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, TURKEY

*Corresponding author: mehtapyakut@gmail.com, Phone Number: +90 0312-212-67-20

Supplementary Materials

Contents

X-ray Crystallography data for compounds 37 page	S2-S4
Copies of ¹ H and ¹³ C NMR Spectra page	S5-S103
Copies of COSY, HSQC and HMBC Spectra page	S104-S121

X-ray Crystallography data

The colourless block shaped crystals of the title compound **37** was crystallized from Hexane/Ethylacetate.at room temperature. Crystallographic data were recorded on a Bruker Kappa APEXII CCD area-detector diffractometer using Mo K_a radiation (λ =0.71073 Å) at T=296(2) K. Absorption correction by multi-scan [1] was applied. Structure was solved by direct methods and refined by full-matrix least squares against F² using all data [2]. All non-H atoms were refined anisotropically. Methine H atom was located in a difference Fourier map and refined freely. The remaining C-bound H-atoms were positioned geometrically with C---H = 0.93 and 0.96 Å for aromatic and methyl H-atoms, respectively, and constrained to ride on their parent atoms, with U_{iso} (H) = k x U_{eq}(C), where k = 1.5 for methyl H-atoms and k = 1.2 for aromatic H-atoms.

Crystal structure

In the molecule of the compound **37** (Fig. 1), the bond lengths and angles (Table 2) are generally within normal ranges. The benzene, A (C2-C7) and D (C11-C16), and the thiophene, E (S1/C18-C21), rings are planar, and they are oriented at dihedral angles of A/B = 62.67(4)°, A/E = 60.75(4)° and B/E = 24.44(4)°. But, ring B (C1/C2/C7/O1/C8/C9) is in flattened-boat conformation with puckering parameters of φ = - 61.4(3)°, θ = 74.5(3)° and Q_T = 0.244(4) Å [**3**]. The furan, C (C1/C9/C10/C17/O2), ring is in envelope conformation with atom C10 at the flap position, and it is -1.1519(11) Å away from the best least-squares plane of the other four atoms. Atoms C10 and C17 are the chiral centres with chilarity S. In the crystal structure, intermolecular C-H ... O hydrogen bonds (Table 3) link the molecules into infinite chains along the b-axis (Fig. 2), additional π ... π contacts between the parallel benzene rings, A, Cg1 ... Cg1ⁱ (where Cg1 is the centroid of ring A) may further stabilize the structure, with centroid-to-centroid distance of 3.6131(7) Å. A weak C-H ... π interaction (Table 3) is also observed.

References

[1] Bruker (2012). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.

[2] Sheldrick, G. M. (2008). Acta Cryst. A64, 112--122.

[3] Cremer, D & Pople, J.A. (1975). J. Amer. Chem. Soc. 97, 1354-1358.

CCDC-1579314

Figure 1. The molecular entities of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2. A partial packing diagram of the title compound. Intermolecular C-H ...O hydrogen bonds are shown as dashed lines. Nonbonding H atoms have been omitted for clarity.

1	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
20	
20	
39 40	
40 41	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	

Table 1. Crystallographic da	ita.
Empirical Formula	C ₂₂ H ₁₆ O ₃ S
Fw	360.41
Crystal System	monoclinic
Space Group	P 2 ₁ /c
a ([°] _A)	9.9226 (2)
b (Å)	15.7155 (3)
C (Å)	11.5782 (2)
α (°)	90
β (°)	108.572 (3)
γ(°)	90
V ([°] _A ³)	1711.47 (6)
Ζ	4
μ (MoKα) (mm ⁻¹)	0.21
ρ (calcd) (g cm ⁻³)	1.399
Number of Reflections Total	16080
Number of Reflections Unique	4292
Number of Reflections Observed [$l > 2\sigma(l)$]	3772
R _{int}	0.019
$2\theta_{max}$ (°)	56.8
T _{min} / T _{max}	0.926 / 0.977
Number of Parameters	239
R [F ² >2 σ (F ²)]	0.032
wR	0.084
S	1.03
$\Delta \rho_{\text{max}}(e \text{ Å}^{-3})$	0.35
Δρ _{min} (e Å ⁻³)	-0.27

А

Table 2. The Selected Bond L	engths (Å) and Angles (deg).
O1– C7	1.3749 (14)
O1– C8	1.3967 (14)
O2– C1	1.3414 (14)
O2– C17	1.4890 (14)
O3– C8	1.2068 (14)
S1– C18	1.7243 (11)
S1– C21	1.7114 (12)
C7– O1– C8	123.15 (9)
C1– O2– C17	107.94 (8)
O1– C8– O3	116.75 (10)
O3– C8– C9	128.05 (11)
O2-C17-C10	105.07 (8)
C18–S1– C21	91.93 (6)
S1–C18–C17	119.87 (8)
O2-C17-C18	105.77 (8)

Table 3 Hydrogen-bond geometry (Å,°)

D-H А	D-H	НА	DA	D-HA
C21—H21…O1 ⁱ	0.93	2.43	3.2052 (16)	141
C13—H13… <i>Cg</i> 1 [⊪]	0.93	3.08	4.0018 (15)	173

Symmetry codes: (i) -x+1, y+1/2, -z+1/2; (ii) -x+2, y+1/2, -z+3/2. Cg1 is the centroid of ring

(C2-C7).

