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By using Bayesian spectroscopy, we studied polarization dependence of photoluminescence (PL) spectra in doubly-
split 1S yellow ortho-excitons in a Cu2O thin-crystal recrystallized in a small gap between paired MgO substrates.
In these thin-crystals, biaxial stresses are expected to be involved due to a small lattice mismatch between Cu2O and
MgO. Under a planar-isotropic biaxial stress, the cubic symmetry degrades to the tetragonal one in Cu2O, and sub-
sequently, the ortho-exciton state splits into two states having different symmetries. Consequently, the resonant PL
intensities of the doubly-split ortho-excitons are expected to show different polarization dependencies. To elucidate
such biaxial stress effect, we measured polarization dependence of the PL spectra at 4.2 K. Although resonant weak
PL bands of the doubly-split exciton states and their intense phonon sidebands co-exist, we succeeded in decomposing
to the respective spectral components by the Bayesian spectroscopy with a replica exchange Monte Carlo algorithm.
As a result, it was found that the resonant PL band appearing on higher energy side shows hardly polarization depen-
dence, whereas the resonant PL band appearing on lower energy side is further weak and shows noticeable polarization
dependence. These results can be explained by the selection rule and polarization dependences on the transition ma-
trix elements of quadrupole transitions of the doubly-split ortho-exciton states, and it clearly shows that the crystal
symmetry degrades to D4h by the isotropic biaxial stress involved in the Cu2O thin-crystals.
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1 Introduction Excitonic systems in Cu2O are promis-
ing candidates for excitonic Bose-Einstein condensation
(X-BEC) and have been deeply studied having a long
history [1]. Recently, Yoshioka et al. [2] discovered a “re-
laxation explosion” phenomenon in a Cu2O bulk crystal
at sub-Kelvin temperatures, and they insisted that it is
a direct manifestation for realization of X-BEC. Surely,
photo-excited excitons diffuse into low density region, and
subsequently, the exciton density usually decreases. So
that, to keep high density suppressing such exciton diffu-

sion, an exciton-trapping potential should be implemented
for X-BEC. In the previous work [2], authors used a uni-
axial stress to form a trapping potential by pressing a bulk
crystal with an optical lens. As applied to this way, the
uniaxial stress effect is well studied in Cu2O bulk crystals
as reported in [3,4].

On the other hand, we have prepared Cu2O thin-
crystals recrystallized epitaxially in a small gap between
paired MgO substrates [5–8]. In such thin-crystals, we
have considered that both sample-thinning and formation
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Figure 1 Schematic diagram of Cu2O thin-crystals sandwiched
by paired MgO substrates, where the (001) plane of Cu2O is
grown epitaxially on the (001) surface of the MgO substrate. As
a result, a biaxial compressive stress is considered to act on the
Cu2O unit cell as shown thick gray arrows. θ means the polariza-
tion angle for detecting PL spectra.

of exciton-trapping potential can be achieved at the same
time. A schematic diagram is depicted in Fig. 1, where
the (001) plane of Cu2O is grown epitaxially on the (001)
surface of the MgO substrate. Because a lattice constant of
Cu2O (= 4.27 Å [9]) is slightly larger than that of MgO
(= 4.216 Å [10]) at room temperature, we can expect that a
planar-biaxial compressive stress applies to the Cu2O unit
cell as drawn by thick gray arrows in Fig. 1. In our previ-
ous work [7] on the Cu2O thin-crystal, we took polarizing
microscope images and measured complicated photolu-
minescence (PL) spectra of the 1S yellow ortho-excitons.
However, it is difficult to analyze the biaxial stress effect
in the Cu2O thin-crystals because the measured PL spectra
complexly consist of weak resonant and intense phonon
sideband PL bands due to doubly- or triply-split 1S yellow
ortho-exciton states.

In such complicated spectrum analyses, a fitting er-
ror function E(Θ) has many local minima aside from
a unique global minimum in a multi-dimensional space
for the spectral parameters Θ because the spectral pa-
rameters are included nonlinearly in a fitting function
f(xi;Θ). So that, it is impossible to ensure the statisti-
cal correctness of the spectrum analyses in a conventional
least-squares method because the solution of spectral pa-
rameters will differ depending on searching initial values
for Θ due to falling into some local minimum during so-
lution searching. In contrast, the data-driven science has
great advantages in the spectral analyses of such com-
plicated spectra. Recently, Nagata et al. have applied the
Bayesian theorem [11] to spectral deconvolution and have
proposed powerful methodology for spectral decompo-
sition [12]. On this methodology, we can stochastically
evaluate posterior probability distributions of the spectral
parameters with a Markov chain Monte Carlo (MCMC)
method [13,14]. In our previous works [8,15–17], we have
applied the Bayesian inference to the spectral analyses,
i.e. Bayesian spectroscopy, in various measured spectra

and have demonstrated the great advantages overcoming
constraints in the conventional least-squares method.

In this paper, we measured the polarization dependence
of PL spectra owing to the 1S yellow ortho-excitons in
the Cu2O thin-crystal sandwiched by paired MgO sub-
strates. To analyze the change of structural symmetry by
the planar-isotropic biaxial stress in Fig. 1, we applied the
Bayesian spectroscopy to spectral decomposition, and dis-
cussed polarization angle dependences of the resonant PL
intensities due to the doubly-split ortho-excitons with con-
sidering the symmetry lowering by the biaxial stress.

2 Experimental PL spectra were measured at 4.2 K
under weak-excitation conditions by using a cw laser diode
of wavelength being 532 nm. To measure the polarization
dependence, a polarizer was placed between the sample
and a spectrometer, and polarization angles θ were defined
as angles from the [100]-direction of the MgO substrate (x-
direction) as shown in Fig. 1. The PL was detected from the
normal direction of the sample surface. The whole polar-
ization characteristic on photo-detecting sensitivity of the
spectrometer and a photo-detector were measured by using
a non-polarized mercury lamp, and all PL spectra for the
respective θ were calibrated by this polarization character-
istic. The thickness of the Cu2O thin-crystal is ca. 8.5 µm,
which was estimated by the absorption intensity.

3 Bayesian spectroscopy In this section, we ex-
plain the methodology of Bayesian spectroscopy [12,18].

3.1 Bayesian inference Let’s consider a regression
analysis of a dataset D by a physical model function
f(xi;Θ). The D is {· · · , (xi, yi), · · · } and consists of
measured PL intensities yi at photon energy xi. The data-
point number of D is N , and the Θ is a parameter set for
the model function f(xi;Θ). Since the measured PL inten-
sities {yi} include random noises {ni}, the yi is equivalent
with f(xi;Θ) + ni, and the mean squared error E(Θ) is
defined by Eq. (1). The conventional least squares method
tries to find a solution of Θ by minimizing E(Θ) with
some algorithm such like steepest descent method.

E(Θ) ≡ 1

2N

N∑
i=1

[yi − f(xi;Θ)]
2
. (1)

In the data driven science, we deal with a joint prob-
ability P (D,Θ) between a cause Θ and a result D in a
causality Θ 7→ D. According to the causality, the cause Θ
has a prior probability P (Θ), and the result D will be given
with a conditional probability P (D|Θ) under the cause be-
ing Θ, and subsequently, the joint probability P (D,Θ) can
be written as P (D|Θ)P (Θ). On the basis of the Bayesian
theorem [11] for these Θ and D, the P (D,Θ) can be also
expanded to P (Θ|D)P (D) with a prior probability P (D)
for the dataset D and a conditional probability P (Θ|D) of
the cause Θ. The P (Θ|D) is the posterior probability of Θ
after measurement of the dataset D and is what we want to
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know. As a result, the P (Θ|D) is expressed in Eq. (2), and
it is found that the P (Θ|D) is proportional to P (D|Θ) [12]
because the P (D) becomes constant after finishing mea-
surements.

P (Θ|D) =
P (D|Θ)P (Θ)

P (D)
∝ P (D|Θ)P (Θ). (2)

3.2 Bayes free energy It can be considered that
the noises {ni} in the measured data {yi} are Gaussian
random noises because thermal random noises coming
from dark current are superposed upon signal outputs from
photo-detector (photomultiplier tube) and the measured
data {yi} were recorded after subtraction of the averaged
dark current. However, we have to evaluate a standard
deviation σnoise of the Gaussian random noises in order
to get P (D|Θ) in Eq. (2) [18]. In some measurements, it
might be difficult to determine σnoise experimentally. In
order to solve this problem, Bayesian methodology was
proposed to estimate the σnoise only from measured data
without any prior informations [18]. In this methodology,
quasi-inverse temperatures b are introduced, and the σnoise

can be estimated to be σnoise = b̂−1/2 by an optimal b̂,
which is estimated by minimization of Bayes free energy
F (b) as proposed in [18].

Because of the noises {ni} being Gaussian random
noises, the conditional probability P (D|Θ, b) of the
dataset D is written in Eq. (3) [18]. At the same time,
the conditional probability P (Θ|D, b) of the parameter set
Θ is written in Eq. (4) in the similar way with Eq. (2).