2	
2	
3	
4	
5	
ر	
6	
7	
0	
Q	
9	
1	ი
1	1
1	1
1	2
1	3
1	۵
1	-
1	5
1	6
1	7
1	ć
I	g
1	9
2	0
5	1
2	1
2	2
2	3
2	Δ
~	+
2	5
2	6
2	7
~	' c
2	8
2	9
_	_
3	n
3	0
3 3	0 1
3 3 3	0 1 2
333	0 1 2 3
333	0 1 2 3
3 3 3 3 3	0 1 2 3 4
3 3 3 3 3 3 3	0 1 2 3 4 5
33333333	0 1 2 3 4 5 6
3333333	01234567
3 3 3 3 3 3 3 3 3 3 3	01234567
3 3 3 3 3 3 3 3 3 3 3 3	0 1 2 3 4 5 6 7 8
3333333333333	0 1 2 3 4 5 6 7 8 9
33333333333	01234567890
333333333334	01234567890
333333333344	012345678901
3 3 3 3 3 3 3 3 3 4 4 4	0123456789012
33333333334444	01234567890122
3 3 3 3 3 3 3 3 3 4 4 4 4	01234567890123
3 3 3 3 3 3 3 3 3 4 4 4 4 4	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
3 3 3 3 3 3 3 3 3 4 4 4 4 4 4	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
333333333444444444	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 -
3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4	012345678901234567
3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4	0123456789012345678
333333333344444444444444444444444444444	01234567890123456780
33333333334444444444444	012345678901234567890
333333333344444444444444444444444444444	012345678901234567890
3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5	0123456789012345678901
333333333444444444444555	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5	012345678901234567890122
3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5	01234567890123456789012345
3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

58 59 60

2.1 ¹H-NMR spectra of **3**

2.2 ¹H-NMR spectra of 8

2.3 ¹H-NMR spectra of 4

2.4 ¹H-NMR spectra of **9**

2.5 ¹H-NMR spectra of **5**

2.7 ¹H-NMR spectra of **6**

2.8 ¹H-NMR spectra of 11

2.12 ¹H-NMR spectra of **4aj**

2.14 ¹H-NMR spectra of 16

2.15 ¹H-NMR spectra of 14

2.19 ¹H-NMR spectra of 19

2.21 ¹H-NMR spectra of 20

2.26 ¹H-NMR spectra of 28

New Journal of Chemistry

New Journal of Chemistry

2.44 ¹H-NMR spectra of **49**

2.47 ¹H-NMR spectra of 45

2.48 ¹H-NMR spectra of 46

¹³C-NMR of COMPOUNDS

3.1 ¹³C-NMR spectra of 3

3.2¹³C-NMR spectra of 8

3.7 13 C-NMR spectra of **6**

3.19¹³C-NMR spectra of 25

3.23 ¹³C-NMR spectra of 27

New Journal of Chemistry

New Journal of Chemistry

3.27 ¹³C-NMR spectra of 29

3.29¹³C-NMR spectra of **30**

3.47¹³C-NMR spectra of 46

3.49¹³C-NMR spectra of **48**

4. COSY Spectra of Compound

4.1 COSY spectra of 16

5. HSQC Spectra of Compounds

5.1 HSQC spectra of **3**

5.2 HSQC spectra of 16

5.3 HSQC spectra of 35

5.4 HSQC spectra of 36

5.5 HSQC spectra of **37**

5.6 HSQC spectra of 38

5.7 HSQC spectra of 39

New Journal of Chemistry

5.8 HSQC spectra of 41

5.9 HSQC spectra of 42

6. HMBC Spectra of COMPOUNDS

6.1 HMBA spectra of 3

6.2 HMBC spectra of 16

New Journal of Chemistry

6.3 HMBC spectra of 19

6.4 HMBC spectra of 35

6.5 HMBC spectra of 36

6.6 HMBC spectra of 37

6.7 HMBC spectra of 39

F1 (ppm)

6.8 HMBC spectra of 39

F1 (ppm)

data md501 0m iucr refine instructions details TITL md501 0m in P 21/c CELL 0.71073 9.9226 15.7155 11.5782 90.000 108.572 90.000 ZERR 4.00 0.0002 0.0003 0.0002 0.000 0.003 0.000 LATT 1 SYMM - X, 1/2 + Y, 1/2 - ZSFAC C H O S UNIT 88 64 12 4 MERG 2 FMAP 2 PLAN 20 SIZE 0.16 0.25 0.32 ACTA BOND \$H CONF LIST 4 L.S. 10 TEMP 20.00 WGHT 0.036900 0.832700 FVAR 0.18359 H10 2 0.342282 -0.061688 0.366198 11.00000 0.01588 MOLE 1 S1 4 0.422148 0.145520 0.357393 11.00000 $0.01945 \quad 0.02135 =$ 0.02482 -0.00592 0.01208 -0.00720 3 0.340548 -0.151448 0.023621 01 11.00000 0.02272 0.01652 =0.02247 0.00017 0.01058 0.00309 0.217328 0.061095 0.163562 11.00000 0.01318 =02 3 0.02542 0.01633 0.00052 0.00607 0.00191 03 3 0.356454 -0.222493 0.193090 11.00000 0.02325 0.01575 =0.02590 0.00217 0.00902 0.00421 1 0.279346 -0.078675 0.181215 11.00000 C9 0.01375 0.01497 =0.01890 -0.00031 0.00517 0.00002 C10 1 0.252070 -0.061865 0.299583 11.00000 0.01459 0.01268 =0.01739 0.00000 0.00415 0.00063 C4 1 0.318005 0.071437 -0.172410 11.00000 0.02040 0.02666 =0.02247 0.00716 0.00575 0.00007 AFIX 43 H4 2 0.316600 0.121114 -0.216427 11.00000 -1.20000 AFIX 0 1 0.327908 -0.155387 0.140245 11.00000 0.01410 C8 0.01689 =0.02086 -0.00081 0.00601 -0.00010 C16 1 0.167854 -0.136743 0.455565 11.00000 0.02280 0.02049 =