P (D|Θ, b) =

(
b

2π

)N
2

exp [−bNE(Θ)] . (3)

P (Θ|D, b) =
P (D|Θ, b)P (Θ|b)

P (D|b)
. (4)

The denominator P (D|b) in Eq. (4) is a normalization fac-
tor for the numerator P (D|Θ, b)P (Θ|b). Here, we shall
consider the correspondence between these formulations
and the statistical mechanics. If the Θ and E(Θ) are con-
sidered as a physical state and its energy, respectively, it
turns out that the P (D|Θ, b) in Eq. (3) is equivalent with a
Boltzmann factor at a certain inverse temperature b, and the
P (Θ|b) in Eq. (4) is equivalent with a density-of-state for
the state Θ. So that, one can understand that the marginal-
ization for P (D|b) in the Θ space is the same with a defi-
nition of a partition function Z(b) in statistical mechanics
as follows: [18]

P (D|b) =
∫

dΘ P (D|Θ, b)P (Θ|b) ≡ Z(b).

Consequently, we can define a Bayes free energy F (b) as
F (b) ≡ − lnZ(b) [18].

The standard deviation σnoise of the Gaussian random
noises {ni} can be obtained by estimation of an optimal
b̂ [18]. The conditional probability P (b|D) of b under D

given is written as P (D|b)P (b)/P (D) by the Bayesian
theorem for the causality b 7→ D. Thus, one can under-
stand that this posterior probability P (b|D) is proportional
to Z(b) (= P (D|b)) because the prior probability P (b) is
constant in any b when we do not have any prior informa-
tions about the noise intensity. Consequently, the optimal b̂
can be estimated by maximization of the P (b|D), and this
maximization is equivalent with minimization of the Bayes
free energy F (b) as seen in Eq. (5) [18].

b̂ = arg max
b

P (b|D) = arg min
b

F (b). (5)

3.3 Replica exchange Monte Carlo method The
posterior probability P (Θ|D, b̂) of the parameter set Θ is
written in Eq. (6) at the optimal b̂.

P (Θ|D, b̂) ∝ exp
[
−b̂NE(Θ)

]
P (Θ|b̂). (6)

In order to sample P (Θ|D, b̂) effectively in the Θ space,
we employed a replica exchange Monte Carlo (RXMC)
method [15,18,19]. We prepared L replicas with b differ-
ing from the high temperature limit b1 = 0 to the suffi-
ciently lower temperature bL ({b1 < b2 < · · · < bℓ <
· · · < bL}). In the respective replica of bℓ, the parame-
ter set Θℓ was updated and recorded by the Metropolis al-
gorithm [20], and simultaneously, the parameter sets Θℓ

and Θℓ+1 at the nearest neighbor replicas were exchanged
stochastically on the basis of the following probability ratio
w, where the detailed balance is maintained to get unique
and correct P (Θ|D, b̂) [19].

w = min

(
1,

P (Θℓ+1|D, bℓ)P (Θℓ|D, bℓ+1)

P (Θℓ|D, bℓ)P (Θℓ+1|D, bℓ+1)

)
.

In the series of {bℓ}, the respective bℓ were given by a ge-
ometrical progression, and the b2 and bL were selected to
be sufficiently wide as b̂ being b2 ≪ b̂ ≪ bL [15].

The Bayes free energy F (bℓ) in Sec. 3.2 can be ob-
tained in the following relation [18]:

F (bℓ) = bℓF̃ (bℓ)−
N

2
(ln bℓ − ln 2π) . (7)

In Eq. (7), the quasi-free energy F̃ (bℓ) is also defined as
−(1/bℓ) ln Z̃(bℓ), which Z̃(bℓ) ≡ (2π/bℓ)

N/2Z(bℓ), and
is calculated as Eq. (8) [12,18].

F̃ (bℓ) = − 1

bℓ
ln

ℓ−1∏
ℓ′=1

Z̃(bℓ′+1)

Z̃(bℓ′)

= − 1

bℓ

ℓ−1∑
ℓ′=1

ln
⟨
e−N(bℓ′+1−bℓ′)E(Θℓ′ )

⟩
bℓ′

. (8)

From Eqs. (7) and (8), we can evaluate the Bayes free en-
ergy using E(Θℓ′) in each replica.
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Figure 2 Polarization dependence of PL spectra in a Cu2O thin-
crystal sandwiched by paired MgO substrates. Gray and black
lines are measured and reproduced spectra, respectively. Verti-
cal broken lines mean transition and threshold transition energies
of the spectral components of G1∼G3 and MB1∼MB2, respec-
tively. A vertical double-head arrow denotes the scale of cali-
brated PL intensity.

4 Results Gray lines in Fig. 2 show the PL spectra
detected at the respective polarization angles θ. These PL
spectra include five spectral components G1, G2, MB1,
MB2, and G3 in order from higher to lower energy sides.
The intense PL bands MB1 and MB2 have tails on higher
energy side, and their Stokes shifts from the spectral
components G1 and G2 are equal to ca. 14 meV, where
this value is identical with the energy of Γ−

12 phonon in
Cu2O [7,21]. Therefore, one can conclude that the G1
and G2 are resonant PL bands due to doubly-split 1S
yellow ortho-exciton states, and the MB1 and MB2 are
their phonon sideband PL by the Γ−

12 phonon [7]. At this
moment, the origin of G3 band is unknown.

By simple consideration of symmetry lowering, we can
explain that the energy splitting of the resonant PL bands
G1 and G2 comes from the planar-isotropic biaxial stress
in Fig. 1. As summarized in Table 1(a), a stress-free crys-
tal of Cu2O has a cubic symmetry Oh, and the 1S yel-
low ortho-exciton states 3Γ+

5 degenerate triply [3]. In con-
trast, the structural symmetry degrades to tetragonal one in
the Cu2O thin-crystal as shown in Table 1(b) because the

planar-isotropic biaxial stress acts on unit cells in [100] and
[010] directions as shown in Fig. 1, and subsequently, an
anisotropy in z direction emerges. Consequently, the ortho-
exciton states split into anisotropic and two isotropic ones
as seen in Table 1(b).

Focusing on the difference in PL intensities between
G1 and G2, the difference cannot be explained by the dif-
ference in the degree of degeneracy between the doubly-
split ortho-exciton states (1:2). As seen in Fig. 2, the PL
intensity of G1 is much stronger than that of G2. Thus, we
have to consider selection rules on the optical transitions
of these resonant PL bands. In addition, we will explain
the polarization dependences of these resonant PL intensi-
ties by symmetry lowering. As seen in Fig. 2, although po-
larization dependency cannot be recognized in the strong
spectral components G1, MB1, MB2 and G3, the weak
shoulder component G2 seems to exhibit a polarization de-
pendency. To discuss such difference, we will apply the
Bayesian spectroscopy for spectral decomposition.

5 Discussion In this section, we discuss the polar-
ization dependences of the resonant PL intensities due to
doubly-split 1S yellow ortho-exciton states on the basis of
Table 1, in which the complicated PL spectra are decom-
posed by the Bayesian spectroscopy with appropriate spec-
tral line-shape functions.

5.1 Optical selection rules and their polarization
dependences In stress-free Cu2O crystals, basis func-
tions of the ortho-exciton states 3Γ+

5 have radial charac-
teristics of xy, yz and zx [3,22] as shown in Table 1(a),
and these characteristics are equivalent with each other in
the cubic symmetry. In contrast, such isotropic nature is
collapsed by the planar-isotropic biaxial stress depicted in
Fig. 1. As a result, the exciton state 1Γ+

4 having a radial
characteristic of xy deviates from the double-fold exciton
states 2Γ+

5 as seen in Table 1(b), where the exciton states
2Γ+

5 have radial characteristics of yz and zx.
The resonant PL due to the ortho-exciton states brings

about by quadrupole transitions [3,7]. The quadrupole-
transition operator can be expressed as xy sinϕ sin θ +
yz cosϕ sin θ + zx cos θ [3] by using radial characteristics
(xy, yz and zx) and angles ϕ and θ, where the ϕ and θ are
depicted in Table 1(c), and specify the propagating direc-
tion and polarization angles of PL photons, respectively. So
that, in the case of stress-free Cu2O crystals, a quadrupole-
transition matrix element MOh

(≡ ⟨1Γ+
1 |3Γ

+
5 |3Γ

+
5 ⟩) be-

tween the ortho-exciton 3Γ+
5 and the ground state 1Γ+

1 has
three terms in Eq. (9).

MOh
=



∫∫∫
(xy sinϕ sin θ)xy dxdydz ∝ sinϕ sin θ,∫∫∫
(yz cosϕ sin θ)yz dxdydz ∝ cosϕ sin θ,∫∫∫
(zx cos θ)zx dxdydz ∝ cos θ.

(9)
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Table 1 Summary of structural symmetries and the 1S yellow ortho-exciton states: (a) stress-free crystal, (b) thin-crystal sandwiched
MgO substrates. (c) configuration of ϕ and polarization angle θ.

Stress Symmetry 1S yellow ortho-exciton
Unit cell directions (Symbol) Levels Symmetry Basis function

notation characteristic

(a) Stress-free

�

�

�

—
Cubic

(Oh)
3Γ+

5


xy

yz

zx

(b) Cu2O (001) Tetragonal
2Γ+

5

{
yz

zx

on MgO (001)
�

�

�

[100], [010]
(D4h) 1Γ+

4

{
xy

(c)

�

�

�

��������	
�

� ���

�

�

��
�
�

As a result, it is found that the |MOh
|2 is independent on

the polarization angle θ because the PL photons were de-
tected on the normal direction of the sample surface, i.e.
ϕ ≈ 0◦, and sin2 θ + cos2 θ = 1.