59 60

5 6

7 8 9

10

11

12

13

14

15

16 17

18

19

20

21

22

23 24

25

26

27

28

29

30

31 32

33

34

35

36

37

38

39 40

41

42

43

44

45

46 47

48

49

50

51

52

53

54 55

2	
2	0.02244 0.00220 0.00900 0.00408
4	AFIX 43
5	H16 2 0 238535 -0 108240 0 515577 11 00000 -1 20000
6	AFIV 0
7	AFIX 0
8	C7 1 0.328587 -0.076981 -0.041201 11.00000 0.01393 0.01902 =
9	0.02009 0.00126 0.00430 0.00013
10	$C_{2} = 1 + 0.291096 + 0.000432 + 0.001867 + 11.00000 + 0.01350 + 0.01870 = 0.000432 + 0.001870 = 0.000432 + 0.00042 + 0.00042 + 0.00042 + 0.00042 + 0.00042 + 0.00$
11	
12	0.01048 0.00004 0.00209 -0.00130
13	C1 = 1 = 0.261791 = -0.006521 = 0.114915 = 11.00000 = 0.01329 = 0.01528 =
14	0.01786 -0.00160 0.00261 -0.00055
15	$C18 \ 1 \ 0.277427 \ 0.093048 \ 0.375200 \ 11.00000 \ 0.01237 \ 0.01260 =$
16	
10	0.01995 0.00002 0.00300 -0.00027
17	$C19 \ 1 \ 0.259045 \ 0.113045 \ 0.483533 \ 11.00000 \ 0.02157 \ 0.01988 =$
18	0.02089 - 0.00085 0.01046 - 0.00424
19	AFIX 43
20	H19 = 2 = 0.185929 = 0.091394 = 0.508964 = 11.00000 = 1.20000
21	AFIX 0
22	AFIX 0
23	$C17 \ 1 \ 0.193151 \ 0.033070 \ 0.278229 \ 11.00000 \ 0.01591 \ 0.01336 =$
24	0.01740 0.00034 0.00479 -0.00033
25	$C_{21} = 1 + 0.459675 + 0.192919 + 0.497176 + 11.00000 + 0.02124 + 0.01750 =$
26	
27	0.02234 - 0.00342 - 0.00492 - 0.00457
28	AFIX 43
20	H21 2 0.536140 0.229340 0.530266 11.00000 -1.20000
29	AFIX 0
30	$C_{11} = 0.154172 = 0.122050 = 0.222287 = 11.00000 = 0.01680 = 0.01224 - 0.01224$
31	
32	0.02201 0.00076 0.00822 0.00246
33	C3 1 0.287135 0.074533 -0.064456 11.00000 0.01889 $0.01906 =$
34	0.02009 0.00145 0.00380 -0.00017
35	AFIX A3
36	$H_{1} = \frac{1}{2} + \frac{1}{2$
37	H3 2 0.2638/9 0.126001 -0.035954 11.00000 -1.20000
38	AFIX 0
39	C13 1 -0.042153 -0.223028 0.278030 11.00000 0.02131 0.01385 =
40	0 04047 -0 00227 0 01181 -0 00154
41	A FIV /2
42	
43	H13 2 -0.112341 -0.252090 0.218319 11.00000 -1.20000
45	AFIX 0
44	$C22 \ 1 \ 0.034647 \ 0.040664 \ 0.256682 \ 11.00000 \ 0.01445 \ 0.01487 =$
45	
40	0.05050 -0.00105 0.00281 0.00000
4/	AFIX 33
48	H22A 2 -0.015352 0.001401 0.194200 11.00000 -1.50000
49	H22B 2 0.004158 0.097624 0.231513 11.00000 -1.50000
50	$H_{22}C_{-2} = 0.014804 = 0.027773 = 0.330694 = 11.00000 = 1.50000$
51	1122C 2 0.01τ00τ 0.02///3 0.33007τ 11.00000 -1.30000 ΛΕΙΣ Δ
52	AFIX U
53	C6 1 $0.356517 - 0.080763 - 0.151413 11.00000 0.01854 0.02674 =$
54	0.02217 - 0.00144 0.00722 0.00275
55	AFIX 43
56	
57	
. .	

4

5

6

7

8 9

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24 25

26

27

28

29

30

31 32

33

34 35

36

37

38 39 40

41 42

43

44

45

46 47

48

49

50

51

52

53 54

55

H6 2 0.378126 -0.132214 -0.181104 11.00000 -1.20000 AFIX 0 C14 1 -0.027994 -0.235035 0.400019 11.00000 0.02738 0.01776 = 0.04807 0.00781 0.02298 0.00272 AFIX 43 H14 2 -0.088656 -0.272034 0.422206 11.00000 -1.20000 AFIX 0 C12 1 0.048349 -0.167654 0.244893 11.00000 0.02148 0.01474 = 0.02436 -0.00130 0.00891 0.00047 AFIX 43 H12 2 0.038130 -0.159723 0.162939 11.00000 -1.20000 AFIX 0 C15 1 0.076716 -0.191763 0.488595 11.00000 0.03157 0.02628 =0.03149 0.00908 0.01900 0.00771 AFIX 43 H15 2 0.086131 -0.199515 0.570428 11.00000 -1.20000 AFIX 0 C5 1 0.351309 -0.005892 -0.215800 11.00000 0.01938 0.03341 = 0.01912 0.00334 0.00684 0.00219 AFIX 43 H5 2 0.370391 -0.007222 -0.289384 11.00000 -1.20000 AFIX 0 $C20 \ 1 \ 0.364240 \ 0.170890 \ 0.553913 \ 11.00000 \ 0.02733 \ 0.01971 =$ 0.01822 -0.00195 0.00745 -0.00389 AFIX 43 H20 2 0.367094 0.191214 0.630094 11.00000 -1.20000 HKLF 4 REM md501 0m in P 21/c REM R1 = 0.0322 for 3772 Fo > 4sig(Fo) and 0.0381 for all 4292 data REM 239 parameters refined using 0 restraints END WGHT 0.0369 0.8327 REM Highest difference peak 0.354, deepest hole -0.265, 1-sigma level 0.045 01 1 0.2374 0.0651 0.3278 11.00000 0.05 0.35 Q2 1 0.2898 -0.1171 0.1570 11.00000 0.05 0.35 Q3 1 0.2807 -0.0014 0.0575 11.00000 0.05 0.35 1 0.3327 0.1150 0.3624 11.00000 0.05 O4 0.35 Q5 1 0.2625 -0.0755 0.2339 11.00000 0.05 0.33 06 1 0.3250 -0.0818 -0.1042 11.00000 0.05 0.33 Q7 1 0.2002 -0.0943 0.3168 11.00000 0.05 0.33 1 0.3108 0.1409 0.5222 11.00000 0.05 0.33 08 Q9 1 0.2454 -0.0515 0.1366 11.00000 0.05 0.32 Q10 1 0.2902 -0.0397 0.1633 11.00000 0.05 0.32

Q11 1 0.2172 -0.0147 0.2910 11.00000 0.05 0.31 Q12 1 0.2991 -0.0386 -0.0220 11.00000 0.05 0.30 Q13 1 0.2777 0.0356 -0.0346 11.00000 0.05 0.30 Q14 1 0.1162 0.0368 0.2690 11.00000 0.05 0.29 Q15 1 0.1642 -0.1329 0.3920 11.00000 0.05 0.29 Q16 1 0.0909 -0.1455 0.2966 11.00000 0.05 0.29 Q17 1 0.4052 0.1912 0.5155 11.00000 0.05 0.28 Q18 1 0.1191 -0.1665 0.4635 11.00000 0.05 0.27 Q19 1 0.4470 0.1725 0.4376 11.00000 0.05 0.27 Q20 1 0.0072 -0.1932 0.2649 11.00000 0.05 0.26 ;
_audit_creation_method SHELXL-97 _chemical_name_systematic ; ?
; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety 'C22 H16 O3 S' _chemical_formula_sum 'C22 H16 O3 S' _chemical_formula_weight 360.41
loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'S' 'S' 0.1246 0.1234 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
_symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M 'P 21/c' _symmetry_space_group_name_Hall '-P 2ybc'
loop_ _symmetry_equiv_pos_as_xyz

'x, y, z' '-x, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y-1/2, z-1/2' cell length a 9.9226(2) _cell_length b 15.7155(3)cell length c 11.5782(2)_cell_angle alpha 90.00 cell angle beta 108.572(3)cell angle gamma 90.00 _cell_volume 1711.47(6) cell formula units Z 4 _cell_measurement temperature 296(2) _cell_measurement_reflns used 8525 cell measurement theta min 2.26 cell measurement theta max 28.39 exptl crystal description block _exptl_crystal colour colourless _exptl_crystal size max 0.32 _exptl_crystal_size mid 0.25 _exptl_crystal_size min 0.16 _exptl_crystal density meas ? _exptl_crystal_density diffrn 1.399 exptl crystal density method 'not measured' exptl crystal F 000 752 exptl absorpt coefficient mu 0.209 _exptl_absorpt_correction type multi-scan _exptl_absorpt_correction T min 0.9263 _exptl_absorpt_correction T max 0.9774 exptl absorpt process details 'SADABS; Bruker, 2012' _exptl_special details ? ; diffrn ambient temperature 296(2)diffrn radiation wavelength 0.71073 _diffrn_radiation type MoK\a _diffrn_radiation source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device type 'Bruker APEX-II CCD' diffrn measurement method '\f and \w scans' _diffrn_detector_area_resol mean ?

58 59 60

1 2 3

4

5

6

7 8 9

10

11

12

13

14

15

16 17

18

19

20

21

22 23 24

25

26

27

28

29

30

31 32

33

34

35

36

37

38

39 40 41

42 43

44

45 46

47 48

49

50

51

52

53

54

2	
3	diffrn standards number ?
4	diffrn standards interval count ?
5	
6	
7	_diffn_standards_decay_% ?
8	_diffrn_refins_number 16080
9	_diffrn_reflns_av_R_equivalents 0.0193
10	_diffrn_reflns_av_sigmal/netI 0.0188
11	diffrn reflns limit h min -13
12	diffrn reflns limit h max 13
13	diffrn reflns limit k min -16
14	diffen rofing limit k may 21
15	$ \begin{array}{c} \text{unim_remis_mint_k_max} & 21 \\ 1.00 & \text{o} & 1.1.1.1 \\ 1.1 & 1.$
16	_diffrn_refins_limit_1_min -15
17	_diffrn_reflns_limit_1_max 13
18	_diffrn_reflns_theta_min 2.17
19	diffrn reflns theta max 28.42
20	reflns number total 4292
21	reflue number of 3772
22	refine threshold expression $I > 2 \setminus s(I)$
23	
24	
25	_computing_data_collection APEX2 (Bruker, 2007)
20	_computing_cell_refinement 'SAINT (Bruker, 2007)'
27	_computing_data_reduction 'SAINT'
20	_computing_structure_solution 'SHELXS97 (Sheldrick, 2008)'
30	computing structure refinement 'SHELXL97 (Sheldrick, 2008)'
31	computing molecular graphics 'Orten-3 for Windows (Farrugia 1997)'
32	computing nublication material
33	
34	which publication routiles (Farrugia, 1999) and FLATON (Spek, 2005)
35	
36	_refine_special_details
37	· ,
38	Refinement of F ² [^] against ALL reflections. The weighted R-factor wR and
39	goodness of fit S are based on F^{2} , conventional R-factors R are based
40	on F with F set to zero for negative F^2 . The threshold expression of
41	$F^{2} > 2$ sigma(F^{2}) is used only for calculating R-factors(gt) etc. and is
42	1 2 > 2 signal $1 2$) is used only for calculating K-factors (gr) etc. and is
43	not relevant to the choice of reflections for refinement. K-factors based Γ^{2}
44	on F^2/A are statistically about twice as large as those based on F, and R-
45	factors based on ALL data will be even larger.
46	· ,
47	
48	refine ls structure factor coef Fsqd
49	refine ls matrix type full
50	refine ls weighting scheme calc
51	rafine le weighting dataile
52	$\frac{1}{1} = \frac{1}{1} = \frac{1}$
53	calc w=1/[\s^2^(Fo^2^)+(0.0369P)^2^+0.832/P] where P=(Fo^2^+2Fc^2^)/3'
54	_atom_sites_solution_primary direct
55	_atom_sites_solution_secondary difmap
56	
57	
58	