On the other hand, the crystal symmetry is changed
to a tetragonal one by the planar-isotropic biaxial stress
in the Cu2O thin-crystals, and the z-axis becomes an
anisotropic axis as seen in Table 1. So that, we have to
consider different quadrupole-transition matrix elements
MD4h,xy and MD4h,z for the doubly-split exciton states
1Γ+

4 and 2Γ+
5 , respectively. The transition operators for

MD4h,xy and MD4h,z can be written as xy sinϕ sin θ and
yz cosϕ sin θ+zx cos θ, and they have 1Γ+

4 and 2Γ+
5 sym-

metries, respectively. As a result, polarization dependences
are derived in Eqs. (10) and (11) for MD4h,xy and MD4h,z ,
respectively, and we can discuss the transition strengths by
|MD4h,xy|2 and |MD4h,z|2.
MD4h,xy ≡ ⟨1Γ+

1 |1Γ
+
4 |1Γ

+
4 ⟩ ∝ sinϕ sin θ, (10)

MD4h,z ≡ ⟨1Γ+
1 |2Γ

+
5 |2Γ

+
5 ⟩ ∝

{
cosϕ sin θ,

cos θ.
(11)

Based on Eq. (11), it is found that the |MD4h,z|2 for
the 2Γ+

5 exciton states is independent on θ as written in
Eq. (12) because cosϕ sin θ can be approximated to sin θ
under our detecting configuration of ϕ ≈ 0 ◦ as shown in
Fig. 1.

|MD4h,z|2 ∝ sin2 θ + cos2 θ = 1. (12)
This interpretation is consistent with the result that the G1-
PL does not show significant polarization dependence as
seen in Fig. 2.

In contrast, the G2-PL is much weaker than G1-PL as
seen in Fig. 2, and its intensity seems to vary on θ as de-
scribed in Sec. 4. This result can be also explained in a sim-
ilar way with considering the quadrupole-transition matrix
element MD4h,xy for the 1Γ+

4 exciton state. The polariza-
tion dependence is derived as |MD4h,xy|2 ∝ sin2 ϕ sin2 θ
from Eq. (10). When the detecting direction angle ϕ is
strictly zero, the |MD4h,xy|2 becomes zero, and the G2-
PL due to the 1Γ+

4 exciton state becomes quadrupole-
forbidden. However, the ϕ = 0 ◦ restriction is relaxed

since PL photons were detected by a lens with a finite
solid angle. As a result, the polarization dependence of
|MD4h,xy|2 is written as Eq. (13).

|MD4h,xy|2 ∝ sin2 θ. (13)

We would like to discuss the polarization dependences of
the G1- and G2-PL intensities by Eqs. (12) and (13). How-
ever, the G2-PL is rather weak and lies on the high energy
tail of the intense MB1 band as seen in Fig. 1. So that, we
should employ the Bayesian spectroscopy for the spectral
decomposition.

5.2 Spectral components and the physical model
To reproduce the measured PL spectra, we consider a phys-
ical model f(E;Θ) including five spectral components as
written in Eq. (14).

f(E;Θ) = fG1 + fMB1 + fG2 + fMB2 + fG3, (14)

where E is photon energy and the parameter set Θ consists
of the parameter sets {ΘG1, ΘMB1, ΘG2, ΘMB2, ΘG3} for
the respective spectral components.

For the G1- and G2-PL, a normalized Gaussian line-
shape function g(E;E0,W ) in Eq. (15) was used.

g(E;E0,W ) ≡
√

4 ln 2

πW 2
exp

[
−4 ln 2

(E − E0)
2

W 2

]
, (15)

where E0 and W are a transition energy and a spectral
width in full-width at half maximum, respectively. By us-
ing g(E;E0,W ) and integrated PL intensities IGn, the
spectral profiles fGn for the resonant Gn-PL (n = 1, 2)
are defined as follows:

fGn(E;ΘGn) ≡ IGn × g(E;EGn,WGn).

For the phonon sideband PL (MBn; n = 1, 2), we
should use a Maxwell-Boltzmann line-shape function
h(E;E0, T ) in Eq. (16).

h(E;E0, T ) ≡
√
E − E0 exp

(
−E − E0

kBT

)
, (16)

only for E ≥ E0,

Copyright line will be provided by the publisher
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where E0 and T are a threshold energy and an effective
temperature of thermally-distributed excitons. However,
we have to consider spectral broadenings. So, a spectral
function fMBn (n = 1, 2) for the MBn-PL was defined as
Eq. (17).

fMBn(E;ΘMBn) ≡

IMBn×
∫

h(E + ε;EMBn, TMBn) g(ε;WMBn) dε, (17)

where IMBn means PL intensity, and the spectral broaden-
ings are taken into account with WMBn and a normalized
Gaussian distribution of the same function with Eq. (15).