3 atom sites solution hydrogens geom 4 refine ls hydrogen treatment mixed 5 refine ls extinction method none 6 _refine_ls_extinction_coef ? 7 refine ls number reflns 4292 8 9 refine ls number parameters 239 10 _refine_ls_number restraints 0 11 refine ls R factor all 0.0381 12 _refine_ls R factor gt 0.0322 13 refine ls wR factor ref 0.0841 14 refine ls wR factor gt 0.0802 15 refine ls goodness of fit ref 1.030 16 17 refine ls restrained S all 1.030 18 refine ls shift/su max 0.000 19 refine ls shift/su mean 0.000 20 21 loop 22 atom site label 23 atom site type symbol 24 25 atom site fract x 26 atom site fract y 27 atom site fract z 28 atom site U iso or equiv 29 atom site adp type 30 atom site occupancy 31 32 atom site symmetry multiplicity 33 atom site calc flag 34 atom site refinement flags 35 atom site disorder assembly 36 atom site disorder group 37 S1 S 0.42215(3) 0.145520(19) 0.35739(3) 0.02068(8) Uani 1 1 d . . . 38 O1 O 0.34055(9) -0.15145(5) 0.02362(8) 0.01977(18) Uani 1 1 d . . . 39 40 O2 O 0.21733(9) 0.06109(5) 0.16356(7) 0.01845(17) Uani 1 1 d . . . 41 O3 O 0.35645(9) -0.22249(5) 0.19309(8) 0.02135(18) Uani 1 1 d . . . 42 C1 C 0.26179(11) -0.00652(7) 0.11491(10) 0.0160(2) Uani 1 1 d ... 43 C2 C 0.29110(11) -0.00043(7) 0.00187(10) 0.0169(2) Uani 1 1 d ... 44 C3 C 0.28714(12) 0.07453(8) -0.06446(11) 0.0199(2) Uani 1 1 d ... 45 H3 H 0.2639 0.1260 -0.0360 0.024 Uiso 1 1 calc R . . 46 C4 C 0.31800(13) 0.07144(8) -0.17241(11) 0.0234(3) Uani 1 1 d ... 47 48 H4 H 0.3166 0.1211 -0.2164 0.028 Uiso 1 1 calc R ... 49 C5 C 0.35131(13) -0.00589(9) -0.21580(11) 0.0238(3) Uani 1 1 d . . . 50 H5 H 0.3704 -0.0072 -0.2894 0.029 Uiso 1 1 calc R ... 51 C6 C 0.35652(12) -0.08076(8) -0.15141(11) 0.0223(2) Uani 1 1 d ... 52 H6 H 0.3781 -0.1322 -0.1811 0.027 Uiso 1 1 calc R ... 53 C7 C 0.32859(12) -0.07698(7) -0.04120(11) 0.0179(2) Uani 1 1 d ... 54 55 C8 C 0.32791(11) -0.15539(7) 0.14024(11) 0.0172(2) Uani 1 1 d ... 56 57

58 59

1 2

1	
2	
3	C9 C 0 27935(11) -0 07868(7) 0 18122(10) 0 0159(2) Uani 1 1 d
4	$C_{10} = C_{10} = C$
5	C10 C 0.25207(11) = 0.00187(7) 0.29958(10) 0.0151(2) 0.00000000000000000000000000000000000
6	H10 H 0.3423(15) - 0.0617(9) 0.3662(12) 0.016(3) 01s0 1 1 d
7	C11 C 0.15417(12) -0.12395(7) 0.33329(11) 0.0166(2) Uani 1 1 d
8	C12 C 0.04835(12) -0.16765(7) 0.24489(11) 0.0198(2) Uani 1 1 d
9	H12 H 0.0381 -0.1597 0.1629 0.024 Uiso 1 1 calc R
10	C13 C -0 04215(13) -0 22303(8) 0 27803(13) 0 0247(3) Uani 1 1 d
11	H13 H -0 1123 -0 2521 0 2183 0 030 Uiso 1 1 calc R
12	C14 C = 0.02700(14) = 0.22502(8) = 0.0000(14) = 0.0285(2) Uari = 1.1.4
13	$U_1 + U_2 = 0.02779(14) - 0.23303(6) 0.40002(14) 0.0263(5) 0.00001111 0$
14	H14 H $-0.0887 - 0.2720 0.4222 0.034 0180 1 1 calc R$
15	C15 C 0.07672(14) - 0.19176(9) 0.48859(13) 0.0277(3) Uani 1 1 d
16	H15 H 0.0861 -0.1995 0.5704 0.033 Uiso 1 1 calc R
17	C16 C 0.16785(13) -0.13674(8) 0.45556(12) 0.0215(2) Uani 1 1 d
18	H16 H 0.2385 -0.1082 0.5156 0.026 Uiso 1 1 calc R
19	C17 C 0.19315(12) 0.03307(7) 0.27823(10) 0.0157(2) Uani 1 1 d
20	C18 C 0.27743(11) 0.09305(7) 0.37520(10) 0.0148(2) Uani 1.1 d
21	C10 C 0.25005(13) 0.11304(8) 0.48353(11) 0.0100(2) Uani 1.1 d
22	$H_{10} = 0.25005(13) 0.11504(0) 0.40555(11) 0.0177(2) 0.000111 0.017$
23	$(19 \text{ H} 0.1659 0.0914 0.5090 0.024 0180 1 1 calc K (20 (10.2440412) \times 1.17090(9) \times 0.55201(11) \times 0.0217(2) \text{ M} = 1.1.1$
24	$C_{20} \subset 0.36424(13) \cup 1/089(8) \cup .53391(11) \cup .0217(2) \cup am 1 1 a \dots$
25	H20 H 0.36/1 0.1912 0.6301 0.026 U1so I I calc R
20	C21 C 0.45968(13) 0.19292(8) 0.49718(11) 0.0208(2) Uani 1 1 d
27	H21 H 0.5361 0.2293 0.5303 0.025 Uiso 1 1 calc R
20	C22 C 0.03465(12) 0.04066(7) 0.25668(12) 0.0211(2) Uani 1 1 d
30	H22A H -0.0154 0.0014 0.1942 0.032 Uiso 1 1 calc R
31	H22B H 0.0042 0.0976 0.2315 0.032 Uiso 1 1 calc R
32	H22C H 0 0148 0 0278 0 3307 0 032 Uiso 1 1 calc R
33	
34	loon
35	otop_
36	
37	_atom_site_aniso_U_11
38	_atom_site_aniso_U_22
39	_atom_site_aniso_U_33
40	atom site aniso U 23
41	atom site aniso U 13
42	atom site aniso U 12
43	$s_1 = 0.01945(14) = 0.02135(15) = 0.02482(16) = 0.00592(11) = 0.01208(11) = 0.00720(11)$
44	0.0027(4) 0.02135(13) 0.02402(10) 0.00332(11) 0.01200(11) 0.0072
45	O1 0.0227(4) 0.0103(4) 0.0223(4) 0.0002(3) 0.0100(3) 0.0031(3) 0.0031(3) 0.00254(4) 0.0122(4) 0.0162(4) 0.0005(2) 0.0051(2) 0.0010(2)
46	$02\ 0.0234(4)\ 0.0132(4)\ 0.0103(4)\ 0.0003(3)\ 0.0001(3)\ 0.0019(3)$
47	$03\ 0.0232(4)\ 0.0158(4)\ 0.0259(4)\ 0.0022(3)\ 0.0090(3)\ 0.0042(3)$
48	$C1\ 0.0133(5)\ 0.0153(5)\ 0.0179(5)\ -0.0016(4)\ 0.0026(4)\ -0.0005(4)$
49	$C2\ 0.0135(5)\ 0.0187(5)\ 0.0165(5)\ 0.0000(4)\ 0.0021(4)\ -0.0014(4)$
50	C3 0.0189(5) 0.0191(6) 0.0201(6) 0.0015(4) 0.0038(4) -0.0002(4)
52	C4 0.0204(5) 0.0267(6) 0.0225(6) 0.0072(5) 0.0058(5) 0.0001(5)
53	C5 0.0194(5) 0.0334(7) 0.0191(6) 0.0033(5) 0.0068(5) 0.0022(5)
54	$C6 \ 0 \ 0185(5) \ 0 \ 0267(6) \ 0 \ 0222(6) \ -0 \ 0014(5) \ 0 \ 0072(5) \ 0 \ 0028(5)$
55	$C7 \ 0.0139(5) \ 0.0190(5) \ 0.0201(5) \ 0.0013(4) \ 0.0043(4) \ 0.0001(4)$
56	C / 0.015/(5) 0.0190(5) 0.0201(5) 0.0015(4) 0.0045(4) 0.0001(4)
57	
58	

 $\begin{array}{l} \mathsf{C8} \ 0.0141(5) \ 0.0169(5) \ 0.0209(5) \ -0.0008(4) \ 0.0060(4) \ -0.0001(4) \\ \mathsf{C9} \ 0.0138(5) \ 0.0150(5) \ 0.0189(5) \ -0.0003(4) \ 0.0052(4) \ 0.0000(4) \\ \mathsf{C10} \ 0.0146(5) \ 0.0127(5) \ 0.0174(5) \ 0.0000(4) \ 0.0041(4) \ 0.0006(4) \\ \mathsf{C11} \ 0.0169(5) \ 0.0122(5) \ 0.0220(6) \ 0.0008(4) \ 0.0082(4) \ 0.0025(4) \\ \mathsf{C12} \ 0.0215(5) \ 0.0147(5) \ 0.0244(6) \ -0.0013(4) \ 0.0089(5) \ 0.0005(4) \\ \mathsf{C13} \ 0.0213(6) \ 0.0138(5) \ 0.0405(7) \ -0.0023(5) \ 0.0118(5) \ -0.0015(4) \\ \mathsf{C14} \ 0.0274(6) \ 0.0178(6) \ 0.0481(8) \ 0.0078(6) \ 0.0230(6) \ 0.0027(5) \\ \mathsf{C15} \ 0.0316(7) \ 0.0263(7) \ 0.0315(7) \ 0.0091(5) \ 0.0190(6) \ 0.0077(5) \\ \mathsf{C16} \ 0.0228(6) \ 0.0205(6) \ 0.0224(6) \ 0.0022(5) \ 0.0090(5) \ 0.0041(4) \\ \mathsf{C17} \ 0.0159(5) \ 0.0134(5) \ 0.0174(5) \ 0.0003(4) \ 0.0048(4) \ -0.0003(4) \\ \mathsf{C18} \ 0.0124(5) \ 0.0126(5) \ 0.0199(5) \ 0.0006(4) \ 0.0058(4) \ -0.0003(4) \\ \mathsf{C19} \ 0.0216(5) \ 0.0199(6) \ 0.0209(6) \ -0.0009(5) \ 0.0105(5) \ -0.0042(4) \\ \mathsf{C20} \ 0.0273(6) \ 0.0197(6) \ 0.0182(6) \ -0.0019(4) \ 0.0074(5) \ -0.0039(5) \\ \mathsf{C21} \ 0.0212(5) \ 0.0175(6) \ 0.0223(6) \ -0.0034(4) \ 0.0049(5) \ -0.0046(4) \\ \mathsf{C22} \ 0.0144(5) \ 0.0149(5) \ 0.0310(6) \ -0.0010(5) \ 0.0028(5) \ 0.0000(4) \\ \end{array}$

_geom_special_details

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

loop

geom bond atom site label 1 geom bond atom site label 2 geom bond distance _geom_bond site symmetry 2 geom bond publ flag S1 C18 1.7243(11) . ? S1 C21 1.7114(12).? O1 C7 1.3749(14) . ? O1 C8 1.3967(14) . ? O2 C1 1.3414(14) . ? O2 C17 1.4890(14) . ? O3 C8 1.2068(14) . ? C2 C1 1.4316(16) . ? C2 C3 1.4000(16) . ? C3 H3 0.9300 . ? C4 C3 1.3793(17) . ? C4 C5 1.3944(19) . ? C4 H4 0.9300 . ? C5 H5 0.9300 . ?