5.3 Bayesian spectroscopy In the f(E;Θ), we
have 17 parameters in Θ. Such multivariate analyses
should be performed with the RXMC method. We pre-
pared 40 replicas (L = 40), the quasi-inverse temperatures
b2 and b40 were set to be 1.2 × 10−3 and 5.0, and they
correspond to 2.9 × 101 and 4.5 × 10−1 in the PL in-
tensity scale, respectively. As confirmed in Fig. 2, it is
found that the required condition of b2 ≪ b̂ ≪ bL is well
satisfied. The posterior probabilities P (Θ|D, b̂) were sam-
pled through Monte Carlo iterations of 50, 000 steps after
sufficient burn-in phase (50, 000 steps).
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Figure 3 Bayes free energies F (b) as functions of quasi-inverse
temperature b.

5.3.1 Bayes free energy Figure 3 shows the Bayes
free energies F (b) as functions of quasi-inverse tempera-
ture b, where the abscissa for b is in logarithmic scale. As
seen in Fig. 3, these F (b) have minimum values at the op-
timal b̂(θ) as expressed in Eq. (5), and it is found that the
b̂(θ) tends to increase as θ increases (θ ≤ 90◦). The vari-
ation of b̂(θ) corresponds to the noise intensity variation,
and this tendency means that the σnoise becomes small at
θ ∼ 90◦. Since the PL intensities in Fig. 2 are displayed on
the calibrated scale with θ-dependent photo-detecting sen-
sitivity, this variation of σnoise is reasonable, in which the

photo-detecting sensitivity drops as the polarization angles
θ departs from 90◦.
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Figure 4 Typical results for spectral reproduction by Bayesian
spectroscopy at (a) 75◦ and (b) 30◦. Gray and black lines are
measured and reproduced PL spectra, respectively. Dashed and
dotted lines denote the respective spectral components in the re-
produced ones.

5.3.2 Spectral decomposition Figure 4 shows typ-
ical results for spectral reproduction by Bayesian spec-
troscopy, where (a) and (b) are for θ = 75◦ and 30◦, re-
spectively. Gray and black solid lines are measured and re-
produced PL spectra, respectively, and dashed and dotted
lines denote the respective spectral components in the re-
produced ones. In these spectra, mean values Θ̂ are used
for the parameter set Θ. The mean values Θ̂ were obtained
from samplings after burn-in phase. As seen in Fig. 4, the
physical model f(E; Θ̂) can reproduce well the measured
PL spectra. Here, we should note intensity difference be-
tween the resonant G1- and G2-PL, which are depicted by
gray areas in Fig. 4. It is found that the G1-PL intensity
hardly change, whereas the G2-PL intensity decreases at
θ = 30◦ as seen in Fig. 4(b).

Table 2 is the result of the Bayesian spectroscopy on
all PL spectra in Fig. 2, in which estimated values are
shown with a format of Θ̂ ± σΘ with the mean values Θ̂
and the standard deviations σΘ of their posterior proba-
bility distributions P (Θ|D, b̂). The optimal quasi-inverse
temperature b̂ and the corresponding noise intensities are
also listed in Table 2(a), where the noise intensities are

Copyright line will be provided by the publisher
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Table 2 Mean values Θ̂ of the parameter set and standard deviations σΘ of their posterior probability distributions P (Θ|D, b̂): (a) for
the resonant PL bands fG1 and fG2, (b) for the phonon sideband PL bands fMB1 and fMB2. The optimal quasi-inverse temperature b̂
and the corresponding noise intensities σnoise are also listed in (a).

(a) fG1, fG2

fG1 fG2

θ ÊG1 ÎG1 ŴG1 ÊG2 ÎG2 ŴG2 b̂ σnoise

(◦) (meV) ×10−3 (meV) (meV) ×10−3 (meV)
30 2035.10± 0.02 40.0± 0.8 1.97± 0.06 2028.38± 0.16 12.0± 0.9 2.16± 0.53 0.24 2.1

45 2035.10± 0.02 43.4± 0.7 2.08± 0.04 2028.01± 0.08 22.9± 1.6 3.51± 0.20 0.36 1.7

60 2035.10± 0.01 45.6± 0.6 2.00± 0.03 2028.00± 0.06 26.7± 1.1 3.69± 0.14 0.56 1.3