1	
2	
2	
3	C6 C5 1.3850(18) . ?
4	C6 H6 0.9300 . ?
5	C7 C6 1 3907(17) 2
6	
7	C7 C2 1.3973(16) . ?
8	C9 C1 1.3492(16) . ?
9	C0 C8 1 A330(15) 2
10	$C_{7}C_{8}(1,4)$
10	C9 C10 1.5025(16) . ?
11	C10 C11 1.5130(15) . ?
12	C10 C17 1 5927(15) 2
13	$C_{10} U_{10} 0 070(14) 0$
14	C10 H10 0.978(14). ?
15	C11 C12 1.3918(16) . ?
16	C12 H12 0 9300 2
17	$C_{12} C_{12} 1 2004(17) = 9$
17	C13 C12 1.3894(17).
10	C13 C14 1.387(2) . ?
19	C13 H13 0.9300 . ?
20	$C_{14} C_{15} + 384(2) = 2$
21	C14 C15 1.364(2)
22	C14 H14 0.9300 . ?
23	C15 H15 0.9300 . ?
24	C16 C15 1 3900(18) ?
25	C1(C11, 1, 2021(17)) = 9
25	C10C111.3931(17).7
20	C16 H16 0.9300 . ?
2/	C17 C22 1.5166(15), ?
28	$C_{18} C_{17} T_{15001(15)}^{(15)} 2$
29	C10 C17 1.5001(15).
30	C18 C19 1.3605(16) . ?
31	C19 C20 1.4276(16) . ?
32	C19 H19 0 9300 2
33	
34	C20 H20 0.9300 . ?
24 25	C21 C20 1.3581(17) . ?
35	C21 H21 0.9300 . ?
36	$C_{22} H_{22} \Lambda_{0} 0600 2$
37	C22 1122A 0.9000 . !
38	C22 H22B 0.9600 . ?
39	C22 H22C 0.9600 . ?
40	
41	1
17	loop_
42	_geom_angle_atom_site_label_1
43	geom angle atom site label 2
44	goom angle atom site label 3
45	_geom_angle_atom_site_tabet_5
46	_geom_angle
47	geom angle site symmetry 1
48	geom angle site symmetry 3
49	_geom_angle_site_symmetry_5
50	_geom_angle_publ_flag
50	C21 S1 C18 91.93(6) ?
51	C7 O1 C8 123 15(9) ?
52	$C_1 O_2 C_{17} 107 04(0) = 0$
53	$C1 02 C1 / 10 / .94(8) \dots ?$
54	O2 C1 C2 121.38(10) ?
55	$O_{2} C_{1} C_{9} 115 28(10) = 2$
56	02 01 07 110.20(10)
57	
57	
58	
59	

5	C9 C1 C2 123.32(10) ?
4	C3 C2 C1 125.41(11)?
5	C7 C2 C1 115 05(10) 2
6	$C7 C2 C1 110.00(10) \dots$
7	$C/C_2C_3 119.53(11)?$
8	C2 C3 H3 120.3 ?
9	C4 C3 C2 119.46(11) ?
10	C4 C3 H3 120 3 2
11	$C_{3} C_{4} C_{5} 120 25(12) 2$
12	$C_{3} C_{4} C_{5} I_{2} U_{2} J_{1} U_{2} J_{1} U_{2} U_{2} J_{1} U_{2} U_{2$
13	C3 C4 H4 119.9 ?
14	C5 C4 H4 119.9 ?
15	C4 C5 H5 119.4 ?
16	C6 C5 C4 121.26(12)?
17	C6 C5 H5 119 4 ?
18	$C_{5} C_{6} C_{7} 118 26(12) = 2$
19	$C_{3} C_{0} C_{7} 118.20(12) \dots $
20	C5 C6 H6 120.9 ?
21	С7 С6 Н6 120.9 ?
22	O1 C7 C2 121.64(10) ?
23	O1 C7 C6 117.18(11)?
23	C6 C7 C2 121 18(11) ?
25	O1 C2 C0 115 10(10) 2
26	$01 \ 03 \ 03 \ 115.19(10) \dots $
20	$03\ C8\ 01\ 116./5(10)\ldots?$
28	O3 C8 C9 128.05(11) ?
29	C1 C9 C8 120.96(11) ?
30	C1 C9 C10 110.06(10) ?
31	C8 C9 C10 128 81(10) ?
32	$C_{0}C_{10}C_{11}1_{16}O_{3}(0)$ 2
32	$C_{0} C_{10} C_{17} 100 79(0) = 2$
34	$C_{9}C_{10}C_{17}^{-1}100.78(9)?$
35	C9 C10 H10 109.5(8) ?
36	C11 C10 C17 114.21(9) ?
37	C11 C10 H10 107.5(8) ?
38	C17 C10 H10 108.6(8)?
30	$C_{12} C_{11} C_{10} C_{12} C_{4(11)} 2$
40	$C_{12} C_{11} C_{16} C_{12} $
40	
47	C16 C11 C10 119.50(10) ?
43	C11 C12 H12 119.7 ?
45	C13 C12 C11 120.57(12) ?
45	C13 C12 H12 119.7 ?
46	C12 C13 H13 119 9 ?
40	$C_{14} C_{13} C_{12} 120 11(12) 2$
48	$C14 C13 C12 120.11(12) \dots$
10	C14 C13 H13 119.9 ?
50	C13 C14 H14 120.1 ?
51	C15 C14 C13 119.76(12) ?
52	C15 C14 H14 120.1 ?
52	C14 C15 C16 120.17(12) ?
55	C14 C15 H15 119 9 9
55	$C_{14} C_{15} $
55	CIUCID IIID II9.9 !
57	
J,	