75 2035.04± 0.01 48.1± 0.7 1.94± 0.03 2028.03± 0.05 44.7± 1.7 3.91± 0.11 0.45 1.5

90 2035.05± 0.01 45.8± 0.5 1.94± 0.03 2028.49± 0.04 13.1± 0.6 2.01± 0.11 0.70 1.2

105 2034.99± 0.01 45.3± 0.6 2.05± 0.03 2027.82± 0.03 34.8± 1.0 3.11± 0.07 0.56 1.3

120 2035.08± 0.01 45.6± 0.6 1.97± 0.03 2028.35± 0.06 14.5± 0.8 2.36± 0.13 0.45 1.5

135 2035.10± 0.02 45.5± 0.8 1.99± 0.04 2028.34± 0.08 16.8± 1.1 2.49± 0.52 0.24 2.1

150 2035.06± 0.02 54.2± 1.0 2.06± 0.05 2028.36± 0.08 20.9± 1.3 2.52± 0.16 0.15 2.6

⟨Θ̂⟩ 2035.07± 0.01 2.00± 0.02 2028.20± 0.07 2.86± 0.22

(b) fMB1, fMB2

fMB1 fMB2

θ ÊMB1 ÎMB1 T̂MB1 ŴMB1 ÊMB2 ÎMB2 T̂MB2 ŴMB2

(◦) (meV) ×10−3 (K) (meV) (meV) ×10−3 (K) (meV)
30 2020.990± 0.008 382± 2 23.3± 0.1 1.70± 0.02 2013.74± 0.03 353± 3 77.3± 0.6 1.21± 0.09

45 2020.900± 0.007 388± 2 23.3± 0.2 1.53± 0.02 2013.70± 0.02 356± 2 71.1± 0.5 1.19± 0.07

60 2021.030± 0.005 430± 1 21.6± 0.1 1.83± 0.01 2013.89± 0.02 390± 2 77.6± 0.4 1.30± 0.06

75 2021.360± 0.008 392± 2 17.6± 0.2 2.36± 0.02 2013.72± 0.02 366± 2 81.8± 0.5 1.10± 0.07

90 2021.010± 0.005 399± 1 23.3± 0.1 1.80± 0.01 2013.77± 0.02 383± 2 80.6± 0.4 1.14± 0.06

105 2021.080± 0.006 388± 1 21.4± 0.1 1.91± 0.02 2013.78± 0.02 379± 2 79.7± 0.5 1.06± 0.06

120 2021.040± 0.005 416± 1 23.1± 0.1 1.77± 0.02 2013.78± 0.02 380± 2 75.3± 0.5 1.08± 0.06

135 2021.000± 0.007 430± 2 23.2± 0.1 1.77± 0.02 2013.68± 0.02 382± 3 70.8± 0.7 0.97± 0.07

150 2021.000± 0.007 488± 2 22.5± 0.1 1.83± 0.02 2013.70± 0.01 420± 3 76.1± 0.3 1.02± 0.04

⟨Θ̂⟩ 2021.046± 0.040 22.1± 0.6 1.83± 0.07 2013.75± 0.02 76.7± 1.2 1.12± 0.03

indicated by the standard deviations σnoise (= b̂−1/2) of
the Gaussian random noises. Through careful checking of
Table 2, it is found that the parameters other than the PL
intensities hardly change with θ. The bottom lines in Ta-
bles 2(a) and (b) show the mean values ⟨Θ̂⟩ obtained from
the Θ̂ at the respective θ and their standard deviation σ⟨Θ̂⟩.
These σ⟨Θ̂⟩ are sufficiently small, and it is guaranteed that
the spectral parameters other than the PL intensities have
no polarization dependence. In addition, a phonon energy
providing the phonon sideband PL was also estimated to
be 14.12± 0.04 meV from the energy difference between
ÊGn and ÊMBn (n = 1, 2), and it is consistent with the
previous results [7,21].

5.3.3 Polarization dependences of ÎG1 and ÎG2

Figure 5 shows polarization dependences of the reso-
nant G1- and G2-PL intensities of the doubly-split ortho-
exciton states, where closed and open circles denote the

ÎG1 and ÎG2, respectively, and error bars mean the stan-
dard deviations of the posterior probability distributions
P (IGn|D, b̂) (n = 1, 2). As clearly seen in Fig. 5, the
polarization dependence of ÎG1 is not so obvious, and it is
well explained by a solid semi-circle in Fig. 5, which was
drawn on the basis of the |MD4h,z|2 in Eq. (12) for the 2Γ+

5
ortho-exciton states.