1	
2	
3	C11 C16 H16 119 7 2
4	$C_{15} C_{16} C_{11} 120 52(12) = 2$
5	$C15 C16 C11 120.55(12) \dots$
6	C15 C16 H16 119.7 ?
7	O2 C17 C18 105.77(8) ?
8	O2 C17 C22 106.45(9) ?
9	O2 C17 C10 105 07(8) ?
10	$C_{18} C_{17} C_{22} 112 05(9) 2$
11	$C_{10} C_{17} C_{10} C_{12} C_{10} $
12	$C10 C17 C10 112.31(9) \dots ?$
13	$C_{22} C_{17} C_{10} I_{14.17} (9) \dots ?$
14	C17 C18 S1 119.87(8) ?
15	C19 C18 S1 111.17(8) ?
16	C19 C18 C17 128.95(10) ?
17	$C_{18} C_{19} C_{20} 112 64(11) = 2$
18	C18 C10 H10 123 7 2
19	$C10 C19 I119 123.7 \dots 9$
20	C20 C19 H19 123.7 ?
21	C19 C20 H20 123.8 ?
22	C21 C20 C19 112.45(11) ?
23	C21 C20 H20 123.8 ?
24	S1 C21 H21 124.1 ?
25	$C_{20} C_{21} S_{1} 111 79(9) 2$
26	$C_{20} C_{21} U_{21} $
27	C20 C21 H21 124.1 ?
28	C17 C22 H22A 109.5 ?
29	C17 C22 H22B 109.5 ?
30	C17 C22 H22C 109.5 ?
31	H22A C22 H22B 109.5 ?
32	H22A C22 H22C 109 5 ?
33	H22B C22 H22C 109.5 2
34	1122D C22 1122C 109.5 !
35	,
36	loop_
37	_geom_torsion_atom_site_label_1
38	geom torsion atom site label 2
39	geom torsion atom site label 3
40	geom torsion atom site label 4
41	
42	_geom_torsion_gita_gymmatry_1
43	_geom_torsion_site_symmetry_1
44	_geom_torsion_site_symmetry_2
45	_geom_torsion_site_symmetry_3
46	_geom_torsion_site_symmetry_4
47	geom torsion publ flag
48	$\overline{C21}$ 81 C18 C17 -177 70(9) ?
49	$C_{21} S_{1} C_{18} C_{19} 1 01(0) 2$
50	$C_{10} C_{10} $
51	$C_{10} S_1 C_{21} C_{20} - 1.13(10) \dots ?$
52	$C8 O1 C/ C2 - 5.34(16) \dots ?$
53	C8 O1 C7 C6 174.17(10) ?
54	C7 O1 C8 O3 -171.81(10) ?
55	C7 O1 C8 C9 9.40(15) ?
56	

3 C17 O2 C1 C2 178.54(9) . . . ? 4 C17 O2 C1 C9 -2.88(12) . . . ? 5 C1 O2 C17 C10 7.62(11) ? 6 C1 O2 C17 C18 126.83(9)? 7 C1 O2 C17 C22 -113.82(10) . . . ? 8 9 C3 C2 C1 O2 4.68(17) . . . ? 10 C3 C2 C1 C9 -173.79(11) . . . ? 11 C7 C2 C1 O2 -176.46(10) ? 12 C7 C2 C1 C9 5.08(16)? 13 C1 C2 C3 C4 179.90(11) . . . ? 14 C7 C2 C3 C4 1.08(17) . . . ? 15 C5 C4 C3 C2 0.72(18)? 16 17 $C3 C4 C5 C6 - 1.04(19) \dots ?$ 18 $C7 C6 C5 C4 - 0.47(18) \dots ?$ 19 O1 C7 C2 C1 -2.09(15)? 20 O1 C7 C2 C3 176.85(10) . . . ? 21 C6 C7 C2 C1 178.43(10) ? 22 $C6 C7 C2 C3 - 2.64(17) \dots ?$ 23 O1 C7 C6 C5 -177.20(10) . . . ? 24 25 $C2 C7 C6 C5 2.31(17) \dots ?$ 26 C8 C9 C1 O2 -179.33(10) . . . ? 27 C8 C9 C1 C2 -0.78(17) . . . ? 28 $C10 C9 C1 O2 - 3.62(13) \dots ?$ 29 C10 C9 C1 C2 174.94(10)? 30 C1 C9 C8 O1 -6.30(15) . . . ? 31 32 C1 C9 C8 O3 175.07(11) . . . ? 33 C10 C9 C8 O1 178.87(10) . . . ? 34 C10 C9 C8 O3 0.2(2) . . . ? 35 C1 C9 C10 C11 131.66(10) . . . ? 36 C1 C9 C10 C17 7.78(11) . . . ? 37 C8 C9 C10 C11 -53.06(15) . . . ? 38 C8 C9 C10 C17 -176.94(11) . . . ? 39 40 C9 C10 C11 C12 -28.12(15)? 41 C9 C10 C11 C16 153.18(10) . . . ? 42 C17 C10 C11 C12 88.48(13) ? 43 C17 C10 C11 C16 -90.23(13) . . . ? 44 C9 C10 C17 O2 -9.00(10) . . . ? 45 C9 C10 C17 C18 -123.60(10) . . . ? 46 47 C9 C10 C17 C22 107.26(11) . . . ? 48 C11 C10 C17 O2 -134.12(9) . . . ? 49 C11 C10 C17 C18 111.28(11) . . . ? 50 C11 C10 C17 C22 -17.86(14) . . . ? 51 C10 C11 C12 C13 -178.66(10) . . . ? 52 C16 C11 C12 C13 0.05(17) . . . ? 53 C14 C13 C12 C11 0.21(18)? 54 55 C12 C13 C14 C15 -0.09(19) . . . ? 56

58 59

57

1 2

$umm(\Lambda)$
ymm(A)
2 655 ves
2 756 100
2_{150} yes