In contrast, the ÎG2 seems to exhibit polarization de-
pendence in Fig. 5. Although the open circles for ÎG2 are
slightly scattered, it is recognized that the ÎG2 tends to in-
crease at θ = 60◦ ∼ 120◦. As discussed in Sec. 5.1, the
1Γ+

4 ortho-exciton state is expected to indicate a polariza-
tion dependence of sin2 θ as seen in |MD4h,xy|2 of Eq. (13).
The polarization dependence of |MD4h,xy|2 is drawn by a
gray curve in Fig. 5, and it explains the tendency of the ÎG1

to increase at θ = 60◦ ∼ 120◦.
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Figure 5 Polarization dependences of the resonant PL intensi-
ties of the doubly-split ortho-exciton states. Closed and open cir-
cles are for ÎG1 and ÎG2, respectively. Error bars mean the stan-
dard deviations of their posterior probability distributions. Black
and gray lines display polarization dependences of |MD4h,z |

2 and
|MD4h,xy |

2, respectively.

These agreements on the ÎG1 and ÎG2 mean that our
interpretation proposed in Sec. 5.1 are consistent with the
experimental results. So that, it is confirmed that, owing to
a small lattice mismatch, the planar-isotropic biaxial stress
is introduced to the Cu2O thin-crystals sandwiched paired
MgO substrates, and such biaxial stress degrades the crys-
tal symmetry to D4h from Oh as summarized in Table 1.

As described in Sec. 5.1, the |MD4h,xy|2 becomes zero
when the detecting direction angle ϕ is strictly zero. There-
fore, finally, we would like to discuss the forbidden de-
gree on the resonant G2-PL. As seen in Eqs. (10) and (11),
the |MD4h,xy|2 and |MD4h,z|2 are found to be proportional
to sin2 ϕ and cos2 ϕ at θ = 90◦, respectively. In our ex-
perimental setup, the detecting solid angle corresponds to
ϕ = −14◦ ∼ +14◦, and the ratio |MD4h,xy|2/|MD4h,z|2 is
estimated to be approximately 2.0 × 10−2, which was ob-
tained from ϕ integral. However, in Fig. 5, we found that
the ratio of the resonant PL intensities (ÎG2/ÎG1) is larger
than that small ratio. It is well known that other extrinsic
factors such like sample inhomogeneity and point defects
frequently causes such alleviation of forbidden transition,
and such extrinsic factors might enhance the G2-PL. Even
so, the conclusion described in the immediately preceding
paragraph is well maintained.

6 Summary We measured the polarization depen-
dence of the PL spectra in a Cu2O thin-crystal sandwiched
by paired MgO substrates and investigated their polariza-
tion dependences on the basis of symmetry degradation
induced by the planar-isotropic biaxial stress owing to

a small lattice mismatch between Cu2O and MgO. To
quantify this research, we introduced the Bayesian spec-
troscopy to decompose the complicated spectra and to get
posterior probability distributions of the spectral parame-
ters in the respective spectral components. Although the
resonant and the phonon sideband PL bands due to the
doubly-split ortho-exciton states co-exist with overlapping
each other, we succeeded in decomposing to these spectral
components. From these quantitative analyses, different
polarization dependences were found on the PL intensi-
ties between the doubly-split resonant G1- and G2-PL.
The G1-PL appearing on high energy side does not show
significant dependency. In contrast, the G2-PL intensity
exhibits the tendency to increase at θ = 60◦ ∼ 120◦.

By the planar-isotropic biaxial stress in Cu2O thin-
crystals, the crystal symmetry degrades to the tetragonal
symmetry from the cubic one. Owing to such lowering
of the crystal symmetry, the ortho-exciton state splits into
the doubly-split exciton states: 2Γ+

5 and 1Γ+
4 . We consid-

ered the optical selection rules and their polarization de-
pendences on the basis of the quadrupole-optical transition
and the radial characteristics of the basis functions for the
respective exciton states. As a result, it is found that, in
the 2Γ+

5 exciton state, the quadrupole-transition is allowed
and it does not exhibit significant polarization dependence.
In contrast, although the optical transition of the 1Γ+

4 exci-
ton state is quadrupole-forbidden at the restrict condition of
ϕ = 0◦, such quadrupole-forbidden is considered to be re-
laxed by detecting setup for the PL spectra with finite solid
angle of ϕ = −14◦ ∼ +14◦, and the transition strength
of the 1Γ+

4 exciton state is considered to vary with sin2 θ.
Both polarization dependences for the 2Γ+

5 and 1Γ+
4 exci-

ton states can explain the polarization dependences of the
G1- and G2-PL intensities. Consequently, it is concluded
that the planar-isotropic biaxial stress owing to a small
lattice mismatch degrades the crystal symmetry to D4h,
and divide the ortho-exciton state into doubly-split exciton
states indicating different polarization dependences.
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